
HLA Reference Manual 5/24/10 Chapter 1
1 HLA Overview

HLA, the High Level Assembler, is a vast improvement over traditional assembly languages.
With HLA, programmers can learn assembly language faster than ever before and they can write
assembly code faster than ever before. John Levine, comp.compilers moderator, makes the case for
HLA when describing the PL/360 machine specific language:

1999/07/11 19:36:51, the moderator wrote:

"There's no reason that assemblers have to have awful syntax. About 30 years ago I
used Niklaus Wirth's PL360, which was basically a S/360 assembler with Algol
syntax and a a little syntactic sugar like while loops that turned into the obvious
branches. It really was an assembler, e.g., you had to write out your expressions with
explicit assignments of values to registers, but it was nice. Wirth used it to write
Algol W, a small fast Algol subset, which was a predecessor to Pascal. ... -John"

PL/360, and variants that followed like PL/M, PL/M-86, and PL/68K, were true "mid-level
languages" that let you work down at the machine level while using more modern control structures
(i.e., those loosely based on the PL/I language). Although many refer to "C" as a "medium-level
language", C truly is high level when compared with languages like PL/*. The PL/* languages
were very popular with those who needed the power of assembly language in the early days of the
microcomputer revolution. While it’s stretching the point to say that PL/M is "really an
assembler," the basic idea is sound. There really is no reason that assemblers have to have an awful
syntax.

HLA bridges the gap between very low level languages and very high level languages. Unlike
the PL/* languages, HLA really is an assembly language. You can do just about anything with
HLA that you can do with a traditional assembler like MASM, TASM, NASM, or Gas. If you want
to write low-level assembly code using x86 machine instructions, HLA does not get in your way;
if you want to use compares and conditional branches rather than structured control statements, you
can. On the other hand, if you prefer to use more readable high-level control structures, HLA
allows this, as well. HLA lets you work at the level you are most comfortable with and at the level
that is most appropriate for the task at hand.

Beyond supplying a "non-awful" syntax, HLA has one other important feature -- it’s
extensible. HLA provides special features that let you add new statements to the language. So if
HLA is not "high level" (or "low level") enough for your tastes, you can extend it. This document
will expend considerable effort describing exactly how to do this in a later section.

In addition to the HLA language itself, the HLA system provides one other very important
component - the HLA Standard Library. This is a collection of hundreds of functions that you can
use to write assembly language programs as quickly and easily as you would write C programs.

1.1 What is a "High Level Assembler"?
The name "High Level Assembler" and its abbreviation "HLA" is certainly not new1. Nor is

the concept of a high level assembler. David Salomon in his 1992 text "Assemblers and Loaders"
(Ellis Horwood, ISBN 0-13-052564-2) uses these terms to describe various assembly languages
dating back to 1966. Furthermore, both IBM and Motorola have assembler products with very
similar names (e.g., IBM’s HLAsm, though it’s somewhat debatable whether HLAsm is truly a
high level assembler).

Salomon offers the following definitions for a High Level Assembler (or HLA):
A high-level assembler language (HLA) is a programming language where each
instruction is translated into a few machine instructions. The translator is somewhat
more complex than an assembler, but much simpler than a compiler. Such a
language should not have features like the if, for, and case control structures,

1. This section will use the term "HLA/86" when specifically taking about the High Level Assembler product
this documentation describes and use "HLA" as a generic term. After this section, this documentation will use the
term "HLA" to specifically describe the "HLA/86" product.
Public Domain Created by Randy Hyde Page 1

HLA Reference Manual 5/24/10 Chapter 1
complex arithmetic, logical expressions, and multi-dimensional arrays. It should
consist of simple instructions, closely resembling traditional assembler instructions,
and of a few simple data types.

Since Salomon describes a couple of high level assemblers that exceed this definition, he
offers a second definition for high level assemblers that is a bit higher-level:

A high-level assembler language (HLA) is a language that combines most of the
features of higher-level languages (easy to use control structures, variables, scope,
data types, block structure) with one important feature of assembler languages
namely, machine dependence.

Neither definition is particularly useful for describing HLA/86 and other HLAs like Terse,
MASM and TASM. Of course the term "High Level Assembler" is very nebulous and offers a fair
amount of latitude. Almost any macro assembler could pass as an HLA on the basis that a macro-
instruction expands into a few machine instructions.

David Salomon describes several different high level assemblers in his text. The examples he
describes are PL/360, NEAT/3, PL516, and BABBAGE.

PL/360 and PL516 are products that conform to the second definition above. They allow
simple arithmetic expressions and assignment statements, the use of high level control structures
(if, for, while, etc.), high level data declarations, and block structure (among other things). These
languages expose the underlying machine’s registers and allow the use of machine instructions
using a "functional" syntax.

The NEAT/3 language is a much lower-level language; basically it is an assembly language
for the NCR Century computers that provide COBOL-style data declarations. Most of its
"instructions" translate one-for-one into Century machine instructions, though it does automatically
insert code to convert data types from one format two another if the data types of an instruction’s
operands are incompatible.

The BABBAGE assembly language is an expression-based assembly language (very similar to
Terse). It allows simplified high level control structures like if and while. The interesting thing
about this assembler is that it was the only assembler for the GEC4000 family of computers.

In addition to the HLAs that Salomon describes, there have been several other high level
assemblers created over the years. PL/M and PL/M-86 was designed by Intel for their 8080 and
8086 CPU families. This was an obvious adaptation of the PL/360 style HLA for Intel’s CPUs.
PL/68 was also available for the Motorola 680x0 family. SL/65 was a similar adaptation of PL/360
for the 6502 family. At one point there was a product named "High Level Assembler" for the Atari
ST system (68K based). Jim Neil has also created an expression-based high level assembler
(similar in principle to Babbage) for Intel’s x86 family. MASM and TASM (for the x86) also fall
into the category of a high level assembler due to their inclusion of high level control structures and
logical expressions.

So where does HLA/86 fit into these definitions? In truth, the definition of HLA/86 falls
somewhere between these two definitions. So the following paragraphs will define the term "High
Level Assembler" as it should apply to HLA/86 and similar high level assemblers.

The first definition above is overly restrictive. It implies that any language that exceeds these
limits is a high level language, not a high level assembly or traditional assembly language.
Obviously, this definition is too restrictive in the sense that by this definition many traditional
assemblers would have to be considered as high level languages (even beyond a high level
assembler). Furthermore, it elevates many traditional assemblers to the status of an HLA even
though we wouldn’t normally think of them as high level assemblers; i.e., most macro assemblers
provide the ability to create instructions that translate into a few machine instructions. Macro
facilities, however, are something we expect out of a modern assembly language; their presence
doesn’t make the language a "high level" assembly language in most people’s mind. Furthermore,
most modern assemblers provide a mechanism for declaring multi-dimensional arrays (even though
you still have to use some sequence of instructions to index into said arrays).

The second definition David Salomon provides hits the other extreme. Arguably, languages
like C could be called HLAs under this definition (yes, there are some machine dependent features
in C, though probably not enough to satisfy David Salomon’s original intent).

