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10 HLA Program Structure and Organization

10.1 HLA Program Structure
HLA supports two types of compilations: programs and units.  A program is an HLA source

file that includes the code (the "main program") that executes immediately after the operating
system loads the program into memory.  A unit is a module that contains procedures, methods,
iterators, and data that is to be linked with other modules.  Note that units may be linked with other
HLA modules (including an HLA main program) or with code written in other languages
(including high-level languages or other x86 assembly languages).  This chapter will discuss the
generic form of an HLA program; see the chapter on HLA Units and External Compilation for a
detailed description of HLA units.

An executable file must have exactly one main program (written either in HLA or some other
language).  Therefore, most applications written entirely in HLA will have exactly one program
module and zero or more units (it is possible to fake a program module using units; for more
information see the on-line documents "Taking Control Over Code Emission" and "Calling HLA
Code from Non-HLA Programs with Exception Handling" on Webster (http://webster.cs.ucr.edu).
Therefore, the best place to begin discussion HLA program structure is by defining the HLA
program.  Here's the minimalist HLA program:

program pgmId;
begin pgmID;
end pgmID;

In this example, pgmID is a user-defined identifier that names the program.  Note that this
name is local to the program (that is, it is not visible outside the source file and neither the source
file's name nor the executable's file name need be the same as this name (though it's not a bad idea
to make them the same).  Note that the exact same identifier following the program reserved word
must follow the begin and end reserved words.

The minimalist HLA program, above, doesn't do much; if you compile and execute this
program it will immediately return control to the operating system.  However, this short program
actually does quite a bit for an empty assembly language program.  When you create an HLA
program, you're asking HLA to automatically generate some template code to do certain operations
such as initializing the exception-handling system, possibly setting up command-line parameters
for use by the program, and emitting code to automatically return control to the operating system
when the program completes execution (by running into the end pgmID clause).  As this code is
generally needed for every HLA assembly language program, it's nice that the HLA compiler will
automatically emit this template code for you. If you happen to be a die-hard assembly programmer
and you don't want the compiler emitting any instructions you haven't explicitly written, fear not,
HLA doesn't force you to accept the code it's written; for more details, see the "Taking Control
Over Code Emission" article on Webster that was mentioned earlier.

A non-minimalist HLA program takes the following generic form:

program pgmId;
<< declarations >>

begin pgmID;
<< main program instructions>>

end pgmID;

The <<declarations>> section is where you will put the declarations/definitions for constants,
data types, variables, procedures, methods, iterators, tables, and other data.  The << main program
instructions >> section is where you will put machine instructions and HLA HLL-like statements.

An HLA unit is even simpler than an HLA program. It takes the following form:

unit unitId;
<< declarations >>

end unitID;
Public Domain Created by Randy Hyde Page 134



HLA Reference Manual 5/24/10 Chapter 10
In this example, unitID is a user-defined identifier that names the unit.  Note that this name is
local to the unit (that is, it is not visible outside the source file and the source file's name need be the
same as this name.  Note that the exact same identifier following the unit reserved word must
follow the end reserved word.  Unlike programs, units do not have a begin clause following by a
sequence of instructions; this is because units don't provide the main program code for the
application.  Again, for more details about units, see the chapter on HLA Units.

10.2 The HLA Declaration Section
The declaration section in an HLA program or unit is relatively complex, supporting the

definition and declaration of most of the components in the HLA program or unit.  An HLA
declaration section generally contains one or more of the following items:

• A labels section (label)

• A constant declaration section (

• const)

• A values declaration section (

• value)

• An automatic variables declaration section (

• var)

• An initialized static data storage declaration section (

• static)

• An initialized read-only data storage declaration section (

• readonly)

• An uninitialized static data storage declaration section (

• storage)

• A procedures declaration section (

• proc)

• Old-style procedure, method, and iterator declarations

•

• A 

• namespace declaration section

These sections may appear in any order in a program or unit declarations section and multiple
instances of each of these sections may appear in the declarations.  The following subsections
describe each of these declaration sections in detail.

10.2.1 The HLA LABEL Declaration Section
The HLA label section is a very special-purpose (and rarely used) declaration section in which

you declare forward-referenced and external statement labels.  The syntax for the label section is
either of the following:

label
<< label declarations >>

or

label
<< label declarations >>

endlabel;
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The endlabel clause is optional. If it is present it explicitly marks the end of the forward label
declaration section; if it is absent, then the next declaration section or the begin keyword will
implicitly end the forward label declaration section.

Each label declaration takes one of the three following forms:

userLabel_1;
userLabel_2; external;
userLabel_3; external( "externalLabelName" );

In these examples, userLabel_x (x=1, 2, or 3) is a user-defined identifier.
The first example above is a forward label declaration.  This tells HLA that you're promising

to declare the statement label within the scope of the label section (HLA will generate an error if
you fail to declare the statement label within the scope of the label statement).

The scope of a label statement is the body of instructions associated with the main program,
procedure, method, or iterator that immediately contains the label declaration section.  For
example, if the label statement appears in the declaration section of an HLA program, the
corresponding statement label must be defined in the body of that program:

program labelDemo;
label

someLabel;

<< other declarations >>
begin labelDemo;

<< main program instructions, part 1 >>
someLabel: // someLabel must be defined in this code.
<< main program instructions, part 2 >>

end labelDemo;

Note that HLA automatically handles forward-referenced labels within the (machine
instructions) body of a program, procedure, method, or iterator, without an explicit label
declaration.  The following is legal even though you do not have a forward declaration of
someLabel:

program labelDemo;
.
.
.

begin labelDemo;

.

.

.
lea( eax, &someLabel );

.

.

.
jmp someLabel;

.

.

.
someLabel: // someLabel's declaration appears after its use.
Public Domain Created by Randy Hyde Page 136



HLA Reference Manual 5/24/10 Chapter 10
.

.

.

end labelDemo;

The above is legal because the procedure references someLabel in the same scope where it is
declared. Now consider the following example:

program labelDemo;
.
.
.
procedure ReferencesSomeLabel;

.

.

.
begin ReferencesSomeLabel;

.
.

.
lea( eax, &someLabel );// Illegal! someLabel is not defined in this 

procedure.
.
.
.

end ReferencesSomeLabel;

begin labelDemo;

.

.

.
someLabel: // someLabel's declaration appears outside the scope of its 

use.

.

.

.

end labelDemo;

HLA will generate an error in this example because forward references to statement labels
must be resolved within the scope of the procedure (or program) containing the forward reference.
When HLA encounters the "end ReferencesSomeLabel;" clause in the procedure above, it will
report that you haven't defined someLabel in that procedure.  The solution to this problem is to use
the label statement to create a forward symbol definition so that someLabel is defined (albeit at a
different lex level) when HLA encounters the lea statement in the previous example.  The
following code demonstrates how to do this:

program labelDemo;
label

someLabel;
.
.
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.
procedure ReferencesSomeLabel;

.

.

.
begin ReferencesSomeLabel;

.
.

.
lea( eax, &someLabel );// This is legal because of the label 

statement.
.
.
.

end ReferencesSomeLabel;

begin labelDemo;

.

.

.
someLabel: // someLabel had a forward declaration.

.

.

.

end labelDemo;

You can also create external label definitions by attaching the external option to a label
definition. External label definitions take one of two forms:

label
someLabel; external;
someExtLabel;external( "externalName" );

The first form assumes that someLabel is defined (and the name is made public) in some other
source/object module using the name someLabel. The second form assumes that "externalName" is
defined in some other source/object module and uses the name someExtLabel to refer to that
symbol.

