
HLA Reference Manual 5/24/10 Chapter 4
4 Using HLA with the HIDE Integrated Development
Environment

This chapter describes two IDEs (Integrated Development Environments) for HLA: HIDE and
RadASM.

4.1 The HLA Integrated Development Environment (HIDE)
Sevag has written a nice HLA-specified integrated development environment for HLA called

HIDE (HLA IDE). This one is a bit easier to install, set up, and use than RadASM (at the cost of
being a little less flexible). HIDE is great for beginners who want to get up and running with a
minimal amount of fuss. You can find HIDE at the HIDE home page:

http://sites.google.com/site/highlevelassembly/downloads/hide
Contact: sevag.krikorian@gmail.com
Note: the following documentation was provided by Sevag. Thanks Sevag!

4.1.1 Description

HIDE is an integrated development environment for use with Randall Hyde's HLA (High
Level Assembler). The HIDE package contains various 3rd party programs and tools to provide for
a complete environment that requires no files external to the package. Designed for a system-
friendly interface, HIDE makes no changes to your system registry and requires no global
environment variables to function. The only exception is ResEd (a 3rd party Resource Editor
written by Ketil.O) which saves its window position into the registry.

4.1.2 Operation

HIDE is an integrated development environment for use with Randall Hyde's HLA (High
Level Assembler). The HIDE package contains various 3rd party programs and tools to provide for
a complete environment that requires no files external to the package. Designed for a system-
friendly interface, HIDE makes no changes to your system registry and requires no global
environment variables to function. The only exception is ResEd (a 3rd party Resource Editor
written by Ketil.O) which saves its window position into the registry.

4.1.3 First Execution
The first time you run HIDE you may see 1 to 4 windows open, depending on the initial setup

of your current version. At the very least, the main window (the one with the menu-bar) will be
open. The visibility of other windows may be altered by selections in the View menu. The
windows may be in either floating or docked mode. Floating windows reside outside the main
window, while docked windows will be within the main window itself.

Whatever changes you make to the window positions and status will be saved and restored the
next time you start HIDE.

4.1.4 The Windows
HIDE is subdevided into several Windows. A collapsable side panel contains several tool

windows and an output window below displays execution details.
Public Domain Created by Randy Hyde Page 1

http://sites.google.com/site/highlevelassembly/downloads/hide

HLA Reference Manual 5/24/10 Chapter 4
4.1.4.1 Editor
The HIDE editor uses KetilO's powerful RAEDIT.dll This window contains 3 buttons along

the horizontal scroll bar: From left to right, Show/Hide Line Numbers, Expand All, Collapse All.
Expand and Collapse work on folding text which makes navigating large documents easier. HIDE
is setup to fold procedures and declaration sections.

There will be a '+' and '-' buttons in the margin to indicate text blocks that can be folded/
expanded.

Near the bottom scrollbar, there may be up to three extra buttons, one expands the margin to
show line numbers, the other two expand/collapse all blocks in the current window.

When a bookmark is set, you will see a blue square in the margin. Clicking on the square
removes the bookmark.

The editor window also has a Splitting Bar along the top of the vertical scroll bar. This allows
you to split the view into 2 windows.

4.1.4.2 Output
This window has two modes selectable by two buttons on the title bar; Notes and Output
While in Output mode, the window displays information on programs that are launched from

HIDE. This includes error reports from HLA.
If the Output window is hidden when information needs to be displayed, it is opened

temporarily and then closed. To cancel the automatic closing timer, click anywhere in the Output
window.

While in Note mode, the window displays an edit control used for saving project notes. These
notes are saved directly in the project file (.hpr)

4.1.4.3 Tool Bar
Contains various buttons for quick access. All of these also have menu-bar counterparts.

4.1.4.4 Tab Bar
When more than 1 file is open, The Tab Bar contains the filenames of all the open files

allowing quick navigation.

4.1.4.5 Status Bar
Status bar contains various information on HIDE modes and files.
From the left:
Line number, number of lines
INS/OVR, insert/overwrite mode
No Project/Project, indicates if a project is currently active
Release/Debug, inidcates if "Debug" or "Release" is selected in Compiler Settings
Info, if the pointer/cursor hovers over a recognized property, the property information is

displayed here.

4.1.4.6 Panel
The collapsable panel on the right side hosts several windows.
Each window has a Pin button and a Close button.
To undock a window from the Panel, simply click on the title bar and drag the window out.
To dock a window back into the Panel, click its tab on the Panel.
If you wish to anchor an undocked window so that it does not dock when the its Panel tab is

clicked, click on the Pin button. The icon will change to indicate window is pinned.
Click the Pin button againt to deactivate anchor.
The close button hides the window and docks it back to the Panel.
Public Domain Created by Randy Hyde Page 2

HLA Reference Manual 5/24/10 Chapter 4
4.1.4.7 Project Panel
If a project is open, this window will contain a treeview display of all the Jobs and files in the

project. Double-click on a file to open it in the editor or Hex editor (depending on the file-type).
There are also other options available if you right-click the name. A menu will open offering

different options are available depending on the file-type.
Also, when a file has been altered by an external program, an asterisc '*' will appear before the

name.

Different file/job types have special icons for easy recognition.

A target/ghosted target indicate a target job type.
A hammer/ghosted hammer indicates a build-type job.
Ghosted indicates a held job.
A circle with a 'P' indicates a Program (or entry) source.
A square with an 'U' indicates a unit source.
A bule square with an 'RC' indicates a resource-type file.
A square with line-dashes indicates a misc or include type file.
A green circle with a 'B' indicates a binary-type file.

Items that may appear in the Right-click menu:

-Project Manager
Opens the Project Manager. This option is available with all types.

-Dedicate to wscan
Selecting this file will reserve it for being used with "Consolidate Windows Header" Project

menu.
This option is available with all include file-types.

-Set Auto Open
Selects this file to open automatically when the project is loaded. This option is available with

all text file-types.

-Reopen File
Reloads the file from disc. Especially useful it the file has been altered externally. This option

is available with all text file-types.

-Open With Resed
Opens the file with ResEd. This option is available with resource file-types.

-Rebuild File
Forces a rebuild of the selected file. This option is available with Source and Resource file-

types

-Rebuild Job
Forces a rebuild of the selected job. This option is available with Build Job-types.

-Run, Run With Debug
Public Domain Created by Randy Hyde Page 3

HLA Reference Manual 5/24/10 Chapter 4
Runs any output for the selected job. These options are available with Program Job-types.

-Execute Script
Executes the selected kMake script. This option available with Target job-types.

-Open With kHelp
Opens the selected file with kHelp. This option available with kHelp file-types.

-View Dependents
Only available if Autodependencies is selected in HIDE Setting and the current source has

dependents. This item lists all the dependents in the Output window.

4.1.4.8 Properties
If a project is open, this window will contain information on the sections of a project, including

procedures, and variables. A tool bar allows selection of display mode: all project files or current
open file.

4.1.5 Compiling Simple Programs
When no projects are loaded, HIDE will operate on No-Project mode, this mode is displayed

on the status bar. In this mode, you may compile simple programs. This mode does not allow use
of units, linking additional libraries or resources.

To use Non-Project mode, simply load an HLA sample program or write one. Use menu item
File -> Open to open a new editor window. When the program is typed, you may save it then
compile. By default, HIDE allows you to compile and run a sample program without saving it first,
HIDE will automatically save it in the HIDE/TEMP folder as “temp.hla” The executable will also
end up in the temp folder.

This default mode may be removed from the HIDE Settings dialog (in Options
menu). To compile, use menu item Make -> Build, Build & Run or Rebuild.

4.1.6 Menus
When no projects are loaded, HIDE will operate on No-Project mode, this mode is displayed

on the status bar. In this mode, you may compile simple programs. This mode does not allow use
of units, linking additional libraries or resources.

To use Non-Project mode, simply load an HLA sample program or write one. Use menu item
File -> Open to open a new editor window. When the program is typed, you may save it then
compile. By default, HIDE allows you to compile and run a sample program without saving it first,
HIDE will automatically save it in the HIDE/TEMP folder as “temp.hla” The executable will also
end up in the temp folder.

This default mode may be removed from the HIDE Settings dialog (in Options menu). To
compile, use menu item Make -> Build, Build & Run or Rebuild.

4.1.6.1 Edit

Standard: Standard cut, copy, paste options available.

Indentation:
Indent adds the tab character at the beginning of each selected line, while Outdent works the

inverse.
Public Domain Created by Randy Hyde Page 4

HLA Reference Manual 5/24/10 Chapter 4
Commentation:
Comment and Uncomment have 2 modes. With HLA files (sources ending with .hla or .hhf),

the comment adds a double slash at the beginning of each selected line. Uncomment works the
inverse.

Bookmarks:
Toggle bookmark adds a bookmark at the current line. The margin displays a filled circle at

the location. Next/Previous Bookmarks cycle between saved bookmarks. Clear All Bookmarks
removes all saved bookmarks.

These bookmarks are only good for the current session, they will not be remembered if you
exit HIDE.

Source Bookmarks:
Regular bookmarks only last one session, to have persistant bookmarks, use a source

bookmark. These will add a commented bookmark into the source which the HIDE properties
scanner will pick up and display in the "bookmarks" view of the Properties panel. Remove a
bookmark by deleting the comment.

"Insert Source Bookmark" will open a dialog asking for a label. Enter a single word to
describe this bookmark. HIDE will add a comment at the current cursor position that looks like:

//bm=label
This can be entered manually as well. Next property update, the bookmark will be displayed in

the "bookmarks" view and the bookmark will be saved in the source.

Block Selection:
Mark Set/End sets begin and end points for block selection. This is an alternative to shift-

scrolling to select large blocks of text.

Quick Navigation to Labels:
Find/Return Declare tries to find the location in the sources where the current label under the

carot is declared. The middle mouse button does the same thing except for the word currently
under the carot position. There are up to 5 saved position, 4 through menus and 1 with middle
mouse button. Selecting a menu again returns to the original spot.

Note: When the cursor hovers over a declared label, the property information of the label (if
any) is displayed on the status bar.

Goto Program Begin jumps to the main program begin location of the Entry file.

4.1.6.2 View

Shows or hides, docks or undocks various HIDE windows:

Treeview: contains a file-list of the current project.
Toolbar: some of the commonly used menuitems are on the toolbar
Statusbar: contains some useful at-a-glance information about mode.
Output: compiling output is displayed here.

Toggle Windows: closes open Panels, opens closed Panels
HIDE Windows: hides all open Panels
Panel: Hides/shows side panel
Output: Hides/shows output panel
Public Domain Created by Randy Hyde Page 5

HLA Reference Manual 5/24/10 Chapter 4
Dock Output: docks/undocks Output panel from main window
Cycle Panel: changes views in side panel

4.1.6.3 Project

New Project:
Opens a dialog to get a file name for creating a new project.
Enter a project name, options include using a template or starting with the Project Manager.
There are some quick templates included for convinience.
Projects will be saved in their own folder located at HIDE(default), or at the current user-

specified projects folder (Options -> Set Paths). The current projects folder is displayed in the
dialog.

Once a project is created, any currently open project is closed. If no templates are used, the
Project Manager opens. Otherwise the template project is created and opened.

See the description of Project Manager on how to add new jobs and files to the project.

Open Project:
Opens a previously created project. If there is an active project, it is closed.

Close Project:
Closes current project.

Project Manager:
Opens the Project Manager dialog. See the Project Manager topic for more information.

Consolidate Windows Header
Selecting this option activates wscan.exe which scans your project sources for any Window

header labels (namespace w). It then scans the main w.hhf header files and creates a smaller sub-
set of this file using only the labels (direct and indirect) declared in your sources. This
automatically creates a "win_inc.hhf" header file and adds it to your project. To use this file, you
must #include ("win_inc.hhf") with any unit that needs them (see the wscan documents for more
information).

Empty Temp Folder
This will delete the contents of the current temp folder. The location of the temp folder will

vary depending on project settings. See Help->Show Envrionment menu for current temp folder.

4.1.6.4 Make

Build Active Job:
If the current file belongs to a job, that job is built. If it's a
non-project file, the file is built.

Build Project:
This option builds all the jobs in the project, in the order displayed
Public Domain Created by Randy Hyde Page 6

HLA Reference Manual 5/24/10 Chapter 4
in the Project Panel.

ReBuild Project:
Forces a rebuild of all the jobs without checking file-dates.

Rebuild Active File:
Forces a rebuild of the current file without checking file-dates.

Rebuild Active Job:
Forces a rebuild of the current active job without checking file-dates.

Run: Runs the executable of the current active job, if any.

Build Project & Run:
First Builds the project then runs the produced executable of the active job

Run With Debug:
Runs a previously built program of the active job with a specified Debugger.
See Options menu Set Paths for more info.

Clean:
Deletes compiled object and resource files

Test Build -Commands only:
Shows the commandlines HIDE will execute under normal execution of Make->Build Project
No actual execution will take place.

Source HLABE:
Converts the file in the active window into hla's internal HLABE format, opens a new
window to display the contents.
This format is useful for seeing the high level functionally of hla unrolled into low level and

debugging macros.

Source -> MASM, FASM, NASM, GAS
Converts the file in the active window into hla's translation of the various supported languages.
This format is useful for seeing how hla code appears in other assembly languages.

Some of these options are also available in the right-click menu of the
Project Panel.

4.1.6.5 Tools
These tool selections are hard coded into HIDE, included in the bin folder or operating system

and always available
Public Domain Created by Randy Hyde Page 7

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.5.1 Debug Window
A simple window that can display run-time output sent by your programs. Operatation of

Debug Window requires several steps.

1. Include the dbgwin header file (located in the hlaincfolder).
#includeonce ("hide.hhf")

2. Link with debug.lib This is done automatically by setting the Output Version (in Compiler
Settings dialog, see Options) to Debug (debug mode).

3. Add a global compile time variable called debug to your source. This is done automatically
by setting the Output Version to Debug (debug mode).

Displaying text to the debug window is done by a series of macros all of which use the "dbg"
namespace.

Current functions:

dbg.put(arg1,[arg2],[arg...]);
Used somewhat like stdout.put, but less powerful.
Eg: dbg.put("The variable MyVar contains the value: ",MyVar);

dbg.cls:
Clears the debug window display of any text.
Eg: dbg.cls;

dbg.putz (addr);
Displays a zero-terminated string.

dbg.separator;
Draws a separating dashed line.
Eg: dbg.separator;

dbg.dumpmem(address,length);
Displays an arbitrary memory location at address passed in address parameter and of length

passed in length parameter.

dbg.dumpregs;
Displays the contents of the registers.

dbg.trace;
Starts HLA trace, displayse current file/linenumber for most instructions.

dbg.endtrace;
Ends the trace

dbg.timer;
Starts a timer for measuring performance of code.

dbg.endtimer;
Ends the timer and displays the time.
Public Domain Created by Randy Hyde Page 8

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.5.2 Resource Editor
Launches Ketil.O's ResEd.
If there is a project open, it checks the current job and tries to find
a resource file. It will open that file in ResEd.
To make sure ResEd opens a particular file, right-click the resource
in the Project Panel and select "Open With ResEd"

Note: HIDE loads all files into memory. ResEd modifies external files. Although HIDE
reopens the current resource file after exiting from ResEd, at times a user will have ResEd produce
an additional file (such as rsrc.hhf) which will need to be manually reopened. An asterisk beside
the file name in the Project view indicates a file has been modified externally and needs to be
reopened, do so by right-clicking on the filename and selecting "Reopen File".

4.1.6.5.3 ASCII Table
Runs asciitbl.exe which outputs a basic text Ascii Table to the output window.

4.1.6.5.4 Calculator
Launches system calculator, calc.exe

4.1.6.5.5 Color Picker
Opens a color selection dialog. Clicking OK on the dialgo will send the current color to the

main edit window at the carot postion as an HLA hex number.

4.1.6.5.6 Open Console
Runs the program attached to the "ComSpec" environment variable.

4.1.6.5.7 Run Program
Opens a dialog for input. Attempts to execute the input. You may use HIDE macros.
The dialog shows the last text entered.

4.1.6.6 Options
Control all cutsomizable aspects of HIDE, from font/color settings to output types.

4.1.6.6.1 Code Editor Font

Customize the font used in the editor and output windows.
Public Domain Created by Randy Hyde Page 9

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.6.2 Line Number Font

Customize the font used in the margin.

4.1.6.6.3 Colors & Keywords
Allows customization of highlite colors and highlite key-words. It contains 10

user key-lists which come predefined with HLA directive and assembler opcodes. There are also 4
HIDE specific lists, two of which contain keywords for HLA standard library routines and two
contain keywords for Windows API structures, constants and functions.

Here you will also be able to use and save Themes. Several themes are included and your own
themes may be saved. Saved themes are stored in data.ini. Only themes you save may be deleted.

4.1.6.7 HIDE Settings

This dialog allows you to change the editor behavior settings.

4.1.6.7.1 Tabs:
Tab Size: If a project is open, the new tab settings will only apply to the project. Otherwise, it

will apply to default and all new projects.
Expand tabs: change tabs to spaces.
Auto indent: pressing enter will automatically tab to the previous indent.

4.1.6.7.2 Backups:
 Instructs HIDE to make backups of every project file modified, up to the number specified.

Once the limit is reached, the backups cycle back through the lower numbers. The files are saved
either in the BAK folder of your project (if one was created during project creation), or in the
HIDEfolder.

The backup naming convention is thus:

[n]<filename>where n is the backup number
If Backups is set to 0, no backups will be created.

4.1.6.7.3 Options

Hilite lines: Hilites the current cursor line

Hilite Comments: hilites commented code

Hide Divider Lines: does not show divider lines

Show Line #s: Automatically opens the line number panel for every open file

Auto HLA Structures: automatically completes or assists when HLA keywords are used

Auto Parenthesis:
Public Domain Created by Randy Hyde Page 10

HLA Reference Manual 5/24/10 Chapter 4
Automatically completes parenthesis or '[', ''
and '('. Also if the closing parenthesis is used
at the end of a word, the opening parenthesis is
automatically inserted at the beginning of the word

Keep Temp Files:
Saves temporary files in either project/temp folder
or HIDE/temp folder

Use Debug Lib: links in debug.lib and sends -ddebug ctl variable

Verbose Output: more verbose information during compiling

PE GUI: links output as Windows PE GUI

Send Console output to Output Window:
Redirects standard out of console programs executed to the output window.