The definition of high level assemblers like Terse, MASM, TASM, and HLA/86 fall
somewhere between these extremes. Therefore, this document will define a high level assembler as
follows:

A "high level assembly language" (HLAL) is a language that provides a set of
statements or instructions that practically map one-to-one to machine instructions of
the underlying architecture. The HLAL exposes the underlying machine architecture
Public Domain Created by Randy Hyde Page 2

HLA Reference Manual 5/24/10 Chapter 1
including access to machine registers, flags, memory, I/O, and addressing modes.
Any operation that is possible with a traditional assembler should be possible within
the HLAL. In addition to providing access to the underlying architecture, the HLAL
must provide some abstractions that are not normally found in traditional assemblers
and that are typically found in traditional high level languages; this could include
structured control statements (e.g., if, for, and while), high level data types and data
structuring facilities, extensive compile-time language facilities, run-time expression
evaluation, and standard library support. A "High Level Assembler" is a translator
that converts a high level assembly language to machine code.

There is a very important difference between this definition and the ones that David Salomon
provides. Specifically, a high-level assembly language must provide access to the underlying
machine architecture. Within the HLAL you must be able to specify any (reasonable) machine
instruction that is available on the CPU. The HLAL may provide other statements that do not
directly map to machine instructions (e.g., an if statement), but it must, at least, provide a set of
statements that practically map one-to-one with the machine instructions. The "practically"
modifier appears here for two reasons. First of all, some assembly source statements may map to
two or more different, but equivalent, machine instructions. A good example is the x86 "mov reg,
reg" which can map to two different (though equivalent) opcodes depending on the setting of the
direction bit in the opcode. Most assemblers will map the source statement to only one of these
opcodes, hence there is not truly a one-to-one mapping (since there exist some opcodes that do not
map back to some source instruction). Another allowable restriction is that the HLAL may limit
the programmer to a subset of the complete machine instruction set if it makes sense to do so (e.g.,
many modern x86 assemblers do not support 16-bit mode on the 80x86).

In addition to supporting the underlying machine architecture (which almost any traditional
assembler will do), the HLAL must also provide support for some features normally found in a
high level language. The definition does not require that a HLAL support all the features listed
above, nor is it restricted to just the features listed, but a HLAL must support some of the features
traditionally found in a high level language. The number and type of features the HLAL supports
determines how "high level" the assembly language is. Like HLLs, we can have "low-level"
HLALs, "medium-level" HLALs, "high-level" HLALs, and even "very high-level" HLALs.
NEAT/3, for example, would be a low-level HLAL since it provides higher-level data types,
conversions, and not much else.

MASM and TASM are probably best considered medium-to-high-level HLALs since they
provide high level data structuring facilities, structured control statements, high level procedure
definitions and invocations, a limited block structure, powerful compile-time language (macro)
facilities, standard library support (e.g., the UCR Standard Library and many other available library
modules), and other high level language features. In actual use, the programmer is expected to
normally use standard machine instructions and rise up to the high level statements only as
necessary.

The Terse language is a good example of a medium level HLAL since it uses an expression
syntax but otherwise maps statements fairly closely to the assembly counterparts. It does provide
some higher-level data structuring capabilities, though this is inherited from the underlying
assembler(s) on which Terse is based.

PL/360 and PL516 are definitely high-level HLALs because they fully support simplified
arithmetic expressions, control structures, high-level data types, and other features. These
languages provide access to the underlying architecture, but the emphasis is to use these languages
as a high level language and drop down to the machine instructions only as necessary.

HLA/86 probably falls in the high-level-to-very-high-level range because it provides high
level data types and data structuring abilities, high level and very high level control structures,
extensive parameter passing facilities (more than most high level languages), a very extensive
compile time language, a very extensive standard library, built-in parsing facilities for language
extension, and many other features. Generally, HLA/86 has a larger feature set than the other
HLALs described above. There are a few design goals that limit the "high-levelness" of HLA/86:

(1) With one exception, HLA never emits any code behind the programmer’s back that
modifies registers or flags (the one exception is object method invocation, and this is well
documented), and

(2) HLA doesn’t support arithmetic expressions (it does support a limited form of logical/
boolean expressions).

One interesting aspect of HLA/86 is that it is extensible. Using features built into the
language, you can extend HLA/86’s syntax by adding new statements and other features. This
Public Domain Created by Randy Hyde Page 3

HLA Reference Manual 5/24/10 Chapter 1
feature gives you the ability to make HLA/86 as high level as you desire (though it may take some
effort to achieve certain language features). The bottom line is this: in some ways, HLA/86 is
lower level than languages like PL/360 and PL516; in other ways, it’s higher level than these
HLALs. However, as the definition requires, almost anything you can do with a traditional
assembler is possible in HLA/86.

1.2 What is an "Assembler"
Because high-level assemblers are clearly different that traditional assemblers, one might

question whether a high level assembly language is truly an assembly language and whether
translators for high-level assembly languages can be properly called an assembler. Unfortunately,
there is a considerable range of opinions as to exactly what constitutes an "assembler" versus other
translators. This document will not attempt to get involved in this debate. Instead, this section
provides a set of definitions that are useful for describing assemblers at various levels of
abstraction.
Pure Assembler:

A "pure assembler" is a program that processes an assembly language source file
and translates the source code using a direct mapping from source code
instructions to individual machine instructions (each source instruction is
mapped to exactly one machine instruction). The assembler only provides
machine-primitive data types like bytes, words, double words, etc. A pure
assembler does not provide macro facilities. A pure assembler always produces
machine code as output.

Traditional Assembler:

A "traditional assembler" is a pure assembler plus macro facilities. The
assembler may provide some "built-in macros" and instruction synonyms, but in
general, the built-in statements should still map to individual machine
instructions (note that the programmer may extend this by writing macros).
There is no support by the assembler for run-time arithmetic or boolean
expressions. A traditional assembler may also provide some simple data typing
facilities (such as the ability to rename primitive data types as something else,
e.g., byte->char). A traditional assembler always emits machine code as output.

High Level Assembler:

A high-level assembler is a macro assembler plus some additional high-level
language-like facilities, such as high-level control constructs or high-level-like
procedure calls. If a programmer elects to ignore these additional facilities, they
still have all the capabilities of a macro assembler at their disposal.

1.3 Is HLA a True Assembly Language?
Some people are confused by HLA. On the one hand, it looks like a High Level Language,

employing syntax similar to Pascal and C/C++. On the other hand, it does support the machine
instructions found in a typical assembly language. Many people accuse HLA of being a compiler
rather than an assembler. What’s the truth?

The truth is, assembly languages have evolved, just as high-level languages have evolved, and
we can no longer use a definition for an assembler that made sense in the 1950s when describing
modern assemblers such as MASM, TASM, and HLA. Today, the best definition we can use is that
an assembler is a compiler for an assembly language. An assembler accepts a source file written in
some sort of assembly language and produces an object file as its output.

The real question, then, is not whether HLA is an assembler, but whether the HLA language is
an assembly language. Some people argue that any compiler that includes any sort of statement that
compiles into more than one machine instruction cannot be called an "assembler." However, such
an argument immediately eliminates macro assemblers. Eliminating macro assemblers is
unsatisfactory because almost every modern assembler provides, at the very least, some simple
macro facilities. Whether you implement an "IF" statement with a macro (generally supplied by the
assembler’s author, as is the case, for example, with FASM) that you have to include into your
source file, or via a ‘macro’ that the assembler’s author has provided as part of the assembler is
really a matter of implementation. To the end user of the assembler, the "IF" statement is just as
much a part of the language that they can use regardless of the implementation. The fact that
assemblers such as MASM, TASM, and HLA provide these high-level-like control structures in
Public Domain Created by Randy Hyde Page 4

HLA Reference Manual 5/24/10 Chapter 1
assembly language does not imply that the languages these products implement are not assembly
languages.

