
HLA Reference Manual 5/24/10 Chapter 2
2 The Quick Guide to HLA

2.1 Overview
This guide is designed to help those who are already familiar with x86 assembly language

programming to get up to speed with HLA as rapidly as possible. HLA was designed as a tool for
teaching assembly language programming to University/College students who have no prior
experience with assembly language but have some high level language programming experience
(C/C++, Pascal, Java, etc.). The documentation that exists for HLA comes in two forms: the HLA
reference manuals and the "Art of Assembly Language Programming/32-bit Edition." The "Art of
Assembly" text is suitable for students and beginners to assembly language programming; it starts
from square one and teaches assembly language programming using HLA. Unfortunately, this text
is not particularly suitable for those programmers who already know assembly language. The HLA
reference manuals are great when you need to look up some particular feature. They do fully
explain the HLA language, however, the HLA language is rather large so the assembly programmer
who is new to HLA is faced with reading a tremendous amount of material just to get started with
HLA. Most individuals won’t bother. The purpose of this guide is to present a very small subset of
HLA to the advanced x86 assembly language programmer in as few pages as possible. This guide
does not attempt to teach any of HLA’s special features; it assumes the reader is using an
assembler such as MASM, TASM, NASM, Gas, etc., and is interested in learning how to write
assembly code using HLA in a fashion comparable to those assemblers. Of course, the whole
reason for such a person to learn HLA is to be able to take advantage of HLA’s advanced features.
However, one has to learn to walk before they run, this is the guide that will get that person
walking. Once the reader is comfortable using HLA in a "traditional assembly" sense, then that
reader can refer to the HLA reference manuals in order to learn the more advanced features of the
language.

2.2 Running HLA
HLA is a command line tool that you run from the Win32, Mac OSX, Linux, or FreeBSD

Command Prompt. This document assumes that you are familiar with basic command prompt
syntax and you’re familiar with various commands like "DIR" and "RENAME" (under Windows)
or "ls" and "mv" (under *NIX). To run HLA from the command line prompt, you use a command
like the following:

hla optional_command_line_parameters Filename_list

The filename list consists of one or more unambiguous filenames having the extension: HLA,
ASM, or OBJ. HLA will first run the HLAPARSE program on all files with the HLA extension
(producing files with the same base name and an .obj/.o extension). Finally, HLA runs the linker to
combine all the object files together. The ultimate result, assuming there were no errors along the
way, is an executable file .

HLA supports the following command line parameters:

 options:
 -@ Do not generate linker response file.
 -@@ Always generate a linker response file.
 -thread Enable thread-safe code generation and linkage.
 -axxxxx Pass xxxxx as command line parameter to assembler.
 -dxx Define VAL symbol xx to have type BOOLEAN and value TRUE.
 -dxx=yy Define VAL symbol xx to have type STRING and value "yy".
 -e:name Executable output filename (appends ".exe" under Windows).
 -x:name Executable output filename (does not append ".exe").
 -b:name Binary object file output name (only when using HLABE).
 -i:path Specifies path to HLA include file directory.
 -lib:path Specifies path to the HLALIB.LIB file.
Public Domain Created by Randy Hyde Page 25

HLA Reference Manual 5/24/10 Chapter 2
 -license Displays copyright and license info for the HLA system.
 -lxxxxx Pass xxxxx as command line parameter to linker.
 -m Create a map file during link
 -p:path Specifies path to hold temporary working files.
 -r:name <name> is a text file containing cmd line options.
 -obj:path Specifies path to place object files.
 -main:name Use ‘name’ as the name of the HLA main program.
 -source Compile to human readable source file format.
 -s Compile to .ASM files only.
 -c Compile and assemble to object files only.
 -fasm Use FASM as back-end assembler (applies to -s and -c)
 -gas Use GAS as back-end (Linux/BSD, applies to -s and -c)
 -gasx Use Gas as back-end (Mac OSX, --s and -c only)
 -hla Produce a pseudo-HLA source file as output (implies -s).
 -hlabe (Default) Produce object code using the HLA Back Engine.
 -masm Use MASM as back-end assembler (applies to -s and -c)
 -nasm Use NASM as back-end assembler (applies to -s and -c)
 -tasm Use TASM as back-end assembler (applies to -s and -c)
 -sym Dump symbol table after compile.
 -win32 Generate code for Win32 OS.
 -linux Generate code for Linux OS.
 -freebsd Generate code for FreeBSD OS.
 -macos Generate code for Mac OSX.
 -test Send diagnostic info to stdout rather than stderr (This
 option is intended for HLA test/debug purposes).
 -v Verbose compile.
 -level=h High-level assembly language
 -level=m Medium-level assembly language
 -level=l Low-level assembly language
 -level=v Machine-level assembly language (very low level).
 -w Compile as windows app (default is console app).
 -? Display this help message.

Please see the appropriate chapter in the HLA Reference Manual chapter Using the HLA
Command-Line Compiler for an explanation of each of these options. Most of the time, you will
not use any of these options when compiling typical HLA programs. The "-c" and "-s" options are
the ones you will use most commonly (and this document assumes that you understand their
purpose).

2.3 HLA Language Elements
Starting with this section we being discussing the HLA source language. HLA source files

must contain only seven-bit ASCII characters. These are Windows text files with each source line
record containing a carriage return/line feed termination sequence or *NIX (Mac OSX, Linux, and
FreeBSD) source files with a line feed terminating each line. White space consists of spaces, tabs,
and newline sequences. Generally, HLA does not appreciate other control characters in the file and
may generate an error if they appear in the source file.

2.3.1 Comments
HLA uses "//" to lead off single line comments. It uses "/*" to begin an indefinite length

comments and it uses "*/" to end an indefinite length comment. C/C++, Java, and Delphi users will
be quite comfortable with this notation.