Note: this does not allow input.

Auto Dependencies:
This activates the dependency checking feature of HIDE. Dependencies are considered only if

the file is included and exists as a project file. To determine which dependencies HIDE will
consider, you may right click on a file name in the Project View. If there are dependents, a menu
item "View Dependents" will be visible. Clicking this will list dependents in Output window.

4.1.6.7.4 HIDE Global Settings

Open Last Project: Attempts to open the last project worked on

Autosave [Untitled]:
Automatically save [Untitled] as HIDE.hla *
When on No Project mode, this allows you to compile
a program without saving it first. The program is
saved in the HIDEfolder with the name temp.hla,
the executable after a build will be in that folder
as well.

*Note, if there is a project open and it has 'Use Temp Folder'
active, the file will be saved in the projects's temp folder.

Use Standard Templates:
Everytime a new file is opened, depending on what kind
of file, HIDE will fill in code according to the files
located at HIDE. If you do
not like these, feel free to update them to your taste,
but create backups before upgrading HIDE, as the files
may be overwritten.

Scan for Properties:
Public Domain Created by Randy Hyde Page 11

HLA Reference Manual 5/24/10 Chapter 4
Properties scanning is optional. Turn this off on low end systems that
exhibit slowdowns during symbol scanning.

Top Window: Makes HIDE a top level window.

4.1.6.7.5 HLA Level:
This determines the level at which HLA will attempt to compile sources.
4 options available from left to right:
high, medium, low, machine

4.1.6.7.6 Global Link Settings
Allows you to edit link settings for non-project files.
There must not be a project open for this to edit global
settings.

4.1.6.8 SetPaths
Opens a dialog where certain HIDE and HLA paths can be set.
The fields can accept legal physical or relative paths. All HIDE macros are available for use in

the fields and it is suggested that HIDE-relative macros be used for changing environment paths.

4.1.6.8.1 User Paths
Use this to extend the system search path used by HIDE

4.1.6.8.2 Project Folder
The default project folder is located at HIDE. Use this field to change the

location to another folder.

4.1.6.8.3 Debugger
In this field, enter the path and executable of the debugger that will be launched

when the user selects "Run With Debug"

4.1.6.8.4 Help (F1)
In this field, enter the path and name of a help file that will be used for Windows

API documentation

4.1.6.8.5 hlalib
Use this field to change the "hlalib" environment path. This path must always

point to a valid hlalib library.

4.1.6.8.6 hlainc
Use this field to change the "hlainc" environment path.

4.1.6.8.7 hlaopt
Use this field to change the default compiling options set by HIDE. Possible uses

could be to use an external assembler.
Public Domain Created by Randy Hyde Page 12

HLA Reference Manual 5/24/10 Chapter 4
Beware, changing this could make HIDE inoperable so only change it if you
know what you're doing! You can revert to the default by deleting the "hlaopt" line in data.ini

4.1.6.9 User
The user menu is not shown unless there are user menus defined in the Data.ini file.
To define a user menu, add a [User Menu] section to HIDE.ini
Each line under "[User Menu]" has the format:
menu id, command to execute w/arguments
the command execution line may also contain HIDE macros (see below).
 Eg:

 [User Menu]
 calc, calc.exe
 Alpha, alpha.exe %s

See HIDE Macros section for more details on macros.

HIDE will also use appropriate programs to launch for opening documents from the user
menu. It will determine this based on the document extension provided.

One can use this feature to open files using HIDE.

eg:

[User Menu]
My Help, "c:documents.pdf"

The above will attempt to open mypdf.pdf with
default pdf viewer, if one is found.

To open files using the text/hex editor in HIDE,
place the '<' (less than) char right before
the filename

eg:

[User Menu]
HIDE.ini,<%h.ini

This will open "hide.ini" located in the HIDE
folder using the current instance of HIDE.

Use the '>' (greater than) char right before
the filename to open as HEX.

The '<' and '>' chars must appear before quotes, if
quotes are used.
Public Domain Created by Randy Hyde Page 13

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.10 Help

Win32 API
Before this feature can be used, it has to be configured with the location of your

Windows help file.
To do so, use Option -> Set Paths menu and add the location of your win32.hlp (or other) file

to the "Help F1" field.

Once configured, selecting this menu will open win32.hlp (or other selected program).
Selecting it while cursor is on a word will try to locate the keyword in win32.hlp and open that
topic.

The Tutorials and manuals may need to be downloaded separately. These files are the kHelp
versions of the documents. When downloaded, the tutorials go in HIDEfolder, the rest go in HIDE

When selected, kHelp is launched to display the document.

Show Environment:
Displays the current HIDE environment and macros associated with the paths.

Show Files List:
Dumps a list of all the project files, their Job segment and their locations in the

Output window.

About
Opens a dialog with credits, info and other...

4.1.7 HIDE Macros

Here is a list of HIDE Macros that may be used in HIDE control boxes for paths and output
redirection and in Target scripts.

 %$ current directory, usually folder of current open project
 %h HIDE homepath
 %p projects folder path (not current open project)
 %c folder for current open project
 %i hlainc folder path
 %l lib folder path
 %t temp folder path
 %s active edit source filename
 %x template folder path

 See Help-> Show Environment for the actual paths that will be substituted
 for some of these macros.

4.1.8 Project Manager

The Project Manager is a new feature added in HIDE 1.23.00+
Public Domain Created by Randy Hyde Page 14

HLA Reference Manual 5/24/10 Chapter 4
From here, the details of the project are handled; adding/removing/moving/renaming jobs,
files, folders, linked libraries; selecting compiling options; selecting linker options; selecting auto-
maintained folder operation...

The main operation of the Project Manager is broken down into 4 panels from left to right:

1. Jobs Build/Held Queue + combobox (refered to as Jobs Combo)
2. Folders
3. Files + combobox (refered to as Files Combo)
4. Linked Objects

Most of the buttons are only active when the are useful.
On the extereme left, the up/down buttons are only active if there are two or more jobs in the

project. You may select a Job and move them up or down the build Queue using these arrows.

1. Jobs List. This first listbox has two modes, Build Queue and Held. Select modes from the
two buttons on top of the list.

To begin adding jobs to the project, select a job type from the Jobs Combo. There are several
to choose from.

HLA Program
For small, mono-source HLA programs.

Modular Program
For large unit-based programs.

A Build Target
For kMake scripts

DLL
For modular Dynamic Linked Libraries

Library
For modular Libraries

Misc
Special type. This does not build anything.

Buttons:
Add Job - activated when a Job type is selected in the Jobs Combo.

Opens a dialog for getting the Job name.
Delete Job - deletes selected job. Only works if there are no files in the job.
Rename Job - renames selected job.
Hold Job - sends selected job into the Held list.

2. Folders List
When a project is created, this will already have the project folder listed here.
Add Folder - adds a new folder to the project
Delete Folder - deletes selected folder. Only works if the folder is empty. Does not delete the

project folder.
Rename Folder - renames selected folder.
Public Domain Created by Randy Hyde Page 15

HLA Reference Manual 5/24/10 Chapter 4
Move File - only active if there is also a file selected in the Files List. Moves the file to the
folder.

3. Files List
Files Combo - only active when a job is selected. Allows you to add file-types to the job.
Note: some file-types are only available in certain jobs.
Select a file type to activate add button.

Entry File - only available in Program and DLL type jobs. Only one entry file may be created
per job. The entry file is usually the one that contains the "Program.." heading.

Include File - for includes/headers
RC File - for resources
kHelp File - for kHelp documents/manuals
Binary File - for opening with Hex editor
Misc File - for general non-source text files
Unit File - only available in modular type jobs. For separately linked units.
Definition File - only available in DLLs, only one may be created.
kMake Script - only available in Target type jobs. Adds a kMake script. Only one per target.

Buttons:
Add File - opens a dialog to get name. Creates a new file. If "Use Standard Templates" is

selected, the file is pre-filled with code found in the Datafolder based on type of file created.
To create a file in a folder different from the Project root, select a folder before clicking "Add

File"
Delete File - removes a file from project and deletes it from disc. File is gone forever.
Rename File - give a file a new name.
Import File - Import an existing file into the project.

To move a file, select the file in the Files list, select a new folder in the Folders list and the
"Move File" button will activate. Click to move.

4. Linked Objects List
This will contain a list of files linked in with the final executable/library. You may fine some

default libraries already listed. These are added when a new Job is created. To see the list of
default libraries, or to make changes to the default list, see Data.ini

Buttons:
Add Library - add a library for linking.
Remove Library - remove a library from linking - does not delete library.

Project Options
Several buttons available:

Rename Project - renames the folder and project file.
Use Standard Templates - if selected, new files created will contain initial code taken from

Data, depending on the type of file.
Use Temp Folder - creates a "temp" folder and uses that to store all temporary files.
Use Units Folder - creates a "units" folder and stores all the object files there.
Use Bak Folder - creates a "bak" folder and stores all backup files there.
Use Debug Lib - linkes debug.lib with all compiled jobs.
Keep Temp Files - does not delete temporary files. These files will be saved either in the

current project temp folder or in the HIDE/temp folder, depending on the use of temp folder.
Public Domain Created by Randy Hyde Page 16

HLA Reference Manual 5/24/10 Chapter 4
Verbose Compile - shows more compiling data.

Job Options:
Only available when significant jobs types are selected.

Link As GUI - links with -w option.
Link Options - opens a dialog allowing the editing of finder linker details. For advanced users

only.

Output:
Shows how the final output file (if any) will be named and in which directory it will be created.

You may use standard HIDE macros here for output redirection.

Done:
Closes the dialog and saves changes to project file.

4.1.9 Auto Completion

Bernd Kastenholz has written an autocompletion module for HIDE.
Autocompletion listbox is opened by pressing ctrl-space

Activation in HIDE-editor: Key Ctrl-Space
Opens a dialog beneath the cursor. The listbox contains all
strings of file 'HideHomepath.txt'.

Settings: Key F1 (does only work when autocompletion dialog is visible)
Opens the settings dialog. Only the sort property of
the listbox can be changed.
The settings are stored in file 'HIDE.ini'

Controlling the listbox:
Arrow up: Scroll up in the listbox
Arrow down: Scroll down
Arrow left: Increase the selection to the left
Arrow right: Decrease the selection to the right
Backspace: Increase the selection to the left
Return: Inserts the selected word and closes the dialog
DblClk with left MB in listbox: Inserts the selected word and closes the dialog
Scrolling with mousewheel.
ESC: Just closing the dialog and deletes the selection
HOME: Scroll to first item
END: Scroll to last item
PGDN: Scroll down one page
PGUP: Scroll up one page

Updates:
8/2/2006
Public Domain Created by Randy Hyde Page 17

HLA Reference Manual 5/24/10 Chapter 4
-fixed a bug (while inserting chars)
-now the word list will be destroyed when changing the sort property

8/1/2006
v1.0.1

-added controlling the listbox with HOME, END, PGDN and PGUP
-fixed deleting of text
-fixed decreasing/increasing bug
-fixed backspace bug. Deletes now the selection
-cleaning the source code

7/31/2006
v1.0.0

first release of autocompletion

4.1.10 CommandLine Tools

For more in-depth documentation of these tools, see the HIDE Tools manual.

4.1.10.1 kMake
kMake is used to build target jobs. To edit a target job write in the optional [BUILD] section

to avoid warnings from kMake.

eg:
[BUILD]
; commands to run

For those unfamiliary with kMake, the manual is included in Help -> HIDE Tools

For a quick summary, a script may launch any program or MS-DOS command that are
available on your path. If you need to add more paths to HIDE, use Option -> Set Paths menu and
add as many paths as you like to "User Paths"

The script may also contain HIDE macros (see Help -> Show Environment for an available list
of macros and what they expand to).

4.1.11 Project File Format

Note: this format has changed significantly in HIDE 1.23.00 +
The original format is no longer supported and an automatic converter
is provided to help in converting older projects to the newer format.

Here is a sample HPR file. I'll walk through the sections one at a time.
Public Domain Created by Randy Hyde Page 18

HLA Reference Manual 5/24/10 Chapter 4
[HPR Settings]
mainfile=Src.hla
tab=6
backups=0
options=199
Project Version=10
usetemp=false
useunits=true
useback=false
findscope=1
findflags=0

[HPR Jobs]
cCalc

[HPR Folders]
units
res
src

[cCalc]
console=false
output=cCalc.exe
type=modular
main=cCalc.hla

[cCalc.link]
-heap:0xF4240,0xF4240
-stack:0xF4240,0xF4240
-base:0x4000000
-entry:HLAMain
-section:.data,RW
-section:.text,ER
-machine:ix86

[cCalc.files]
kernel32.lib,,extlinked
user32.lib,,extlinked
hlalib.lib,,extlinked
hidelib.lib,,extlinked
cCalc.hla,src,hlaprogram
cCalc.rc,res,resource
cCalc.hhf,src,include
cCalc.txt,,misc

==
Public Domain Created by Randy Hyde Page 19

HLA Reference Manual 5/24/10 Chapter 4
[HPR Settings]
mainfile=Src.hla
tab=6
backups=0
options=199
Project Version=10
usetemp=false
useunits=true
useback=false
findscope=1
findflags=0

This section gives HIDE some detailes on how to treat this project

mainfile
HIDE opens ths file when the project is first loaded. Any file
can be set as mainfile by right-clickig the name in the Project
Panel and selecting "Set Auto Open"

tab
Number of spaces in a tab

backups
Maximum number of backups reserved for this project

options
Maintains a bit-map of options

Project Version
Used for automatically updating changes to the project file format.
A version of <10 is the older project format which is no longer supported.

usetemp
useunits
useback
Some folders are auto-maintained. These show true or false wether this project makes use of

these facilities.
usetemp = temp folder"temp"
useunits= units folder "units"
useback = backups folder"bak"

findscope
findflags
These maintain the find options for this project.

[HPR Jobs]
cCalc

This section lists the jobs queue. Every item here is executed in
Public Domain Created by Randy Hyde Page 20

HLA Reference Manual 5/24/10 Chapter 4
order from first to last. There may also be a [Held Jobs] section
which are jobs removed from the build queue.

[HPR Folders]
units
res
src

This section lists all the folders recognized by the project.

[cCalc]
console=false
output=cCalc.exe
type=modular
main=cCalc.hla

Each job listed in [HPR Jobs] and [Held Jobs] will have its own
corresponding section which describes what the job is all about.

console
Indicates if this job will build as a console or PE GUI

output
Indicates the path/name of the output produced by this job

type
Corresponds to the type of job as selected when job was created

main
If this job has an entry (ie: it's an executable or DLL) then
this will indicate which file is the entry.

[cCalc.link]
-heap:0xF4240,0xF4240
-stack:0xF4240,0xF4240
-base:0x4000000
-entry:HLAMain
-section:.data,RW
-section:.text,ER
-machine:ix86

Each job will have its own link section. This passes information to
the linker. These options may be edited from the Project Manager

[cCalc.files]
kernel32.lib,,extlinked
Public Domain Created by Randy Hyde Page 21

HLA Reference Manual 5/24/10 Chapter 4
user32.lib,,extlinked
hlalib.lib,,extlinked
hidelib.lib,,extlinked
cCalc.hla,src,hlaprogram
cCalc.rc,res,resource
cCalc.hhf,src,include
cCalc.txt,,misc

Each job will have its own files section. Every file is listed,
along with its folder and type.

4.1.12 Licences
HIDE package contains tools released in various licences.

4.1.12.1 HIDE
HIDE
Copyright (c)2006 Sevag Krikorian

This licence applies to all versions of HIDE including any
future released version, unless a new licence is applied.

HIDE consists of HIDE.exe as well as the package "HIDE." The
package consists of other 3rd party tools and any licences
associated with these tools are provided separately.

This program is free for commercial or private use as long as
the following conditions are respected.

1. Redistribution
Redistribution in source or binary form is permitted.
The copyright notice, disclaimer and this licence
(as well as the lincences of all 3rd party software that is
redistributed) must be retained.

2. Modification
The source may be modified and redistributed.
Redistribution of modified code also falls under the conditions
of redistribution (see #1).

Modified source cannot be copied and placed under a
different licence, including the GNU Public Licence.

3. Disclaimer
This software is provided "as is" and any express or
implied warranties, including merchantability and fitness for
a particular purpose are disclaimed.
Public Domain Created by Randy Hyde Page 22

HLA Reference Manual 5/24/10 Chapter 4
The author and contributors will in no case be liable
for the use or misuse of this software, including, but not
limited to direct, indirect, incidental, special, exemplary or
consequential damages.

4.1.12.2 PellesC
This software is provided 'as-is', without any expressed or implied warranty. In no event
will the author be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to redistribute it freely, subject to the following restrictions:

1.The origin of this software must not be misrepresented; you must not claim that you wrote
the original software.

2.Including Pelles C in a CDROM or in other products sold for profit needs explicit agreement
from the author.

3.This notice may not be removed or altered from any distribution.

Pelle Orinius
Stockholm, Sweden

4.1.12.3 HLA
Use the -license command-line parameter to see the current license for the HLA system.
Public Domain Created by Randy Hyde Page 23

HLA Reference Manual 5/24/10 Chapter 4
4.2 The RadASM/HLA Integrated Development
Environment

Note: the HIDE integrated development environment is standard IDE for HLA. However,
RadAsm, an older system that is compatible with several different assemblers, also supports HLA.
I wrote this documentation for an older version of RadAsm (before HIDE appeared). As many
HLA users prefer RadAsm (because they grew up with it or because they use several different
assemblers and prefer using a single IDE) I’ve included this documentation. You may need to make
appropriate mental adjustments if you’re using a newer version of RadAsm than this document
describes.