To create a public label that you can reference in another source module, you put an external
label definition in the same source file as the actual symbol declaration, e.g.,

program labelDemo;
label

someLabel; external;
.
.
.

begin labelDemo;

.

.

Public Domain Created by Randy Hyde Page 138



HLA Reference Manual 5/24/10 Chapter 10
.
someLabel: // someLabel is a public symbol.

.

.

.

end labelDemo;

The label statement rarely appears in most HLA programs. It is very unusual to reference a
symbol that is declared outside the scope of that usage.  External symbols are usually procedures,
methods, or iterators, and a program will typically use an external procedure, iterator, or method
declaration rather than a label statement to declare such symbols.  Nevertheless, label declarations
are necessary on occasion, so you should keep the forward label declaration statement in mind.

Note that label declarations will not make a local symbol in some scope (that is, within some
procedure) visible to code outside that scope.  The following will generate an error:

program labelDemo;
label

someLabel;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel:// This is local to this procedure.

.

.

.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This does not reference someLabel in declaresSomeLabel!

lea( eax, &someLabel );

.

.

.

end labelDemo;

The scope of the symbol someLabel defined in declaresSomeLabel is limited to the
declaresSomeLabel procedure.  In order to make someLabel visible outside of declaresSomeLabel,
you must make that symbol global.  This is done by following the label declaration with two colons
instead of one colon:
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program labelDemo;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel::// This is a global symbol.

.

.

.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This is legal

lea( eax, &someLabel );

.

.

.

end labelDemo;

Note that global symbols are not automatically public. If you need a symbol to be both global
to a procedure and public (visible outside the source file), you must also define that global symbol
as external in a label statement:

program labelDemo;
label

someLabel; external;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel::// This is a global and public symbol.

.

.
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.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This is legal

lea( eax, &someLabel );

.

.

.

end labelDemo;

Note that global label declarations only make the symbol global at the previous lex level, not
across the whole program.  The following will not work properly because label1 is only visible in
the q and p procedures, not in the main program.

program t;
label

label1;

procedure p;

procedure q;
begin q;

label1::

end q;

begin p;
end p;

begin t;

lea( eax, label1 );

end t;

The solution to this problem is to make the symbol public by declaring it external in both the q
procedure and in the main program:

program t;
label

label1; external;

procedure p;
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procedure q;
label

label1; external;

begin q;

label1:

end q;

begin p;
end p;

begin t;

lea( eax, label1 );

end t;

Of course, referencing a label in a nested procedure like this is highly unusual and is probably
an indication of a poorly designed program.  If you find yourself writing this kind of code, you
might want to reconsider your program's architecture.

10.2.2 The HLA CONST Declaration Section
The HLA const section is where you declare symbolic (manifest) constants in an HLA

program or unit.  The syntax for the const section is either of the following:

const
<< constant declarations >>

or

const
<< constant declarations >>

endconst;

The endconst clause is optional at the end of the constant declarations in a declaration section;
some programmers prefer to explicitly end a constant declaration section with endconst, others
prefer to implicitly end the constant declarations (by starting another declaration section or with the
begin keyword).  The choice is yours, the language doesn't prefer either method nor does good
programming style particularly specify one syntax over the other.

Each constant declaration takes one of the following forms:

userDefinedID := <<constant expression>>;
or
userDefinedID : typeID := <<constant expression>>;

Here are some examples:

const
hasEdge_c := false;
elementCnt_c:= 25;
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weight_c:= 32.5;

debugMode_c:boolean:= true;
maxCnt_c:uns32:= 15;
oneHalf_c:real32:= 0.5;

The "_c" suffix is an HLA programming convention that tells the reader the identifier is a
constant identifier.  Although it's probably good programming style for you to follow this
convention in your own HLA programs, HLA does not require this suffix on constant identifiers;
any valid HLA identifier is fine when creating symbolic constants.

If you do not specify a data type for the symbolic constant declaration (as the first three
examples above demonstrate), then HLA will infer the data type from the type of the constant
expression.  While this is convenient in many cases, do be aware that HLA might not choose the
same data type you would explicitly provide.  This is because a constant expression's type can be
ambiguous, in which case HLA will use whatever type it finds convenient that will work.  In the
examples above, hasEdge_c must be a boolean constant because there is no ambiguity about the
type of the constant false. The remaining two examples without an explicit type (elementCnt_c and
weight_c) do not have constant expressions with an unambiguous type. The constant 25 is valid for
types uns8, uns16, uns32, uns64, uns128, byte, word, dword, qword, tbyte, lword, int8, int16,
int32, int64, and int128 (and even real32, real64, and real80 if you really want to push things).
The HLA language definition does not require this constant (25) to assume any one of these
particular values; HLA is free to choose whatever compatible type it wants for this constant.  In
most cases, it won't make a difference whether HLA chooses the type uns8 or uns32 for this
constant (or any other of the legal types).  However, there are many times that HLA might choose a
type that will create problems with the code you're writing; therefore, it's a good idea to always
explicitly provide a data type as do the last three examples above.

Note that constant expressions in a constant declaration support all the valid constant
expression types discussed in the chapter on HLA Language Elements, including string, character
set, array, record, union, and pointer constants. Indeed, it is often more convenient to create a
constant for some structured data type and use that constant when initializing a static object than to
assign the structured constant directly to the static object, e.g.,

const
myArray_c :dword[ 8 ]:= [0,1,2,3,4,5,6,7];

static
myArray:dword[@elements(myArray_c)] := myArray_c;

Note the use of @elements(myArray_c) rather than 8 to specify the number of dword array
elements in the myArray declaration.  By declaring the static array this way, you can change the
myArray_c constant declaration by adding or removing array elements and the declaration for
myArray will adjust its size automatically when you recompile.

One benefit to use structured constant declarations to initialize static objects is that you have
full access to the (individual element or field) values of that structured constant during assembly.
For example, you could reference myArray_c[0] in an HLA compile-time language sequence and
know that you're getting the same value that goes into element zero of myArray at run time.

Objects you declare in a const section, as the name suggests, have a fixed value throughout the
scope containing that symbol declaration.  The value remains fixed both at compile time and at run
time.  Note, however, that HLA supports block-structured scoping rules so the symbol and its value
might not be visible or available for use outside the scope in which you've declared the symbol.
Consider the following program example:

program constDemo;
const

sym := 10;
.
.
.
procedure usesSym;
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begin usesSym;
.

.
.

mov( sym, eax );  // Loads 10 into eax
.
.
.

end usesSym;

begin constDemo;

.

.

.
mov( sym, eax ); // Loads 10 into eax

.

.

.

end constDemo;

In this example, both instructions that use the symbol sym reference the same object and load
the same value into eax.  This is because HLA's block-structured scoping rules make global
symbols visible inside procedures that don't redefine the symbol.  Consider, however, the following
example:

program constDemo;
.
.
.
procedure usesSym;
const

sym := 10;
begin usesSym;

.
.

.
mov( sym, eax );  // Loads 10 into eax

.

.

.
end usesSym;

begin constDemo;

.

.

.
mov( sym, eax ); // This is illegal!

.

.

.
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end constDemo;

HLA will reject this example because the second usage of sym, in the main program, is outside
the scope of the symbol's declaration within the usesSym procedure (see the chapter on procedures
for more information about HLA's scoping rules).  Now consider this last example:

program constDemo;
const

sym = 10;
.
.
.
procedure usesSym;
begin usesSym;

.
.

