
HLA Reference Manual 5/24/10 Chapter 8
8 HLA Data Types

8.1 Data Types in HLA
Unlike traditional x86 assemblers that tend to work only with bytes, words, double-words,

quad-words, and long- (oct-) words, HLA provides a rich set of basic primitive types. This chapter
discusses all the built-in and user-definable types that HLA supports.

8.2 Native (Primitive) Data Types in HLA
HLA provides the following basic primitive types:

 boolean One byte; zero represents false, one represents true (any non-zero value also
represents true).

 Enum One, two, or four bytes (program selectable, default is one byte); user defined
IDs with unique values.

 Uns8 Unsigned values in the range 0..255.

 Uns16 Unsigned integer values in the range 0..65535.

 Uns32 Unsigned integer values in the range 0..4,204,967,295.

 Uns64 Unsigned 64-bit integer.

 Uns128 Unsigned 128-bit integer.

 Byte Generic eight-bit value.

 Word Generic 16-bit value.

 DWord Generic 32-bit value.

 QWord Generic 64-bit value.

 TByte Generic 80-bit value.

 LWord Generic 128-bit value.

 Int8 Signed integer values in the range -128..+127.

 Int16 Signed integer values in the range -32768..+32767.

 Int32 Signed integer values in the range -2,147,483,648..+2,147,483,647.

 Int64 Signed 64-bit integer values.

 Int128 Signed 128-bit integer values.

 Char Character values.

 WChar Unicode character values.

 Real32 32-bit floating-point values.

 Real64 64-bit floating-point values.

 Real80 80-bit floating-point values.

 Real128 128-bit floating-point values (for SSE/2 instructions).

 String Dynamic length string constants. (Run-time implementation: four-byte pointer.)

ZString Zero-terminated dynamic length strings (run-time implementation: four-byte
pointer).

 Unicode Unicode strings.

 CSet A set of up to 128 different ASCII characters (16-byte bitmap).
Public Domain Created by Randy Hyde Page 102



HLA Reference Manual 5/24/10 Chapter 8
 Text Similar to string, but text constants expand in-place (like #define in C/C++).

 Thunk A set of machine instructions to execute.

Often, it is convenient to discuss the types above in various groups. The HLA language
reference manual will often use the following terms:

 Ordinal: boolean, enum, uns8, uns16, uns32, byte, word, dword, int8, int16, int32, char.

 Unsigned: uns8, uns16, uns32, byte, word, dword.

 Signed: int8, int16, int32, byte, word, dword.

 Number: uns8, uns16, uns32, int8, int16, int32, byte, word, dword

 Numeric: uns8, uns16, uns32, int8, int16, int32, byte, word, dword, real32, real64, real80

8.2.1 Enumerated Data Types
HLA provides the ability to associate a list of identifiers with a user-defined type. Such types

are known as enumerated data types (because HLA enumerates, or numbers, each of the identifiers
in the list to give them a unique value). The syntax for an enumerated type declaration (in an HLA
type section, see the description a little later) takes the following form:

typename : enum{ list_of_identifiers };

Here is a typical example:

type
color_t :enum{ red, green, blue, magenta, yellow, cyan, black, white };

Internally, HLA treats enumerated types as though they were unsigned integer values (though
enum types are not directly compatible with the unsigned types). HLA associates the value zero
with the first identifier in the enum list and then attaches sequentially increasing values to the
following identifiers in the list. For example, HLA will associate the following values with the
color_t symbolic constants:

red 0
green 1
blue 2
magenta3
yellow 4
cyan 5
black 6
white 7

Because each enumerated constant in a given enum list is unique, you may compare these
values, use them in computations, etc. Also note that, because of the way HLA assigns internal
values to these constant names, you may compare objects in an enumerated list for less than and
greater than in addition to equal or not equal.

Note that HLA uses zero as the internal representation for the first symbol of every enum list.
HLA only guarantees that the values it associates with enum types are unique for a single type; it
does not make this guarantee across different enumerated types (in fact, you’re guaranteed that
different enum types do not use unique values for their symbol sets). In the following example,
HLA uses the value zero for both the internal representation of const0 and c0. Likewise, HLA
uses the value one for both const1 and c1. And so on...
type

enumType1 :enum{ const0, const1, const2 };
enumType2 :enum( c0, c1, c2 };

Note that the enumerated constants you specify are not "private" to that particular type. That is,
the constant names you supply in an enumerated data type list must be unique within the current
scope (see the definition of identifier scope elsewhere in the HLA documentation). Therefore, the
following is not legal:
Public Domain Created by Randy Hyde Page 103



HLA Reference Manual 5/24/10 Chapter 8
type
enumType1 :enum{ et1, et2, et3, et4 };
enumType2 :enum{ et2, et2a, et2b, et2c }; //et2 is a duplicate symbol!