Last I checked, the official RadAsm development site was dead, but if you Google RadAsm
you can find mirror sites to download it from. Last time I did this, found found the following sites:

http://www.oby.ro/rad_asm/
http://radasm.cherrytree.at/radasm/

4.2.1 Integrated Development Environments
An integrated development environment (IDE) traditionally incorporates a text editor, a

compiler/assembler, a linker, a debugger, a project manager, and other development tools under the
control of a single main application. Integrated doesn’t necessarily mean that a single program
provides all these functions. However, the IDE does automatically run each of these applications as
needed. An application developer sees a single “user interface” to all these tools and doesn’t have
to learn different sets of commands for each of the components needed to build an application.

The central component of most IDEs is the editor and project manager. A project in a typical
IDE is a related collection of files that contain information needed to build a complete application.
This could, for example, include assembly language source files, header files, object files, libraries,
resource files, and binary data files. The point of an IDE project is to collect and manage these files
to make it easy to keep track of them.

Most IDEs manage the files specific to a given project by placing those files in a single
subdirectory. Shared files (such as library and shared object code files) may appear elsewhere but
the files that are only used for the project generally appear within the project directory. This makes
manipulation of the project as a whole a bit easier.

RadASM, created by Ketil Olsen, is a relatively generic integrated development environment.
Many IDEs only work with a single language or a single compiler. RadASM, though designed
specifically for assembly language development, works with a fair number of different assemblers.
The nice thing about this approach is that you may continue to use RadASM when you switch from
one assembler to another. This spares you the effort of having to learn a completely new IDE
should you want to switch from one assembler to another (e.g., switching between FASM, MASM,
NASM, TASM, and HLA is relatively painless because RadASM supports all of these assemblers.
RadASM is extremely customizable, allowing you to easily set it up with different assemblers/
compilers or even modify it according to your own personal tastes. Although the version of
RadASM that ships with HLA has been specifically set up to work seamlessly with RadAsm, it’s
nice to know that you can customize RadASM however you choose..

4.2.2 HLA Project Organization
A RadASM/HLA project is a collection of all the files specific to a given executable program.

This includes project-specific source files, resource files, object files, header files, makefiles, and
so on. Share library, object, and header files are logically a part of an HLA project, though they
generally are not physically present in the set of files that comprise a project (i.e., you don’t make
copies of these files for each project you produce). Whether a given file is physically a part of the
project or just logically a part of a project, a RadASM/HLA project cannot compile correctly
without all the files that make up the project.

This document will adopt the (reasonable) convention of placing each HLA project in its own
subdirectory. A given project directory will contain the following files and directories:

• All source files specific to the project (this includes make files, .hla, .hhf, .rc, .rap
[RadASM project] and other files created specifically for this project, but does not include
any standard library header or generic library files that all projects use).
Public Domain Created by Randy Hyde Page 24

HLA Reference Manual 5/24/10 Chapter 4
• A “makefile” file to be processed by a “make” program or a batch file to compile and
combine all the files in a project.

• A “Tmp” subdirectory where HLA can place temporary files it creates during compilation
(normally these files wind up in the same directory as the HLA source files; placing them
in the “Tmp” directory prevents clutter of the main project directory).

• A “Bak” subdirectory where backup files can be kept.
The RadASM IDE provides the ability to maintain projects directly. However, the combination

of RadASM/HLA and a “make” program provides a superior solution to the standard RadASM
project paradigm. Therefore, this document will assume that you’re using makefiles in your
RadASM projects (the next section describes the “make” program, so if you’re not familiar with it,
keep on reading...).

The drawback to using makefiles to maintain the project is that you’ve got to manually create
the makefile; RadASM won’t do this for you automatically (as it does with its own projects).
Fortunately, 90% of your makefile creations will simply be copying an existing makefile to your
project’s directory, editing the file, and changing the filenames from the previous project to the
current project (indeed, this operation is so common that you’ll find a generic makefile in the
“sniplets” RadASM directory accompanying the HLA download. You can easily create a copy of
this generic makefile from RadASM’s “Tools > Sniplets” menu, as you’ll see soon enough).

4.2.3 Using Makefiles
Although RadASM provides a true IDE for HLA that supports projects, browsing, and other

nice features, the best way to manage your Win32 assembly projects (even within RadASM) is via
a makefile. Since the use of make is going to be a fundamental assumption in this book (e.g., most
examples will include a makefile), it’s probably wise to discuss the use of make here for those who
may be unfamiliar with this program.

The main purpose of a program like make (or nmake, if you’re using Microsoft’s version of the
program) is to automatically manage the compilation and linking of a multi-module project.
Although it is theoretically possible to write a single, self-contained, assembly language source file
that assembles directly to an executable file, in practice this is rarely done. Instead, programs are
usually broken up into separate source files by logical function. In order to save time during
development, you don’t always have to recompile every source file that makes up the application.
Instead, you need only recompile those source files that have been changed (or depend upon
changes in other source files). This can save a considerable amount of time during development if
your project consists of many different source files that you’re compiling and linking together and
you make a single change to one of these source files (because you will only have to recompile the
file you’ve changed rather than all files in the system).

Note that you will have to obtain a make utility program in order to use make files. If you’ve
got any Microsoft development tools, then you’ve probably got a copy of Microsoft’s nmake.exe
program lying around. Ditto for Borland tools. The Free Software Foundation (FSF - the GNU
folks) have their own version of make as well. If you don’t have a copy of a make utility, you can
download Borland’s version as part of their C++ command line compiler package that they
distribute free on their website (though you do have to register with Borland to receive this). Check
out the C++Builder Downloads page at

http://www.borland.com/products/downloads/download_cbuilder.html
Click on the “compiler” link in order to download Borland’s command line C++ compiler (that

includes the make.exe utility). If this link is broken, just visit http://www.borland.com and follow
the downloads link.

Although separate compilation reduces assembly time and promotes code reuse and
modularity, it is not without its own drawbacks. Suppose you have a program that consists of two
modules: pgma.hla and pgmb.hla. Also suppose that you’ve already compiled both modules so that
the files pgma.obj and pgmb.obj exist. Finally, you make changes to pgma.hla and pgmb.hla and
compile the pgma.hla file but forget to compile the pgmb.hla file. Therefore, the pgmb.obj file will
be out of date since this object file does not reflect the changes made to the pgmb.hla file. If you
link the program’s modules together, the resulting executable file will only contain the changes to
the pgma.hla file, it will not have the updated object code associated with pgmb.hla. As projects get
larger they tend to have more modules associated with them, and as more programmers begin
working on the project, it gets very difficult to keep track of which object modules are up to date.

This complexity would normally cause someone to recompile all modules in a project, even if
many of the object files are up to date, simply because it might seem too difficult to keep track of
which modules are up to date and which are not. Doing so, of course, would eliminate many of the
Public Domain Created by Randy Hyde Page 25

HLA Reference Manual 5/24/10 Chapter 4
benefits that separate compilation offers. Fortunately, the make program can solve this problem for
you. The make program, with a little help, can figure out which files need to be reassemble and
which files have up to date .OBJ files. With a properly defined make file, you can easily assemble
only those modules that absolutely must be assembled to generate a consistent program.

A make file is a text file that lists compile-time dependencies between files. An .EXE file, for
example, is dependent on the source code whose assembly produce the executable. If you make any
changes to the source code you will (probably) need to reassemble or recompile the source code to
produce a new executable file1.

Typical dependencies include the following:

• An executable file generally depends only on the set of object files that the linker
combines to form the executable.

• A given object code file depends on the assembly language source files that were
assembled to produce that object file. This includes the assembly language source files
(.HLA) and any files included during that assembly (generally .HHF files).

• The source files and include files generally don’t depend on anything.
A make file generally consists of a dependency statement followed by a set of commands to

handle that dependency. A dependency statement takes the following form:
dependent-file : list of files

Example :
pgm.exe: pgma.obj pgmb.obj --Windows make/nmake example

This statement says that pgm.exe is dependent upon pgma.obj and pgmb.obj. Any changes that
occur to pgma.obj or pgmb.obj will require the generation of a new pgm.exe file.

The make program uses a time/date stamp to determine if a dependent file is out of date with
respect to the files it depends upon. Any time you make a change to a file, the operating system will
update a modification time and date associated with the file. The make program compares the
modification date/time stamp of the dependent file against the modification date/time stamp of the
files it depends upon. If the dependent file’s modification date/time is earlier than one or more of
the files it depends upon, or one of the files it depends upon is not present, then make assumes that
some operation must be necessary to update the dependent file.

When an update is necessary, make executes the set of commands following the dependency
statement. Presumably, these commands would do whatever is necessary to produce the updated
file.

The dependency statement must begin in column one. Any commands that must execute to
resolve the dependency must start on the line immediately following the dependency statement and
each command must be indented one tabstop. The pgm.exe statement above would probably look
something like the following:

pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

(The “-e:pgm.exe” option tells HLA to name the executable file pgm.exe.)
If you need to execute more than one command to resolve the dependencies, you can place

several commands after the dependency statement in the appropriate order. Note that you must
indent all commands one tab stop. The make program ignores any blank lines in a make file.
Therefore, you can add blank lines, as appropriate, to make the file easier to read and understand.

There can be more than a single dependency statement in a make file. In the example above,
for example, executable (pgm.exe) depends upon the object files (pgma.obj and pgmb.obj).
Obviously, the object files depend upon the source files that generated them. Therefore, before
attempting to resolve the dependencies for the executable, make will first check out the rest of the
make file to see if the object files depend on anything. If they do, make will resolve those
dependencies first. Consider the following make file:

1. Obviously, if you only change comments or other statements in the source file that do not affect the executable
file, a recompile or reassembly will not be necessary. To be safe, though, we will assume any change to the source
file will require a reassembly.
Public Domain Created by Randy Hyde Page 26

HLA Reference Manual 5/24/10 Chapter 4
pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla
hla -c pgma.hla

pgmb.obj: pgmb.hla
hla -c pgmb.hla

The make.exe program will process the first dependency line it finds in the file. However, the
files that pgm.exe depends upon themselves have dependency lines. Therefore, make will first
ensure that pgma.obj and pgmb.obj are up to date before attempting to execute HLA to link these
files together. Therefore, if the only change you’ve made has been to pgmb.hla, make takes the
following steps (assuming pgma.obj exists and is up to date).

• The make program processes the first dependency statement. It notices that dependency
lines for pgma.obj and pgmb.obj (the files on which pgm.exe depends) exist. So it
processes those statements first.

• The make program processes the pgma.obj dependency line. It notices that the pgma.obj
file is newer than the pgma.hla file, so it does not execute the command following this
dependency statement.

• The make program processes the pgmb.obj dependency line. It notes that pgmb.obj is
older than pgmb.hla (since we just changed the pgmb.hla source file). Therefore, make
executes the command following on the next line. This generates a new pgmb.obj file that
is now up to date.

• Having processed the pgma.obj and pgmb.obj dependencies, make now returns its
attention to the first dependency line. Since make just created a new pgmb.obj file, its
date/time stamp will be newer than pgm.exe’s. Therefore, make will execute the HLA
command that links pgma.obj and pgmb.obj together to form the new pgm.exe file.
Note that a properly written make file will instruct the make program to assemble only those

modules absolutely necessary to produce a consistent executable file. In the example above, make
did not bother to assemble pgma.hla since its object file was already up to date.

There is one final thing to emphasize with respect to dependencies. Often, object files are
dependent not only on the source file that produces the object file, but any files that the source file
includes as well. In the previous example, there (apparently) were no such include files. Often, this
is not the case. A more typical make file might look like the following:

pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla pgm.hhf
hla -c pgma.hla

pgmb.obj: pgmb.hla pgm.hhf
hla -c pgmb.hla

Note that any changes to the pgm.hhf file will force the make program to recompile both
pgma.hla and pgmb.hla since the pgma.obj and pgmb.obj files both depend upon the pgm.hhf
include file. Leaving include files out of a dependency list is a common mistake programmers make
that can produce inconsistent executable files.

Note that you would not normally need to specify the HLA Standard Library include files. the
Standard Library “.lib” files, or any Windows library files (e.g., kernel32.lib) in the dependency
list. True, your resulting executable file does depend on this code, but this code rarely changes, so
you can safely leave it out of your dependency list. Should you make a modification to the Standard
Library, simply delete any old executable and object files to force a reassembly of the entire
system.

The make program, by default, assumes that it will be processing a make file named makefile.
When you run the make program, it looks for makefile in the current directory. If it doesn’t find this
Public Domain Created by Randy Hyde Page 27

HLA Reference Manual 5/24/10 Chapter 4
file, it complains and terminates1. Therefore, it is a good idea to collect the files for each project
you work on into their own subdirectory and give each project its own makefile. Then to create an
executable, you need only change into the appropriate subdirectory and run the make program.

The make program will only execute a single dependency in a make file, plus any other
dependencies referenced by that one item (e.g., the pgm.exe dependency line in the previous
example depends upon pgma.obj and pgmb.obj, both of which have their own dependencies). By
default, the make program executes the first dependency it finds in the makefile plus any
dependencies that are subservient to this first item. In particular, if a dependency line exists in the
makefile that is not referenced (directly or indirectly) from the main dependency item, then make
will ignore that dependency item unless you explicitly request it’s execution.

If you want to execute some dependency other than the first dependency in the make file, you
can specify the dependency on the make command line when running make from the Windows’
command prompt. For example, a common convention in make files is to create a “clean”
dependency that cleans up all the files the compile creates. A typical “clean” dependency line for an
HLA compilation might look like the following:

clean:
del *.obj
del *.inc
del *.bak

The first thing you’ll notice is that the “clean” item doesn’t have a dependency list. When an
item like “clean” appears without a dependency list, make will always execute the commands that
follow. Another peculiarity to the “clean” dependency is that there (usually) isn’t a file named
clean in the current directory whose date/time stamp the make program can check. If a file doesn’t
exist, then make will assume that the file is always out of date. A common convention is to specify
non-existent filenames (like clean) in a makefile as commands that someone would explicitly
execute from within make. Of course, such usage (generally) assumes that you don’t actually build
a file named “clean” (or whatever name you choose to use).

Since, by default, you typically don’t want to execute a command line “clean” when running
make, you wouldn’t usually place the clean dependency first in the make file (nor would you
typically refer to clean within some other dependency list). Since make doesn’t normally execute
any dependency items that aren’t “reachable” from the first dependency item in the make file, you
might wonder how you’d tell make to execute the clean command. To specify the execution of
some dependency other than the first (default) item in the make file, all you need to is specify the
target you want to create (e.g., “clean”) on the make command line. For example, to execute the
clean command, you’d using a Windows command prompt statement like the following:

make clean

This command does not tell make to use a different make file. It will still open and use the file
named makefile in the current directory2; however, instead of executing the first dependency it
finds in makefile, it will search for the target “clean” and execute that dependency.

By convention, most programmers use the first dependency in a make file to build the
executable based on the current build state of the program (that is, it will compile and link only
those files necessary to create an up-to-date executable). Most programmers, by convention, will
also include a “clean” target in their make file. The clean command deletes all object and
intermediate files that the compiler generates; this ensures that the next build of the program will
recompile every source file in the project, even if the original objects (and other targets) were up-
to-date already. Doing a clean before building the application is useful when you’ve changed
something that is not listed in the dependency lists but on which the final executable still depends
(like the HLA Standard Library). Doing a clean is also a good way to do a sanity check when
you’re running into problems and you suspect that the dependency lists aren’t completely correct.

1. The “-ffilename”command line option that lets you specify the name of the makefile. See the manual for your
version of make for details.
2. You can tell make to use a different file by specifying the “-f” command line option. Check out make’s
documentation for more details.
Public Domain Created by Randy Hyde Page 28

HLA Reference Manual 5/24/10 Chapter 4
Beyond clean there aren’t too many “standard” target definitions you’ll see programmers using
in their make files, though it’s common for different make files to have some additional commands
beyond building the default target and cleaning up temporary compiler files. When using make
with the RadASM/HLA package, however, there is an assumption that you’ve created the
following dependencies in your make file:
build: This will be the default command (i.e., the first command appearing in the make

file). It will build an executable by building any out-of-date files and linking
everything together. A typical build dependency will look like this:

build: pgm.exe

This tells make to go execute the dependency for pgm.exe (which would
normally be the default dependency in the file).

buildall: This command will rebuild the entire application. It begins by doing a clean, and
then it does a build. This command generally takes the following form:

buildall: clean pgm.exe

compileRC: This command will compile any resource files into .RES files. Though the
current example does not have any resource files, a typical entry in the make file
might look like the following:

compileRC: pgm.rc
rc pgm.rc

syntax: This command will compile any HLA files into .ASM files just to check their
syntax. Using the pgma.hla/pgmb.hla example given earlier, a typical compile
dependency line might look like the following:

syntax:
hla -s pgma.hla pgmb.hla

run: This command will build the executable (if necessary) and then run it. The
dependency line typically looks like the following:

run: pgm.exe

pgm <<any necessary command line parameters>>

clean: This is the command that deletes any compiler/assembler/linker produced
temporary files, backup files, and the executable file. A typical clean command is

clean:
del *.obj
del *.inc
del *.bak
del tmp*.asm
del tmp*.inc
del pgm.exe

One nice feature that a standard make program provides is variables. The make program
allows you to create textual variables in a make file using the following syntax:

identifier=<<text>>
Public Domain Created by Randy Hyde Page 29

HLA Reference Manual 5/24/10 Chapter 4
All text beyond the equals sign (“=”) to the end of the physical line1 is associated with the
identifier and the make program will substitute that text whenever it encounters “$(identifier)” in
your text file. This behavior is quite similar to TEXT constants in the HLA language. As an
example, consider the following make file fragment:

sources= pgma.hla pgmb.hla
executable= pgm.exe

$(executable): $(sources)
hla -e:$(executable) $(sources)

Because of the textual substitution that takes place, this is equivalent to the following make file
fragment:

pgm.exe: pgma.hla pgmb.hla
hla -e:pgm.exe pgma.hla pgmb.hla

You can even assign variable names from the make command line using syntax like the
following:
make executable=pgm.exe sources="pgma.hla pgmb.hla"

This is an important fact we’ll use because it allows us to create a generic makefile that
RadASM can use to compile a given project by simply supplying the file names on the command
line.