Some people argue that "high-level assemblers" such as MASM, TASM, and HLA are not
assemblers any more than C/C++ compilers could be considered assemblers if those C/C++
compilers support an in-line assembly capability. However, their arguments strengthen the case for
calling a product like HLA an "assembler." After all, if we’re going to continue to call C/C++ a
high-level language even though it provides support for machine instructions, then there is no
reason we cannot call a product like MASM, TASM, or HLA "assemblers" even though they
provide a modicum of support for high-level-like control structures. Ultimately, language's focus
determines its type. C/C++’s focus is on writing high-level language programs, with a few machine
instructions thrown in now and then when the high-level language doesn’t quite handle everything.
High-level assemblers, such as HLA, MASM, and TASM are focused on writing assembly
language modules. They have some high-level control structures thrown in to simplify some tasks
(e.g., in the case of HLA, the high-level control structures exists as a bridge between HLLs and
assembly during the learning process), but the focus is mainly on writing assembly language code.

Some people feel that if you learn HLA (or some other high level assembler), then you’re not
really learning "assembly language." This is utter nonsense. If you thoroughly learn HLA, you’ll
know assembly language programming inside and out. Switching to a different assembler from
HLA would be no different, say, than switching from Gnu’s Gas assembler to MASM (or vice
versa). One might bemoan the features lost in such a translation, but when going from HLA to
some other assembler you’re typically giving up features rather than gaining anything.

Still there is a pervasive argument that high-level control structures like IF/WHILE/FOR/etc.
don’t belong in a true assembler. Well, HLA, MASM, and TASM users can elect to ignore these
statements (as many old-time MASM programmers do; with HLA you can even disable these
statements). As long as the rest of the assembler supports a language that allows one to write
"pure" assembly language code, why would anyone question the validity of the title "assembly
language" for the code? (Unless, of course, they have an ax to grind.) For those who are
diametrically opposed to allowing any language that contains IF/WHILE/FOR/etc. statements to be
called assembly language, well, that’s why we call these things high level assembly languages: to
note the fact that they are a little more powerful than traditional assembly languages.

The bottom line is this: if you learn HLA, you will learn assembly language programming. As
long as you understand how to write the low-level code (within HLA) and don’t rely exclusively on
the high-level control statements in your programs, no one can truthfully question your assembly
language programming knowledge.

1.4 HLA Design Goals
HLA was originally conceived as a tool to teach assembly language programming. In early

1996 I decided to do a Windows version of my electronic text "the Art of Assembly Language
Programming" (AoA). After an attempt to develop a new version of the " UCR Standard Library
for 80x86 Programmers" (a mainstay of AoA), I came to the conclusion that MASM just wasn’t
powerful enough to make learning assembly language really easy. I decided to develop an
assembler with sufficient power, providing the tools for a good standard library as well as satisfy
some other requirements. Therefore, HLA has two important goals: provide a system that is
powerful enough to develop code and macros to make learning assembly language, which
simultaneously providing a system that is easy for beginners to learn.

The principle goal of HLA was to leverage student’s existing programming knowledge. For
example, a good Pascal programmer can get their first C/C++ program operational in a few
minutes. All they have to do is note the similarities between the two programming languages,
make the appropriate syntactical changes, and they’re up and running. Take that same Pascal
programmer and expect them to learn LISP or Prolog the same way, and you’ll not meet with the
same success. LISP and Prolog are completely different, they use a different "programming
paradigm," so the student has to "start over from scratch" when learning these languages. Although
assembly language is an imperative language (like Pascal and C/C++), there is a considerable
"paradigm shift" when moving from one of these high level languages to assembly. In HLA, I
wanted to create a language with high level control structures and declarations that made it possible
for someone familiar with an imperative language like Pascal or C/C++ to get their first HLA
program running in a matter of minutes (or, at worst, a matter of hours). Of course, to achieve this
goal, I needed to add high-level data declarations and high-level control constructs to the HLA
language.

The astute reader will quickly point out that high level control structures are not assembly
language and letting the students use these types of statements is not really teaching them assembly
Public Domain Created by Randy Hyde Page 5

HLA Reference Manual 5/24/10 Chapter 1
language. This is quite true; since the purpose of teaching an assembly language course is to teach
the students assembly language programming it is quite clear that HLA would fail if it only
provided these high level control structures (e.g., like the PL/M language does). Fortunately, this is
not the case. HLA supports all standard assembly language instructions including CMP and Jcc
instructions, so you can still write "pure" assembly language programs without using those high-
level language control structures. However, it does take time to learn the several hundred different
machine instructions. Traditionally, it’s taken my students (using only MASM) about five weeks
before they could really write any meaningful programs in assembly language (you have to cover
things like numeric representation, basic CPU architecture, addressing modes, data types, and
introduce the instruction set before any real programs can be written).

HLA lets students write meaningful programs within about a week of its introduction (e.g., the
first assignment I give in a typical quarter is to write an "addition table" program that computes the
outer product [addition table] of the two vectors 0..15 and 0..15, printing the table formatted
nicely). They achieve this by using statements they already know (like IF and WHILE) with the
injection of just a few assembly language concepts (registers, and the MOV and ADD instructions)
plus an introduction to the HLA Standard Library. Over the next several weeks, these students
write increasingly complex programs as they are introduced to new assembly language and HLA
concepts (e.g., data representation, basic architecture, addressing modes, data types, and additional
instructions). At about the sixth week, I begin "weaning" these students off the high-level language
statements and force them to use the low-level machine instructions. It turns out that they learn
how to simulate an IF statement at roughly the same point in the quarter as they did when they used
only MASM, but the big difference is that they’ve written a lot more code up to that point proving
out other concepts in machine organization and assembly language programming. In my limited
experience with classroom testing, I’ve found that students spend less time on the class, cover more
material, and retain the knowledge better (by the time of the final exam) than they did when I only
used MASM.

The general goal of reducing the learning curve for students is achieved several ways.

(1) As noted above, HLA allows a gradual transition from high-level languages into
pure assembly language. My favorite analogy here is the Nicoderm CQ smoking
cessation system ("gradual steps are better."). Like the Nicoderm system, HLA
allows students learn assembly language in gradual steps rather than throwing
them into the water and shouting "sink or swim!"

(2) In addition to letting the students employ high level language statements in their
assembly language programs, HLA contains several other familiar concepts and
syntactical items that ease the transition from high-level language programming
to assembly language. For example, HLA uses the familiar (to C/C++
programmers) "/*" and "*/" comment delimiters (as well as the "//" comment
delimiter). Statements generally end with a semicolon (just as in high level
languages). Machine instructions use a functional notation rather than
"mnemonic-operand" notation. Constant, type, and variable declarations should
look very familiar to Pascal programmers. HLA’s standard library should look
comfortable to anyone who has used the C/C++ standard library.

In addition to syntactical similarities, well-written HLA programs share a similar
programming style with modern high-level languages. Therefore, a student who has learned how
to write readable Pascal, C/C++, or Java programs will be able to write readable HLA programs
with almost no additional study. Contrast this with the style guide I’ve written for (MASM)
assembly language programmers that is quite a bit different than high level languages and takes a
while to master.