2.3.2 Special Symbols
The following characters are HLA lexical elements and have special meaning to HLA:
Public Domain Created by Randy Hyde Page 26

HLA Reference Manual 5/24/10 Chapter 2
* / + - () [] { } < > : ; , . = ? & | ^ ! @
&& || <= >= <> != == := .. << >>
#()# #{ }#

This document will not explain the meaning of all these symbols, only the minimum necessary to
write simple HLA programs. See the HLA Reference Manual for more details.

2.3.3 Reserved Words
HLA supports a large number of reserved words (mostly, they are machine instructions). For

brevity, that list does not appear here; please see the HLA reference manual chapter HLA Language
Elements for a complete and up-to-date list. Note that HLA does not allow you to use a reserved
word as a program identifier, so you should scan over the list at least once to familiarize yourself
with reserved words that you might be used to using as identifiers in your assembly language
programs. HLA reserved words are case insensitive. That is, "MOV" and "mov" (as well as any
permutation with respect to case) both represent the HLA "mov" reserved word.

2.3.4 External Symbols and Assembler Reserved Words
HLA v2.0 produces an option to produce an assembly language file during compilation and

can invoke an assembler such as MASM, FASM, NASM, or Gas to complete the compilation
process. HLA automatically translates normal identifiers you declare in your program to benign
identifiers in the assembly language program. However, HLA does not translate EXTERNAL
symbols, but preserves these names in the assembly language file it produces. Therefore, you must
take care not to use external names that conflict with the underlying assembler’s set of reserved
words or that assembler will generate an error when it attempts to process HLA’s output.

For a list of the back-end assembler's reserved words, please see the documentation for the
assembler you are using to process HLA’s output (i.e., MASM, NASM, FASM, or Gas).

2.3.5 HLA Identifiers
HLA identifiers must begin with an alphabetic character or an underscore. After the first character, the
identifier may contain alphanumeric and underscore symbols. There is no technical limit on identifier
length in HLA, but you should avoid external symbols greater than about 32 characters in length since the
assemblers and linkers that process HLA output may not be able to handle such symbols.
HLA identifiers are always case neutral. This means that identifiers are case sensitive insofar as you must
always spell an identifier exactly the same (with respect to alphabetic case). However, you are not allowed
to declare two identifiers whose only difference is alphabetic case.

2.3.6 External Identifiers
HLA lets you explicitly provide a string for external identifiers. External identifiers are not

limited to the format for HLA identifiers. HLA allows any string constant to be used for an
external identifier. It is your responsibility to use only those characters that are legal in the back-
end assembler (if you are using one). Note that this feature lets you use symbols that are not legal
in HLA but are legal in external code (e.g., Win32 APIs use the ’@’ character in identifiers). See
the discussion of the external option for more details.

2.4 Data Types in HLA

2.4.1 Native (Primitive) Data Types in HLA
HLA provides the following basic primitive types:

One-byte types: byte, boolean, enum, uns8, int8, and char.
Two-byte types: word, uns16, int16.
Four-byte types: dword, uns32, int32, real32, string, pointer
Eight-byte types: uns64, int64, qword, thunk, and real64.
Ten-Byte types: tbyte, and real80.
Sixteen-byte types: uns128, int128, lword, and cset
Public Domain Created by Randy Hyde Page 27

HLA Reference Manual 5/24/10 Chapter 2
For details on these particular types, please consult the HLA Reference Manual chapter HLA
Data Types. This document will make use of the following types:
byte, word, dword, string, real32, qword, real64, and real80

These are the typical types assembly language programmers use.

BYTE variables and objects may hold integer numeric values in the range -128..+255, any
ASCII character constant, and the two predefined boolean values true (1) and false (0). Normally,
HLA does a small amount of type checking; however, you can associate any value that can fit into
eight bits with a byte-sized variable (or other object).

WORD variables and object may hold integer numeric values in the range -32768..+65535.
Generally, HLA does not allow the association of other values with a WORD object.

DWORD variables and objects may hold integer numeric values in the range -
2147483647..+4294967295, or the address of an object (using the "&" address-of operator).

STRING variables are also DWORD objects. STRING objects hold the address of a sequence
of zero or more ASCII characters that end with a zero byte. In the four bytes immediately
preceding the location contained in the string pointer is the current length of the string. In the four
bytes preceding the current length is the maximum allowable length of the string. Note that HLA
strings are "read-only" compatible with ASCIIZ strings used by Windows and C/C++ (read-only
meaning that you can pass an HLA string to a Windows API or C/C++ function but that function
should not modify the string).

QWORD, UNS64, and INT64 objects consume eight bytes of memory. TBYTE objects
consume ten bytes (80 bits). LWORD, UNS128, and INT128 values are also legal and support
128-bit hexadecimal, unsigned, or signed constants.

REAL32, REAL64, and REAL80 types in HLA support the three different IEEE floating-point
formats.

2.4.2 Composite Data Types
In addition to the primitive types above, HLA supports arrays, records (structures), unions,

classes, and pointers of the above types (except for text objects).

2.4.3 Array Data Types
HLA allows you to create an array data type by specifying the number of array elements after a

type name. Consider the following HLA type declaration that defines intArray to be an array of
dword objects:

type intArray : dword[16];

The "[16]" component tells HLA that this type has 16 four-byte double words. HLA arrays
use a zero-based index, so the first element is always element zero. The index of the last element,
in this example, is 15 (total of 16 elements with indices 0..15).