The problem here is that both type lists attempt to define the same symbol: et2. HLA reports an
error when you attempt this.

One way to view the enumerated constant list is to think of it as a list of constants in an HLA
const section (see the description of declaration sections a little later in this document), e.g.,
const

red : color_t := 0;
green : color_t := 1;
blue : color_t := 2;
magenta: color_t := 3;
yellow : color_t := 4;
cyan : color_t := 5;
black : color_t := 6;
white : color_t := 7;

By default, HLA uses 8-bit values to represent enumerated data types. This means that you can
represent up to 256 different symbols using an enumerated data type. This should prove sufficient
for most applications. HLA provides a special "compile-time variable" that lets you change the size
of an enumerated type from one to two or four bytes. All you have to do is assign the value two or
four to this variable and HLA will automatically resize the storage for enumerated types to handle
longer lists of objects.  Example:
?@enumSize := 4;// Use dword size for enum types

type
enumDword:enum{ d0, d1, d2, d3};

var
ed :enumDword;// Reserves four bytes of storage

8.2.2 HLA Type Compatibility
HLA is unusual among assembly language insofar as it does some serious type checking on its

operands. While the type checking isn’t quite as "strong" as some high-level languages, HLA
clearly does a lot more type checking than other assemblers, even those that purport to do type
checking on operands (e.g., MASM). The use of strong type checking can help you locate logical
errors in your code that would otherwise go unnoticed (except via a laborious and time consuming
testing/debug session).

The downside to strong type checking is that experienced assembly programmers may become
somewhat annoyed with HLA’s reports that they are doing something wrong when, in fact, the
programmer knows exactly what they are doing. There are two solutions to this problem: use type
coercion (described a little bit later) or use the "untyped" types that reduce type checking to simply
ensuring that the sizes of the operands match. However, before discussing how to override HLA’s
type checking system, it’s probably a good idea to first describe how HLA uses data types.

Fundamentally, HLA divides the data types into classes based on the size of their underlying
representation. Unless you explicitly override a type with a type coercion operation, attempting to
mix object sizes in a memory or register operand will produce an error (in constant expressions,
HLA is a bit more forgiving; it will automatically promote between certain types and adjust the
type of the result accordingly). With most of HLA’s data types, it’s obvious what the size of the
underlying representation is, because most HLA type names incorporate the size (in bits) in the
type’s name. For example, the uns16 data type is a 16-bit (two-byte) type. Nevertheless, this rule
isn’t true for all data types, so it’s a good idea to begin this discussion by looking at the underlying
sizes of each of the HLA types.
8 bits: boolean, byte, char, enum, int8, uns8

16 bits: int16, uns16, wchar, word
Public Domain Created by Randy Hyde Page 104



HLA Reference Manual 5/24/10 Chapter 8
32 bits: dword, int32, pointer types, real32, string, zstring, unicode, uns32

64 bits: int64, qword, real64, uns64

80 bits: real80, tbyte

128 bits: cset, int128, lword, uns128, real128

The byte, word, dword, qword, tbyte, and lword types are somewhat special. These are
known as untyped data types. They are directly compatible with any scalar, ordinal, data type that is
the same size as the type in question. For example, a byte object is directly compatible with any
object of type boolean, byte, char, enum (assuming @enumSize is 1), int8, or
uns8. No special coercion is necessary when assigning a byte value to an object that has one of
these other types; likewise, no special coercion operation is necessary when assigning a value of
one of these other types to a byte object.

Note that cset, real32, real64, real80, and real128 objects are not ordinal
types. Therefore, you cannot directly mix these types with lword, dword, qword, tbyte,
or lword objects without an explicit type coercion operation. Also, keep in mind that composite
data types (see the next section) are not directly compatible with bytes, words, dwords, qwords,
tbytes, and lwords, even if the composite data type has the same number of bytes (the only
exception is the pointer data type, which is compatible with the dword type).