Another factor many people don’t consider is the evaluation of a programming project. At UC
Riverside instructors are given about 1.5-2 hours per student per quarter of reader (student grader)
time to grade projects. Experienced readers who can grade (or want to grade) assembly language
projects are few and far in-between. Most readers are "stuck" with grading the assembly class
rather than volunteer for the job. The fact that most student assembly language projects have a
horrible programming style and are hard to read only exacerbates this situation. HLA helps solve
this problem. Since good HLA programming style is very similar to good C/C++ style, UC
Riverside’s readers have a much easier time reading the projects and evaluating their programming
style. In addition, since the students have (presumably) learned good programming style in the
prerequisite course(s), they tend to write easier to read HLA programs than MASM programs. This
lets the instructor assign more projects without fear of exceeding my reader budget each quarter.
Public Domain Created by Randy Hyde Page 6

HLA Reference Manual 5/24/10 Chapter 1
HLA’s advantages are easily summed up by a complaint I had from a student once. She said
"HLA drives me nuts. It’s so similar to C++ that I often get confused and try out something that
would work in C++ only to have the HLA compiler reject it." I agreed with this student that this
was a bit of a problem, but I also mentioned, "what about all the times you’ve tried something from
C++ and it HAS worked?" She thought about it for a moment and walked away agreeing with my
assessment of her complaint. Had this student been learning assembly the traditional way, she
wouldn’t have bothered to try anything. She would had to have spent extra time learning how to
achieve what she wanted by reading an assembly text or she would have missed out on the
opportunity to actually learn something new. HLA’s similarity to C++ encouraged her to try
something out on her own. The experiments weren’t always successful, but in those cases where
they were, she benefited greatly from this. This anecdote, more than any other, sums up what my
goals with HLA were and describes the success I believe I have achieved with it.

1.5 How to Learn Assembly Programming Using HLA
Of course, a compiler without a language reference manual and tutorial is useless. This

document will provide a reference to the HLA programming language. It is not, however,
appropriate pedagogy for beginners (it’s more suitable for those who already know assembly
language programming and wish to learn HLA’s syntax). A better text for beginners is "The Art of
Assembly Language Programming, Second Edition" available from No Starch Press. This provides
a complete college level textbook that teaches assembly language programming from the ground up
using HLA. You can also find an electronic copy of "AoA" on Webster at http://
webster.cs.ucr.edu. Webster also contains the latest version of HLA as well as tons of HLA sample
source code. That’s the first place you should go for information on learning HLA.

1.6 Legal Notice
The HLA v2.x implementation is a prototype intended to test language design and

implementation features. I (Randall Hyde) have placed this code and language design in the public
domain so others may benefit from this work. However, keep in mind that, as a prototype, HLA is
not up to contemporary commercial standards for software quality. It is your responsibility to
evaluate whether HLA is suitable for whatever purpose you have.

At any given time, there are several known and unknown defects in this software. Some may
be corrected in later releases of HLA v2.x; some may never be corrected in the v2.x series. I
(Randall Hyde) do not warrant or guarantee this software in any way. In particular, you cannot
expect corrections of any given defect in the system. Obviously, I try to fix known problems (if
possible), but I refuse to be held legally responsible for such defects in the software.

The purpose of developing a prototype implementation of the HLA language was to try out
language design and implementation ideas. The prototype phase of HLA development is rapidly
coming to an end and an "official" HLA language design will be forthcoming. HLA v3.0 will
implement this new language. The only guarantees I make about compatibility between HLA v2.x
and HLA v3.0 is that there will be some incompatibilities. The exact nature and magnitude of those
incompatibilities is unknown at this point, but it is safe to assume that no HLA v2.x program will
compile under HLA v3.0 without at least some minor source code changes. So please don’t get the
idea that any investment you make in HLA source code will be protected in v3.0 (note: after the
release of v3.0 this is a relatively safe assumption to make, though there will still be no guarantees).

Because HLA is constantly changing (typical of a prototype), it is very difficult to keep the
documentation in phase with the language. You can expect this documentation (and all HLA
documentation) to contain omissions (e.g., of new features that have yet to be documented),
discussion of features removed from HLA, and incorrect descriptions of HLA features. Every
attempt will be made to keep the documentation in phase with the software, but like so many free
software projects, lack of time and motivation prevents perfection1.

This software is not fit for use in mission-critical or life-support software systems. This
software is principally intended for evaluation and educational (i.e., learning assembly language)
purposes only. It has been successfully used to develop commercial and industrial applications
(including a nuclear reactor control system) and it has been successfully used in educational
environments, but again, you are personally responsible for determining the fitness of this software
and documentation for your particular application and you must take responsibility for that choice.

1. You must admit, though, HLA’s documentation is better than that of most free software.
Public Domain Created by Randy Hyde Page 7

HLA Reference Manual 5/24/10 Chapter 1
HLA’s current design makes use of other software tools that I (Randall Hyde) did not write.
These tools include the Microsoft Linker, the Microsoft Librarian, the Pelles C linker, the Pelles C
librarian, and the Free Software Foundations ld and as programs. It can optionally make use of
programs such as MASM, FASM, TASM, and NASM. Because some of these tools are
commercial products and are covered by various license agreements, not all of these tools come
with the HLA distribution. For example, if you want to use the Microsoft or Borland tools, you’ll
have to obtain copies of them from some other source. Note that using HLA does not require the
Microsoft or Borland tools; HLA is simply compatible with these tools if you already own them
and would prefer to use them. HLA does ship with all the tools you need to effectively use HLA;
the use of these non-free tools is optional.

1.7 Teaching Assembly Language using HLA
I first began teaching assembly language programming at Cal Poly Pomona in the Winter

Quarter of 1987. I quickly discovered that good pedagogical material was difficult to come by;
even the textbooks available for the course left something to be desired. As a result, my students
were learning very little assembly language in the ten weeks available to the course. After about
two quarters, I decided to do something about the textbook problem, so I began writing a text I
entitled "How to Program the IBM PC Using 8088 Assembly Language" (obviously, this was back
in the days when schools still used PCs made by IBM and the main CPU you could always count on
was the 8088). "How to Program..." became the epitome of a "work in progress." Each quarter I
would get feedback from the students, update the text, and give it to Kinko's (and the UCR Printing
and Reprographics Department) to run off copies for my students the very next quarter.

The original "How to Program..." text provided a basic set of library routines to print strings,
input characters and lines of text, and a few other basic functions. This allowed the students to
quickly begin writing programs without having to learn about the INT instruction, DOS, or BIOS.
However, I discovered that students were spending a significant time each quarter writing their own
numeric conversion routines, string manipulation routines, etc. One student commented on "how
much easier it was to program in 'C' than assembly language since all those conversions and string
operations were built into the language." I replied that the real savings were due more to the 'C'
standard library than the language itself and that a comparable library for assembly language
programmers would make assembly language programming almost as easy as 'C' programming. At
that moment a little light when on in my head and I sat down and wrote the first few routines of
what ultimately became the "UCR Standard Library for 80x86 Assembly Language Programmers"
(You can still get a copy of the UCR stdlib from webster at the URL given above). As I finished
each group of routines in the standard library, I incorporated them into my courses. This reaped
immediate benefits as students spent less time writing numeric conversion routines and spent more
time learning assembly language. My students were getting into far more advanced topics than was
possible before the advent of the UCR Stdlib.