.
mov( sym, eax );  // Loads 10 into eax

.

.

.
end usesSym;

procedure declaresLocalSym;
const

sym := 25;
begin declaresLocalSym;

.
.

.
mov( sym, eax );  // Loads 25 into eax

.

.

.
end declaresLocalSym;

begin constDemo;

.

.

.
mov( sym, eax ); // Loads 10 into eax

.

.

.

end constDemo;

This example seems to contradict the statement given earlier that constant declarations can
have only a single value throughout the source file.  The first usage of sym in the usesSym
procedure loads the value 10 into EAX, just as in the earlier example.  In the procedure
declaresLocalSym we see a second declaration of sym with the value 25.  When the code in this
procedure references sym, HLA substitutes the value 25 for the symbol.  This action seems to
contradict the statement that a constant symbol has a fixed value throughout the compilation.
However, the second declaration of sym is not a redeclaration of the original symbol (giving it a
new value); instead, this is the declaration of a brand-new symbol that just happens to share the
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same name (sym) as a symbol declared in the main program.  The scope of this second symbol is
limited to the procedure in which it is defined (and any procedures declared within it, though there
are no such procedures in this example).  The original symbol is not redefined, it is simply "hidden
from view."  At the end of declaresLocalSym, its local symbols are hidden and the global symbols
are again visible. Note that the constant sym reverts to the value 10 at this point.  Again, not
meaning to sound redundant, it's important for you to understand that the two sym identifiers
represent different constant objects whose visibility is controlled by the scope of those identifiers.
The chapter on Procedures goes into greater detail about scope and how it affects the visibility of
your symbols.

Unlike labels, you cannot create "external" constants.  HLA const objects are manifest
constants. This means that HLA substitutes the values of the const symbols wherever they appear
in the source file before actually compiling the statements containing those symbols. In the object
code file that HLA produces, the constant symbol no longer exists in any form; just the value of
that symbol (unlike, say, an external label or procedure definition that passes the name of the
symbol on to the linkage editor [linker] in order to properly combine object modules containing
mutually-dependent symbols). If you want to use a constant symbol in multiple source files, the
appropriate way to do this is to put the symbol into a header file and include that header file in all
the source files that use the symbol.

10.2.3 The HLA VAL Declaration Section and the Compile-Time "?" 
Statement

The HLA val declaration section is very similar to the const declaration section insofar as you
use it to declare symbol names that have a constant value at run time. The difference between the
val and the const declaration sections is that you can reassign a different value to a val constant
during the assembly/compilation process.  This is useful for creating compile-time variables and
handling a few other situations where const objects won't work. The syntax for the val section is
either of the following:

val
<< value declarations >>

or

val
<< value declarations >>

endval;

As for the const section, either syntax is perfectly acceptable to HLA and either form neither
form is particular preferred based on good programming style.

The syntax for the individual value declarations is identical to that of the constant declarations
in a const section.  There are two main differences: simple declarations without an assignment and
value redefinitions.

The first difference is that a value declaration may consist of a constant identifier and a type
identifier without the assignment of a constant expression.  For example:

val
sym :uns32;

This form creates the identifier without giving it an explicit value. HLA assumes that you are
going to assign a value to this val constant before you use the value of that constant.

The second difference is that you can redefine the value of a value object multiple times in a
program, for example:

program valDemo;
val

sym :uns32;
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.

.

.
val

sym := 10;
.
.
.

val
sym := sym + 1;

.

.

.

begin valDemo;

.

.

.
mov( sym, eax ); // Loads 11 into eax

.

.

.

end valDemo;

Note that value redefinition in a val section only takes place when reassigning the value in the
same scope as the original symbol definition. If you attempt to redefine the symbol at some point in
the program that would have a different scope, then you will simply create a new object with the
same name that is limited to the scope of the new definition.  For example, consider the following
code:

program t;
val

i:=0;
endval;

procedure u;
val

i := 1;
begin u;

#print( "i=", i )

end u;

begin t;

#print( "i=", i );

end t;

This example prints "i=1" and then "i=0" during compilation.   The second declaration of i in
procedure u is a local symbol (local to i), this declaration does not affect the original value of the i
constant.  To overcome this problem and provide a way to reassign the value of a val constant
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anywhere in an HLA source file (including outside val declaration sections), HLA provides the
compile-time assignment statement.  An HLA compile-time assignment statement is legal
anywhere a space is legal within the confines of an HLA program or unit.  The HLA compile-time
assignment statement takes one of the following two forms:

?valIdentifier := <<constant expression>>;
?valIdentifier :typeID := <<constant expression>>;

In these examples valIdentifier is either an undefined symbol or a constant identifier that was
previously declared in a val declaration section or an HLA "?" compile-time assignment statement.
In some respects, the HLA compile-time assignment statement is more flexible than the assignment
of a value constant within a val section.  Consider the following two programs that produce
identical results:

program t1;
val

i:=10;
begin t1;

#print( "i=", i );  // Prints "10" at compile-time

end t1;

program t2;
?i:=10;
begin t2;

#print( "i=", i );  // Prints "10" at compile-time

end t2;

There is, however, a major limitation to defining val constant identifiers in an HLA compile-
time assignment statement: you cannot redefine the meaning of a symbol within some different
scope (at a higher lex level) when using the compile-time assignment statement. For example, the
following is illegal:

program t;
static

i:uns32;

procedure u;
?i := 1;// This is illegal!
begin u;

#print( "i=", i )

end u;

begin t;
.
.
.

end t;

The problem here is that the HLA compile-time assignment statement only defines a new
symbol if it was previously undefined.  In this example the symbol i was already defined as a static
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variable.  As only value constant identifiers may appear in an HLA compile-time assignment
statement, HLA will reject this program.  Note, however, that the following is legal:

program t;

procedure u;
?i := 1;// This is legal!
begin u;

#print( "i=", i )

end u;

static
i:uns32;

begin t;
.
.
.

end t;

This program will compile (assuming you have something reasonable between the begin and
end clauses) and print "i=1" during compilation.  The difference here is that i was undefined at the
point of the "?i := 1;" assignment statement so HLA was able to create a constant identifier (local to
procedure u). At the end of procedure u, the symbol i was hidden from the rest of the compilation
so the declaration of i in the main program does not produce a duplicate definition error.  By the
way, if you really needed to define i as a value constant with procedure u in the illegal example,
you could do the following:

program t;
static

i:uns32;

procedure u;
val

i:uns32 := 1;
begin u;

#print( "i=", i )

end u;

begin t;
.
.
.

end t;

Value constants you declare in a val section are not subject to the restriction that the symbol
must be (globally) undefined at the point of the declaration. In the example above, i is a local
symbol in procedure u that just happens to be a val object with the value one.