Although this section discusses the make program in sufficient detail to handle most RadASM
projects you will be working on, keep in mind that the make program provides considerable
functionality that this document does not discuss. For more details, consult the vendor’s
documentation accompanying the version of make that you’re using. This document will assume
that you’re using Borland’s make (version 4.0 or later) or some version of Microsoft’s nmake.
Every make file in this book has been tested with both of these versions of make. These make files
may work with other versions of make as well. If you don’t already have a copy of make, note that
you can download Borland’s make as part of the Borland C++ 5.5 compiler (see the directions for
downloading this file earlier in this section).

Because of the variations in the way different make programs work, the makefiles appearing in
this document will be relatively simple, not taking advantage of too many special make features.
The generic makefile we’ll usually start with looks like this:

build: $(hlafile).exe

buildall: clean $(hlafile).exe

compilerc:
echo No Resource Files to Process!

syntax:
hla -s $(hlafile).hla

run: $(hlafile).exe
$(hlafile)
pause

clean:
delete tmp

1. If you need more text than will physically fit on a single line, place a backslash at the end of the line to tell
make that the line continues on the next physical line in the make file. The make program removes the new line
characters between the two lines and continues processing.
Public Domain Created by Randy Hyde Page 30

HLA Reference Manual 5/24/10 Chapter 4
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map

$(hlafile).exe: $(hlafile).hla
hla $(DEBUG) $(WINAPP) -p:tmp $(hlafile)

RadASM will fill in the $(hlafile) make variable with the project’s (source file’s) name. The
“$(DEBUG)” variable will be filled in by RadASM (you’ll see how later in this document) and will
expand to an empty string if $(DEBUG) is not defined. The $(WINAPP) variable is another
variable set by RadASM; it will contain the text “-w” if compiling a Windows GUI app, it will be
the empty string if compiling a console application.

4.2.4 Installing RadASM
The easiest way to install RadASM/HLA is to run the hlasetup.exe program found on Webster

(HLA v1.58 or later). This program automatically installs HLA and RadASM, sets up appropriate
environment variables, and modifies various RadASM ini files for proper use on your system. Just
run hlasetup.exe, answer a few questions about where you want the files placed, and you’re in
business.

For those who’ve already installed HLA and don’t want to bother reinstalling everything, you
can download the RadASM/HLA package from Webster, unzip that file, and install the code
manually. The main thing you have to do is copy the RadASM directory into your x:\hla
subdirectory and then execute the “PatchRadASM” application from within the “x:\hla”
subdirectory. This goes in and patches all the *hla.ini files in the “x:\hla\radasm” subdirectory so
that the know where the “x:\hla” subdirectory can be found. You may also edit these files manually
and modify the line that says “$A=C:\HLA” so that it refers to the directory containing your HLA
files and directories.

Note: Unless you’re willing to learn how to customize RadASM and modify several files
yourself, you must install the RadASM directory in the HLA subdirectory (wherever it is on the
disk). If you’re using RadASM with other assemblers and need to keep RadASM in some spot
other than in the HLA subdirectory, please see the “RadASM customization” information at the end
of this document and take a look at the *hla.ini files on Webster.

If you’re an expert RadASM user and you only want to add HLA support to an existing
RadASM setup, you can download the HLA-specific RadASM files directly from Webster and
make the appropriate modifications yourself. This document will not describe how to do this; this is
a task intended for advanced RadASM users only (for support, check out the RadASM forum at
www.masmforum.com).

4.2.5 Running RadASM
Like most Windows applications, you can run RadASM by double-clicking on its icon or by

double clicking on a “RadASM Project” file (“.rap” suffix). Simply double-clicking on the
RadASM icon brings up a window similar to the one appearing in Figure .
Public Domain Created by Randy Hyde Page 31

HLA Reference Manual 5/24/10 Chapter 4
RadASM Opening Screen

The main portion of the RadASM window is broken down into three panes. The larger of the
three panes is where text editing takes place. The upper right hand pane is the “project
management” window. The pane in the lower right hand corner lists the properties of the currently
opened project.

4.2.6 The RadASM Project Management Window
The project management window initially lists the project folders you’ve created; you can

select an existing project by double-clicking on the project’s folder in this window. For example,
RadASM ships with two sample projects, Dialog (that creates a small dialog box application) and
hw (that creates a small “Hello World” console application). Assuming you’re running RadASM
prior to creating any new projects beyond these two default projects, the Project pane will look
something like Figure .
Public Domain Created by Randy Hyde Page 32

HLA Reference Manual 5/24/10 Chapter 4
Default RadASM Project Pane

Double-clicking on the hw folder opens the folder containing that project. This changes the
pane to look something like that appearing in Figure .

RadASM Project Pane With hw Folder Opened

By default, RadASM does not show all the files present in the folder you’ve opened. Instead,
RadASM filters out files that don’t have a certain file suffix. By default, RadASM only displays
files with the following suffixes:

• .asm

• .inc

• .rc

• .txt
Public Domain Created by Randy Hyde Page 33

HLA Reference Manual 5/24/10 Chapter 4
• .doc

• .rtf

• .dlg

• .mnu

• .rap

• .bmp

• .ico

• .cur

• .hla

• .hhf
This list is actually designed to generically handle all file types for every assembler that

RadASM works with. HLA users might actually want to drop “.asm” and “.inc” from this list as
files with these suffixes are temporary files that HLA produces (much like “.obj” files, which don’t
normally appear in this list). You can change the filter suffixes in one of two places. The first place
is in the radasm.ini file. Search for the “[FileBrowser]” section and edit the line that begins
with “Filter=...”. You can delete or add suffixes to your heart’s content on this line. The
second way to change the default filters, arguably the easiest way, is within RadASM itself. From
the application’s menu, select “Option>File Browser” (that is, select the “File Browser” menu item
from the “Option” menu). This brings up the dialog box appearing in Figure . The text edit box at
the bottom of this dialog window (labelled “Filter:”) lets you edit the suffixes that RadASM uses
for filtering files in the Project window pane.

RadASM File Browser Options Dialog Box

By default, RadASM only displays those files whose file suffixes appears in the filter list. If,
for some reason, you need to see all files that appear in a project subdirectory, you can turn the file
filtering off. There is a toolbar button at the top of the Project window pane that lets you activate or
deactivate file filtering (this is the button in the middle of the project pane, if you let the mouse
cursor hover over it for a few seconds the tool-tip help displays “file filter”). Clicking on this button
toggles the display mode. So clicking on this button once will deactivate file filtering, to display all
the files in the directory, clicking on this button a second time reactivates file filtering. Figure
shows the effects of clicking on this button.
Public Domain Created by Randy Hyde Page 34

HLA Reference Manual 5/24/10 Chapter 4
File Filtering in RadASM’s Project Pane

If you’ve descended into a subdirectory by double-clicking on it’s folder icon and you decide
to return to an upper level directory, you can move to that upper level directory by clicking on the
“Up One Level” button in the RadASM Project pane

The left and right arrow buttons allow you to quickly scan through several different directories
in the system. By default, RadASM displays a couple of interesting (HLA-related) subdirectories in
the Project pane when you scan through the list using the left and right arrows in the Project pane.
In general, however, you’ll want to customize the directories RadASM visits when you press these
two arrow buttons. You can add (or change) directory paths in the “[FileBrowser]” section of
the radasm.ini file, though it’s probably easier to select the “Option>File Browser” menu item to
open up the File Browser Option dialog box and make your changes there (see Figure). The
“Folders:” list in the File Browser Option dialog box lists all the directories that RadASM will
rotate through when you press the left and right buttons in the Project window pane. You can add,
delete, edit, and rearrange the items in this list.

To edit an existing entry, click on that entry with the mouse and then edit the directory path
appearing in the text edit box immediately below the “Folders:” list. You may either type in the
path directly, or browse for the path by pressing the “browse” button immediately to the right of the
text entry box.

To delete an entry from the File Browser Option list, select that item with the mouse and then
press the “Delete” button appearing in the File Browser Option Window. To add a new entry to the
list, press the “Add” button and then type the path into the text edit box (or use the browse button to
locate the subdirectory you want to add). Note: do not type the new entry in and then press “Add”.
This sequence will change the currently selected item and then add a new, blank, entry. The correct
sequence is to first press the “Add” button, and then edit the blank entry that RadASM creates.

The remaining buttons in the Project window are only applicable to open projects. Note that
opening a project folder is not the same thing as opening a RadASM project. To open a RadASM
project you must either create a new project or open an existing “.rap” file. For example, you can
open the “Hello World” project in the hw directory by double-clicking on the hw.rap file that
appears in the project window. Opening the hw.rap file does two things to the RadASM windows:
first, it displays the hw.hla source file in the editor window and, second, it switches the Project
window pane from “File Browser mode” to “Project Browser mode.” In project browser mode
RadASM displays only the files you’ve explicitly added to the project. Any incidental or generated
files will not appear here (unless you explicitly add them). For example, whereas the “File
Browser” mode displays several “.inc” and “.asm” files (assuming you’ve not removed these
suffixes from the file filter), the “Project Browser mode” only displays the hw.hla file because this
is the only file that was originally added to the project. Another difference between the file browser
Public Domain Created by Randy Hyde Page 35

HLA Reference Manual 5/24/10 Chapter 4
and project browser modes is the fact that RadASM displays the files in “pseudo-directories”
according to the file’s type. For example, it displays the hw.hla file under the sub-heading
“Assembly” (see Figure). The hw.rap project is a relatively simple project, only having a single
assembly file. The Dialog.rap project (that appears in the “Dialog” project folder) is a slightly more
complex application, having a couple of resource files in addition to an assembly file (see Figure).
Note that you can “flatten” RadASM’s view of these files by pressing the “Project Groups” button
in the Project window pane (see Figure). Pressing this button a second time restores the project
groups display (remember, you can always determine which button is which by letting the mouse
cursor float above each button for a few seconds).

Project Window “Project Browser Mode”
Public Domain Created by Randy Hyde Page 36

HLA Reference Manual 5/24/10 Chapter 4
Dialog.rap Project Browser Display

Effect of Pressing the “Project Groups” Button
Public Domain Created by Randy Hyde Page 37

HLA Reference Manual 5/24/10 Chapter 4
When you’ve got a project loaded, RadASM displays the project view by default. By pressing
the “File Browser” and “Project Browser” buttons in the Project window pane, you can switch
between these two views of your files (see Figure).

The Project Browser and File Browser Buttons

4.2.7 Compiling and Executing an Existing RadASM Project
To see how to use RadASM to compile and run a simple HLA program, begin by double-

clicking on the hw.rap file. This is found in the ...Radasm\hla\projects\hw folder. When RadAsm
opens up, you should see a display similar to Figure ; if not, then press the project browser and
project groups buttons.
Public Domain Created by Randy Hyde Page 38

HLA Reference Manual 5/24/10 Chapter 4
Selecting the HW.HLA Project

Just for fun, bring up the hw.hla program into the main editor by double-clicking on the hw.hla
file icon in the project manager window. Here’s what that file looks like:

program HelloWorld;
#include("stdlib.hhf")

begin HelloWorld;

 stdout.put("Hello, World of Assembly Language", nl, nl);

end HelloWorld;

To run the Hello World program from RadASM, simply select the “Run” entry from the Make
menu (see Figure). This produces the program output found in Figure . When you press the enter
key, the console window will close and control returns to RadASM.
Public Domain Created by Randy Hyde Page 39

HLA Reference Manual 5/24/10 Chapter 4
Running the Hello World Program From RadASM
Public Domain Created by Randy Hyde Page 40

HLA Reference Manual 5/24/10 Chapter 4
HW.HLA Program Output

The other options in the RadASM “Make” menu have the following effect:

• Build- compiles the project; if you’re using makefiles in your RadASM projects, this
option will only compile those files absolutely necessary to create the executable.

• Build All- cleans out all the old object and executable files and rebuilds the executable
from scratch.

• Compile Resource- Used to compile any resource files associated with this project (note
that Build and Build All will also compile the resource files, if necessary).

• Syntax Check - does a syntax compile on the HLA files, without actually building the
whole application. Faster than building the whole project if you simply want to check for
typos in your source code.

• Run - Runs the executable (if you’re using makefiles, this will also build the application if
the executable is not current; if you’re not using makefiles, you must manually build the
application before running it).

4.2.8 Creating a New Project in RadASM
While the two default projects that RadASM supplies are useful for demonstrating the

RadASM Project window pane, you’re probably far more interested in creating your own
RadASM/HLA projects. Creating your own project is a relatively straight-forward process using
RadASM’s project creation wizard. To begin this process, select the “File>New Project” menu
item. This opens the project wizard dialog box (see Figure).
Public Domain Created by Randy Hyde Page 41

HLA Reference Manual 5/24/10 Chapter 4
RadASM Project Wizard Dialog Box

The “Assembler” pop-up menu list lets you select the assembler that you want to use for this
project. Remember, RadASM supports a variety of different assemblers and the “rules” are
different for each one. Because you’re probably using HLA (if you’re reading this document),
you’ll want to select the HLA assembler from this list. HLA should be the default (in fact, only)
assembler in this list. If you’re not using the radasm.ini file supplied on Webster, then you should
make sure that HLA appears first in this list in the radasm.ini file.

The “Project Type” group is a set of radio buttons that let you select the type of project you’re
creating. RadASM populates this list of radio buttons from the “[Project]” section of the hla.ini
file. The “Type=...” statement in this section specifies the valid projects that RadASM will
create. RadASM creates the radio button items in the order the project type names appear in the
“Type=...” list; the first item in the list is the one that will have the default selection. If you’re
going to be developing Windows’ GUI applications most of the time, you’ll probably want to
change this list so that “Windows App” appears first in the list. This will slightly streamline the use
of the Project Wizard because you won’t have to explicitly select “Windows App” every time you
create a new Windows application. The standard default is a Console App because that’s the type of
program most beginning HLA programmers create. You can actually add new project types to this
list by modifying the hla.ini file. However, most HLA programmers will be creating either Win32
GUI apps or Win32 console apps, hence the standard release of RadASM/HLA supports these two
application types. If you want to creat your own project types, see the discussion on customizing
RadASM later in this manual.

The “Project Name:” text entry box is where you specify the name of the project you’re
creating. RadASM will create a folder by this name and any other default files it creates (within the
project folder) will also have this name as their filename prefix. The text you enter at this point
must be a valid Windows filename. Note that this should be a simple file name, not a path. You’ll
supply the path to this file/directory in a moment. This name should be a base filename (that is, no
extension). RadASM will create other filenames by attaching appropriate extensions to the name
you supply here (e.g., “.hla” and “.exe”). So if you specify a name like “myProject” here, RadASM
will create a directory named “myProject” to hold your files and it will also create a
“myProject.hla” file (among other files). When you actually build your program, RadASM (by
default) will create an exectuable named “myProject.exe”.
Public Domain Created by Randy Hyde Page 42

HLA Reference Manual 5/24/10 Chapter 4
The “Project Description:” text entry box allows you to place a descriptive comment that
describes the project. This is any arbitrary text you choose. It should be a brief (one-line)
description of the project.

The “Projects Folder:” text entry box is where you select the path to the spot in the file system
where RadASM will create the project folder. You can type the path in directly, or you can press
the browse button to the right of this text entry box and use a Windows’ dialog box to select the
subdirectory that will hold the project’s folder.

The “Template:” text entry box and browse button lets you select a template for your project. If
you don’t select a template, then RadASM will create an empty project for you (i.e., the main “.hla”
file will be empty). If you select one of the templates (e.g., the “.tpl” files found in the
RadASM\Hla\Templates directory) then RadASM will create a “skeletal” project based on the
project template you’ve chosen. Table lists some of the typical templates you will find.

RadASM/HLA Templates

Table 1:

Template Selection Available if this
project type is

selected

Result

consApp.tpl Console App RadASM will create a simple console application.
Builds are handled strictly by RadASM. Good for
simple (one-file) HLA projects.

consAppBatch.tpl Console App RadASM will create a simple console application.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
source-file) project, but you can edit the batch files
to handle more complex projects.

consAppMake.tpl Console App RadASM will create a simple console application.
Builds are handled by running make.exe on a
makefile that this template creates.

consAppNMake.tpl Console App Builds a project just like consAppMake.tpl except
that it invokes Microsoft’s nmake.exe program
rather than a generic make.exe program.

win32App.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

win32AppBatch.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

win32AppMake.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled by running make.exe on a
makefile that this template creates.
Public Domain Created by Randy Hyde Page 43

HLA Reference Manual 5/24/10 Chapter 4
win32AppNMake.tpl Windows App Builds a project just like win32AppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

WPAApp.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

WPAAppBatch.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

WPAAppMake.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled by running make.exe on a
makefile that this template creates.

WPAAppNMAKE.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

Builds a project just like win32AppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

emptyWinApp.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

Table 1:

Template Selection Available if this
project type is

selected

Result
Public Domain Created by Randy Hyde Page 44

HLA Reference Manual 5/24/10 Chapter 4
Generally, it’s a good idea to select one of these templates when creating a new project. These
templates automatically create any extraneous files a project needs (such as batch files and make
files) and inserts these files into your new project. This spares you the effort of manually creating
these files and inserting them into the project.

The RadASM/HLA package provides (at least) 16 different templates1. There are four
different template categories, each category containing four templates. Not all of these template
files will be visible when you press the “template browse” button. The cons*.tpl files are only
visible if you’ve selected the “Console App” radio button. The win32*.tpl, WPA*.tpl, and
empty*.tpl files will only be visible if you’ve selected the “Windows App” radio button in the
“Project Type” box.

Within a given template category (cons*, win32*, WPA*, empty*) there are four choices
available to you. For example when selecting one of the console templates you could choose
consApp.tpl, consAppBatch.tpl, consAppMake.tpl, or consNMake.tpl. The difference between
these project types is how RadASM will build (compile/assemble) the project.

The *App.tpl template files tell RadASM to directly build your application (using commands
found in the .tpl file). You can think of this as the “native” RadASM build mode. The only problem
with this approach is that it is not very flexible (in terms of handling multi-filecompilations) and it
always rebuilds the entire project. As a result, projects that use the native RadASM build scheme
are really suitable only for small (usually single-file) projects.