In the early 1990's, the 8088 CPU finally died off and IBM was no longer the major supplier of
PCs. Not only was it time to change the title of my text, but I also needed to update references to
the 8088 (that were specific to that chip) and bring the text into the world of the 80386 and 80486
processors. DOS was still King and 16-bit code was still what everyone was writing, but issues of
optimization and the like were a little outdated in the text. In addition to the changes reflecting the
new Intel CPUs, I also incorporated the UCR Standard Library into the text since it dramatically
improved the speed at which students progressed beyond the basic assembly programming skills. I
entitled the new version of the text "The Art of Assembly Language Programming," an obvious
knock-off of Knuth's series ("The Art of Computer Programming").

In early 1996 it became obvious to me that DOS was finally dying and I needed to modify
"The Art of Assembly Language Programming" (AoA) to use Windows as the development
platform. I wasn't interested in having students write Windows GUI applications in assembly
language. (The time spent teaching event-oriented programming would interfere with the teaching
of basic machine organization and assembly language programming.) However, it was clear that
the days of writing code that arbitrarily pokes around in memory and accesses I/O addresses
directly (things that AoA taught) were over. Therefore, I decided to get started on a new version of
AoA that used Windows as the basic development environment with the emphasis on writing
console applications.
Public Domain Created by Randy Hyde Page 8

HLA Reference Manual 5/24/10 Chapter 1
The UCR Standard Library was the single most important pedagogical tool I'd discovered that
dramatically improved my students' progress. As I began work on a new version of AoA for
Windows 3.1 my first task was to improve upon the UCR Standard Library to make it even easier
to use, more flexible, more efficient, and more "high level." After six months of part time work, I
eventually gave up on the UCR Stdlib v2.0. The idea was right; unfortunately, the tools at my
disposal (specifically, MASM 6.11) weren't quite up to the task. I was writing some tricky macros,
obviously exploiting code inside MASM that Microsoft's engineers had never run (i.e., I discovered
lots of bugs). I would code in some workarounds to the defects only to have the macro package
break at the next minor patch of MASM (e.g., from MASM 6.11a to MASM 6.11b).

There was also a robustness issue. Although MASM's macro capabilities are quite powerful
and it almost let me do everything I wanted, it was very easy to confuse the macro package. This
would cause MASM would generate some totally weird (but absolutely correct) diagnostic
messages that correctly described what was going wrong in the macro but made absolutely no sense
whatsoever at all. As it became clear that the UCR Stdlib v2.0 would never be robust enough for
student use, I decide to take a different approach.

About this time, I was talking with my Department Chair about the assembly language course.
We were identifying some of the problems that students had learning assembly language. One
problem, of course, was the paradigm shift- learning to solve problems using machine language
rather than a high level language. The second problem we identified is that students get to apply
very little of what they've learned from other courses to the assembly language class. A third
problem was the primitive tools available to assembly language programmers. Energized by this
discussion, I decided to see how I could solve these problems and improve the educational process.

Problem 1, the paradigm shift, had to be handled carefully. After all, the whole purpose of
having students take an assembly language programming course in the first place is to acquaint
them with the low-level operation of the machine. However, I felt it was certainly possible to
redefine parts of assembly language so that would be more familiar to students. For example, one
might test the carry flag after an addition to determine if an unsigned overflow has occurred using
code like the following:

 add eax, 5

 jnc NoOverflow

 << code to execute if overflow occurs >>

NoOverflow:

Although this code is straightforward, you would be surprised how many students cannot
visualize this code. On the other hand, if you feed them some pseudo code like:

 add eax, 5

 if(the carry flag is set) then

 << code to execute if overflow occurs >>

 endif
Public Domain Created by Randy Hyde Page 9

HLA Reference Manual 5/24/10 Chapter 1
Those same students won't have any problems understanding this code. To take advantage of
this difference in perspective, I decided to explore changing the definition of assembly language to
allow the use of the "if condition then do something" paradigm rather than the "if a condition is
false them skip over something" paradigm. Fundamentally, this does not change the material the
student has to learn; it just presents it from a different point of view to which they're already
accustomed. This certainly wasn't a gigantic leap away from assembly language as it existed in
1996. After all, MASM and other assemblers were already allowing statements like ".if" and
".endif" in the code. Therefore, I tried these statements out on a few of my students. What I
discovered is that the students picked up the basic "high level" syntax very rapidly. Once they
mastered the high level syntax, they were able to learn the low-level syntax (i.e., using conditional
jumps) faster than ever before.

The second problem, students not being able to leverage their programming skills from other
classes, is largely linked to the syntax of Intel x86 assembly language. Many skills students pick
up, such as programming style, indentation, appropriate programming construct selection, etc., are
useless in a typical assembly language class. Even skills like commenting and choosing good
variable names are slightly different in assembly language programs. As a result, students spend
considerable (unproductive) time learning the new "rules of the game" when writing assembly
language programs. This directly equates to less progress over the ten-week quarter. Ideally,
students should be able to applying knowledge like program style, commenting style, algorithm
organization, and control construct selection they learned in a C/C++ or Pascal course to their
assembly language programs. If they could, they'd be "up and writing" in assembly language much
faster than before.

The third problem with teaching assembly language is the primitive state of the tools. While
MASM provides a wonderful set of high level language control constructs, very little else about
MASM supports this "brave new world" of assembly language I want to teach. For example,
MASM's variable declarations leave a lot to be desired (the syntax is straight out of the 1960's). As
I noted earlier, as powerful as MASM's macro facilities are, they weren't sufficient to develop a
robust library package for my students. I briefly looked at TASM, but it's "ideal" mode fared little
better than MASM. Likewise, while development environments for high-level languages have
been improving by leaps and bounds (e.g., Delphi and C++ Builder), assembly language
programmers are still using the same crude command line tools popularized in the early 1970's.
Codeview, which is practically useless under Windows, was the most advanced tool Microsoft
provided specifically for assembly language programmers.

Faced with these problems, I decided the first order of business was to create a new x86
assembly language and write a compiler for it. I decided to give this language the somewhat-less-
than-original name of "the High Level Assembler," or HLA (IBM and Motorola both already have
assemblers that use a variant of this name). It took three years, but the first version of HLA was
ready for public consumption in September of 1999.

I began using HLA in my CS 61 course (machine organization and assembly language
programming) at UCR in the Fall Quarter, 1999. With no pedagogical material other than a
roughly written reference guide to the language, I was expecting a complete disaster. It turns out
that I was pleasantly surprised. Although the students did have major problems, the course went far
more smoothly than I anticipated and we managed to cover about the same material I normally
covered when using MASM.

Although things were going far better than I expected, this is not to say that things were going
great, or even as smoothly as I would have liked. The major problem, of course, was the lack of a
textbook. The only material the students had to study from was their lecture notes. Clearly,
something needed to be done about this. Of course, the whole reason for spending three years
writing HLA was to allow me to write a new version of AoA. Therefore, in November 1999 I
began work on the new edition of the text. By the start of the Winter Quarter in January 2000, I had
roughed together five chapters, about 50% of the material was brand new and the other 50% was
cut, pasted, and updated from the older version of the text. During the quarter, I rushed out two
more chapters bringing the total to seven. The Winter Quarter went far more smoothly than the
Fall Quarter. Student projects were much better and the progress of the class outstripped any
assembly language course I'd taught prior to that point. Clearly, the class was benefiting from the
use of HLA.