Although val objects are syntactically similar to const objects, you use them in an HLA
program in almost completely different ways. The main purpose for val objects is to create
compile-time variables that you can use to control compilation via compile-time loops, conditional
compilation, and macros.  Comparing const and val objects at compile time is quite similar to
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comparing readonly and static objects at run time.  The following example demonstrates how you
can use a val object in a program to unroll a loop at compile time:

program unroll;
static

ary:uns32[16];

begin t;

?loopIndex :uns32 := 0;
#while( loopIndex < 16 )

mov( loopIndex, ary[ loopIndex*4 ] );
?loopIndex := loopIndex + 1;

#endwhile
.
.
.

end t;

Note that the #while loop executes at compile time, not at run time.  The code between the
#while and #endwhile compile-time statements is equivalent to the following 16 statements:

mov( 0, ary[ 0*4 ] );
mov( 1, ary[ 1*4 ] );
mov( 2, ary[ 2*4 ] );
mov( 3, ary[ 3*4 ] );
mov( 4, ary[ 4*4 ] );
mov( 5, ary[ 5*4 ] );
mov( 6, ary[ 6*4 ] );
mov( 7, ary[ 7*4 ] );
mov( 8, ary[ 8*4 ] );
mov( 9, ary[ 9*4 ] );
mov( 10, ary[ 10*4 ] );
mov( 11, ary[ 11*4 ] );
mov( 12, ary[ 12*4 ] );
mov( 13, ary[ 13*4 ] );
mov( 14, ary[ 14*4 ] );
mov( 15, ary[ 15*4 ] );

This is because each iteration of the #while loop at compile time compiles all of the statements
between the #while and #endwhile statements.  For more information on the #while/#endwhile
statement and using val objects as compile-time variables, please see the chapter on the HLA
Compile-Time Language.

10.2.4 The HLA TYPE Declaration Section
Examples of the HLA type declaration section have been so numerous in the chapter on HLA

Language Elements that describing them here is almost redundant (please review that chapter for
more details). Nevertheless, for completeness and for the sake of a reference guide, this section
describes the syntax of a type declaration section.  A type declaration section takes one of the
following two forms:

type
<< type declarations >>
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or

type
<< type declarations >>

endtype;

A type declaration takes one of the following forms:

newTypeID : typeID;
newTypeID : typeID [ list_of_array_dimensions ];
newTypeID : procedure (<<optional_parameter_list>>);
newTypeID : record  <<record_field_declarations>> endrecord;
newTypeID : union  <<union_field_declarations>> endunion;
newTypeID : class  <<class_field_declarations>> endclass;
newTypeID : pointer to typeID;
newTypeID : enum{ <<list_of_enumeration_identifiers>> };

The purpose of the HLA type section is to declare a new type identifier that you can use when
declaring const, val, var, static, readonly, and storage objects.  You can also use type identifiers
you declare in an HLA type section to define procedure prototypes in an HLA proc section.  Each
of the forms above deserves its own subsection to describe it, so the following subsections do just
that.

Note that a type declaration only defines a type identifier you can use for declaring other
objects in an HLA source file. A type declaration does not create a variable or constant object of the
specified type.  You can use the type identifier in some other declaration section (const, val, var,
static, readonly, storage, etc.) to actually define an object of that type.

10.2.4.1 typeID
Before describing the valid syntax forms for the type declaration section, it's worthwhile to

take a moment to describe the typeID item that appears in many of the type declarations. The
typeID item is a single identifier whose classification is "type" (duh). This can be any of the HLA
built-in types: 

boolean
enum
uns8
uns16
uns32
uns64
uns128
byte
word
dword
qword
tbyte
lword
int8
int16
int32
int64
int128
char
wchar
real32
real64
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real80
real128
string
zstring
u
nicode
cset

text
thunk.

The typeID can also be any user-defined type identifier you've previously declared in a type
declaration section.

10.2.4.2 newTypeID : typeID;
The least complex type declaration is a simple type isomorphism, where you take an existing

type and create a new type with all the same attributes except that you use a different name for the
type.  For example, suppose you want to use the identifier integer rather than int32 in your
programs. You could do this with the following type declaration:

type
integer :int32;

Within the scope of this declaration, you can use the type name integer anywhere you want to
declare a 32-bit signed integer object. 

Warning: exercise care when using type isomorphisms of built-in types in an HLA program.
If you're writing an HLA program, you can generally assume that people reading the source files
you write are reasonably familiar with HLA's built-in types.  By creating aliases of those type
names, you make it harder for people who already know HLA to read and understand your
programs because they have to mentally translate your new types to the more familiar type names.
It might seem "cool" to use C++ type names or type names from some other programming
language, but other people reading your programs might not share your enthusiasm for the renamed
types.

One place where type isomorphisms might make sense is when you're creating a new type that
is intended to be a subset of the full type (whose range you check at run time). For example,
suppose you use a set of integers that must be in the range 0..31 for certain sections of your
program.  You could create a type definition like the following to let people know that variables of
the specified type are supposed to lie in the range 0..31:
type

smallInt_t :int8;  // Holds values in the range 0..31  

At run time you could use the bound instruction to verify that values you assign to a smallInt_t
object are actually in the range 0..31:

bound( eax, 0, 31 );// Raises an ex.bound exception if not in the 
range 0..31.

mov( al, smallIntVar );   

This example also demonstrates another common HLA programming convention: using an
"_t" suffix on user-defined type identifiers.

10.2.4.3 newTypeID : typeID [ list_of_array_bounds ];
This form creates an array type with the specified number of elements. The

list_of_array_bounds item is a list of one or more unsigned integer values that are greater than zero
(and, generally, greater than one).  If there are two or more array bound values, the type is a multi-
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dimensional array type and the number of elements is the product of all of the array bound values.
Note that HLA arrays are always indexed from zero to the array's bound value minus one.  So an
array declared as 

10.2.4.4 newTypeID : procedure (<<optional_parameter_list>>);
A complete discussion of procedure pointer types appears in the chapter on procedures. Please

see that document for a discussion of procedure pointer types. Like all pointer types, objects that
are procedure pointers will consume four bytes in memory (and those four bytes typically hold the
address of some procedure).

10.2.4.5 newTypeID : record  <<record_field_declarations>> endrecord;
Please see the discussion of Record Data Types earlier in this document for examples of

record type declarations, their syntax, and their use.

10.2.4.6 newTypeID : union  <<union_field_declarations>> endunion;
Please see the discussion of Union Data Types earlier in this document for examples of union

type declarations, their syntax, and their use.

10.2.4.7 newTypeID : class  <<class_field_declarations>> endclass;
A complete discussion of class types appears in the chapter on Classes and Object-Oriented

Programming in HLA. Please see that document for a discussion of class types. 

10.2.4.8 newTypeID : pointer to typeID;
Please see the discussion of Pointer Data Types earlier in this document for examples of

pointer type declarations, their syntax, and their use.

10.2.4.9 newTypeID : enum{ <<list_of_enumeration_identifiers>> };
Please see the discussion of Enumerated Data Types earlier in this document for examples of

enum type declarations, their syntax, and their use.

10.2.5 The HLA VAR Declaration Section
The var section is where you declare automatic variables in an HLA procedure, method,

iterator, or program. The HLA var section may not appear in the declaration section of an HLA
unit or namespace.  A var section may also appear in an HLA class, but the storage mechanism for
class var objects is not the same as for procedures, methods, and iterators. Please see the chapter on
Object-Oriented Programming for more details about var declarations in a class. The basic syntax
for an HLA var section is the following:

var
<< variable declarations >>

or
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var
<< variable declarations >>

endvar;

The syntax for the variable declarations is similar to type declarations; each variable
declaration takes one of the following forms:

varID : typeID;
varID : typeID [ list_of_array_dimensions ];
varID : procedure (<<optional_parameter_list>>);
varID : record  <<record_field_declarations>> endrecord;
varID : union  <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

These statements will allocate sufficient storage on the stack for each variable (varID) that you
declare in the var section.

The HLA var section also supports an align directive; the syntax for the align directive in a
var section is the following:

align( constant_expression );

The constant_expression must be a fully-defined constant expression that evaluates to a power
of two that lies in the range 1..16.  Technically, the only value that makes sense for the align
expression is 4, as you will soon see.