The *AppBatch.tpl template files tell RadASM to invoke various batch files when building the
application. The template will actually create simple versions of these batch files for you: build.bat,
compilerc.bat, syntax.bat, and run.bat. These batch files correspond to the items in the RadASM
Make menu (note that the “Build” and “Build All” menu items both run the build.bat file). By
default, these batch files only support a the creation of an application built around a single HLA
source file (just like a native RadASM build). However, you can always edit these batch files to do
a more sophisticated compilation. A later section will describe how to edit these batch files.

The *AppMake.tpl and *AppNMake.tpl template files tell RadASM to invoke a make utility (a
generic make.exe program or Microsoft’s nmake.exe utility, based on which template you select).
The template creates a generic makefile for you (automatically) that handles all the menu items in
the RadASM Make menu. Using make is, without question, the best way to use RadASM. Make is
far more efficient for larger projects than using batch files or RadASM’s built-in compilation
capabilities. However, there are two drawbacks to using make: first, you have to have a copy of the
make.exe (or nmake.exe) program (though this utility is available for free, see how to get a copy of

emptyWinAppBatch.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

emptyWinAppMake.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled by running make.exe on a
makefile that this template creates.

emptyWinAppNMake.tpl Windows App Builds a project just like emptyWinAppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

1. Actually, there may be more by the time you read this. The first 12 templates were operational when this
manual was written. However, it’s easy enough to add new templates to RadASM so there may be more by the time
you read this.

Table 1:

Template Selection Available if this
project type is

selected

Result
Public Domain Created by Randy Hyde Page 45

HLA Reference Manual 5/24/10 Chapter 4
this program in the section on make, earlier in this document); the second drawback is that you will
have to edit the makefile that these templates create before you can build anything complex with
them, i.e., if you want to create a sophisticated multi-file project, you’ll need to make other changes
to the makefile that the template creates. See the section on make earlier in this document for the
details associated with the make language.

Once you’ve selected the assembler type, project type, entered the project name and
description, and optionally selected the folder and a template, press the “Next>” button to move on
to the next window of the Project Wizard dialog. This dialog box appears in Figure . In this dialog
box you select the initial set of files and folders that RadASM will create in the project’s folder for
you. At the very least, you’re going to want a “.hla” file and a “Tmp” subdirectory. It’s probably a
good idea to create a “BAK” subdirectory as well (RadASM will maintain backup files in that
subdirectory, if it is present). More complex Windows applications will probably need a header file
(“.HHF”) and if you’re creating fancy GUI applications, you may need a resource file (“.RC”) as
well. If you’re creating a dynamically linked library (DLL), you’ll probably want a definition file
(“.DEF”) as well. If you plan on writing documentation, you might want to create a DOC
subdirectory - the choice is yours. Check the files and folders you want to create and press the
“Next >” button in the dialog box. Note that simple console applications (the type of applications
most beginning HLA users create) require only a “.hla” file and a “Tmp” directory.

Project Wizard Dialog Box #2

The last dialog box of the Project Wizard lets you specify the options present in the Make
menu and the commands each of these options executes (see Figure). You should ignore all these
options and just press the finish button. Generally, you will not customize this output; you will
normally just hit the “finish” button to complete the construction of your project. If you do want to
change these options, do it from the “Project>Project Options” menu item once you’ve created the
project Figure shows what the RadASM window looks like after create a sample “Windows App”
application based on the win32app.tpl template (this project was given the name “MyApp”).
Public Domain Created by Randy Hyde Page 46

HLA Reference Manual 5/24/10 Chapter 4
Project Wizard Dialog Box #3
Public Domain Created by Randy Hyde Page 47

HLA Reference Manual 5/24/10 Chapter 4
Typical RadASM Window After Project Creation

4.2.9 Working With RadASM Projects
Of course, once you’ve created a RadASM project, you can open up that project and continue

work on it at some later point. RadASM saves all the project information in a “.rap” (RadAsm
Project) file. This “.rap” file keeps track of all the files associated with the project, project-specific
options, and so on. These project files are actually text files, you can load them into a text editor
(e.g., RadASM’s editor) if you want to see their format. As a general rule, however, you should not
modify this file directly. Instead, let RadASM take care of this file’s maintenance.

There are several ways to open an existing RadASM project file - you can double-click on the
.rap file’s icon within Windows and RadASM will begin running and automatically load that
project. Another way to open a RadASM project is to select the “File>Open Project” menu item
and open some “.rap” file via this open command. A third way to open a RadASM project is to use
the File Browser to find a “.rap” file in one of your project directories and double-click on the
project file’s icon (the “.rap” file) that appears in the project browser. Any one of these schemes
will open the project file you’ve specified.

RadASM only allows one open project at a time. If you have a currently open project and you
open a second project, RadASM will first close the original project. You can also explicitly close a
project, without concurrently opening another project, by selecting the “File>Close Project” menu
item.

Once you’ve opened a RadASM project, RadASM’s “Project” menu becomes a lot more
interesting. When you create a project, RadASM gives you the option of adding certain “stock”
files to the project (either empty files, or files with data if you select a template when creating the
project). All of the files that RadASM creates bear the project’s name (with differing suffixes). As
a result, you can only create one “.hla” file (and likewise, only one “.hhf” file, only one “.rc” file,
etc.). For smaller assembly projects, this is all you’ll probably need. However, as you begin writing
more complex applications, you’ll probably want additional assembly source files (“.hla” files),
Public Domain Created by Randy Hyde Page 48

HLA Reference Manual 5/24/10 Chapter 4
additional header files (“.hhf”), and so on. RadASM’s Project menu is where you’ll handle these
tasks (and many others). Figure shows the entries that are present in the Project menu.

The RadASM Project Menu

To add new, empty, files to a RadASM project, you use the “Project > Add New” menu item.
This opens up a new submenu that lets you select an assembly file (“.hla” file), an include file
(“.hhf”), a resource compiler file (“.rc”), a text file, and so on. Selecting one of these submenu
items opens up an “Add New File” dialog box that lets you specify the filename for the file. Enter
the filename and RadASM will create an empty text file with the name you’ve specified. Later on,
you can edit this source file with RadASM and add whatever text is necessary to that file. Note that
RadASM will automatically add that file to the appropriate group based on the file’s type (i.e., it’s
suffix).

The “Project > Add Existing” sub-menu lets you add a pre-existing file to a project. This is a
useful option for creating a RadASM project out of an existing HLA (non-RadASM) project or
adding files from some other project (e.g., library routines) into the current project. Note that this
option does not create a copy of the files you specify, it simply notes (in the “.rad” file) that the
current project includes that file. To avoid problems, you should make a copy of the actual source
file to the current project’s folder before adding it to the project; then add the version you’ve just
copied to your project. It’s generally unwise to add the same source file to several different
projects. If you change that source file in one project, the changes are automatically reflected in
every other project that links this file in. Sometimes this is desirable, but most of the time
programmers expect changes to a source file to be localized to the current project. That’s why it’s
always best to make a copy of a source file when adding that file to a new project. In those cases
where you do want the changes reflect to every application that includes the file, it’s better to build
a library module project and link the resulting “.lib” file with your project rather than recompile the
source file in.

The “Project > Project options” menu item opens up a “Project Options” dialog box that lets
you modify certain project options (see Figure). This dialog box lets you change certain options
that were set up when you first created the project using the “File > New Project” Project Wizard
Public Domain Created by Randy Hyde Page 49

HLA Reference Manual 5/24/10 Chapter 4
dialogs. Most of the items in this dialog box should have been described earlier, but a few of the
items do need a short explanation.

“Project > Project Options” Dialog Box

The Project Options dialog box provides two radio buttons that let you select whether
RadASM will do a “debug build” or a “release build.” Be sure that the “Release” radio button is
selected. The Debug option instructs HLA to insert certain debugging information into your
executable file (e.g., for use by OllyDbg). We will not consider that option in this document.

4.2.10 Build Options with RadASM/HLA
Before discussing how to actually edit and compile programs using RadASM, we need to stop

for a moment and discuss the internal operation of RadASM and how it controls programs like
HLA. RadASM was created to be a very flexible system supporting multiple assemblers and
different ways of building applications. In one respect, this flexibility is very good - it is exactly
this flexibility that allows RadASM to work with HLA (rather than just with Microsoft’s assembler,
for which RadASM was initially created). On the other hand, there is a down side to this flexibility
- creating HLA projects is a little bit more involved than it has to be had RadASM been written
specifically for HLA. In this section we’ll discuss the extra work involved with creating and
maintaining RadASM projects.

Take another look at Figure . Beside the labels “Compile RC”, “Assemble”, “Link”, etc.,
you’ll find some editable strings. These strings are special RadASM commands that tell RadASM
what to do whenever you select an item from RadASM’s “Make” menu. Originally, the labels next
to each of these text edit boxes corresponded to menu items in the RadASM “Make” menu; HLA,
however, has renamed the menu items in the “Make” menu, so they no longer correspond to the
labels appearing in the “Project Options” dialog box (Figure). Figure shows the relationship
between the labels in the Project Options dialog box and the Make menu.
Public Domain Created by Randy Hyde Page 50

HLA Reference Manual 5/24/10 Chapter 4
Correspondence Between Project Options and Make Menu

The text appearing in the corresponding text edit box in the Project Options dialog box is a
command that RadASM executes whenever you select the corresponding item from the Make
menu. Here’s the syntax for each of these entries:

DEL, OUT, CMD, FILE {,FILE,...}

DEL is a numeric entry that specfies which files to delete prior to executing the command.
Normally, this should be zero (which means “don’t delete any files.”).

OUT is either “O”, “OT”, or “C” meaning that the command’s output goes to the RadASM
output windows (“OT”), the command produces no output (and any output is ignored, “O”), or
RadASM opens up a console (command-line) window and sends all output to that window (“C”).
For most commands except “RUN”, you’ll probably want the command’s output to go to the
RadASM output window; when running the program you’ll probably want the output to go to a
console window (at least, if you’re writing a console application).

CMD is the command (command-line prompt command) to execute in response to this Make
menu selection. This includes the program’s name and any command line parameters (though you
don’t usually specify the filenames to process here).
Public Domain Created by Randy Hyde Page 51

HLA Reference Manual 5/24/10 Chapter 4
FILE is a special numeric designation (internal to RadASM) that specifies the file that the
CMD is to process. We’ll normally leave this blank, see the discussion on RadASM customization
later in this document for more details on this entry.

There are three common ways people use to have RadASM run HLA to compile an HLA
project: direct command execution, batch file execution, and make file execution. Each of these
execution modes have their own set of advantages and disadvantages.

Direction command execution is the default mode for RadASM/HLA “out of the box.” This
mode has the advantage of being the easiest to use. For the most part, it doesn’t require the creation
of any special files in order to build a given project (though the “run” command works best if you
create a batch file for it). There are several disadvantages to this approach. First, it doesn’t work
with HLA on all versions of Windows. Another disadvantage to this approach is that it’s mainly
useful for single-file projects (unless you’re willing to delve deep into RadASM and learn all about
customizing it for your own purposes). Yet another disadvantage is that you have to manually build
eachcomponent of the project when using the direct command execution. In general, the
disadvantages would outweigh the advantages of this execution mode were it not for the fact that
the direct command approach works best for simple projects as it doesn’t require the creation of
any batch or makefiles. However, once you’ve created a few HLA projects and get comfortable
with RadASM, you’ll probably want to shift to one of the other RadASM operation modes. Note
that running in this mode is equivalent to creating a project with one of the *App.tpl templates (also
note that template settings always override the default settings).

Batch file execution is the second mode of operation that RadASM/HLA supports. In this
mode of operation each of the RadASM commands in the Project Options dialog box executes a
batch file and that batch file handles whatever set of tasks is necessary for the specified Make menu
option. Figure shows the Project Options dialog box with the commands to execute when
operating in batch mode. Note that each of the commands simply execute a batch file (build.bat,
compilerc.bat, syntax.bat, and run.bat).

RadASM in Batch Execution Mode (Project Options)
Public Domain Created by Randy Hyde Page 52

HLA Reference Manual 5/24/10 Chapter 4
The batch files specified in the Project Options dialog box must appear in the same directory as
the other files for project (e.g., along with the source files). These batch files contain a list of
command-prompt commands to execute whenever you select one of the menu items from the Make
menu. Here are the contents for each of the generic batch files supplied with RadASM/HLA:

build.bat:

hla -p:tmp %1

compilerc.bat:

echo “No Resource Files to Compile!”
pause

syntax.bat:

hla -p:tmp -s %1

run.bat:

%1
pause

The advantage of the batch file execution scheme over the direct execution scheme is that you
can execute several commands within a batch file (unlike the direct command execution scheme).
This lets you compile multi-file projects and execute other command-line actions within the batch
file. Also, the batch file scheme works with all versions of Windows. Furthermore, the batch file
scheme doesn’t require any additional utility programs to achieve this flexibility. Batch files have
two main disadvantages. First, you have to write a set of batch files for every project you create
(though for single-file projects, the generic batch files work fine; editing the batch files is only
necessary for more sophisticated projects). The second problem with batch files is they force a
rebuild of every file in a multi-file project, even if such work is unnecessary.

The makefile execution scheme is the most flexible of the three. Like the batch file scheme,
you can execute multiple commands and this scheme works with all versions of Windows. A big
advantage of makefiles over batch files is that you can easily handle large multi-file projects using
makefiles and you can build the projects only recompiling the files that are necessary. Like batch
files, one disadvantage to using makefiles is that you have to maintain a separate “makefile” the
directs the compilation. Another disadvantage to the makefile scheme is that you have to have a
separate “make” utility installed on your system (if you don’t already have a copy of make, you can
obtain one for free from Borland; see the section on “Make” for more details). Figure show the
command set for RadASM when using the makefile execution scheme with Borland’s “make.exe”
program (note: to use Microsoft’s “nmake.exe” program, simply change each occurrence of
“make” to “nmake” in the dialog box).
Public Domain Created by Randy Hyde Page 53

HLA Reference Manual 5/24/10 Chapter 4
Makefile Execution Scheme (Project Options)

The version of RadASM that ships with HLA includes several versions of the “hla.ini”
initialization file that RadASM uses. These files are the following:

• hla.ini - this is the actual file that RadASM uses. As shipped, this is the same as
hla_2000.ini (the direct execution mode file).

• hla_2000.ini - this is the version of the hla.ini file that supports direct command execution.
If you ever change hla.ini and you want to restore the direct execution form, simply make
a copy of this file and rename it to hla.ini.

• hla_bat.ini - this is the version of the hla.ini file that supports batch mode execution. If you
want to use batch mode execution, make a copy of this file and rename the copy to
“hla.ini”.

• hla_make.ini - this is the version of the hla.ini file that supports Borland’s make.exe
application for the makefile execution mode (actually, this .ini file supports makefile
execution using any make program named “make.exe”). If you want to use makefile mode
execution, make a copy of this file and rename the copy to “hla.ini”.

• hla_nmake.ini - this is the version of the hla.ini file that supports Microsoft’s nmake.exe
application for the makefile execution mode. If you want to use makefile mode execution,
make a copy of this file and rename the copy to “hla.ini”.
Note that the execution mode specified by the “hla.ini” files is only available when you create

a new project without using a template (template files override the settings in the hla.ini file). Each
RadASM project file you create (the “.rap” file) maintains the execution mode as part of that
project. Should you change the execution mode by copying some new file over the top of hla.ini,
you do not change the execution modes for any pre-existing projects. If you want to change the
execution mode of an existing project, you will have to select the “Project>Project Options” menu
item and edit the entries in the project option dialog box.

The remainder of this document will assume that you’re using the flexible “makefile”
execution mode and that you’re creating makefiles for each of your projects. Therefore, to follow
along with the examples that appear in the remainder of this document, you should make a copy of
Public Domain Created by Randy Hyde Page 54

HLA Reference Manual 5/24/10 Chapter 4
the hla_make.ini (or hla_nmake.ini) file and rename it to hla.ini. Another alternative is to always
use one of the *AppMake.tpl or *AppNMake.tpl templates when creating new projects.

4.2.11 Editing HLA Source Files Within RadASM
The RadASM text editor is quite similar to most Windows based text editors you’ve used in

the past (i.e., RadASM generally adheres to the Microsoft Common User Access (CUA)
conventions. So the cursor keys, the mouse, and various control-key combinations (e.g., ctrl-Z, ctrl-
X, and ctrl-C) behave exactly as you would expect in a Windows application. Because this is an
advanced programming book, this chapter will assume that you’ve used a CUA-compliant editor
(e.g., Visual Studio) in the past and we’ll not waste time discussing mundane things like how to
select text, cutting and pasting, and other stuff like that. Instead, this section will concentrate on the
novel features you’ll find in the RadASM editor.

Of course, the first file navigation aid to consider is the Project Browser pane. We’ve already
discussed this RadASM feature in earlier sections of this document, but it’s worth repeating that the
Project Browser pane lets you quickly switch between the files you’re editing in a RadASM
project. Just double-click on the icon of the file you want to edit and that file will appear in the
RadASM editor window pane.

Immediately below the Project Browser pane is the “Properties” pane (if this pane is not
present, you can bring it up by selecting “View > Properties” from the RadASM View menu). This
pane contains two main components: a pull down-down menu item that lets you select the
information that RadASM displays in the lower half of this window. If not already selected, you
should select the “.code” item from this list. The “.code” item tells RadASM to list all the sections
of code that it recognizes as procedures (or the main program) in an HLA source file (see Figure).

The HLA Properties Window Pane

One very useful RadASM feature is that you can quickly jump to the start of a procedure’s
body (at the begin statement) by simply double-clicking on that procedure’s name in the
Properties Window pane. In the example appearing in Figure (this is the “Dialog” project supplied
with RadASM for HLA), double-clicking on the “Dialog;” and “DialogProc;” lines in this list box
automatically navigates to the start of the code for the selected procedure.

The pull-down menu in the Properties window lets you select the type of objects the assembler
provides. For example, by selecting “.const” you can take a look at constant declarations in HLA.
The “macro” selection lets you view the macro definitions that appear in the source file. As this
chapter was first being written, the other property items weren’t 100% functional; hopefully by the
time you read this RadASM will have additional support for other types of HLA declarations.