By the start of the Spring Quarter in April 2000, I'd managed to make one proofreading pass
over the first six chapters and I'd written the first draft of the eighth chapter. By the middle of 2002,
The Art of Assembly Language was on-line and receiving rave reviews across the internet. In 2003,
No Starch Press published an edited and revised edition in "treeware" form.
Public Domain Created by Randy Hyde Page 10

HLA Reference Manual 5/24/10 Chapter 1
Well, this has been a long-winded report of HLA's justification. You're probably wondering
what HLA is and whether it is applicable to you (especially if you're a programmer rather than an
educator). Fair enough, the rest of this article will discuss the HLA system and how you would use
it.

HLA (under Windows) is a Win32 console application and it generates Win32 applications.
By default, it generates console applications although it does not restrict you to writing console
applications under Windows. There is absolutely no support for DOS applications. HLA v2.0 also
supports Mac OS X, Linux, and FreeBSD. Applications written in HLA that use the HLA Standard
Library can run under all four operating systems with nothing more than a recompile. This allows
a student, for example, to work under Windows at home and submit projects under Linux (or any of
the other OSes) at school.

When designing the HLA language, I chose a syntax that is very similar to common imperative
high-level languages such as Pascal/Delphi, Ada, Modula-2, FORTRAN77, C/C++, and Java. That
is not to say that HLA compiles Pascal programs, but rather, a Pascal programmer will note many
similarities between Pascal and HLA (and ditto for the other languages). HLA stole many of the
ideas for data declarations from the Algol-based languages (Pascal, Modula-2, and Ada), it grabbed
the ideas for many of its control structures from FORTRAN77, Ada, and C/C++/Java, and the
structure of the HLA Standard Library is based on the C Standard Library. So regardless of which
high level language you're most comfortable with in this set, you'll certainly recognize some
elements of your favorite HLL in HLA.

A carefully written HLA program will look almost like a high-level language program.
Consider the following sample program:

program SampleHLApgm;

#include("stdlib.hhf")

const

 HelloWorld := "Hello World";

begin SampleHLApgm;

 stdout.put("The classical 'Hello World' program: ", HelloWorld, nl);

end SampleHLApgm;

This program does the obvious thing. Anyone with any high-level language background can
probably figure out everything except the purpose of "nl" (which is the newline string imported by
the standard library). This certainly doesn't look like an assembly language program; there isn't
even a real machine instruction in sight. Of course, this is a trivial example; nonetheless, I've
managed to write reasonable HLA programs that were just over 1,000 lines of code that contained
only one or two identifiable machine language instructions. If it's possible to do this, how can I get
away with calling HLA an assembly language?
Public Domain Created by Randy Hyde Page 11

HLA Reference Manual 5/24/10 Chapter 1
The truth is, you can actually write a very similar looking program with MASM. Here's an
example I trot out for unbelievers. This code is compilable with MASM (assuming you include the
UCR Standard Library v2.0 and some additional code I've cut out for brevity:

var

 enum colors,<red,green,blue>

 colors c1, c2

endvar

Main proc

 mov ax, dseg

 mov ds, ax

 mov es, ax

 MemInit

 InitExcept

 EnableExcept

 finit

 try

 cout "Enter two colors:"

 cin c1, c2

 cout "You entered ",c1," and ",c2,nl

 .if c1 == red
Public Domain Created by Randy Hyde Page 12

HLA Reference Manual 5/24/10 Chapter 1
 cout "c1 was red"

 .endif

 except $Conversion

 cout "Conversion error occured",nl

 except $Overflow

 cout "Overflow error occured",nl

 endtry

 CleanUpEx

 ExitPgm ;DOS macro to quit program.

Main endp

As you can see, the only identifiable machine instructions here are the ones that initialize the
segment registers at the beginning of the program (which is unnecessary in a Win32 environment).
So allow me to blunt criticism from "die-hard" assembly fans right at the start: HLA doesn't open
up all kinds of new programming paradigms that weren't possible before. With some clever macros
(e.g., enum, cout, and cin in the MASM code), it is quite possible to do some amazing things. If
you're wondering why you should bother with HLA if MASM is so wonderful, don't forget my
comments about the robustness of these macros. Both HLA and MASM (with the UCR Standard
Library v2.0) work great as long as you write perfect code and don't make any mistakes. However,
if you do make mistakes, the MASM macro scheme rapidly gets ugly.

The "die-hard" assembly fan will probably observe that they would never write code like the
MASM code I've presented above; they would write traditional assembly code. They want to write
traditional code. They don't want this high level syntax forced upon them. Well, HLA doesn't
force you to use high-level control structures rather than machine instructions. You can always
write the low level code if you prefer it that way. Here is the original HLA program rewritten to
use familiar machine instructions:

program SampleHLApgm2;

#include("stdlib.hhf")

static
Public Domain Created by Randy Hyde Page 13

HLA Reference Manual 5/24/10 Chapter 1
 dword 37, 37;

 TcHWpStr: dword; @nostorage;

 byte "The classical 'Hello World' program: ",0,0,0;

 dword 11, 11;

 HWstr: dword; @nostorage;

 byte "Hello World",0;

begin SampleHLApgm2;

 lea(eax, TcHWpStr);

 push(eax);

 call stdout.puts;

 lea(eax, HWstr);

 push(eax);

 call stdout.puts;

 call stdout.newln;

end SampleHLApgm2;

The stdout.puts and stdout.newln procedures come from the HLA Standard Library. I will
leave it up to the interested reader to translate these into Win API Write calls if this code isn't
sufficiently low level to satisfy. Note that HLA strings are not simple zero terminated strings like
C/C++. This explains the extra zeros and dword values in the STATIC section (the dword values
hold the string lengths; I offer these without further explanation, see the HLA documentation for
more details on HLA's string format).

One thing you've probably noticed from this second example is that HLA uses a functional
notation for assembly language statements. That is, the instruction mnemonics look like function
calls in a high level language and the operands look like parameters to those functions. The neat
thing about this notation is that it easily allows the use of "instruction composition." Instruction
composition, like functional composition, means that you get to use one instruction as the operand
of another. For example, an instruction like "mov(mov(0, eax), ebx);" is perfectly legal in HLA.
Public Domain Created by Randy Hyde Page 14

HLA Reference Manual 5/24/10 Chapter 1
The HLA compiler will compile the innermost instruction first and then substitute the destination
operand of the innermost instruction for the operand position occupied by the instruction. HLA's
MOV instruction takes the generic form "MOV(source, destination);" so the former instruction
translates to the following two instruction sequence:

 mov(0, eax); // intel syntax: mov eax, 0
 mov(eax, ebx); // intel syntax: mov ebx, eax

By and of itself, instruction composition is somewhat interesting, but programmers striving to
write readable code need to exercise caution when using instruction composition. It is very easy to
write some unreadable code if you abuse instruction composition. E.g., consider:

 mov(add(mov(0, eax), sub(ebx, ecx)), edx), mov(i, esi));

Egads! What does this mess do? Some might consider the inclusion of instruction
composition in HLA to be a fault of the language if it allows you to write such unreadable code.
However, I've never felt it was the language syntax's job to enforce good programming style. If
there's really a reason for writing such messy code, the compiler shouldn't prevent it.