8.3 Composite Data Types
In addition to the primitive types above, HLA supports pointers, arrays, records (structures),

unions, and classes of the primitive types (except for text objects).

8.4 Array Data Types
HLA allows you to create an array data type by specifying the number of array elements after a

type name. Consider the following HLA type declaration that defines intArray to be an array of int32
objects:

type intArray : int32[ 16 ];

The "[ 16 ]" component tells HLA that this type has 16 four-byte integers. HLA arrays use a
zero-based index, so the first element is always element zero. The index of the last element, in this
example, is 15 (total of 16 elements with indices 0..15).

HLA also supports multidimensional arrays. You can specify multidimensional arrays by
providing a list of indices inside the square brackets, e.g.,

type intArray4x4 : int32[ 4, 4 ];
type intArray2x2x4 : int32[ 2,2,4 ];

The mechanism for accessing array elements differs depending upon whether you are
accessing compile-time array constants or run-time array variables. A complete discussion of this
will appear in later sections.

8.5 Union Data Types
HLA implements the discriminate union type using the union..endunion reserved words. The

following HLA type declaration demonstrates a union declaration:

type 
allInts:

union
i8: int8;
i16: int16;
i32: int32;

endunion;
Public Domain Created by Randy Hyde Page 105



HLA Reference Manual 5/24/10 Chapter 8
All fields in a union have the same starting address in memory. The size of a union object is the
size of the largest field in the union. The fields of a union may have any type that is legal in a
variable declaration section (see the discussion of the var section in the chapter on  HLA Program
Structure for more details).

Given a union object, say i of type allInts, you access the fields of the union using the familiar
dot-notation. The following 80x86 mov instructions demonstrate how to access each of the fields of
the i variable:

mov( i.i8, al );
mov( i.i16, ax );
mov( i.i32, eax );

Unions also support a special field type known as an anonymous record (see the next section
for a description of records). The syntax for an anonymous record in a union is the following:
type

unionWrecord:
union

u1Field: byte;
u2Field: word;
u3Field: dword;
record

u4Field: byte[2];
u5Field: word[3];

endrecord;
u6Field: byte;

endunion;

Fields appearing within the anonymous record do not necessarily start at offset zero in the data
structure. In the example above, u4Field starts at offset zero while u5Field immediately follows it
two bytes later. The fields in the union outside the anonymous record all start at offset zero. If the
size of the anonymous record is larger than any other field in the union, then the record’s size
determines the size of the union. This is true for the example above, so the union’s size is 16 bytes
since the anonymous record consumes 16 bytes.

8.6 Record Data Type1s
HLA’s records allow programmers to create data types whose fields can be different types.

The following HLA type declaration defines a simple record with four fields:

type 
Planet:

record
 

x: int32;
y: int32;
z: int32;
density: real64;

 
endrecord;

 

Objects of type Planet will consume 20 bytes of storage at run-time.

1. For C/C++ programmers: an HLA record is similar to a C struct. In language design terminology, a record is
often referred to as a "cartesian product."
Public Domain Created by Randy Hyde Page 106



HLA Reference Manual 5/24/10 Chapter 8
The fields of a record may be of any legal HLA data type including other composite data types.
Like unions, anything that is legal in a var section is a legal field of a record. As for unions, you
use the dot-notation to access fields of a record object.

In addition to the var-like declarations, you may also declare anonymous unions within a
record. An anonymous union is a union declaration without a fieldname associated with the union,
e.g.,

type
DemoAU:

record
x:real32;
union

u1:int32;
r1:real32;

endunion;
y:real32;

endrecord;

In this example, x, u1, r1, and y are all fields of DemoAU. To access the fields of a variable D
of type DemoAU, you would use the following names: D.x, D.u1, D.r1, and D.y. Note that D.u1 and
D.r1 share the same memory locations at run-time, while D.x and D.y have unique addresses
associated with them.