Another neat feature that RadASM provides is an “outline” view of the source file. Looking
back at Figure you’ll notice that “begin DialogProc;” statement has a rectangle with a
Public Domain Created by Randy Hyde Page 55

HLA Reference Manual 5/24/10 Chapter 4
minus sign in it just to the left of the source code line. Clicking on this box closes up all the code
between the begin and the corresponding end in the source file. Figure shows what the source
file looks like when the Dialog and DialogProc procedures are collapsed in outline mode. The
neat thing about outline mode is that it lets you view the “big picture” without out the mind-
numbing details of the source code for each procedure in the program. In outline view, you can
quickly skim through the source file looking for important code and “drill down” to a greater level
of detail by opening up the code for a procedure you’re interested in looking at. You can also
rapidly collapse or expand all procedure levels by pressing the “expand” or “collapse” buttons
appearing on the lower left hand corner of the text editor window (see Figure).

RadASM Outline View (with Collapsed Procedures)

Another useful feature RadASM provides is the ability to display line numbers with each line
of source code. Pressing on the line number icon in the lower-left hand corner of the text editor
window (the icon with the “123” in it) toggles the display of line numbers in the editor’s window.
See Figure to see what the source file looks like with line numbers displayed. The line number
display mode is quite useful when searching for a line containing a syntax error (as reported by
Public Domain Created by Randy Hyde Page 56

HLA Reference Manual 5/24/10 Chapter 4
HLA). Note that you can also navigate to a given line number by pressing ctrl-G and entering the
line number (you can also select “Edit > Goto line” from the “Edit” menu).

Displaying Line Numbers in RadASM’s Editor

Another useful navigation feature in RadASM is support for bookmarks. A bookmark is just a
point in the source file that you can mark. You can create a bookmark by selecting a line of text (by
clicking the mouse on the gray bar next to the line) and selecting “Edit > Toggle BookMark” or by
pressing shift-F8. You can navigate between the bookmarks by pressing F8 or ctrl-F8 (these move
to the next or previous bookmarks in the source file). RadASM (by default) provides several icons
on it’s toolbar to toggle bookmarks, navigate to the previous or next bookmark, or clear all the
bookmarks. Which method (edit menu, function keys, or toolbar) is most convenient simply
depends on where your hands and the mouse cursor currently sits.

The RadASM “Format” menu also provides some useful features for editing HLA programs.
The “Format > Indent” and “Format > Outdent” items (also accessible by pressing F9 and ctrl-F9)
move a selected block of text in or out four spaces (so you can indent text between an if and
endif, for example). You can also convert tabs in a document to spaces (or vice versa) from the
“Format > Convert > Spaces To Tab” and “Format > Convert > Tab To Spaces” menu selections.

You’ll notice that RadASM provides syntax coloring in the editor window (that is, it sets the
text color for various classes of reserved words and symbols to different colors, making them easy
Public Domain Created by Randy Hyde Page 57

HLA Reference Manual 5/24/10 Chapter 4
to identify with a quick glance in the editor window). The hla.ini file accompanying the RadASM/
HLA release contains a set of reasonable color definitions for HLA’s different reserved word types.
However, if you don’t particularly agree with this color scheme, it’s really easy to change the
colors that RadASM uses for syntax highlighting. Just select the “Options > Colors & Keywords”
menu item and select an item from the Syntax/Group list box (Figure shows what this dialog box
looks like with the Group #00 item selected). By double-clicking on an item within the Group list
box, you can change the color for all the items in that particular group (e.g., see Figure). RadASM
automatically updates the hla.ini file to remember your choice of colors the next time you run
RadASM.

Option>Colors & Keywords Dialog Box with Group#00 Selected
Public Domain Created by Randy Hyde Page 58

HLA Reference Manual 5/24/10 Chapter 4
Color Selection Dialog Box

You can also set the display fonts to something you’re happier with if the default font (Courier
New, typically) isn’t to your liking. This is also achievable from the RadASM “Option” menu.

4.2.12 Managing Complex Projects with RadASM
One of the main reasons for using a project-oriented integrated development environment like

RadASM is to streamline the development of complex projects. For the sake of argument, we’ll
define a “simple” project as any HLA project consisting of a single “.hla” source file and, possibly,
a header file. A complex project will be any application that requires multiple source files, object
modules, library modules, and resource files that must be separately compiled and linked together
to form a single exectuable file. Though an IDE such as RadASM is helpful when working on
simple projects, a development environment is most effective when working on larger, complex
projects.

Although it is possible to maintain certain complex projects using RadASM’s native
capabilities, by far the best solution for complex projects is to use a make utility or (if you don’t
have access to a make utility) batch files to control the compilation process. Though it requires a
little additional labor to set up a set of batch files or a make file, the flexibility you gain by using
this approach is well worth the small amount of additional effort (effort that will be repaid many
times over during the project’s development).

Before describing how to write batch files and makefiles to take over control of the
compilation process from RadASM, perhaps it would be wise to offer a small justification for this
approach. After all, RadASM has some very sophisiticated schemes for building projects, why not
stick with RadASM’s native approach? Well, there are several reasons. First, although RadASM’s
general nature is a wonderful attribute of the system (e.g., it allows HLA to work with RadASM
even though it was originally designed for MASM), sometimes a specific solution is more efficient
or more powerful than a general solution. Second, although RadASM is a great development
environment, sometimes it’s just easier or more convenient to compile a project from the command
line prompt; by using batch or make files in your RadASM projects, you can easily work from the
command line or from within RadASM and know that you’re building your project exactly the
same way in both cases. Also, tools like the make utility have been around for quite some time and
contain lots of features that you won’t find in a less mature system like RadASM. Fortunately,
RadASM is flexible enough to allow the use of batch and make files when working on a project, so
you get the best of both worlds - the convenience of an integrated development environment, and
the power and flexibility of make files.
Public Domain Created by Randy Hyde Page 59

HLA Reference Manual 5/24/10 Chapter 4
4.2.13 Project Maintenance with Batch Files
The batch file approach is usable by those who do not have access to a make utility (or those

who want to distribute RadASM projects to others who might not have a make utility available).
Although batch files are more flexible than native RadASM builds, you should really attempt to use
the make file approach unless there are some extenuating reasons why you would rather go with the
batch file approach (e.g., the need to distribute RadASM/HLA projects to people who might not
have a make utility).

A batch file is simple an ASCII text file that contains a sequence of command-line commands.
The Windows command-line interpreter executes each line of text in a batch file just as though
you’d typed those commands directly into a command window. By placing multiple commands in a
batch file, you can execute as many commands as necessary to build your project. For example,
suppose you have a little utility that increments a version number embedded in an HLA header file.
You could execute a batch file that bumps up the version number and builds the HLA application
using the following sequence of commands:

BumpVersion version.hhf
hla FileThatIncludesVersionFile.hla

Batch files also let you specify command-line parameters, e.g.,

someCmd parm1 parm2 parm3 ...

You may refer to these command-line parameters within the batch file using %1, %2, %3, etc.
For example, the default build.bat file that RadASM will create for you if you specify the use of
one of the *AppBatch.tpl template files is

hla -p:tmp %1

RadASM (by default) invokes this build.bat file using a command line like the following:

build filename.hla

The batch file processor substitutes “filename.hla” for the “%1” within the batch file.

The big problem with RadASM’s native compilation facilities is that it doesn’t particularly
know what files you want to compile. It will supply the main project name (or, with appropriate
customization, all the files in a given project), but it won’t let you easily pick and choose which
files you want to process. That’s where batch files (and makefiles) are useful. In a project-specific
batch file, you can easily specify any or all files that you want to compile and link together into a
single executable. For example, if you have a project that combines two HLA files, a resource (.rc)
file, and a specialized library, you could handle this compilation with the following command in a
batch file:

hla myProj.hla subroutines.hla resources.rc speciallib.lib

Such a command line could not be built (automatically) from within RadASM. This is particularly
true if some of the files are not present in the project’s directory (e.g., common object and library
files present in a separate subdirectory).

If you create a project with one of the *AppBatch.tpl templates, or create a generic project
using the hla_batch.ini file as your hla.ini file, then RadASM will, by default, connect the
following Make menu items to the following batch files.
Public Domain Created by Randy Hyde Page 60

HLA Reference Manual 5/24/10 Chapter 4
RadASM/HLA Make Menu/Batch File Correspondence

Note that the Build and Build All menu items both invoke the same batch file. The Build menu
item’s intent is to build the application by compiling only those files that absolutely need to be
compiled. This feature is generally available only if you’re using make files. Therefore, if you
choose the Build menu item when using batch files, it will generally recompile all files in the
application. The Compile Resource and Syntax Check menu items in the Make menu will invoke
their corresponding batch files that will contain commands to compile a resource file (if any) or run
the HLA compiler in a “compile to assembly” mode (no object or executable output, i.e., a syntax
check of the file).

The run.bat file is somewhat special. The default run.bat file takes the following form:

%1
pause

RadASM will pass a command line parameter of the form “projectname.exe” to the run.bat
file. Assuming that your project has compiled the files to produce the executable
“projectname.exe”, this batch file will execute your application and then wait until you hit the enter
key before it closes up the console window that executes the batch file (this gives you the
opportunity to review any output produced by console applications).

If you would prefer to execute different batch commands when selecting items from
RadASM’s Make menu, you can specify the commands to execute by selecting the
“Project>Project Options” menu item. This opens up a dialog box that let’s you specify the
command line parameters for each of the menu items. See the discussion elsewhere in this
document for more details.

In general, batch files are not the most appropriate way to deal with complex projects. Make
files are a much better solution. Therefore, unless you absolutely have to, you should avoid using
the RadASM/HLA batch file compilation scheme.

4.2.14 Project Maintenance with Make Files
Makefiles provide the best way to build complex projects when using RadASM/HLA. They

are more efficient, they are safer, and they give you more control over the compilation process than
you will get with RadASM’s native mode or when using batch files. For most projects, the make
file build scheme is, by far, the best. There are, of course, a couple of disadvantages to using make
files. Specifically, you need to have a make utility in order to use makefiles and you need to learn
the “make language” in order to use make files. Fortunately, a decent version of make is available
for free from Borland and learning make is not that difficult (see the discussion of make earlier in
this document). However, the advantages of make files far outweigh the disadvantages, so you
should give make files serious consideration if you’re not sure which RadASM/HLA compilation
scheme to use.

Here are the commands that RadASM executes whenever you select an item from RadASM’s
make menu when using make files to build your application:

Build menu item: make build

Table 2:

Make Menu Item Corresponding Batch File

Build build.bat

Build All build.bat

Compile Resource compilerc.bat

Syntax Check syntax.bat

Run run.bat
Public Domain Created by Randy Hyde Page 61

HLA Reference Manual 5/24/10 Chapter 4
Build All menu item: make buildall
Syntax Check menu item: make syntax
Compile Resource menu item: make compilerc
Run menu item: make run

These commands all assume that there is a single file, “makefile” present in the project
directory. These commands will execute the build, buildall, syntax, compilerc, or run dependencies
in the makefile, respectively. Here’s what the default makefile (supplied with RadASM/HLA)
looks like:

build: $(hlafile).exe

buildall: clean $(hlafile).exe

compilerc:
echo No Resource Files to Process!

syntax:
hla -s $(hlafile).hla

run: $(hlafile).exe
$(hlafile)
pause

clean:
delete tmp
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map

$(hlafile).exe: $(hlafile).hla
hla $(DEBUG) -p:tmp $(hlafile)

For simple projects (i.e., projects consisting of a single HLA source file), you’ll be able to use
the makefile as-is. RadASM automatically supplies the project’s name as the “hlafile” variable to
build your project whenever you select an item from the RadASM “Make” menu. For more
complex projects, you’re going to want to edit this makefile extensively to add additional
dependencies and commands.

The build dependency in this make file executes whenever someone selects the “Make>Build”
menu item in RadASM. The intent of this command is to build the application with as little
processing as possible. That is, if several of the files needed to build the final executable have
already been compiled into object files, this command should not recompile those files, it should
use the up-to-date objects as-is and only recompile those files whose source files are newer than the
object files.

The buildall dependency in the makefile executes whenever someone selects the “Make>Build
All” menu item in RadASM. The intent of this command is to do a complete build of the system,
ignoring any object files that are already up to date. The typical execution of this command
involves deleting all temporary files (e.g., object files) by executing the “clean” operation, and then
doing a build.

The compilerc dependency executes whenever you select the RadASM “Make>Compile
Resource” menu item. In the default make file provided with RadASM/HLA, this command simply
displays a brief diagnostic message. If your project has some resource files that you need to
compile with Microsoft’s resource compiler, then you would normally specify the dependencies
Public Domain Created by Randy Hyde Page 62

HLA Reference Manual 5/24/10 Chapter 4
and commands needed to process those resource files after the compilerc dependency. For
example, if your project includes a resource file named “myProject.rc”, you’d typically edit the
makefile to add/modify the following:

build: $(hlafile).exe $(hlafile).res

buildall: clean $(hlafile).exe $(hlafile).res

compilerc: $(hlafile).res

syntax: compilerc
hla -s $(hlafile).hla

$(hlafile).res: $(hlafile).rc
rc -v $(hlafile).rc

Of course, once you start making major modifications to the makefile, you can probably drop
the use of the $(hlafile) variable and use the direct filenames (variables are great for generic
makefiles; however, they tend to obscure makefiles created for a specific project). That is, for a
project like “myProject” with a “myProject.hla” file and a “myProject.rc” file you’d probably just
create a makefile like the following:

build: myProject.exe

buildall: clean myProject.exe

compilerc: myProject.res

syntax:
hla -s myProject.hla

run: myProject.exe
myProject
pause

clean:
delete tmp
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map
delete *.res

myProject.exe: myProject.hla myProject.res
hla $(DEBUG) -p:tmp myProject myProject.res

myProject.res: myProject.rc
rc -v myProject.rc
Public Domain Created by Randy Hyde Page 63

HLA Reference Manual 5/24/10 Chapter 4
4.2.15 RadASM Menus
The following sections describe many of the RadASM menu items and their applicability to

HLA software development. For a full discussion of each menu item, please see the on-line
RadASM help file.

4.2.15.1 The RadASM File Menu
The RadASM file menu provides all the common file operations you’d expect in a Windows

application, plus a few RadASM specific entries (see Figure).

RadASM File Menu

4.2.15.1.1 File>New Project
This menu option lets you create a new project using RadASM (this process was explained in

detail earlier in this document). When using RadASM/HLA, you’re best bet is to always create a
new RadASM project using one of the RadASM templates supplied with the RadASM/HLA
package. The end result of the “File>New Project” selection is a new project directory with
Public Domain Created by Randy Hyde Page 64

HLA Reference Manual 5/24/10 Chapter 4
associated files (including a RadASM “.rap” file that describes the project plus any source files
you’ve created for the project).

4.2.15.1.2 File>Open Project
This menu option opens a dialog box that lets you open an existing RadASM project (.rap file).

See Figure for details. From this dialog box you can locate the .rap file for your particular project
and selecting that file will open up the project and its associated files.

RadASM Open Project Dialog Box

4.2.15.1.3 File>Close Project
Selecting this menu item closes any open project (you may only have one project open at a

time). If any modifications have been made to any files in the project, you will be asked whether
you want to save them before closing the project. Note that this menu item is only active if you
have a currently open project.

4.2.15.1.4 File>Delete Project
This menu item deletes the currently open project. Use this option with care. Once you delete a

project it is gone. This menu item is only active if you have an open project and it deletes that
project.

4.2.15.1.5 File>New File
The options creates a new text file and opens up a window for that text file in the editor. Note

that this file does not automatically become a part of any project (including the currently open
project, if there is one). See the discussion of the Project menu earlier in this document if you want
to insert a file into the currently opened project.

4.2.15.1.6 File>Open
This command opens a text file found on the disk. This file does not have to belong to a

currently opened project, and once opened it does not become part of the current project.

4.2.15.1.7 File>Open as Hex
This command opens an arbtrarily typed file (not necessarily a text file) in a hex-editor

window (see Figure for an example of the display of the “hw.exe” file in hex format). Note that
Public Domain Created by Randy Hyde Page 65

HLA Reference Manual 5/24/10 Chapter 4
you can edit this file (using hex values) and save the result back to disk. This is for advanced
programmers only! You can do some serious damage to an executable file if you go poking around
in it.

Hex Editor Window

4.2.15.1.8 File>Close File
This command closes the topmost open window. If there are any outstanding modifications,

you will be asked if you want to save the file before closing it.

4.2.15.1.9 File>Save File
This saves the top-most open file to disk, without closing the file. Any old data in the file on

the disk is replaced.

4.2.15.1.10 File>Save File As
This saves the data in the top-most open file under a different name. The old data in the

original file is unchanged. Note that the default name for the top-most file changes to whatever
name you supply, so future saves of this file will save their data to the new file rather than the old
file.

4.2.15.1.11 File>Save All Files
This quickly saves all modifies files that are open in the editor.
Public Domain Created by Randy Hyde Page 66

HLA Reference Manual 5/24/10 Chapter 4
4.2.15.1.12 File>Recent Files
This is a hierarchical menu item. Selecting this menu item opens up a secondary menu listing

files you’ve recently edited with RadASM. You may open one of these files by selecting the
specified file from the list.

4.2.15.1.13 File>Page Setup
Opens a generic Windows’ Printer Set-up dialog.

4.2.15.1.14 File>Print
Opens the generic Window’s printer dialog box.

4.2.15.1.15 File>Exit
Quits RadASM.

4.2.15.2 Edit Menu Items

4.2.15.2.1 Edit>Undo, Redo, Cut, Copy, Paste, Delete, Select All
Generic editing options available in most Windows applications

4.2.15.2.2 Edit>Find, Find Next, Find Previous, Replace, Find Word
Opens up a very typical find (or replace) dialog box. (see Figure). Note that by checking the

“project” box, you can instruct RadASM to search for a string throughout a project. All the other
options are standard Windows’ User Interface items that you’ve seen before.

Find Dialog Box

4.2.15.2.3 Edit>Goto Line
This menu item opens up a small dialog box that lets you enter a line number. RadASM

displays that line in the top-most open window.

4.2.15.2.4 Edit>Expand Block
This menu item expands or compresses a begin..end block in an HLA source file (outline

mode).