Although you can produce some truly unreadable messes with instruction composition, if you
use it properly it can enhance the readability of your programs. For example, HLA lets you
associate an arbitrary string with a procedure that HLA will substitute for that procedure name
when the procedure call appears as an operand of another instruction. Most functions that return a
value in a register specify that register name as their "returns" string (the string HLA substitutes for
the procedure call). For example, the "str.eq(str1, str2)" function compares the two string operands
and returns true or false in AL depending on the result of the comparison. This allows you to write
code like the following:

 if(str.eq(str1, "Hello")) then

 stdout.put("str1 = 'Hello'" nl);

 endif;

HLA directly translates the IF statement into the following sequence:

 str.eq(str1, "Hello");
 if(@c) then

 stdout.put("str1= 'Hello'" nl);

 endif;

Arguably, the former version is a little more readable than the latter version. Instruction
composition, when you use it in this fashion, lets you write code that "looks" a little more high level
Public Domain Created by Randy Hyde Page 15

HLA Reference Manual 5/24/10 Chapter 1
without the compiler having to generate lots of extra code (as it would if HLA supported a
generalized arithmetic expression parser).

Like MASM, HLA supports a wide variety of high level control structures. HLA's set is both
higher level and lower level at the same time. There is a good reason HLA's control structures
aren't always as powerful as MASM's. First, with the sole exception of object method invocations,
I made a rule that HLA's high level control structures would not modify any general purpose
registers behind the programmer's back. MASM, for example, may modify the value in EAX for
certain boolean expressions or parameter values it must compute.

Although I designed HLA as a tool to teach assembly language programming, this is also a tool
that I intend to use so I included many goodies for advanced assembly language programmers. For
example, HLA's macro facilities are more powerful than I've seen in any programming-language-
based macro processor. One unique feature of HLA's macro preprocessor is the ability to create
"context free" control structures using macros. For example, suppose that you decide that you need
a new type of looping construct that HLA doesn't provide; let's say, a loop that will repeat once for
each character in a string supplied as a parameter to the loop. Let's call this loop
"OnceForEachChar" and decide on the following syntax:

 OnceForEachChar(SomeString)

 << Loop Body >>

 endOnceForEachChar;

On each iteration of this loop, the AL register will contain the corresponding character from
the string specified as the OnceForEachChar operand. You can easily implement this loop using
the following HLA macro:

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.

 TopOfLoop:

 inc((type dword [esp])); // Bump up index into string.
 #if(@IsConst(SomeString))

// Load address of string constant into EAX.

 lea(eax, SomeString);

 #else

 mov(SomeString, eax); // Get ptr to string.

 #endif
 add([esp], eax); // Point at next available character
 mov([eax], al); // Get the next available character
 cmp(al, 0); // See if we're at the end of the string
 je LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop; // Return to the top of the loop and repeat.

 LoopExit:
Public Domain Created by Randy Hyde Page 16

HLA Reference Manual 5/24/10 Chapter 1
 add(4, esp); // Remove index into string from stack.

#endmacro

Anyone familiar with MASM's macro processor should be able to figure out most of this code.
Note that the symbols "TopOfLoop" and "LoopExit" are local symbols to this macro. Hence, if you
repeat this macro several times in the code, HLA will emit different actual labels for these symbols
to the MASM output file. The "@IsConst" is an HLA compile-time function that returns true if its
operand is a constant. Obtaining the address for a constant is fundamentally different than
obtaining the address of a string variable (since HLA string variables are actually pointers to the
string data). The most interesting feature of this macro definition is the "terminator" line. This
actually defines a second macro that is active only after HLA encounters the "OnceForEachChar"
macro and control returns to the first statement after the OnceForEachChar invocation. Invocations
of "context free" macros always occur in pairs; that is, for every "OnceForEachChar" invocation
there must be a matching "endOnceForEachChar" invocation. The following program
demonstrates this macro in use; it also demonstrates that you can nest this newly created control
structure in your program:

program SampleHLApgm3;
#include("stdlib.hhf")

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.
 TopOfLoop:
 inc((type dword [esp]));
 #if(@IsConst(SomeString))

 lea(eax, SomeString);

 #else

 mov(SomeString, eax);

 #endif
 add([esp], eax);
 mov([eax], al);
 cmp(al, 0);
 je LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop;

 LoopExit:

 add(4, esp);

#endmacro
Public Domain Created by Randy Hyde Page 17

HLA Reference Manual 5/24/10 Chapter 1
static
 strVar: string := ":" nl;

begin SampleHLApgm3;

 OnceForEachChar("Hello")

 stdout.putc(al);
 OnceForEachChar(strVar)

 stdout.putc(al);

 endOnceForEachChar;

 endOnceForEachChar;

end SampleHLApgm3;

This program produces the output:

H:
e:
l:
l:
o:

Here's some sample MASM code, similar to what the HLA compiler emits (when using the -
masm and -source command-line options) for the sequence above:

strings segment page public 'data'
 align 4
?635_len dword 5
 dword 5
?635_str byte "Hello",0,0,0

strings ends

 pushd -1

?634__0278_:
 inc dword ptr [esp+0] ;(type dword [esp])
 lea eax, ?635_str
 add eax, [esp+0] ;[esp]
 mov al, [eax+0] ;[eax]
 cmp al, 0
 je ?636__0279_
 push eax
 call stdio_putc ;putc
Public Domain Created by Randy Hyde Page 18

HLA Reference Manual 5/24/10 Chapter 1
 pushd -1

?639__027d_:
 inc dword ptr [esp+0] ;(type dword [esp])
 mov eax, dword ptr ?630_strVar[0] ;strVar
 add eax, [esp+0] ;[esp]
 mov al, [eax+0] ;[eax]
 cmp al, 0
 je ?640__027e_
 push eax
 call stdio_putc ;putc
 jmp ?639__027d_

?640__027e_:
 add esp, 4
 jmp ?634__0278_

?636__0279_:
 add esp, 4

In addition to the "terminator" clause, HLA macros also support a "keyword" clause that let
you bury reserved words within a context-free language construct. For example, although the HLA
language provides a SWITCH/CASE statement, you can create a new one with slightly different
semantics. I implemented the SWITCH .. CASE .. DEFAULT .. ENDCASE statement using
HLA's macro facilities (as a demonstration of HLA's power). An HLA SWITCH statement (using
this macro) takes the following form:

switch(reg32)

 case(constantList1)

 << statements >>

 case (constantList2)

 << statements >>

 .
 .
 .

 default // This is optional

 << statements >>

endswitch;

The switch macro implements the "switch" and "endswitch" reserved words using the macro
and terminator clauses in the macro declaration. It implements the "case" and "default" reserved
words using the HLA "keyword" clause in a macro definition. The "keyword" clause is similar to
the "terminator" clause except it doesn't force the end of the macro expansion in the invoking code.
The actual code for the HLA SWITCH statement is a little too complex to present here, so I will
Public Domain Created by Randy Hyde Page 19

HLA Reference Manual 5/24/10 Chapter 1
extend the example of the OnceForEachChar macro to demonstrate how you code use the
"keyword" clause in a macro.