HLA also supports multidimensional arrays. You can specify multidimensional arrays by
providing a list of indices inside the square brackets, e.g.,

type intArray4x4 : dword[4, 4];
type intArray2x2x4 : dword[2,2,4];

2.4.4 Record Data Types1

HLA’s records allow programmers to create data types whose fields can be different types.
The following HLA static variable declaration defines a simple record with four fields:

static Planet:

1. For C/C++ programmers: an HLA record is similar to a C struct. In language design terminology,
a record is often referred to as a "cartesian product."
Public Domain Created by Randy Hyde Page 28

HLA Reference Manual 5/24/10 Chapter 2
record

x: dword;
y: dword;
z: dword;
density:real64;

endrecord;

Objects of type Planet will consume 20 bytes of storage at run-time.
The fields of a record may be of any legal HLA data type including other composite data types.

You use dot-notation to access fields of a record object, e.g.,
mov(Planet.x, eax);

2.5 Literal Constants
Literal constants are those language elements that we normally think of as non-symbolic

constant objects. HLA supports a wide variety of literal constants. The following sections describe
those constants.

2.5.1 Numeric Constants
HLA lets you specify several different types of numeric constants.

2.5.1.1 Decimal Constants
The first and last characters of a decimal integer constant must be decimal digits (0..9).

Interior positions may contain decimal digits and underscores. The purpose of the underscore is to
provide a better presentation for large decimal values (i.e., use the underscore in place of a comma
in large values). Example: 1_234_265.

2.5.1.2 Hexadecimal Constants
Hexadecimal literal constants must begin with a dollar sign ("$") followed by a hexadecimal

digit and must end with a hexadecimal digit (0..9, A..F, or a..f). Interior positions may contain
hexadecimal digits or underscores. Hexadecimal constants are easiest to read if each group of four
digits (starting from the least significant digit) is separated from the others by an underscore. E.g.,
$1A_2F34_5438.

2.5.1.3 Binary Constants
Binary literal constants begin with a percent sign ("%") followed by at least one binary digit (0/

1) and they must end with a binary digit. Interior positions may contain binary digits or underscore
characters. Binary constants are easiest to read if each group of four digits (starting from the least
significant digit) is separated from the others by an underscore. E.g., %10_1111_1010.

2.5.1.4 Real (Floating Point) Constants
Floating point (real) literal constants always begin with a decimal digit (never just a decimal

point). A string of one or more decimal digits may be optionally followed by a decimal point and
zero or more decimal digits (the fractional part). After the optional fractional part, a floating point
number may be followed by "e" or "E", a sign ("+" or "-"), and a string of one or more decimal
digits (the exponent part). Underscores may appear between two adjacent digits in the floating
point number; their presence is intended to substitute for commas found in real-world decimal
numbers.

2.5.1.5 Boolean Constants
Boolean constants consist of the two predefined identifiers true and false. Note that your

program may redefine these identifiers, but doing so is incredibly bad programming style.

2.5.1.6 Character Constants
Character literals generally consist of a single (graphic) character surrounded by apostrophes.

To represent the apostrophe character, you use four apostrophes, e.g., ‘’’’.
Public Domain Created by Randy Hyde Page 29

HLA Reference Manual 5/24/10 Chapter 2
Another way to specify a character constant is by typing the "#" symbol followed by a numeric
literal constant (decimal, hexadecimal, or binary). Examples: #13, #$D, #%1101.

2.5.1.7 String Constants
String literal constants consist of a sequence of (graphic) characters surrounded by quotes. To

embed a quote within a string, insert a pair of quotes into the string, e.g., "He said ""This"" to me."
If two string literal constants are adjacent in a source file (with nothing but whitespace between

them), then HLA will concatenate the two strings and present them to the parser as a single string.
Furthermore, if a character constant is adjacent to a string, HLA will concatenate the character and
string to form a single string object. This is useful, for example, when you need to embed control
characters into a string, e.g.,

"This is the first line" #$d #$a "This is the second line" #$d #$a

HLA treats the above as a single string with a newline sequence (CR/LF) at the end of each of the
two lines of text.

2.5.1.8 Pointer Constants
HLA allows a very limited form of a pointer constant. If you place an ampersand in front of a static
object’s name (i.e., the name of a static variable, readonly variable, uninitialized (storage)
variable, procedure, method, or iterator), HLA will compute the run-time offset of that variable.
Pointer constants may not be used in arbitrary constant expressions. You may only use pointer
constants in expressions used to initialize static or readonly variables or as constant expressions in
80x86 instructions.

2.5.1.9 Structured Constants
HLA also supports certain structured constants including character set constants, array

constants, union constants and record constants. Please see the HLA Reference Manual chapter
HLA Constants for more details.

2.6 Constant Expressions in HLA
HLA provides a rich expression evaluator to process assembly-time expressions. HLA

supports the following operators (sorting by decreasing precedence):

! (unary not),- (unary negation)
*, div, mod, /, <<, >>
+, -
=, = =, <>, !=, <=, >=, <, >
&, |, &, in

!expr

 The expression must be either boolean or a number. For boolean values, not ("!") computes
the standard logical not operation. For numbers, not ("!") computes the bitwise not operation on
the bits of the number.

- expr (unary negation operator)
expr1 * expr2 (multiplication operator)
expr1 div expr2 (integer division operator)
expr1 mod expr2 (integer remainder operator)
expr1 / expr2 (real division operator)
expr1 << expr2 (integer shift left operator)
expr1 >> expr2 (integer shift right operator)
expr1 + expr2 (addition operator)
expr1 - expr2 (subtraction operator)
expr1 = expr2 (equality comparison operator)
expr1 <> expr2 (inequality comparison operator)
Public Domain Created by Randy Hyde Page 30

HLA Reference Manual 5/24/10 Chapter 2
expr1 < expr2 (less than comparison operator)
expr1 <= expr2 (less than or equal comparison operator)
expr1 > expr2 (greater than comparison operator)
expr1 >= expr2 (greater or equal comparison operator)
expr1 & expr2 (logical/boolean AND operator)
expr1 | expr2 (logical/boolean OR operator)
expr1 ^ expr2 (logical/boolean XOR operator)
(expr) (override operator precedence)

HLA supports several other constant operators. Furthermore, many of the above operators are
overloaded depending on the operand types. Note that for numeric (integer) operands, HLA fully
support 128-bit arithmetic. Please see the HLA Reference Manual chapter HLA Constants for more
details.