The var section declares variables for which the HLA run-time code automatically allocates
storage upon entry into a procedure (note: the HLA run-time system automatically allocates storage
only if the @frame procedure option is enabled; otherwise it is the programmer's responsibility to
actually allocate the storage).  Automatic variable storage allocation is accomplished using a
standard entry sequence into a procedure, such as the following

push( ebp );// Save old frame pointer
mov( esp, ebp );// Put new frame pointer value into EBP
sub( _vars_, esp );// Allocate storage for var variables on stack

Automatic variables (var objects, or auto variables) are referenced using negative offsets from
the EBP (base pointer) register into the procedure's stack frame (also known as an activation
record).  The previous frame pointer (EBP) value is found at [EBP+0] and the auto variables are
found on the stack below this location. Each variable is allocated some amount of storage
(determined by the variables type) and the offset of the variable (from EBP) is computed by
subtracting the variable's size from the offset of the previous object in the var section. Consider the
following var declaration section; the comments tell you the offset to each of the objects from the
EBP register (these offsets assume that there is no display):

var
d :dword;// offset = ebp-4
s :string;// offset = ebp-8
u :uns32;// offset = ebp-12
i :int32;// offset = ebp-16
w :word; // offset = ebp-18
b :byte; // offset = ebp-19
c :char; // offset = ebp-20

The offset of each object is computed by subtracting the size of the object from the offset of the
previous object in the var declaration section (the first object's offset is computed by subtracting
the object size from zero, which is the offset of the saved EPB value).
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Because the x86 supports a 1-byte offset (+/- 128 bytes) form of the "[EBP+offset]" addressing
mode, your code will be slightly shorter if you group all your small variable objects at the
beginning of the var declaration section and putting all your structured data types (e.g., arrays,
records, unions, and character sets) near the end of var section.  Consider the following two
variable declaration sections:
var

d :dword; // offset = ebp-4
s :byte[256];// offset = ebp-260

versus

var
s :byte[256];// offset = ebp-256
d :dword; // offset = ebp-260

The instruction "mov( d, eax );" is three bytes shorter if you use the first set of declarations
above (where d's offset is -4) because HLA can encode the offset in one byte instead of a double
word.  By putting the declarations of the smaller objects at the beginning of the var section, you
can increase the number of variables that you can reference with a 1-byte displacement.

As HLA processes each variable in a var section, it computes the offset of that variable by
subtracting the variable's size from the offset of the previous variable.  If you mix different sized
variables in the var section, you may not get optimal addresses for each of the variables.  Consider
the following var section and the corresponding variable offsets:

var
b :byte; // offset = ebp-1
w :word; // offset = ebp-3
d :dword;// offset = ebp-5
q :qword;// offset = ebp-13

Assuming that EBP points at an address that is a multiple of four (and it usually will), all of
these variables will be misaligned except for b, the byte variable.  One solution to this problem is to
use the align directive to align each variable at an offset that is a multiple of that variable's size:
var

b :byte; // offset = ebp-1
align(2);
w :word; // offset = ebp-4
align(4);
d :dword;// offset = ebp-8
align(8);
q :qword;// offset = ebp-16

Unfortunately, sticking an align directive before each variable declaration is a pain.
Fortunately, the var declaration supports the same alignment options as record declaration.
Consider the following:

var[4];
b :byte; // offset = ebp-4
w :word; // offset = ebp-8
d :dword;// offset = ebp-12
q :qword;// offset = ebp-24

Of course, allocating four bytes for each automatic variable can be wasteful; you can also do
the following:

var[4:1];
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b :byte; // offset = ebp-1
w :word; // offset = ebp-4
d :dword;// offset = ebp-8
q :qword;// offset = ebp-16

See the discussion of record type declarations earlier in the chapter on HLA Language
Elements for more details about the alignment options.

There is one big issue concerning the use of the var section align statement and the alignment
options: generally you may only assume that the stack pointer is aligned to a 4-byte address upon
entry into a subroutine.  Therefore, alignment values other than 1, 2, or 4 may not achieve the
desired memory alignment for your automatic variables.  If you absolutely must have your
automatic variables aligned on a boundary greater than four, you will have to explicitly guarantee
that the variable is properly aligned in the activation record. There are a couple of different ways to
do this.

The first way is to allocate storage on the stack (using talloc), create an address into that
storage area that you've aligned to the desired boundary, and then save a pointer to that storage in
another automatic variable. For example, to create a 16-byte aligned object (e.g., for SSE objects
that require 16-byte alignment), you could do the following:

var
ptrToAligned16:pointer to lword;
.
.
.

sub( 16, esp );
and( $ffff_fff0, esp );
mov( esp, ptrToAligned16 );

The "and( $ffff_fff0, esp );" instruction ensures that ESP is situated at an address that is
aligned on a 16-byte boundary. Note that this instruction might actually allocate up to 15 additional
bytes (or, if the stack is aligned properly to begin with, up to 12 additional bytes) in order to
guarantee that the new address is aligned to a 16-byte boundary.

Whenever using this technique to allocate storage for an aligned object, you must allocate the
storage before pushing any other data you need to retrieve onto the stack.  Because you don't really
know how much storage these three instructions will actually allocate on the stack, you won't know
where any data might be that you've previously pushed onto the stack.  As such, you wouldn't be
able to pop that data later on. The best way to avoid this problem is to allocate aligned data
immediately upon entry into a procedure, iterator, or method, before any other stack operations take
place:

procedure hasAlignedStorage; @nostackalign;
var

ptrToAligned16:pointer to lword;
begin hasAlignedStorage;

sub( 16, esp );
and( $ffff_fff0, esp );
mov( esp, ptrToAligned16 );

.

.

.

end hasAligned16;

Note the use of the @nostackalign option. If you're created aligned data on the stack, you're
already aligning ESP to an address that is a multiple of four. Therefore, there is no need for HLA to
emit this instruction for you.
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If you are creating your own stack frame upon entry into the procedure (e.g., you're using the
@noframe option), then you should allocate storage for your aligned objects after you've created
the stack frame/activation record:

procedure hasAlignedStorage; @noframe;
var

ptrToAligned16:pointer to lword;
begin hasAlignedStorage;

push( ebp );
mov( esp, ebp );
sub( _vars_, esp );
sub( 16, esp );

and( $ffff_fff0, esp );
mov( esp, ptrToAligned16 );

.

.

.

end hasAligned16;

Although this scheme allows you to allocate storage that is aligned on a 16-byte boundary (any
other boundary that is a power of two is easy to achieve by modifying the sub and and
instructions), this scheme isn't actually aligning the variables in the var section to a specific
boundary.  If you need to align the automatic variables themselves, it's going to take a bit more
work to achieve.  Achieving this goal requires that the stack be aligned to a given boundary before
you call the subroutine.  Unfortunately, you cannot simply align the stack pointer immediately
upon entry into a subroutine, prior to building the activation record, because any parameters that
the caller has pushed onto the stack must be accessible at fixed positions from EBP.  If you align
the stack upon entry into the code, you'll mess up the offsets to the parameters from EBP, thereby
changing the assumptions HLA makes about where those parameters' values lie.  Therefore, you
must align the stack pointer to a desired address before pushing any parameters onto the stack.
This means that the calling code will be responsible for aligning the stack and this has to be done on
each call to the subroutine.