Let's suppose you wanted to add a "_break" clause to the "OnceForEachChar" loop (I'm using
"_break" with an underscore because "break" is an HLA reserved word). You could easily modify
the "OnceForEachChar" macro to achieve this by using the following code:

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.
 TopOfLoop:

 inc((type dword [esp]));
 #if(@IsConst(SomeString))

 lea(eax, SomeString);

 #else

 mov(SomeString, eax);

 #endif
 add([esp], eax);
 mov([eax], al);
 cmp(al, 0);
 je LoopExit;

#keyword _break;
 jmp LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop;

LoopExit:

 add(4, esp);

#endmacro

The "#keyword" clause defines a macro ("_break") that is active between the
"OnceForEachChar" and "endOnceForEachChar" invocations. This macro simply expands to a
jmp instruction that exits the loop. Note that if you have nested "OnceForEachChar" loops and you
"_break" out of the innermost loop, the code only jumps out of the innermost loop, exactly as you
would expect.

HLA's macro facilities are part of a larger feature I refer to as the "HLA Compile-Time
Language." HLA actually contains a built-in interpreter than executes while it is compiling your
program. The compile-time language provides conditional compilation (the #IF..#ELSE..#ENDIF
statements in the previous example), interpreted procedure calls (macros), looping constructs
(#WHILE..#ENDWHILE), a very powerful constant expression evaluator, compile-time I/O
facilities (#PRINT, #ERROR, #INCLUDE, and #TEXT..#ENDTEXT), and dozens of built-in
compile time functions (like the @IsConst function above).
Public Domain Created by Randy Hyde Page 20

HLA Reference Manual 5/24/10 Chapter 1
The HLA built-in string functions (not to be confused with the HLA Standard Library's string
functions) are actually powerful enough to let you write a compiler for a high level language
completely within HLA. I mentioned earlier that it is possible to write an expression compiler
within HLA; I was serious. The HLA compile-time language will let you write a sophisticated
recursive descent parser for arithmetic expressions (and other context-free language constructs, for
that matter).

HLA is a great tool for creating low-level Domain Specific Embedded Languages (DSELs).
DSELs are mini-languages that you create on a project-by-project basis to help reduce development
time. HLA's compile time language lets you create some very high level constructs. For example,
HLA implements a very powerful string pattern matching language in the "patterns" module found
in the HLA Standard Library. This module lets you write pattern-matching programs that use
techniques found in language like SNOBOL4 and Icon. As a final example, consider the following
HLA program that translate RPN (reverse polish notation) expressions into their equivalent
assembly language (HLA) statements and displays the results to the standard output:

// This program translates user RPN input into an
// equivalent sequence of assembly language instrs (HLA fmt).

program RPNtoASM;
#include("stdlib.hhf");

static
 s: string;
 operand: string;
 StartOperand: dword;

#macro mark;

 mov(esi, StartOperand);

#endmacro

#macro delete;

 mov(StartOperand, eax);
 sub(eax, esi);
 inc(esi);
 sub(s, eax);
 str.delete(s, eax, esi);

#endmacro

procedure length(s:string); @returns("eax"); @nodisplay;
begin length;

 push(ebx);
 mov(s, ebx);
 mov((type str.strRec [ebx]).length, eax);
 pop(ebx);

end length;

begin RPNtoASM;

 stdout.put("-- RPN to assembly --" nl);
 forever
Public Domain Created by Randy Hyde Page 21

HLA Reference Manual 5/24/10 Chapter 1
 stdout.put(nl nl "Enter RPN sequence (empty line to quit): ");
 stdin.a_gets();
 mov(eax, s);
 breakif(length(s) = 0);
 while(length(s) <> 0) do

 pat.match(s);

 // Match identifiers and numeric constants

 mark;
 pat.zeroOrMoreWS();
 pat.oneOrMoreCset({'a'..'z', 'A'..'Z', '0'..'9', '_'});
 pat.a_extract(operand);
 stdout.put(" pushd(", operand, ");" nl);
 strfree(operand);
 delete;

 pat.alternate;

 // Handle the "+" operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('+');
 stdout.put
 (
 " pop(eax);" nl
 " add(eax, [esp]);" nl
);
 delete;

 pat.alternate;

 // Handle the '-' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('-');
 stdout.put
 (
 " pop(eax);" nl
 " pop(ebx);" nl
 " sub(eax, ebx);" nl
 " push(ebx);" nl
);
 delete;

 pat.alternate;

 // Handle the '*' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('*');
 stdout.put
 (
Public Domain Created by Randy Hyde Page 22

HLA Reference Manual 5/24/10 Chapter 1
 " pop(eax);" nl
 " imul(eax, [esp]);" nl
);
 delete;

 pat.alternate;

 // handle the '/' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('/');
 stdout.put
 (
 " pop(ebx);" nl
 " pop(eax);" nl
 " cdq(); " nl
 " idiv(ebx, edx:eax);" nl
 " push(ebx);" nl
);
 delete;

 pat.if_failure

 // If none of the above, it must be an error.

 stdout.put(nl "Illegal RPN Expression" nl);
 mov(s, ebx);
 mov(0, (type str.strRec [ebx]).length);

 pat.endmatch;

 endwhile;

 endfor;

end RPNtoASM;

Consider for a moment the code that matches an identifier or an integer constant:

 mark;
 pat.zeroOrMoreWS();
 pat.oneOrMoreCset({'a'..'z', 'A'..'Z', '0'..'9', '_'});
 pat.a_extract(operand);
 stdout.put(" pushd(", operand, ");" nl);
 strfree(operand);
 delete;

The "mark;" invocation saves a pointer into the "s" string where the current identifier starts.
The pat.ZeroOrMoreWS pattern matching function skips over zero or more whitespace characters.
Public Domain Created by Randy Hyde Page 23

HLA Reference Manual 5/24/10 Chapter 1
The pat.OneOrMoreCset pattern match function matches one or more alphanumeric and underscore
characters (a crude approximation for identifiers and integer constants). The pat.a_extract function
makes a copy of the string between the "mark" and the "a_extract" calls (this corresponds to the
whitespace and identifier/constant). The stdout.put statement emits the HLA machine instruction
that will push this operand on to the x86 stack for later computations. The remaining statements
clean up allocated string storage space and delete the matched string from "s".

Although the "pat.xxxxx" statements look like simple function calls, there's actually a whole
lot more going on here. HLA's pattern matching facilities, like SNOBOL4 and Icon, support
success, failure, and backtracking. For example, if the pat.oneOrMoreChar function fails to match
at least one character from the set, control does not flow down to the pat.a_extract function.
Instead, control flows to the next "pat.alternate" or "pat.if_failure" clause. Some calls to HLA
pattern matching routines may even cause the program to back up in the code and reexecute
previously called functions in an attempt to match a difficult pattern (i.e., the backtracking
component). This article is not the place to get into the theory of pattern matching; however, these
few examples should be sufficient to show you that something really special is going on here. And
all these facilities were developed using the HLA compile-time language. This should give you a
small indication of what is possible when using the HLA compile-time language facilities.
Public Domain Created by Randy Hyde Page 24

	1 HLA Overview
	1.1 What is a "High Level Assembler"?
	1.2 What is an "Assembler"
	1.3 Is HLA a True Assembly Language?
	1.4 HLA Design Goals
	1.5 How to Learn Assembly Programming Using HLA
	1.6 Legal Notice
	1.7 Teaching Assembly Language using HLA