2.7 Program Structure

An HLA program uses the following general syntax:

program identifier ;
declarations

begin identifier;
statements

end identifier;

The three identifiers above must all match. The declaration section (declarations) consists of
type, const, val, var, static, storage, readonly, procedure, iterator, and method definitions.
Any number of these sections may appear and they may appear in any order; more than one of each
section may appear in the declaration section.

If you wish to write a library module that contains only procedures and no main program, you
would use an HLA unit. Units have a syntax that is nearly identical to programs, there isn’t a begin
associated with the unit, e.g.,

unit TestPgm;

procedure LibraryRoutine;
begin LibraryRoutine;

<< etc. >>
end LibraryRoutine;

end TestPgm;

2.8 Procedure Declarations
Procedure declarations are nearly identical to program declarations.

procedure identifier; @noframe;
begin identifier;

statements
end identifier;

Note that HLA procedures provide a very rich set of syntactical options. The template above
corresponds to the syntax that creates procedures most closely resembling those that other
assemblers use. HLA’s procedures allow parameters, local variable declarations, and many other
features this document won’t describe. For more details, please see the HLA Reference Manual
chapter on HLA Procedures.
Public Domain Created by Randy Hyde Page 31

HLA Reference Manual 5/24/10 Chapter 2
Note, and this is very important, that the procedure option @noframe must appear in the
procedure declaration. Without this declaration, HLA inserts some additional code into your
procedure and it will probably fail to work as you intend (indeed, it’s likely the inserted code will
crash when it runs).

Example of a procedure:
procedure ProcDemo; @noframe;
begin ProcDemo;

add(5, eax);
ret();

end ProcDemo;

2.8.1 Declarations
Programs, units, procedures, methods, and iterators all have a declaration section. Classes and

namespaces also have a declaration section, though it is somewhat limited. A declaration section
can contain one or more of the following components (among other things this document doesn’t
cover):

• A type section.
• A const section.
• A static section.
• A procedure.

The order of these sections is irrelevant as long as you ensure that all identifiers used in a
program are defined before their first use. Furthermore, as noted above, you may have multiple
sections within the same set of declarations. For example, the two const sections in the following
procedure declaration are legal:

 program TwoConsts;
 const MaxVal := 5;
 type Limits: dword[MaxVal];
 const MinVal := 0;
 begin TwoConsts;

 //...

 end TwoConsts;

2.8.2 Type Section
You can declare user-defined data types in the type section. The type section appears in a

declaration section and begins with the reserved word type. It continues until encountering another
declaration reserved word (e.g., const, var, or val) or the reserved word begin. A typical type
definition begins with an identifier followed by a colon and a type definition. The following
paragraphs demonstrate some of the legal forms of type definitions. See the HLA Reference
Manual chapter on HLA Program Structure for more examples.

id1 : id2; // Defines id1 to be the same as type id2.
id1 : id2 [dim_list]; // Defines id1 to be an array of type id2.
id1 : record // Defines id1 as a record type.

field_declarations
endrecord;
Public Domain Created by Randy Hyde Page 32

HLA Reference Manual 5/24/10 Chapter 2
2.8.3 Const Section
You may declare manifest constants in the const section of an HLA program. It is illegal to

attempt to change the value of a constant at some later point during assembly. Of course, at run-
time the constant always has a fixed value.

The constant declaration section begins with the reserved word const and is followed by a
sequence of constant definitions. The constant declaration section ends when HLA encounters a
keyword such as const, type, var, val, etc. Actual constant definitions take the forms specified in
the following paragraphs.

id := expr; // Assigns the value and type of expr to id
id1 : id2 := expr; // Creates constant id1 of type id2 of value expr.

Note that HLA supports several types of constants this section doesn’t discuss (e.g., array and
record constants and well as compile-time variables). See the HLA Reference Manual chapter on
HLA Program Structure for more details.

2.8.4 Static Section
The static section lets you declare static variables you can reference at run-time by your code.

The following paragraphs list some of the forms that are legal in the static section. As usual, see
the HLA Reference Manual chapter on HLA Program Structure for lots of additional features that
HLA supports in the static section.
static

id1 : id2; // Declares variable id1 of type id2
id1 : id2 := expr; // Declares variable id1 of type id2, init’d with

expr
id1 : id2[expr]; // Declares array id1 of type id2 with expr

elements

2.8.4.1 The @NOSTORAGE Option
The @nostorage option tells HLA to associate the current offset in the segment with the

specified variable, but don’t actually allocate any storage for the object. This option effectively
creates an alias of the current variable with the next object you declare in one of the static sections.
Consider the following example:
static

b: byte; @nostorage;
w: word; @nostorage;
d: dword;

Because the b and w variables both have the @nostorage option associated with them, HLA
does not reserve any storage for these variables. The d variable does not have the @nostorage
option, so HLA does reserve four bytes for this variable. The b and w variables, since they don’t
have storage associated with them, share the same address in memory with the d variable.

2.8.4.2 The EXTERNAL Option
The external option gives you the ability to reference variables that you declare in other files.

Like the external clause for procedures, there are two different syntaxes for the external clause
appearing after a variable declaration:

varName: varType; external;
varName: varType; external("external_Name");

The first form above uses the variable’s name for both the internal and external names. The second
form uses varName as the internal name that HLA uses and it associates this variable with
external_Name in the external modules. The external option is always the last option associated with
a variable declaration.