4.2.15.2.5 Edit> Next/Previous/Got/Toggle/Clear Bookmark
RadASM provides a bookmark facility that lets you place markers (bookmarks) on lines of

code in your source file. You can quickly navigate between bookmarks by selecting the Next/
Previous Bookmark menu items (or by pressing F8 or Ctrl-F8). You can also jump to a specific
bookmark (Goto Bookmark) or clear all the set bookmarks in your source file. Bookmarks are
especially useful for quickly switching between two sections of code in a source file.

4.2.15.3 The View Menu
The View menu lets you hide or make visible certain components of the RadASM user

interface. This menu allows you to enable or disable the following components:

• Toolbar

• Toolbox

• Output Window
Public Domain Created by Randy Hyde Page 67

HLA Reference Manual 5/24/10 Chapter 4
• Project Browser

• Properties

• Tab Select

• Info Tool

• Status Bar

4.2.15.4 Format Menu
The format menu contains several useful items that operate on the text within your source file.

4.2.15.4.1 Format>Indent
Indents the selected lines of text by one tab stop (the indentation is to the right).

4.2.15.4.2 Format>Outdent
Outdents the selected lines of text by one tab stop (the outdention is to the left).

4.2.15.4.3 Format>Comment
This command places the HLA line comment delimeter (“//”) at the beginning of each line.

4.2.15.4.4 Format>Uncomment
This command deletes the comment delimiters appearing at the beginning of a block of

selected lines.

4.2.15.5 The Project Menu
The project menu contains several items that let you manage your RadASM projects.

4.2.15.5.1 Project>Add New
This menu item lets you add a new file to a project. This is a hierarchical menu item that lets

you add source (.hla) files, header (.hhf) files, resource (.rc) files, text (.txt) files, dialog (.dlg) files,
menu (.mnu) files, module (.hla) files, or other arbitrary files to your project.

With a bit of project customization, you can have RadASM build a multi-module project by
adding module files to your project. However, if you’re interested in creating complex multi-
module projects, you’re probably better off using makefiles to control your project builds. For more
information about modules in RadASM, please consult the RadASM on-line documentation.

As its name suggests, this menu option creates a new (empty) file to add to a project. You will
have to edit the file this option creates in order to place data in the file.

4.2.15.5.2 Project>Add Existing
This is another hierarchical menu item that lets you select some file on your hard drive and add

it to the current project. If you’ve got some existing files you’d like to convert to a RadASM
project, this is the option you use to add those files to a project. Note that this option does not copy
the file into your project; it simply creates a link to the file whereever it is on the disk. If you want a
copy of the file in your project’s directory you should copy the file to your project directory before
adding the file to your project.

4.2.15.5.3 Project>Resource
This menu item lets you edit your resource file in a structured fashion. This includes AVI data,

Bitmaps, cursors, icons, images, midi data, and so on. This option opens a dialog box that lets you
select the resource type, the internal program identifier and value, and the file containing the
resource data. By pressing the “export” button in the dialog box that comes up, you can get the text
to cut and paste to a resource (.rc) file. See Figure for an example.
Public Domain Created by Randy Hyde Page 68

HLA Reference Manual 5/24/10 Chapter 4
Project>Resource Dialog Box (and Export Output)

4.2.15.5.4 Project>Stringtable
This menu item opens up a dialog box that lets you create string resources. You type in strings,

identifiers, and values, and then press the export button (see Figure). The dialog box writes to the
output window a data set that you can cut and paste into a resource (.rc) file.
Public Domain Created by Randy Hyde Page 69

HLA Reference Manual 5/24/10 Chapter 4
Project>Stringtable Dialog Box

4.2.15.5.5 Project>Versioninfo
This menu item creates a version information resource. You enter all the appropriate

information in the dialog box that comes up (see Figure), press the export button, and RadASM
writes a resource (.rc) file compatible block of text to the output window that you can cut and paste
to an appropriate resource file.
Public Domain Created by Randy Hyde Page 70

HLA Reference Manual 5/24/10 Chapter 4
Project>Versioninfo Menu Item

4.2.15.5.6 Project>Set Assembler
This option is only available if you’ve set up RadASM to work with other assemblers in

addition to HLA. The RadASM/HLA package leaves this option disabled, by default.

4.2.15.5.7 Project>Remove From Project
This menu item removes the selected file (selected in the project browser) from the project.

4.2.15.5.8 Project>Create Template
This menu item lets you create your own custom templates for RadASM projects. See the on-

line help for more details concerning the creation of templates.

4.2.15.5.9 Project>Project Options
This is one of the more important options under the Project menu. This option (which has been

discussed earlier) lets you set various options for the currently opened project. This includes the
Public Domain Created by Randy Hyde Page 71

HLA Reference Manual 5/24/10 Chapter 4
selection of debug/release mode, which items appear in the make menu, and the specification of
commands to execute for each of the items in the make menu. See the discussion earlier in this
document or the on-line help for more details.

4.2.15.5.10 Project>Main Project Files
This lets you specify the file types that a project can use. Note that it is *very* dangerous to

modify this file list for an existing project. You can easily break RadASM/HLA’s build facility by
changing these names. Only expert RadASM users should play with this dialog box/menu item See
the on-line help and the RadASM customization guid for more details.

4.2.15.6 Make Menu
The make menu has been fully discussed elsewhere in this document. Note that RadASM/HLA

uses a special layout for the Make menu that is not typical of RadASM when used with other
assemblers. Therefore, when reading the on-line help, you’ll notice that the items don’t correspond
to the items present in the RadASM/HLA make menu. As it turns out, the items in this menu are
customizable on a project by project basis (which is how they got changed for RadASM/HLA). See
the section on Customizing RadASM for more details.

4.2.15.7 The Tools Menu
This menu runs various little applications (“applets”) including the “sniplets” manager, the

notepad editor, the Windows calculator, the command line prompt (command window), ASCII
table, and a toolbar generator application. Of these, the “sniplets manager” is probably of greatest
interest to HLA programmers. The sniplets manager lets you save short pieces of code (“sniplets”)
that you can cut and paste into your current project. You can expand the available sniplets by
saving files in the ..RadASM\HLA\Sniplets subdirectory.

4.2.15.8 The Window Menu
This menu lets you organize the window display in RadASM. The principle items you use in

this menu are the file listings at the bottom of the Window Menu. From here, you can quickly select
(and bring to the front) any given editor window that is currently open.

4.2.15.9 The Option Menu
This menu lets you open up dialog boxes that control how RadASM operates. Most of the

items in this menu are for advanced RadASM users only, so we’ll not spend a whole lot of time
discussing them, but a few of the menu items are quite useful and deserve a quick mention.

4.2.15.9.1 Option>Code Editor Options
This menu item opens the Code Editor Options dialog box (see Figure) that lets you set

various editor-wide options that are useful while editing projects.
Public Domain Created by Randy Hyde Page 72

HLA Reference Manual 5/24/10 Chapter 4
Code Editor Option Dialog Box

4.2.15.9.2 Options>Colors & Keywords
This menu item lets you select the colors that RadASM will use for syntax high-lighting and

other purposes within the editor. You can also choose the keywords that RadASM will recognize
(for coloring purpose) within this dialog box (see Figure).

Colors & Keyword Dialog Box
Public Domain Created by Randy Hyde Page 73

HLA Reference Manual 5/24/10 Chapter 4
4.2.15.9.3 Options>Code Editor Font
This menu item brings up a font selection dialog. RadASM uses this font whenever displaying

source code. Note that you should always choose a fixed pitch font (e.g., courier or fixedsys) when
editing source code. Mainly, you’ll use this option to change the size of the font in your display
windows.

4.2.15.9.4 Options>Line Number Font
This brings up a font dialog box that lets you choose the font RadASM uses when displaying

line numbers. This is usually a smaller font than used for code or text.

4.2.15.9.5 Options>Text Editor Font
This brings up a font selection dialog box that lets you choosethe font used when editing text

files. Typically, this would be the same font as the code.

4.2.15.9.6 Options>Printer Options, Printer Font
Th Printer Options dialog lets you specify page headings and output color capabilities for

print-outs from RadASM.
The Printer Font menu item opens up a font selection dialog that lets you choose the output

font when printing text from RadASM.

4.2.15.9.7 Options>File Browser
This menu item opens up a small dialog box that lets you select the directories that RadASM

will cycle through when pressing the arrow buttons in the project browser pane. This dialog also
lets you select the file filters the project browser window will use when displaying files.

4.2.15.9.8 Options>External File Types
This menu lets you specify various non-RadASM recognized file types and the applications

that RadASM will open in order to process such files.

4.2.15.9.9 Options>Sniplets
This menu item opens a dialog box that lets you tell RadASM how you want to cut and paste

sniplets into your code.

4.2.15.9.10 Options>Set Paths
This option brings up a dialog box that lets you specify where RadASM can find certain

folders in the system. Generally, it’s dangerous to mess with these paths as the RadASM/HLA
installation should set these paths up properly for you. Be sure to consult the RadASMini.rtf
document (shipped with RadASM) if you want to change these items.

4.2.16 Customizing RadASM
RadASM is a relatively generic integrated development environment for assembly language

development. This single programs supports the HLA, MASM, TASM, NASM, and FASM
assemblers. Each of these different assemblers feature different tool sets (executable programs),
command line parameters, and ancillary tools. In order to control the execution of these different
programs, the RadASM system uses “.INI” files to let you specifically configure RadASM for the
assembler(s) you’re using. HLA users will probably want to make modifications to two different
“.INI” files that RadASM reads: radasm.ini and hla.ini. You’ll find these two files in the
subdirectory containing the radasm.exe executable file. Both files are plain ASCII text files that
you can edit with any regular text editor (including the editor that is built into RadASM).

The RadASM package includes an “.RTF” (Word/Wordpad) documentation file that explains
the basic format of these “.INI” files that RadASM uses. Readers interested in making major
changes to these “.INI” files, or those attempting to adopt RadASM to a different assembler, will
want to read that document. In this chapter, we’ll explore the modifications to a basic set of “.INI”
files that a typical HLA user might want to make. The assumption is that you’re starting with the
stock radasm.ini and hla.ini files that come with RadASM and you’re wanting to customize them
to support the development paradigm that this document proposes.

4.2.16.1 The RADASM.INI Initialization File
The radasm.ini file specifies all the generic parameters that RadASM uses. In particular, this

“.INI” file specifies initial window settings, file histories, OS and language information, and menu
entries for certain user modifiable menus. RadASM, itself, actually modifies most of the
Public Domain Created by Randy Hyde Page 74

HLA Reference Manual 5/24/10 Chapter 4
information in this “.ini” file. However, there are a few entries an HLA user will need to change
and a couple of entries an HLA user may want to change. We’ll discuss those sections here.

Note: there is a preconfigured radasm.ini file found in the WPA samples subdirectory. This
initialization file is compatible with all the sample programs found in this book and is a good
starting point should you decide to make your own customizations to RadASM.

The first item of interest in the radasm.ini file is the “[Assembler]” section. This section in the
“.INI” file specifies which assemblers RadASM supports and which assembler is the default
assembler it will use when creating new projects. By default, the “[Assembler]” section takes the
following form:

[Assembler]
Assembler=masm,fasm,tasm,nasm,hla

The first assembler in this list is the default assembler RadASM will use when creating a new
project. The standard radasm.ini file is set up to assume that MASM is the default assembler (the
first assembler in the list is the default assembler). HLA users will probably want to tell RadASM
to use HLA as the default assembler, this is easily achieved by changing the “Assembler=”
statement to the following:

[Assembler]
Assembler=hla,masm,fasm,tasm,nasm

Changing the default assembler is the only “necessary” change that you’ll need to make.
However, there are a few additional changes you’ll probably want that will make using RadASM a
little nicer. Again, by default, RadASM assumes that you’re developing MASM32 programs.
Therefore, the help menu contains several entries that bring up help information for MASM32
users. While some of this information is, arguably, of interest to HLA users, a good part of the
default help information doesn’t apply at all to HLA. Fortunately, RadASM’s radasm.ini file lets
you specify the entries in RadASM’s help menu and where to locate the help files for those menu
entries. The “[MenuHelp]” and “[F1-Help]” sections specify where RadASM will look when the
user requests help information (by selecting an item from the “Help” menu or by pressing the F1
key, respectively). The default radasm.ini file specifies these two sections as follows:

[MenuHelp]
1=&Win32 Api,0,H,$H\Win32.hlp
2=&X86 Op Codes,0,H,$H\x86eas.hlp
3=&Masm32,0,H,$H\Masm32.hlp
4=$Resource,0,H,$H\Rc.hlp
5=A&gner,0,H,$H\Agner.hlp

[F1-Help]
F1=$H\Win32.hlp
CF1=$H\x86eas.hlp
SH1=$H\Masm32.hlp
CSF1=$H\Rc.hlp

Each numbered line in the “[MenuHelp]” section corresponds to an entry in RadASM’s “Help”
menu. These entries must be have sequential numbers starting from one and these numbers specify
the order of the item in the “Help” menu (the order in the radasm.ini file does not specify the order
of the entries in the “Help” menu, you do not have to specify the “[MenuHelp]” entries in numeric
order, RadASM will rearrange them according to the numbers you specify). Entry entry in the
“[MenuHelp]” section takes the following form:

menu# = Menu Text, accelerator, H, helpfile

where “menu#” is a numeric value (these values must start from one and there can be no gaps
in the set), “Menu Text” is the text that RadASM will display in the menu for that particular item,
accelerator is a Windows’ accelerator key value (generally, this is zero, meaning no accelerator
Public Domain Created by Randy Hyde Page 75

HLA Reference Manual 5/24/10 Chapter 4

 this to

nge this to

is to $B\hlalib.
value), “H” is required by RadASM to identify this as a “Help” entry, and “helpfile” is the path to
the help file to display (or a program that will bring up a help file).

You may have noticed the ampersand character (“&”) in the menu text. The ampersand
precedes the character you can press on the keyboard to select a menu item when the menu is
opened. For example, pressing “X” when the menu is open (with the “[HelpMenu]” items in this
example) selects the “X86 Op Codes” menu entry.

You will note that the paths in the “[MenuHelp]” section all begin with “$H”. This is a
RadASM shorthand for “the path where RadASM can find all the help files.” There is no
requirement that you use this shortcut or even place all your help files in the same directory. You
could just also specify the path to a particular help file using a fully qualified pathname like
c:\hla\doc\Win32.hlp. However, it’s often convenient to specify paths using the various shortcuts
that RadASM provides. RadASM supplies the shortcuts found in Table .

Path Shortcuts for Use in RadASM “.INI” Files

You can define several of these variables in the hla.ini file. See the next section for details.
As noted earlier, the default help entries are really intended for MASM32 users and do not

particularly apply to HLA users. Therefore, it’s a good idea to change the “[MenuHelp]” entries to
reflect the location of some HLA-related help files. Here are the “[MenuHelp]” entries that might
be more appropriate for an HLA installation (assuming, of course, you’ve placed all these help files
in a common directory on your system):

[MenuHelp]
1=&Win32 Api,0,H,$H\Win32.hlp
2=&Resource,0,H,$H\Rc.hlp
3=A&gner,0,H,$H\Agner.hlp
4=&HLA Reference,0,H,$H\PDF\HLARef.pdf
5=HLA Standard &Library,0,H,$H\pdf\HLAStdlib.pdf
6=&Kernel32 API,0,H,$H\pdf\kernelref.pdf
7=&User32 API,0,H,$H\pdf\userRef.pdf
8=&GDI32 API,0,H,$H\pdf\GDIRef.pdf

Table 3:

Shortcut Meaning

$A= Path to where RadASM is installed

$B= Where RadASM finds binaries and executables (e.g., c:\hla)

$D= Where RadASM finds “Addin” modules. Usually $A\AddIns.

$H= Where RadASM finds “Help” files. Default is $A\Help, but you’ll probably want to change
$B\Doc.

$I= Where RadASM finds include files. Default is $A\Include, but you’ll probably want to cha
$B\include.

$L= Where RadASM finds library files. Default is $A\Lib but you’ll probably want to change th

$R= Path where RadASM is started (e.g., c:\RadASM).

$P= Where RadASM finds projects. This is usually $R\Projects.

$S= Where RadASM find snippets. This is usually $R\Snippets.

$T= Where RadASM finds templates. This is usually $R\Templates

$M= Where RadASM finds keyboard macros. This is usually $R\Macro
Public Domain Created by Randy Hyde Page 76

HLA Reference Manual 5/24/10 Chapter 4
Here’s a suggestion for the F1, Ctrl-F1, Shift-F1, and Ctrl-Shift-F1 help
items:

[F1-Help]
F1=$H\Win32.hlp
CF1=$H\PDF\HLARef.pdf
SF1=$H\pdf\HLAStdlib.pdf
CSF1=$H\Rc.hlp

These are probably the extent of the changes you’ll want to make to the radasm.ini file for
HLA use; there are, however, several other options you can change in this file, please see the
radASMini.rtf file that accompanies the RadASM package for more details on the contents of this
file.

4.2.16.2 The HLA.INI Initialization File
The hla.ini file is actually where most of the customization for HLA takes place inside

RadASM. This file lets you customize RadASM’s operation specifically for HLA1. The hla.ini
file appearing in the WPA subdirectory (on the accompanying CD-ROM or in the Webster HLA/
Examples download file) contains a set of default values that provide a good starting point for your
own customizations.

Note: although hla.ini provides a good starting point for a system, you will probably need to
make changes to this file in order for it to work on your specific system. Without these changes,
RadASM may not work on your system.

Without question, the first section to look at in the hla.ini file is the section that begins with
“[Paths]”. This is where you tell RadASM the paths to various directories where it expects to
find various files it needs (see Table for the meaning of these various path values). A typical
“[Paths]” section might look like the following:

[Paths]
$A=C:\Hla
$B=$A
$D=$R\AddIns
$H=$A\Doc
$I=$A\Include
$L=$A\hlalib
$P=$R\Hla\Projects
$S=$R\Hla\Sniplets
$T=$R\Hla\Templates
$M=$R\Hla\Macro

Note that the $A prefix specifies the path where RadASM can find the executables for HLA. In
fact, RadASM does not run HLA directly (remember, we’re going to have the make program run
HLA for us), but the application path ($A) becomes a prefix directory we’ll use for defining other
directory prefixes. Be sure to check this path in your copy of the hla.ini file and verify that it
points at your main HLA subdirectory (usually “C:\HLA” though this may be different if you’ve
installed HLA elsewhere).