The task is to set up the stack pointer so that when it pushes EBP on the stack (while setting up
the activation record) the address of the old EBP value on the stack is a multiple of whatever
alignment you need.  Unfortunately, you cannot simply align the stack pointer before the call
because the subroutine's parameters, return address, and the EBP value itself consume space on the
stack that may cause the alignment to change. Therefore, you will need to adjust to the stack pointer
prior to the call so that ESP is aligned to an appropriate address after the caller has pushed the
parameters, return address, and EBP has been preserved on the stack.  For example, consider the
following HLA procedure:

procedure p(i:int32);
var[16];

b:byte;
w:word;
d:dword;
l:lword;

begin p;
.
.
.

end p;
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The goal here is to align each of the automatic variables to an address that is a multiple of 16
bytes.  Upon entry into the body of the procedure, there will be 12 bytes pushed onto the stack -
four bytes for parameter i, four bytes for the return address, and four bytes with the old EBP value.
Therefore, simply aligning ESP to some multiple of four before the call will not work because
when the call to the procedure occurs, an additional 12 bytes wind up on the stack, leaving ESP
misaligned.  What has to be done is to align ESP to a multiple of 16 bytes and then drop the stack
pointer down four bytes so that when the calling sequence pushes those 12 bytes onto the stack,
ESP winds up properly aligned on a 16-byte boundary.  This can be done with the following code
sequence (that calls procedure p):

and( $FFFF_FFF0, esp );// Align ESP to 16-byte boundary
sub( 4, esp ); // 4 + 12 bytes keeps it 16-byte aligned
p( 2 ); // Call p.

Alas, "4" is a magic number here that probably won't make much sense to the reader of this
code. Furthermore, if you ever change the number or types of p's parameters, "4" might no longer
be the correct value to use here.  Fortunately, HLA's compile-time language provides a compile-
time function, @parms, that returns the number of parameter bytes for the procedure whose name
you specify as an argument.  So we can use the following generic version to properly align the
stack on a 16-byte boundary:

and( $FFFF_FFF0, esp );
sub( 16-((@parms(p)+8) & $F), esp );
p( 2 );

The "@parms(p)+8"  portion of the expression is the total number of bytes pushed on the stack
up to the point where EBP will be pointing in the activation record.  The "(@parms(p)+8) & $F"
computes this value modulo 16 because we never need to push more than 15 bytes in order to align
ESP to a 16-byte boundary.  Finally,  "16-((@parms(p)+8) & $F)" computes the number of bytes
we must drop the stack down in order to guarantee 16-byte alignment upon entry into the
subroutine. 

We could make one additional improvement to this code. On occasion, the expression "16-
((@parms(p)+8) & $F)" will evaluate to zero and there is no reason at all to execute the sub
instruction.  Because this is a constant expression, we can determine that it is zero at compile time
and use conditional assembly to eliminate the sub instruction:

and( $FFFF_FFF0, esp );
#if( (16-((@parms(p)+8) & $F)) <> 0 )

sub( 16-((@parms(p)+8) & $F), esp );

#endif
p( 2 );

Remember, you have to execute this instruction sequence before each call to procedure p in
order to guarantee that p's local variables are properly aligned on a 16-byte boundary.  As it's easy
to forget to execute this sequence prior to calling p, you might want to consider writing a macro to
invoke that will automatically do this for you.  Consider the following code:

#macro p( _i_ );
and( $FFFF_FFF0, esp );
#if( (16-((@parms(_p)+8) & $F)) <> 0 )

sub( 16-((@parms(_p)+8) & $F), esp );

#endif
p( _i_ );
#endmacro
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procedure _p(i:int32);
var[16];

b:byte;
w:word;
d:dword;
l:lword;

begin _p;
.
.
.

end _p;
.
.
.

p(2);

One problem with aligning the stack in this manner is that the code suffers from "stack creep".
Each time you call procedure p it might drop the stack down as many as 12 bytes. If this isn't a
problem (e.g., if you call p from within some other procedure that cleans up the stack upon
returning to its caller) then you can ignore the stack creep.  However, if you've pushed data onto the
stack that you need to pop after the call to p, or if you're calling p within a loop and that would
cause considerable stack creep, then you'll want to save ESP's value in a local (automatic) variable
in the calling code and restore ESP upon return, e.g.,:

mov( esp, espSave );
p(2); // This is the macro from above!
mov( espSave, esp );

Be sure to use a local automatic, not a static, variable for espSave. Also, avoid the temptation
to use push and pop to preserve ESP's value, remember that ESP is modified by the call to p and
you won't be popping what you've pushed.

One last feature available in the var section is the ability to set the starting offset of the
activation record.  By default, HLA uses the offset zero as the base offset of the activation record.
HLA assigns local (automatic) variables negative offsets from this base offset and parameters
positive offsets from the base offset.  Using the following syntax, you can change the base offset
from zero to any other signed integer value you choose:

var:= <<signed integer expression>>;
<< var declaration section>>

The first local variable you declare in the << var declaration section >> will have the offset you
specify by <<signed integer expression>>.  Note that HLA will not first subtract the size of the
first object from your base offset as it normally does for the automatic variables you declare.  It
uses the value you supply as the offset of the first variable you declare.  Also note that this syntax
does not change the offsets assigned to the parameters for the procedure.  Therefore, EBP must
point at the same location (at the old value of EBP immediately below the return address) it would
if you didn't set the starting offset.

In general, this syntax is far more useful for record data structures than it is for var activation
records, but it can be useful if you want to explicitly declare the saved EBP value and the display (if
one is present). For example:

procedure p(i:int32);
var := 0;

saveEBP:dword;
display:dword[2];
b :byte;
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w :word;
d :dword;
l :lword;

begin _p;
.
.
.

end _p;

The var declaration section also supports the following (rarely-used) @nostorage syntax:

varID : typeID; @nostorage;
varID : typeID [ list_of_array_dimensions ]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;

These declarations assign the current offset (after subtracting the size of the object) into the
activation record to the variable you've declared, but they do not reserve any storage for such
variables.  As a result, variable declarations with the @nostorage option in the var section overlay
the following variable declaration(s).  Consider the following variable declarations:
 var

w:word;  @nostorage;
b:byte;  @nostorage;
d:dword;

The b variable will be sitting at offset -1, the w variable will be at offset -2, and the d variable
will be sitting at offset -4. Note that these variables overlap one another in memory. Be very careful
when using the @nostorage option in the var declaration section.  If you declare a large object
using the @nostorage option and you don't declare sufficient storage in variables after that object,
accessing that object may wind up wiping data in "no man's land" on the stack. 

Note that because offsets into the activation record are negative, the @nostorage option
behaves differently in the var section from the way it works in the static, storage, and readonly
sections. If you have a byte variable with an @nostorage option followed by a dword variable, the
byte variable will be sitting in the H.O. byte of the dword object (rather than in the L.O. byte
position, as it would in a static, storage, or readonly section). For this reason, you'll rarely see the
@nostorage option used in a var section.