If the actual variable definition for an external object appears in a source file after an external
declaration, this tells HLA that the definition is a public variable that other modules may access
Public Domain Created by Randy Hyde Page 33

HLA Reference Manual 5/24/10 Chapter 2
(the default is local to the current source file). This is the only way to declare a variable public so
that other modules can use it. Usually, you would put the external declaration in a header file that
all modules (wanting to access the variable) include; you also include this header file in the source
file containing the actual variable declaration.

2.8.5 Macros
HLA has one of the most powerful macro expansion facilities of any programming language.

HLA’s macros are the key to extending the HLA language. If you’re a big user of macros then you
will want to read the HLA Reference Manual chapter The HLA Compile-Time Language to learn all
about HLA’s powerful macro facilities. This section will describe HLA’s limited "Standard
Macro" facility that is comparable to the macro facilities other assemblers provide.

You can declare macros in the declaration section of a program using the following syntax:

#macro identifier (optional_parameter_list) ;
statements

#endmacro;

Example:

#macro MyMacro;
?i = i + 1;

#endmacro;

The optional parameter list must be a list of one or more identifiers separated by commas.
HLA automatically associates the type "text" with all macro parameters (except for one special
case noted below). Example:

#macro MacroWParms(a, b, c);
?a = b + c;

#endmacro;

If the macro does not allow any parameters, then you follow the identifier with a semicolon
(i.e., no parentheses or parameter identifiers). See the first example in this section for a macro
without any parameters.

 Occasionally you may need to define some symbols that are local to a particular macro
invocation (that is, each invocation of the macro generates a unique symbol for a given identifier).
The local identifier list allows you to do this. To declare a list of local identifiers, simply following
the parameter list (after the parenthesis but before the semicolon) with a colon (":") and a comma
separated list of identifiers, e.g.,

#macro ThisMacro(parm1):id1,id2;
...

HLA automatically renames each symbol appearing in the local identifier list so that the new
name is unique throughout the program. HLA creates unique symbols of the form "_XXXX_"
where XXXX is some hexadecimal numeric value. To guarantee that HLA can generate unique
symbols, you should avoid defining symbols of this form in your own programs (in general,
symbols that begin and end with an underscore are reserved for use by the compiler and the HLA
standard library). Example:

#macro LocalSym : i,j;

j: cmp(ax, 0)
jne(i)
dec(ax)
jmp(j)

i:
Public Domain Created by Randy Hyde Page 34

HLA Reference Manual 5/24/10 Chapter 2
#endmacro;

To invoke a macro, you simply supply its name and an appropriate set of parameters. Unless
you specify a variable number of parameters (using the array syntax) then the number of actual
parameters must exactly match the number of formal parameters. If you specify a variable number
of parameters, then the number of actual parameters must be greater than or equal to the number of
formal parameters (not counting the array parameter).

Actual macro parameters consist of a string of characters up to, but not including a separate
comma or the closing parentheses, e.g.,

example(v1, x+2*y)

"v1" is the text for parameter #1, "x+2*y" is the text for parameter #2. Note that HLA strips all
leading whitespace and control characters before and after the actual parameter when expanding
the code in-line. The example immediately above would expand do the following:

?v1 := x+2*y;

 If (balanced) parentheses appear in some macro’s actual parameter list, HLA does not count
the closing parenthesis as the end of the macro parameter. That is, the following is legal:

example(v1, ((x+2)*y))

This expands to:

?v1 := ((x+2)*y);

2.9 The #Include Directive
 Like most languages, HLA provides a source inclusion directive that inserts some other file

into the middle of a source file during compilation. HLA’s #INCLUDE directive is very similar to
the pragma of the same name in C/C++ and you primarily use them both for the same purpose:
including library header files into your programs.

HLA’s include directive has the following syntax:

#include(string_expression);

2.10 The Conditional Compilation Statements (#if)
The conditional compilation statements in HLA use the following syntax:

#if(constant_boolean_expression)

<< Statements to compile if the >>
<< expression above is true. >>

#elseif(constant_boolean_expression)

<< Statements to compile if the >>
<< expression immediately above >>
<< is true and the first expres->>
<< sion above is false. >>
Public Domain Created by Randy Hyde Page 35

HLA Reference Manual 5/24/10 Chapter 2
#else

<< Statements to compile if both >>
<< the expressions above are false. >>

#endif

 The #elseif and #else clauses are optional. As you would expect, there may be more than one
#elseif clause in the same conditional if sequence.

Unlike some other assemblers and high-level languages, HLA’s conditional compilation
directives are legal anywhere whitespace is legal. You could even embed them in the middle of an
instruction! While directly embedding these directives in an instruction isn’t recommended
(because it would make your code very hard to read), it’s nice to know that you can place these
directives in a macro and then replace an instruction operand with a macro invocation.

An important thing to note about this directive is that the constant expression in the #if and
#elseif clauses must be of type boolean or HLA will emit an error. Any legal constant expression
that produces a boolean result is legal here.

Keep in mind that conditional compilation directives are executed at compile-time, not at run-
time. You would not use these directives to (attempt to) make decisions while your program is
actually running.

2.11 The 80x86 Instruction Set in HLA
One of the most obvious differences between HLA and standard 80x86 assembly language is

the syntax for the machine instructions. The two primary differences are the fact that HLA uses a
functional notation for machine instructions and HLA arranges the operands in a (source, dest)
format rather than the (dest, source) format used by Intel.