The $R prefix specifies the path to the subdirectory containing RadASM. RadASM
automatically sets up this prefix, you don’t have to explicitly set its value. The remaining
subdirectory paths are based off either the $A prefix or the $R prefix.

The “[Project]” section of the hla.ini file is where the fun really begins. This section takes the
following form in the default file provided in the WPA subdirectory:

[Project]

1. There are comparable initialization files for MASM, TASM, NASM, FASM, and other assemblers that
RadASM supports.
Public Domain Created by Randy Hyde Page 77

HLA Reference Manual 5/24/10 Chapter 4
Type=Console App,Dialog App,Windows App,DLL
Files=hla,hhf,rc,def
Folders=Bak,Res,Tmp,Doc
MenuMake=Build,Build All,Compile RC,Check Syntax,Run
Group=1
GroupExpand=1

The line beginning with “Type=” specifies the type of projects RadASM supports for HLA.
The default configuration supports console applications (“Console App”), dialog applications
(“Dialog App”), Windows applications (“Windows App”), and dynamic linked library (“DLL”).
The names are arbitrary, though other sections of the hla.ini file will use these names. Whenever
you create a new project in HLA, it will create a list of “Project Type” names based on the list of
names appearing after “Type=” in the “[Project]” section. Adding a string to this comma-
separated list will add a new name to the project types that the RadASM user can select from (note,
however, that to actually support these project types requires some extra work later on in the hla.ini
file). Figure shows what the New Project dialog box in RadASM displays in response to the entries
on the “Type=...” line.

RadASM Project Types

The line beginning with “Files=” in the “[Project]” section specifies the suffixes for the files
that RadASM will associate with this project. The “hla” and “hhf” entries, of course, are the
standard file types that HLA uses. The “.rc” file type is for resource compiler files (we’ll talk about
the resource compiler in a later chapter). If you want to be able to create additional file types and
include them in a RadASM project, you would add their suffix here.

The “Folders=...” statement tells RadASM what subdirectories it should allow the user to
create when they start a new project. The make file system we’re going to use will assume the
presence of a “Tmp” directory, hence that option needs to be present in the list. the “bak”, “res”,
and “doc” directories let the user create those subdirectories.

Figure shows the dialog box that displays the information found on the “Files=” and
“Folders=” lines. By checking the appropriate boxes in the File Creation group, the RadASM user
Public Domain Created by Randy Hyde Page 78

HLA Reference Manual 5/24/10 Chapter 4
can tell RadASM to create a file with the project’s name and the appropriate suffix as part of the
project. Similarly, by checking the appropriate boxes in the Folder Creation group, the RadASM
user can tell RadASM to create the appropriate directories.

File and Folder Creation Dialog Box in RadASM

The “MenuMake=...” line specifies the IDE options that will be available for processing the
files in this project. Unlike the other options, you cannot specify an arbitrary list of commands here.
RadASM provides five items in the Make menu that you can modify, you don’t have the option of
adding additional items here (you can disable options if you want fewer, though). Originally, these
five slots were intended for the following commands:

• Compile RC (compile a resource file)

• Assemble (assemble the currently open file)

• Link (create an EXE from the object files)

• Run (execute the EXE file, building it if necessary)

• Res To Obj (convert a resource file to an object file)
Because these options aren’t as applicable to HLA projects as they are to MASM projects (on

which the original list was built), the default hla.ini file co-opts these make items for operations
that make more sense for the way we’re going to be building HLA applications in this book. You
can actually turn these make items on or off on a project by project basis (for certain types of
projects, certain make objects may not make sense). Figure shows the dialog box that RadASM
displays and presents this information. Note that in the version used here, RadASM only displays
the correct labels for the check boxes in the Make Menu group. The labels on the text entry boxes
should also be “Build”, “Build All”, “Compile RC”, “Check Syntax”, and “Run” (in that order), but
these labels turn out to be hard-coded to the original MASM specifications. Fortunately, you won’t
normally use these text entry boxes (the default text appearing in them appears in the hla.ini file),
so you can ignore the fact that they are mis-labelled here.
Public Domain Created by Randy Hyde Page 79

HLA Reference Manual 5/24/10 Chapter 4
RadASM Make Menu Selection Dialog Box

For each of the project types you specify on the “Type=...” line in the “[Project]”
section, you must add a section to the hla.ini file, using that project type’s name, that tells RadASM
how to deal with projects of that type. In the hla.ini file we’re discussing here, the project types are
“Console App”, “Dialog App”, “Windows App”, and “DLL” so we will need to have sections
names “[Console App]”, “[Dialog App]”, “[Windows App]”, and “[DLL]”. It also
turns out that RadASM requires one additional section named “[MakeDefNoProject]” that
RadASM uses to process files in the IDE that are not associated with a specific project.

When running RadASM, you can have exactly one project open (or no project at all open, just
some arbitrary files) at a time. This project will be one of the types specified on the “Type=...”
line in the “[Project]” section. Based on the open project, RadASM may execute a different set
of commands for each of the items in the Make menu; the actual commands selected are specified
in the project-specific sections of the hla.ini file. Here’s what the “[MakeDefNoProject]”
section looks like:

[MakeDefNoProject]
MenuMake=1,1,1,1,1
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,O,make run,
11=0,O,make dbg_build,
12=0,O,make dbg_buildall,
13=0,O,make dbg_compilerc,
14=0,O,make dbg_syntax,
15=0,C,make dbg_run,
Public Domain Created by Randy Hyde Page 80

HLA Reference Manual 5/24/10 Chapter 4
The “MenuMake=...” line specifies which items in the RadASM Make menu will be active
when a project of this type is active in RadASM (or, in the case of MakeDefNoProject, when
no project is loaded). This is a list of boolean values (true=1, false=0) that specify whether the
menu items in the Make menu will be active or deactivated. Each of these values correspond to the
items on the MenuMake line in the “[Project]” section (in our case, this corresponds to “Build”,
“Build All”, “Compile RC”, “Syntax Check”, and “Run”, in that order). A “1” activates the
corresponding menu item, a zero deactivates it. For most HLA project types, we’ll generally leave
all of these options enabled. The exception is DLL; normally you don’t “run” DLLs so we’ll
disable the run option when building DLL projects.

The remaining lines specify the actions RadASM will take whenever you select one of the
items from the Make menu. To understand how these items work, let’s first take a look at another
section in the hla.ini file, the “[MenuMake]” section:

[MenuMake]
1=&Build,55,M,1
2=Build &All,31,M,2
3=&Compile RC,91,M,3
4=&Syntax,103,M,4
5=-,0,M,
6=&Run,67,M,5

Each item in the “[MenuMake]” section corresponds to a menu entry in the Make menu. The
numbers specify the index to the menu entry (e.g., “1=” specifies the first menu item, “2=”
specifies the second menu item, etc.). The first item after the “n=” prefix specifies the actual text
that will appear in the Make menu. If this text is just the character “-” then RadASM displays a
menu separator for that particular entry. As you can see, the default menu entries are “Build”,
“Build All”, “Compile RC”, “Syntax”, and “Run”.

The next item, following the menu item text, is the accelerator value. These are “magic” values
that specify keystrokes that do the same job as selecting items from the menu. For example, 55 (in
the “Build” item) corresponds to Shift+F5, 31 (in “Build All”) corresponds to F5. We’ll discuss
accelerators in a later chapter. So just ignore (and copy verbatim) these files for right now.

The third item on each line is always the letter “M”. This tells RadASM that this is a make
menu item.

The fourth entry on each line is probably the most important. This is the command to execute
when someone selects this particular menu item. This is either some text containing the command
line to execute or a numeric index into the current project type. As you can see in this example,
each of the commands use an index value (one through five in this example). These numbers
correspond to the lines in each of the project sections. For example, if you select the “Build” option
from the Make menu, RadASM notes that it is to execute command #1. It goes to the current
project type section and locates the line that begins with “1=...” and executes that operation, e.g.,

1=0,O,make build,

In a similar vein, selecting “Build All” from the Make menu instructs RadASM to execute the
command that begins with “2=...” in the current project type’s section (i.e., “2=0,O,make
buildall,”). And so on.

The lines in the project type section are divided into two groups, those that begin with 1, 2, 3,
4, or 5 and those that begin with 11, 12, 13, 14, or 15. The “[MenuMake]” command index selects
one of the commands from these two groups based on whether RadASM is producing a “release
build” or a “debug build”. Release builds always execute the command specified by the
“[MenuMake]” command index (i.e. 1-5). If you’re building a debug version, then RadASM
executes the commands in the range 11-15 in response to command indexes 1-5. We’ll ignore
debug builds for the time being (we’ll discuss them in a later chapter on debugging). So for right
now, we’ll always assume that we’re building a release image.

The fields of each of the indexed commands in the project type section have the following
meanings:

index = delete_option, output_option, command, files
Public Domain Created by Randy Hyde Page 81

HLA Reference Manual 5/24/10 Chapter 4
The delete_option item specifies which files to delete before doing the build. If this entry is
zero, then RadASM will not delete any files before the build. Because we’re having a make file do
the actual build for us, and it can take care of cleaning up any files that need to be deleted first,
we’ll always put a zero here when using RadASM with HLA.

The output_option item is either “C”, “O” (that’s an “oh” not a “zero”), or zero. This specifies
whether the output of the command will go to a Windows console window (“C”), the RadASM
output window (“O”, which is “oh”), or the output will simply be thrown away (zero). We’ll
usually want the output sent to RadASM’s output window, so most of the time you’ll see the letter
“O” (“oh”) here.

The command entry is the command line text that RadASM will pass on to windows whenever
you execute this command. This can be any valid command prompt operation. For our purposes,
we’ll always use a make command with a single parameter to specify the type of make operation to
perform. Here are the commands we’re going to support in RadASM:

• Build - “make build”

• Build All - “make buildall”

• Compile RC - “make compilerc”

• Syntax - “make syntax”

• Run - “make run”
Now it’s up to the makefile to handle each of these various commands properly (using the

standard makefile scheme we defined in the first chapter).
This may seem like a considerable amount of indirection -- why not just place the commands

directly in the “[MenuMake]” section? However, this scheme is quite flexible and makes it easy
to adjust the options on a project type by project type basis (in fact, it’s even possible to set these
options on a project by project basis).

With this discussion out of the way, it’s time to look at the various project type sections.
Without further ado, here they are:

[Console App]
Files=1,1,1,1,0,0
Folders=1,0,1,0
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

Console applications, by default, want to create an .HLA file and a .HHF file, a BAK folder
and a TMP folder. All menu items are active for building and running console apps (that is, there
are five ones after “MenuMake”). Finally, the commands (“1=...” “2=...”, etc.) are all the standard
build commands.

[Dialog App]
Files=1,1,1,0,0
Folders=1,1,1
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
Public Domain Created by Randy Hyde Page 82

HLA Reference Manual 5/24/10 Chapter 4
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

By default, dialog applications will create HLA, HHF, RC, and DEF files and they will create
a BAK and a TMP subdirectory. All five menu items will be active and dialog apps use the
standard command set.

[Windows App]
Files=1,1,1,1,0
Folders=1,1,1,1
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

By default, window applications will create HLA, HHF, RC, and DEF files and they will
create a BAK, RES, DOC, and a TMP subdirectory. All five menu items will be active and dialog
apps use the standard command set.

The hla.ini file allows you to control several other features in RadASM. The options we’ve
discussed in this chapter are the crucial ones you must set up, most of the remaining options are of
an aesthetic or non-crucial nature, so we won’t bother discussing them here. Please see the
RadASM documentation (the RTF file mentioned earlier) for details on these other options.

Once you’ve made the appropriate changes to the hla.ini file (and, of course, you’ve made a
backup of your original file, right?), then you can copy the file to the RadASM subdirectory and
replace the existing hla.ini file with your new one. After doing this, RadASM should operate with
the new options when you run RadASM..
Public Domain Created by Randy Hyde Page 83

	4 Using HLA with the HIDE Integrated Development Environment
	4.1 The HLA Integrated Development Environment (HIDE)
	4.1.1 Description
	4.1.2 Operation
	4.1.3 First Execution
	4.1.4 The Windows
	4.1.4.1 Editor
	4.1.4.2 Output
	4.1.4.3 Tool Bar
	4.1.4.4 Tab Bar
	4.1.4.5 Status Bar
	4.1.4.6 Panel
	4.1.4.7 Project Panel
	4.1.4.8 Properties

	4.1.5 Compiling Simple Programs
	4.1.6 Menus
	4.1.6.1 Edit
	4.1.6.2 View
	4.1.6.3 Project
	4.1.6.4 Make
	4.1.6.5 Tools
	4.1.6.5.1 Debug Window
	4.1.6.5.2 Resource Editor
	4.1.6.5.3 ASCII Table
	4.1.6.5.4 Calculator
	4.1.6.5.5 Color Picker
	4.1.6.5.6 Open Console
	4.1.6.5.7 Run Program

	4.1.6.6 Options
	4.1.6.6.1 Code Editor Font
	4.1.6.6.2 Line Number Font
	4.1.6.6.3 Colors & Keywords

	4.1.6.7 HIDE Settings
	4.1.6.7.1 Tabs:
	4.1.6.7.2 Backups:
	4.1.6.7.3 Options
	4.1.6.7.4 HIDE Global Settings
	4.1.6.7.5 HLA Level:
	4.1.6.7.6 Global Link Settings

	4.1.6.8 SetPaths
	4.1.6.8.1 User Paths
	4.1.6.8.2 Project Folder
	4.1.6.8.3 Debugger
	4.1.6.8.4 Help (F1)
	4.1.6.8.5 hlalib
	4.1.6.8.6 hlainc
	4.1.6.8.7 hlaopt

	4.1.6.9 User
	4.1.6.10 Help

	4.1.7 HIDE Macros
	4.1.8 Project Manager
	4.1.9 Auto Completion
	4.1.10 CommandLine Tools
	4.1.10.1 kMake

	4.1.11 Project File Format
	4.1.12 Licences
	4.1.12.1 HIDE
	4.1.12.2 PellesC
	4.1.12.3 HLA

	4.2 The RadASM/HLA Integrated Development Environment
	4.2.1 Integrated Development Environments
	4.2.2 HLA Project Organization
	4.2.3 Using Makefiles
	4.2.4 Installing RadASM
	4.2.5 Running RadASM
	4.2.6 The RadASM Project Management Window
	4.2.7 Compiling and Executing an Existing RadASM Project
	4.2.8 Creating a New Project in RadASM

	RadASM/HLA Templates
	Table 1:
	Template Selection
	Available if this project type is selected
	Result
	4.2.9 Working With RadASM Projects
	4.2.10 Build Options with RadASM/HLA
	4.2.11 Editing HLA Source Files Within RadASM
	4.2.12 Managing Complex Projects with RadASM
	4.2.13 Project Maintenance with Batch Files

	RadASM/HLA Make Menu/Batch File Correspondence
	Table 2:
	Make Menu Item
	Corresponding Batch File
	4.2.14 Project Maintenance with Make Files
	4.2.15 RadASM Menus
	4.2.15.1 The RadASM File Menu
	4.2.15.1.1 File>New Project
	4.2.15.1.2 File>Open Project
	4.2.15.1.3 File>Close Project
	4.2.15.1.4 File>Delete Project
	4.2.15.1.5 File>New File
	4.2.15.1.6 File>Open
	4.2.15.1.7 File>Open as Hex
	4.2.15.1.8 File>Close File
	4.2.15.1.9 File>Save File
	4.2.15.1.10 File>Save File As
	4.2.15.1.11 File>Save All Files
	4.2.15.1.12 File>Recent Files
	4.2.15.1.13 File>Page Setup
	4.2.15.1.14 File>Print
	4.2.15.1.15 File>Exit

	4.2.15.2 Edit Menu Items
	4.2.15.2.1 Edit>Undo, Redo, Cut, Copy, Paste, Delete, Select All
	4.2.15.2.2 Edit>Find, Find Next, Find Previous, Replace, Find Word
	4.2.15.2.3 Edit>Goto Line
	4.2.15.2.4 Edit>Expand Block
	4.2.15.2.5 Edit> Next/Previous/Got/Toggle/Clear Bookmark

	4.2.15.3 The View Menu
	4.2.15.4 Format Menu
	4.2.15.4.1 Format>Indent
	4.2.15.4.2 Format>Outdent
	4.2.15.4.3 Format>Comment
	4.2.15.4.4 Format>Uncomment

	4.2.15.5 The Project Menu
	4.2.15.5.1 Project>Add New
	4.2.15.5.2 Project>Add Existing
	4.2.15.5.3 Project>Resource
	4.2.15.5.4 Project>Stringtable
	4.2.15.5.5 Project>Versioninfo
	4.2.15.5.6 Project>Set Assembler
	4.2.15.5.7 Project>Remove From Project
	4.2.15.5.8 Project>Create Template
	4.2.15.5.9 Project>Project Options
	4.2.15.5.10 Project>Main Project Files

	4.2.15.6 Make Menu
	4.2.15.7 The Tools Menu
	4.2.15.8 The Window Menu
	4.2.15.9 The Option Menu
	4.2.15.9.1 Option>Code Editor Options
	4.2.15.9.2 Options>Colors & Keywords
	4.2.15.9.3 Options>Code Editor Font
	4.2.15.9.4 Options>Line Number Font
	4.2.15.9.5 Options>Text Editor Font
	4.2.15.9.6 Options>Printer Options, Printer Font
	4.2.15.9.7 Options>File Browser
	4.2.15.9.8 Options>External File Types
	4.2.15.9.9 Options>Sniplets
	4.2.15.9.10 Options>Set Paths

	4.2.16 Customizing RadASM
	4.2.16.1 The RADASM.INI Initialization File

	Path Shortcuts for Use in RadASM “.INI” Files
	Table 3:
	Shortcut
	Meaning
	4.2.16.2 The HLA.INI Initialization File