Record types may inherit fields from other record types. Consider the following two HLA type
declarations:

type
Pt2D:

record
 

x: int32;
y: int32;

 
endrecord;

 
Pt3D:

record inherits( Pt2D )
 

z: int32;
 

endrecord;

In this example, Pt3D inherits all the fields from the Pt2D type. The inherits keyword tells
HLA to copy all the fields from the specified record (Pt2D in this example) to the beginning of the
current record declaration (Pt3D in this example). Therefore, the declaration of Pt3D above is
equivalent to:

Pt3D:
record

 
x: int32;
y: int32;
z: int32;

 
endrecord;
Public Domain Created by Randy Hyde Page 107



HLA Reference Manual 5/24/10 Chapter 8
In some special situations, you may want to override a field from a previous field declaration.
For example, consider the following record declarations:

BaseRecord:
record

a: uns32;
b: uns32;

endrecord;

DerivedRecord:
record inherits( BaseRecord )

b: boolean;  // New definition for b!
c: char;

endrecord;

Normally, HLA will report a "duplicate" symbol error when attempting to compile the
declaration for DerivedRecord since the b field is already defined via the "inherits( BaseRecord )"
option. However, in certain cases it’s quite possible that the programmer wishes to make the
original field inaccessible in the derived class by using the same name. That is, perhaps the
programmer intends to actually create the following record:

DerivedRecord:
record

a: uns32;    // Derived from BaseRecord
b: uns32;    // Derived from BaseRecord, but inaccessible here.
b: boolean;  // New definition for b!
c: char;

endrecord;

HLA allows a programmer explicitly override the definition of a particular field by using the
overrides keyword before the field they wish to override. While the previous declarations for
DerivedRecord produce errors, the following is acceptable to HLA:

BaseRecord:
record

a: uns32;
b: uns32;

endrecord;

DerivedRecord:
record inherits( BaseRecord )

overrides b: boolean;  // New definition for b!
c: char;

endrecord;

Normally, HLA aligns each field on the next available byte offset in a record. If you wish to
align fields within a record on some other boundary, you may use the align directive to achieve
this. Consider the following record declaration as an example:
type

AlignedRecord:
record

b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
Public Domain Created by Randy Hyde Page 108



HLA Reference Manual 5/24/10 Chapter 8
w :word; // Offset 9
f :byte; // Offset 11

endrecord;

Note that field d is aligned at a four-byte offset while w is not aligned. We can correct this problem
by sticking another align directive in this record:

type
AlignedRecord2:

record
b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
align(2);
w :word; // Offset 10
f :byte; // Offset 12

endrecord;

Be aware of the fact that the align directive in a record only aligns fields in memory if the
record object itself is aligned on an appropriate boundary. For example, if an object of type
AlignedRecord2 appears in memory at an odd address, then the d and w fields will also be
misaligned (that is, they will appear at odd addresses in memory). Therefore, you must ensure
appropriate alignment of any record variable whose fields you’re assuming are aligned.

Note that the AlignedRecord2 type consumes 13 bytes. This means that if you create an array
of AlignedRecord2 objects, every other element will be aligned on an odd address and three out of
four elements will not be double-word aligned (so the d field will not be aligned on a four-byte
boundary in memory). If you are expecting fields in a record to be aligned on a certain byte
boundary, then the size of the record must be an even multiple of that alignment factor if you have
arrays of the record. This means that you must pad the record with extra bytes at the end to ensure
proper alignment. For the AlignedRecord2 example, we need to pad the record with three bytes so
that the size is an even multiple of four bytes. This is easily achieved by using an align directive as
the last declaration in the record:
type

AlignedRecord2:
record

b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
align(2);
w :word; // Offset 10
f :byte; // Offset 12
align(4) // Ensures we’re padded to a multiple of four 

bytes.
endrecord;

Note that you can only use values that are integral powers of two in the align directive and the
value must be 16 or less.

If you want to ensure that all fields are appropriately aligned on some boundary within the
record, but you don’t want to have to manually insert align directives throughout the record, HLA
provides a second alignment option to solve your problem. Consider the following syntax:
type

alignedRecord3 : record[4]
<< Set of fields >>

endrecord;
Public Domain Created by Randy Hyde Page 109



HLA Reference Manual 5/24/10 Chapter 8
The "[4]" immediately following the record reserved word tells HLA to start all fields in the record
at offsets that are multiples of four, regardless of the object’s size (and the size of the objects
preceding the field). HLA allows any integer expression that produces a value that is a power of
two in the range 1..16 inside these parentheses. If you specify the value 1 (which is the default),
then all fields are packed (aligned on a byte boundary). For values greater than 1, HLA will align
each field of the record on the specified boundary. For arrays, HLA will align the field on a
boundary that is a multiple of the array element’s size. 