2.11.1 Zero Operand Instructions (Null Operand Instructions)
The following instructions do not require any operands. There are two sytactically allowable

forms for each instruction:
instr;
instr();

The zero-operand instruction mnemonics are

aaa, aad, aam, aas, cbw, cdq, clc, cld, cli, cmc, cmpsb, cmpsd, cmpsw, cpuid, cwd, cwde, daa,
das,

insb, insd, insw, into, iret, iretd, lahf, leave, lodsb, lodsd, lodsw, movsb, movsd, movsw, nop,
outsb,

outsd, outsw, popad, popa, popf, popfd, pusha, pushad, pushf, pushfd, rdtsc, rep.insb, rep.insd,
rep.insw, rep.movsb, rep.movsd, rep.movsw, rep.outsb, rep.outsd, rep.outsw, rep.stosb,

rep.stosd,
rep.stosw, repe.cmpsb, repe.cmpsd, repe.cmpsw, repe.scasb, repe.scasd, repe.scasw,

repne.cmpsb,
repne.cmpsd, repne.cmpsw, repne.scasb, repne.scasd, repne.scasw, sahf, scasb, scasd, scasw,
stc, std, sti, stosb, stosd, stosw, wait, xlat

2.11.2 General Arithmetic and Logical Instructions
These instructions include adc, add, and, mov, or, sbb, sub, test, and xor. They all take the

same basic form:

Generic Form:

adc(source, dest);
add(source, dest);
and(source, dest);
Public Domain Created by Randy Hyde Page 36

HLA Reference Manual 5/24/10 Chapter 2
mov(source, dest);
sbb(source, dest);
sub(source, dest);
test(source, dest);
xor(source, dest);

2.11.3 The XCHG Instruction
 The xchg instruction allows the following syntactical forms:

Generic Form:

xchg(source, dest);

2.11.4 The CMP Instruction
The "cmp" instruction uses the following general forms:
Generic:

cmp(LeftOperand, RightOperand);

Note that the CMP instruction’s operands are ordered "dest, source" rather than the usual
"source,dest" format (that is, the operands are in the same order as MASM expects them). This is
to allow an intuitive use of the instruction mnemonic (that is, CMP normally reads as "compare
dest to source."). We will avoid this confusion by simply referring to the operands as the "left
operand" and the "right operand". Left vs. right signifies the placement of the operands around a
comparison operator like "<=" (e.g., "left <= right").

2.11.5 The Multiply Instructions
HLA supports several variations on the 80x86 "MUL" and IMUL instructions. Some of the

supported forms are:

Standard Syntax:
mul(src)
imul(src)

intmul(const, Reg)
intmul(const, Reg, Reg)
intmul(Reg, Reg)
intmul(mem, Reg)

The first, and probably most important, thing to note about HLA’s multiply instructions is that
HLA uses a different mnemonic for the extended-precision integer multiply versus the single-
precision integer multiply (i.e., imul vs. intmul).

Note that the forms listed above correspond to the standard mul and imul instructions most
assemblers provide. HLA actually provides several additional forms, please see the HLA
documentation on "The 80x86 Instruction Set in HLA" for more details.
Public Domain Created by Randy Hyde Page 37

HLA Reference Manual 5/24/10 Chapter 2
2.11.6 The Divide Instructions
HLA support several variations on the 80x86 DIV and IDIV instructions. The supported forms

are:

Generic Forms:

div(source);
idiv(source);

Note that the forms listed above correspond to the standard div and idiv instructions most
assemblers provide. HLA actually provides several additional forms; please see the HLA Reference
manual chapter on The 80x86 Instruction Set in HLA for more details.

2.11.7 Single Operand Arithmetic and Logical Instructions
These instructions include dec, inc, neg, and not. They take the following general forms

(substituting the specific mnemonic as appropriate):

Generic Form:

dec(dest);
inc(dest);
neg(dest);
not(dest);

2.11.8 Shift and Rotate Instructions
These instructions include rcl, rcr, rol, ror, sal, sar, shl, and shr. These instructions support

the following generic syntax, making the appropriate mnemonic substitution.

Generic Form:

shl(count, dest);
shr(count, dest);
sar(count, dest);
sal(count, dest);
rcl(count, dest);
rcr(count, dest);
rol(count, dest);
ror(count, dest);

2.11.9 The Double Precision Shift Instructions
These instruction use the following general form:

Generic Form:

shld(count, source, dest)
Public Domain Created by Randy Hyde Page 38

HLA Reference Manual 5/24/10 Chapter 2
shrd(count, source, dest)

2.11.10 The Lea Instruction
These instructions use the following syntax:

lea(Reg32, memory)
lea(Reg32, ProcID)

lea(Reg32, LabelID)

Note: HLA does not support an lea instruction that loads a 16-bit address into a 16-bit register.
That form of the lea instruction is not useful in 32-bit programs running on 32-bit operating
systems.

2.11.11 The Sign and Zero Extension Instructions
The HLA movsx and movzx instructions use the following syntax:

Generic Forms:

movsx(source, dest);
movzx(source, dest);

2.11.12 The Push and Pop Instructions
These instructions take the following general forms:
pop(reg);
pop(mem);
pushw(Reg16)
pushw(memory)
pushw(Const)

pushd(Reg32)
pushd(memory)
pushd(Const)

These instructions push or pop their specified operand.