10.2.6 The HLA STATIC Declaration Section
The static section is where you declare static/data variables in an HLA namespace, class,

procedure, method, iterator, or program. The basic syntax for an HLA static section is the
following:

static
<< static variable declarations >>

or

static
<< static variable declarations >>

endstatic;

Each static variable declaration can take one of the following forms:

Uninitialized forms:
Public Domain Created by Randy Hyde Page 160



HLA Reference Manual 5/24/10 Chapter 10
varID : typeID;
varID : typeID [ list_of_array_dimensions ];
varID : procedure (<<optional_parameter_list>>);
varID : record  <<record_field_declarations>> endrecord;
varID : union  <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

Initialized forms:
varID : typeID := <<constant expression>>;
varID : typeID [ list_of_array_dimensions ] := <<constant expression>>;
varID : procedure (<<optional_parameter_list>>) := <<constant 
expression>>;
varID : pointer to typeID := <<constant expression>>;
varID : enum{ <<list_of_enumeration_identifiers>> }  := <<constant 
expression>>;

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [ list_of_array_dimensions ]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external( "external_name" );
varID : typeID [ list_of_array_dimensions ]; external;
varID : typeID [ list_of_array_dimensions ]; external( "external_name" );
varID : procedure (<<optional_parameter_list>>); external;
varID : procedure (<<optional_parameter_list>>); external( 
"external_name" );
varID : pointer to typeID; external;
varID : pointer to typeID; external( "external_name" );

The first set of declarations above creates non-initialized static variables.  "Non-initialized"
means that the program does not explicitly initialize these static variables before the program
begins execution; in fact, the system initializes all non-initialized static objects to zero (or all zero
bits) when the program loads into memory.  Although you can safely assume that all non-initialized
static variables contain zero bits, it's still wise to explicitly initialize static variables you expect to
contain zero; leave the non-initialized forms of the static variable declaration for those variables
whose initial value is completely irrelevant (e.g., because the program will initialize the value
before ever using it).

Here are some examples of non-initialized variable declarations:

static
i :int32;
user :someUserType;
ary :char[ 3 ];
usrAry :someUserType[2];
procPtr:procedure (cnt:uns32);
quickRec:record

a :char;
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b :boolean;
c :char;

endrecord;
quickUn:union  

a :char;
b :boolean;
c :char;

endunion;
charPtr:pointer to char;
usrPtr :pointer to someUserType;
colors :enum{ red, green, blue };

Static variables also support initialization via some constant expression using the syntax from
the second group of declarations given earlier.  The type of the constant expression must be
compatible with the type of the static variable you are declaring (that is, the type must match or
HLA must be able to convert the constant's type to the specified type at compile time). Here are
some examples:

type
someUserType :record

b:boolean;
c:char;
w:word;
d:dword;

endrecord;

procedure p( parameter:uns32 );
begin p;

.

.

.
end p;

static
i :int32 := -4;
user :someUserType := someUserType:[ false, 'a', 0, 1];
ary :char[ 3 ] := ['a', 'b', 'c'];
usrAry :someUserType[2] := 

[
someUserType:[ false, 'a', 0, 1], 
someUserType:[ true, 'b', 1, 0]

];

procPtr:procedure (cnt:uns32) := &p;
charPtr:pointer to char := &ary[0];
usrPtr :pointer to someUserType := &user;

You will notice that you cannot provide initializer constants for all of the static variable
declarations. In particular, you cannot assign a constant to a static variable directly declared as a
record, union, or enum object.  However, as this last example demonstrates, this isn't a limitation
because you can easily create a user-defined type that is a record, union, or enum type and use that
type in a static variable declaration (e.g., as was done with someUserType in this example).

The third syntactical form (the "no allocation" forms) create a typed label in memory without
explicitly allocating storage for that static variable.  As a result, a variable with the @nostorage
option will be sitting at the same memory location as the following variable(s) you declare in
memory.  Consider the following example:
static
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b :byte; @nostorage;
u :uns32;@nostorage;
i :int32;

The b, u, and i variables will all be sitting at the same starting address in memory; any
modification to one of these variables will modify the others, as well.  This declaration is almost
equivalent to putting these three variables into a union data type.

The static declaration section also allows the declaration of external (and public) variables (see
the "External Forms" syntax given earlier).  Each external declaration can take one of two forms,
one using the "external;" declaration and one using the "external( "external_name" );" declaration.
For example:

static
b :byte; external;
u :uns32;external( "u_var" );

When external appears by itself, HLA will use the declared variable's name (e.g., b in this
example) as the external name. Whenever you use the second form (with the string argument),
HLA will use the declared name within the current source file and use the string name supplied as
the external argument as the external name (e.g., u_var in place of u in this example).

When you compile and link your program, the system assumes that you have declared all
external static variables in some other object module (that you link with the file containing the
external declaration). The file containing the actual variable declaration must define the symbol as
a public symbol.  You create a public symbol by having both an external definition of the symbol
and a regular declaration of that symbol, e.g.,

static
b :byte; external;
b :byte := 1;

u :uns32;external( "u_var" );
u :uns32 := 2;

All public and non-external variables in a static section will consume the corresponding
amount of space in the executable program's disk file.  This is true even if you don't explicitly
assign a value to a static object using the initializer syntax.  If you don't explicitly assign a value to
a static variable, HLA will write a zero to the corresponding location on the disk.  This is how the
system initializes those variables when the program begins running: it simply copies the data from
the disk file to the location in memory where the variable will be accessed.  As non-initialized
variables have zeros written to the disk file at their corresponding locations, the operating system
will load those zeros into the memory locations reserved for such variables, thus initializing them to
zero.

An HLA static declaration section can also appear in the body of a procedure or program. In
such a case, you must explicitly terminate the static declaration section with an endstatic clause.
Here's an example of such a declaration section:

procedure p;
begin p;

.

.

.
static

b :byte := 1;
w :word;
d :dword; external;
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endstatic;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of static declaration section is to support variable
declarations in macros that might need to declare static variables but are invoked within the body of
the procedure.  It would be unusual for you to explicitly declare static variables this way.

10.2.7 The HLA STORAGE Declaration Section
The storage section is where you declare uninitialized static variables in an HLA namespace,

class, procedure, method, iterator, or program. The basic syntax for an HLA storage section is
similar to that for static except you are not allowed to initialize any variables you declare in the
storage section. The syntax is the following:

storage
<< storage variable declarations >>

or

storage
<< storage variable declarations >>

endstorage;

Each storage variable declaration can take one of the following forms:

Standard forms:
varID : typeID;
varID : typeID [ list_of_array_dimensions ];
varID : procedure (<<optional_parameter_list>>);
varID : record  <<record_field_declarations>> endrecord;
varID : union  <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [ list_of_array_dimensions ]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external( "external_name" );
varID : typeID [ list_of_array_dimensions ]; external;
varID : typeID [ list_of_array_dimensions ]; external( "external_name" );
varID : procedure (<<optional_parameter_list>>); external;
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varID : procedure (<<optional_parameter_list>>); external( 
"external_name" );
varID : pointer to typeID; external;
varID : pointer to typeID; external( "external_name" );

Other than you cannot assign an initial value to a storage variable, the declaration of the
variables in the storage section is identical to that of the static section.  Please see the discussion in
the static section for more details.

As far as your program is concerned, storage variables are static objects exactly like variables
you declare in a static section. The only real difference between variables you declare in a storage
section and those you declare in a static section is that the disk file holding the program's data and
code does not contain any data for the individual variables. Instead, HLA makes note of the number
of bytes for all your storage variable declarations and stores this size in the object file it produces.
When the operating system loads your program into memory, it makes note of this size and
allocates a sufficient amount of space for these "BSS" (Block Started by a Symbol - an ancient
assembly language term) variables and then writes zeros to that block of storage so that the
variables are all initialized to zero when the program begins running.  Although your program will
take the same amount of storage in memory regardless of whether you declare your variables in the
storage or static section, you may save some disk space in the executable file if you declare your
uninitialized variables in the storage section rather than the static section.

An HLA storage declaration section can also appear in the body of a procedure or program. In
such a case, you must explicitly terminate the static declaration section with an endstorage clause.
Here's an example of such a declaration section:

procedure p;
begin p;

.