Note that if you set the record alignment using this syntactical form, any align directive you supply
in the record may not produce the desired results. When HLA sees an align directive in a record
that is using field alignment, HLA will first align the current offset to the value specified by align
and then align the next field’s offset to the global record align value.

Nested record declarations may specify a different alignment value than the enclosing record,
e.g.,
type

alignedRecord4 : record[4]
a :byte;
b :byte;
c :record[8]

  d :byte;
  e :byte;

   endrecord;
f :byte;
g :byte;

endrecord;

In this example, HLA aligns fields a, b, f, and g on double-word boundaries, it aligns d and e (within
c) on 8-byte boundaries. Note that the alignment of the fields in the nested record is true only within
that nested record. That is, if c turns out to be aligned on some boundary other than an 8-byte
boundary, then d and e will not actually be on 8-byte boundaries; they will, however be on 8-byte
boundaries relative to the start of c.

In addition to letting you specify a fixed alignment value, HLA also lets you specify a
minimum and maximum alignment value for a record. The syntax for this is the following:
type

recordname : record[maximum : minimum]
<< fields >>

endrecord;

Whenever you specify a maximum and minimum value as above, HLA will align all fields on
a boundary that is at least the minimum alignment value. However, if the object’s size is greater
than the minimum value but less than or equal to the maximum value, then HLA will align that
particular field on a boundary that is a multiple of the object’s size. If the object’s size is greater
than the maximum size, then HLA will align the object on a boundary that is a multiple of the
maximum size. As an example, consider the following record:
type

r: record[ 4:1 ];
a :byte; // offset 0
b :word; // offset 2
c :byte; // offset 4
d :dword;[2]// offset 8
e :byte; // offset 16
f :byte; // offset 17
g :qword; // offset 20

endrecord;

Note that HLA aligns g on a double-word boundary (not quad-word, which would be offset 24)
since the maximum alignment size is four. Note that since the minimum size is one, HLA allows
the f field to be aligned on an odd boundary (because it’s a byte).
Public Domain Created by Randy Hyde Page 110



HLA Reference Manual 5/24/10 Chapter 8
If an array, record, or union field appears within a record, then HLA uses the size of an array
element or the largest field of the record or union to determine the alignment size. That is, HLA
will align the field within the outermost record on a boundary that is compatible with the size of the
largest element of the nested array, union, or record.

HLA sophisticated record alignment facilities let you specify record field alignments that
match that used by most major high-level language compilers. This lets you easily access data types
used in those HLLs without resorting to inserting lots of ALIGN directives inside the record.

 When declaring record variables in a var, static, readonly, or  storage declaration section, HLA
associates the offset zero with the first field of a record. Each additional field in the record is
assigned an offset corresponding to the sum of the sizes of all the prior fields. So in the following
example, x would have the offset zero, y would have the offset four, and z would have the offset
eight.

Pt3D:
record

 
x: int32;
y: int32;
z: int32;

 
endrecord;

If you would like to specify a different starting offset, you can use the following syntax for a
record declaration:

Pt3D:
record := 4;

 
x: int32;
y: int32;
z: int32;

endrecord;

The constant expression specified after the assignment operator (":=") specifies the starting offset
of the first field in the record. In this example x, y, and z will have the offsets 4, 8, and 12,
respectively.

Warning: setting the starting offset in this manner does not add padding bytes to the record. This
record is still a 12-byte object. If you declare variables using a record declared in this fashion, you
may run into problems because the field offsets do not match the actual offsets in memory. This
option is intended primarily for mapping records to pre-existing data structures in memory. Only
advanced assembly language programmers should use this option.

8.7 Pointer Types
HLA allows you to declare a pointer to some other type using syntax like the following:

pointer to base_type

The following example demonstrates how to create a pointer to a 32-bit integer within the type
declaration section:

type pi32: pointer to int32;

HLA pointers are always 32-bit (near32) pointers.
Public Domain Created by Randy Hyde Page 111



HLA Reference Manual 5/24/10 Chapter 8
HLA v1.x allowed you to define pointers to existing procedures using syntax like the
following:
procedure someProc( parameter_list );
<< procedure options, followed by @external, @forward, or procedure body>>

.

.