2.11.13 Procedure Calls
Given a procedure or a DWORD variable (containing the address of a procedure) named

"MyProc" you can call this procedure as follows:

call(MyProc);

HLA actually supports several other syntaxes for calling procedures, including a syntax that
will automatically push parameters on the stack for you. See the HLA Reference Manual chapter
on HLA Procedures for more details.
Public Domain Created by Randy Hyde Page 39

HLA Reference Manual 5/24/10 Chapter 2
2.11.14 The Ret Instruction
The ret statement allows two syntactical forms:

ret();
ret(integer_constant_expression);

2.11.15 The Jmp Instructions
The HLA jmp instruction supports the following syntax:

jmp Label;
jmp ProcedureName;
jmp(dwordMemPtr);
jmp(anonMemPtr);
jmp(reg32);

2.11.16 The Conditional Jump Instructions
 These instructions include ja, jae, jb, jbe, jc, je, jg, jge, jl, jle, jo, jp, jpe, jpo, js, jz, jna,

jnae, jnb, jnbe, jnc, jne, jng, jnge, jnl, jnle, jno, jnp, jns, jnz, jcxz, jecxz, loop, loope, loopz,
loopne, and loopnz. They all take the following generic form (substituting the appropriate
instruction for ja).

ja LocalLabel;

2.11.17 The Conditional Set Instructions
These instructions include: seta, setae, setb, setbe, setc, sete, setg, setge, setl, setle, seto, setp,

setpe, setpo, sets, setz, setna, setnae, setnb, setnbe, setnc, setne, setng, setnge, setnl, setnle,
setno, setnp, setns, and setnz. They take the following generic forms (substituting the appropriate
mnemonic for seta):

seta(Reg8);
seta(mem);

5.18^: The Conditional Move Instructions

These instructions include cmova, cmovae, cmovb, cmovbe, cmovc, cmove, cmovg, cmovge,
cmovl, cmovle, cmovo, cmovp, cmovpe, cmovpo, cmovs, cmovz, cmovna, cmovnae, cmovnb,
cmovnbe, cmovnc, cmovne, cmovng, cmovnge, cmovnl, cmovnle, cmovno, cmovnp, cmovns,
and cmovnz. They use the following general syntax:

CMOVcc(src, dest);

Allowable operands:

CMOVcc(reg16, reg16);

CMOVcc(reg32, reg32);

CMOVcc(mem16, reg16);

CMOVcc(mem32, reg32);
Public Domain Created by Randy Hyde Page 40

HLA Reference Manual 5/24/10 Chapter 2
These instructions move the data if the specified condition is true (specified by the cc
condition). If the condition is false, these instructions behave like a no-operation.

2.11.18 The Input and Output Instructions
The in and out instructions use the following syntax:

in(port, al)
in(port, ax)
in(port, eax)

in(dx, al)
in(dx, ax)
in(dx, eax)

out(al, port)
out(ax, port)
out(eax, port)

out(al, dx)
out(ax, dx)
out(eax, dx)

The "port" parameter must be an unsigned integer constant in the range 0..255. Note that these
instructions may be privileged instructions when running under 32-bit operating systems. Their use
may generate a fault in certain instances or when accessing certain ports.

2.11.19 The Interrupt Instruction
This instruction uses the syntax int(constant); where the constant operand is an unsigned

integer value in the range 0..255.

2.11.20 Bound Instruction
 This instruction takes the following form:

bound(Reg16/32, mem)

2.11.21 The Enter Instruction
The enter instruction uses the syntax:

enter(const, const);

The first constant operand is the number of bytes of local variables in a procedure; the second
constant operand is the lex level of the procedure. As a rule, you should not use this instruction and
the corresponding leave instruction. HLA procedures automatically construct the display and
activation record for you (more efficiently than when using enter). See the HLA Reference
Manual chapter on HLA Procedures for more details on building procedure activation records.

2.11.22 CMPXCHG Instruction
This instruction uses the following syntax:

 cmpxchg(reg/mem, reg)

Public Domain Created by Randy Hyde Page 41

HLA Reference Manual 5/24/10 Chapter 2
2.11.23 The XADD Instruction
The XADD instruction uses the following syntax:

 xadd(source, dest);

2.11.24 BSF and BSR Instructions
The bit scan instructions use the following syntax:

 bsr(source, dest);
 bsf(source, dest);

2.11.25 The BSWAP Instruction
This instruction takes the form:

 bswap(reg32);

It converts between little endian and big endian data formats in the specified 32-bit register.

2.11.26 Bit Test Instructions
This group of instructions includes BT, BTC, BTR, and BTS. They allow the following

generic forms:

 bt(BitNumber, Dest);

2.11.27 Floating Point Instructions

See the HLA Reference Manual chapter The 80x86 Instruction Set in HLA for a complete list
of the floating-point instructions and their syntax.

2.11.28 MMX and SSE Instructions
See the HLA Reference Manual chapter The 80x86 Instruction Set in HLA for a complete list

of the MMX and SSE instructions and their syntax.

2.12 Memory Addressing Modes in HLA
HLA supports all the 32-bit addressing modes of the Intel 80x86 instruction set2. A memory

address on the 80x86 may consist of one to three different components: a displacement (also called
an offset), a base pointer, and a scaled index value. The following are the legal combinations of
these components:

2. It does not support the 16-bit addressing modes since these are not very useful under Win32.
Public Domain Created by Randy Hyde Page 42

HLA Reference Manual 5/24/10 Chapter 2
displacement
basePointer
displacement + basePointer
displacement + scaledIndex
basePointer + scaledIndex
displacement + basePointer + scaledIndex

Note that a scaled index value cannot exist by itself.

HLA’s syntax for memory addressing modes takes the following forms:

staticVarName

staticVarName [constant]

staticVarName[breg32]

staticVarName[ireg32]

staticVarName[ireg32*index]

staticVarName[breg32 + ireg32]

staticVarName[breg32 + ireg32*index]

staticVarName[breg32 + constant]

staticVarName[ireg32 + constant]

staticVarName[ireg32*index + constant]

staticVarName[breg32 + ireg32 + constant]

staticVarName[breg32 + ireg32*index + constant]

staticVarName[breg32 - constant]

staticVarName[ireg32 - constant]

staticVarName[ireg32*index - constant]

staticVarName[breg32 + ireg32 - constant]

staticVarName[breg32 + ireg32*index - constant]

[breg32]

[breg32 + ireg32]

[breg32 + ireg32*index]

[breg32 + constant]

[breg32 + ireg32 + constant]

[breg32 + ireg32*index + constant]

[breg32 - constant]

[breg32 + ireg32 - constant]
Public Domain Created by Randy Hyde Page 43

HLA Reference Manual 5/24/10 Chapter 2
[breg32 + ireg32*index - constant]

"staticVarName" denotes any static variable currently in scope (local or global).
"basereg" denotes any general purpose 32-bit register.
"breg32" denotes a base register and can be any general purpose 32-bit register.

"ireg32" denotes an index register and may also be any general purpose register, even the same
register as the base register in the address expression.

"index" denotes one of the four constants "1", "2", "4", or "8". In those address expression that
have an index register without an index constant, "*1" is the default index.

Those memory addressing modes that do not have a variable name preceding them are known
as "anonymous memory locations." Anonymous memory locations do not have a data type
associated with them and in many instances you must use the type coercion operator in order to
keep HLA happy.

Those memory addressing modes that do have a variable name attached to them inherit the
base type of the variable. Read the next section for more details on data typing in HLA.

HLA allows another way to specify addition of the various addressing mode components in an
address expression - by putting the components in separate brackets and concatenating them
together. The following examples demonstrate the standard syntax and the alternate syntax:
[ebx+2] [ebx][2]
[ebx+ecx*4+8] [ebx][ecx][8]
lbl[ebp-2] lbl[ebp][-2]

The reason for allowing the extended syntax is because you might want to construct these
addressing modes inside a macro from the individual pieces and it’s much easier to concatenate two
operands already surrounded by brackets than it is to pick the expressions apart and construct the
standard addressing mode.

2.13 Type Coercion in HLA
While an assembly language can never really be a strongly typed language, HLA is much more

strongly typed than most other assembly languages.
Strong typing in an assembly language can be very frustrating. Therefore, HLA makes certain

concessions to prevent the type system from interfering with the typical assembly language
programmer. Within an 80x86 machine instruction, the only checking that takes place is a
verification that the sizes of the operands are compatible.

Despite HLA playing fast and loose with machine instructions, there are many times when you
will need to coerce the type of some operand. HLA uses the following syntax to coerce the type of
a memory location or register operand:

(type typeID memOrRegOperand)

There are two instances where type coercion is especially important: (1) when you need to
assign a type other than byte, word, or dword to a register3; (2) when you need to assign an
anonymous memory location a type.

3. Probably the most common case is treating a register as a signed integer in one of HLA’s high level
language statements. See the section on HLA High Level Language statements for more details.
Public Domain Created by Randy Hyde Page 44

	2 The Quick Guide to HLA
	2.1 Overview
	2.2 Running HLA
	2.3 HLA Language Elements
	2.3.1 Comments
	2.3.2 Special Symbols
	2.3.3 Reserved Words
	2.3.4 External Symbols and Assembler Reserved Words
	2.3.5 HLA Identifiers
	2.3.6 External Identifiers

	2.4 Data Types in HLA
	2.4.1 Native (Primitive) Data Types in HLA
	2.4.2 Composite Data Types
	2.4.3 Array Data Types
	2.4.4 Record Data Types

	2.5 Literal Constants
	2.5.1 Numeric Constants
	2.5.1.1 Decimal Constants
	2.5.1.2 Hexadecimal Constants
	2.5.1.3 Binary Constants
	2.5.1.4 Real (Floating Point) Constants
	2.5.1.5 Boolean Constants
	2.5.1.6 Character Constants
	2.5.1.7 String Constants
	2.5.1.8 Pointer Constants
	2.5.1.9 Structured Constants

	2.6 Constant Expressions in HLA
	2.7 Program Structure
	2.8 Procedure Declarations
	2.8.1 Declarations
	2.8.2 Type Section
	2.8.3 Const Section
	2.8.4 Static Section
	2.8.4.1 The @NOSTORAGE Option
	2.8.4.2 The EXTERNAL Option

	2.8.5 Macros

	2.9 The #Include Directive
	2.10 The Conditional Compilation Statements (#if)
	2.11 The 80x86 Instruction Set in HLA
	2.11.1 Zero Operand Instructions (Null Operand Instructions)
	2.11.2 General Arithmetic and Logical Instructions
	2.11.3 The XCHG Instruction
	2.11.4 The CMP Instruction
	2.11.5 The Multiply Instructions
	2.11.6 The Divide Instructions
	2.11.7 Single Operand Arithmetic and Logical Instructions
	2.11.8 Shift and Rotate Instructions
	2.11.9 The Double Precision Shift Instructions
	2.11.10 The Lea Instruction
	2.11.11 The Sign and Zero Extension Instructions
	2.11.12 The Push and Pop Instructions
	2.11.13 Procedure Calls
	2.11.14 The Ret Instruction
	2.11.15 The Jmp Instructions
	2.11.16 The Conditional Jump Instructions
	2.11.17 The Conditional Set Instructions
	2.11.18 The Input and Output Instructions
	2.11.19 The Interrupt Instruction
	2.11.20 Bound Instruction
	2.11.21 The Enter Instruction
	2.11.22 CMPXCHG Instruction
	2.11.23 The XADD Instruction
	2.11.24 BSF and BSR Instructions
	2.11.25 The BSWAP Instruction
	2.11.26 Bit Test Instructions
	2.11.27 Floating Point Instructions
	2.11.28 MMX and SSE Instructions

	2.12 Memory Addressing Modes in HLA
	2.13 Type Coercion in HLA