.
type

p : pointer to procedure someProc;

However, this pointer syntax has been deprecated as of HLA v2.0 and this syntax will
disappear sometime in HLA v2.x. The modern way to declare pointers that are compatible with a
particular procedure is to use the "new style" procedure declarations in the HLA proc section. This
is done as follows:

type
p : procedure( parameter_list );

.

.

.
proc

someProc:p {optional procedure options};

.

.

.

See the HLA reference manual chapter on  HLA Procedures for more details about the proc
section.

Note that HLA provides the reserved word null (or NULL, reserved words are case
insensitive) to represent the nil pointer. HLA replaces NULL with the value zero. The NULL
pointer is compatible with any pointer type (including strings, which are pointers).

8.8 Thunks
A "thunk" is an 8-byte variable that contains a pointer to a piece of code to execute and an

execution environment pointer (i.e., a pointer to an activation record). The code associated with a
thunk is, essentially, a small procedure that  uses the activation record of the surrounding code
rather than creating its own activation record. HLA uses thunks to implement the iterator "yield"
statement as well as pass by name and pass by lazy evaluation parameters. In addition to these two
uses of thunks, HLA allows you to declare your own thunk objects and use them for any purpose
you desire. To declare a thunk variable is easy, just use a declaration like the following in a var,
static, readonly, or storage section:

thunkVar: thunk;

This declaration reserves eight bytes of storage. The first double-word holds the address of the
code to execute, the second double-word holds a pointer to the activation record to load into EBP
when the thunk executes.

Of course, like almost any pointer variable, declaring a thunk variable is the easy part; the
hard part is making sure the thunk variable is initialized before attempting to call the thunk. While
you could manually load the address of some code and the frame pointer value into a thunk
variable, HLA provides a better syntax for initializing thunks with small code fragments: the thunk
statement. The thunk statement uses the following syntax:

thunk thunkVar := #{ sequence_of_statements }#;
Public Domain Created by Randy Hyde Page 112



HLA Reference Manual 5/24/10 Chapter 8
Consider the following example:

program ThunkDemo;
#include( "stdio.hhf" );

procedure proc1;
var

i:  int32;
p1Thunk: thunk;

procedure proc2( t:thunk );
var

i:int32;
begin proc2;

mov( 25, i );
t();
stdout.put( "Inside proc2, i=", i, nl );

end proc2;

begin proc1;

thunk p1Thunk := #{ mov( 0, i ); }#;

mov( 1, i );
proc2( p1Thunk );
stdout.put( "i=", i, nl );

end proc1;

begin ThunkDemo;

proc1();

end ThunkDemo;

In this example, proc1 has two local variables, i and p1Thunk.  The thunk statement initializes
the p1Thunk variable with the address of some code that moves a zero into the i variable. The thunk
statement also initializes p1Thunk with a pointer to the current activation record (that is, a pointer to
proc1’s activation record). Then proc1 calls proc2 passing p1Thunk as a parameter. 

The proc2 routine has its own local variable named i. Of course, this is a different variable from
the i in proc1. Proc2 begins by setting its variable i to the value 25. Then proc2 invokes the thunk
(passed to it as a parameter). This thunk sets the variable i to zero. However, because the thunk uses
the current activation record when the thunk statement was executed, this statement sets proc1’s i
variable to zero rather than proc2’s i variable. This program produces the following output:

Inside proc2, i=25
i=0

Although you probably won’t use thunks that often, they are quite nice for deferred execution.
This is especially useful in AI (Artificial Intelligence) programs.

8.9 Class Types
Classes and object-oriented programming are the subject of a different HLA Reference Manual

Document. See the chapter on HLA Classes for more details.
Public Domain Created by Randy Hyde Page 113



HLA Reference Manual 5/24/10 Chapter 8
8.10 Regular Expression Types
The HLA compile-time language supports a special data type known as a "compiled regular

expression". Please see the section on regular expression macros in the chapter on the HLA
Compile-Time Language for more details on this data type.
Public Domain Created by Randy Hyde Page 114


	8 HLA Data Types
	8.1 Data Types in HLA
	8.2 Native (Primitive) Data Types in HLA
	8.2.1 Enumerated Data Types
	8.2.2 HLA Type Compatibility

	8.3 Composite Data Types
	8.4 Array Data Types
	8.5 Union Data Types
	8.6 Record Data Types
	8.7 Pointer Types
	8.8 Thunks
	8.9 Class Types
	8.10 Regular Expression Types