.

.
storage

b :byte;
w :word;
d :dword; external;

endstorage;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of storage declaration section is to support
variable declarations in macros that might need to declare storage variables but are invoked within
the body of the procedure.  It would be unusual for you to explicitly declare storage variables this
way.

10.2.8 The HLA READONLY Declaration Section
The readonly section is where you declare static read-only values in an HLA namespace,

class, procedure, method, iterator, or program. The basic syntax for an HLA readonly section is
the following:

readonly
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<< readonly variable declarations >>

or

readonly
<< static variable declarations >>

endreadonly;

Each readonly object declaration can take one of the following forms:

Initialized forms:
varID : typeID := <<constant expression>>;
varID : typeID [ list_of_array_dimensions ] := <<constant expression>>;
varID : procedure (<<optional_parameter_list>>) := <<constant 
expression>>;
varID : pointer to typeID := <<constant expression>>;
varID : enum{ <<list_of_enumeration_identifiers>> }  := <<constant 
expression>>;

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [ list_of_array_dimensions ]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external( "external_name" );
varID : typeID [ list_of_array_dimensions ]; external;
varID : typeID [ list_of_array_dimensions ]; external( "external_name" );
varID : procedure (<<optional_parameter_list>>); external;
varID : procedure (<<optional_parameter_list>>); external( 
"external_name" );
varID : pointer to typeID; external;
varID : pointer to typeID; external( "external_name" );

Note that there are no non-initialized forms that have storage allocated for them.  A readonly
object must have an initializer attached to it, have the @nostorage attribute (in which case it
inherits the initial value of the following readonly object you declare), or it must be an external
declaration.

HLA places all objects you declare in a readonly section into memory that the operating
system write protects.  Any attempt to store data into a readonly object at run time will result in a
segmentation/access violation fault.  This is enforced by the operating system, not by HLA. You
can create an instruction that will store data into a readonly object and HLA will compile the
program just fine. When you try to run the program, however, it will generate an exception when
you attempt to execute that instruction.

An HLA readonly declaration section can also appear in the body of a procedure or program.
In such a case, you must explicitly terminate the readonly declaration section with an endreadonly
clause.  Here's an example of such a declaration section:

procedure p;
begin p;
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.

.

.
readonly

b :byte := 1;
w :word := 2;
d :dword; external;

endreadonly;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of readonly declaration section is to support
variable declarations in macros that might need to declare readonly variables but are invoked
within the body of the procedure.  It would be unusual for you to explicitly declare readonly
variables this way.

10.2.9 The HLA PROC Declaration Section
The proc section is where you declare "new style" procedures, iterators, and methods.  The

chapter on procedures goes into detail about the proc section, please see the discussion of the proc
section in that chapter.

10.2.10 THE HLA NAMESPACE Declaration Section
HLA supports a special declaration section known as a namespace.  A namespace is a

collection of declarations that HLA gathers together under a single identifier (the namespace
identifier).  A namespace declaration uses the following syntax:
namespace userNamespaceID;

<< namespace declarations >>

end userNamespaceID;

userNamespaceID is an identifier you associate with the namespace declarations; you will use
this identifier when referencing members of the namespace in your application.  The body of the
namespace,  << namespace declarations >>, can be any of the following declaration sections:

const
val
type
static
readonly
storage
proc
old-style procedure, method, and iterator declarations
Note that label and var declaration sections are illegal in a namespace.  In addition, you cannot

nest namespace declarations (that is, namespace declarations are not legal in a namespace).
Namespace declarations should always appear an lex-level one in a program or unit. In HLA

v2.x namespaces have a relatively kludged implementation and strange things might happen if you
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declare namespaces within classes, procedures, methods, or iterators; namespace declarations have
not been extensively tested in such cases and will probably fail to work properly.

An unusual feature about namespaces is that the namespace identifier does not have to be
unique within its scope (that is, at lex level one).  You can have multiple namespace declarations in
a program with the same namespace identifier.  HLA will simply combine these separate
namespaces into a single unit. This is useful, for example, when you've got several different include
files and each include file contains a common namespace declaration with the intent of
constructing one big name space from the three separate ones.  Although the namespace identifier
need not be unique, all the declarations in a namespace with a given identifier must be unique.
That is, you cannot declare two objects with the same name in a single name space.

One of the principle purposes of an HLA namespace is to prevent name space pollution.  As
your applications increase in size, and especially as you start to link in libraries of subroutines you
(or other people) have created, it becomes difficult to avoid reusing names that other code is
already using.  For example, you might want to write a put macro or procedure to output data in
some special way.  However, put is a very common name (for example, the HLA Standard Library
uses it) so you'd probably have to dream up a different name if you wanted to use this identifier.
This is where name spaces come to the rescue. You can encapsulate every instance of the put
identifier in a separate namespace and avoid the conflicts.  For example, the HLA Standard Library
uses the put identifier all over the place, but it's buried in the stdout, stderr, fileio, str, and other
name spaces, so these identifiers don't conflict with one another.

To access an identifier that is a member of a namespace, you use the same dot notation that
HLA uses for record, union, and class field access.  To access a field from a namespace you
specify the name space identifier, a period (dot), followed by the field name. For example, to
invoke the put macro in the HLA Standard Library stdout namespace, you use the (very familiar)
sequence stdout.put.  If you create your own namespace, you simply substitute your name space
identifier and the field name, e.g.,:
program nsDemo;

namespace myNamespace;

static
x:dword;

procedure pp( p:dword );
begin pp;
end pp;

end myNamespace;

begin nsDemo;

myNamespace.pp( myNamespace.x );
            

end nsDemo;

As noted above, namespaces in HLA have a somewhat kludged implementation. One artifact
of this implementation is that within a namespace no global symbols (symbols declared outside the
namespace) are directly visible.  This includes some HLA-defined symbols (such as true and
false) in addition to any symbols you've defined.  If you need to reference any symbols defined
outside the namespace within code (or expressions) inside the namespace, you will need to prepend
the @global: string to the global symbol; otherwise, HLA will generate an unknown symbol error.
Here is an example of using the @global modifier:

program nsDemo;
type

array:byte[256];

namespace myNamespace;
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static
b:boolean := @global:true;

procedure pp( p:@global:array );
begin pp;
end pp;

end myNamespace;

static
a :array;

begin nsDemo;

myNamespace.pp( a );
            

end nsDemo;

A namespace declaration section may contain external- and forward-declared objects.
Forward and public objects must be defined somewhere in the namespace within the current
compilation, but you could have the external/forward definition in one instance of a particular
namespace and the actual declaration of the object in another instance of that same namespace, e.g.,

program nsDemo;
namespace myNamespace;

static
b:boolean; external;

procedure pp( p:dword ); forward;

end myNamespace;

// Assume some other code is here...

namespace myNamespace;

static
b:boolean;

procedure pp( p:dword );
begin pp;
end pp;

end myNamespace;

begin nsDemo;
end nsDemo;

This example is rather trivial, but it's not hard to imagine a better one. The HLA Standard
Library include files, for example, contain dozens of namespace declarations containing external
entries.  The actual source code for the HLA Standard Library contains the actual implementation
within a namespace declaration section (in a unit).

One big advantage to using namespaces is that they improve HLA's compilation speed when
dealing with a large number of symbols.  Namespaces use a special symbol table lookup algorithm
that is much faster that the standard symbol table lookup algorithms that HLA uses for symbols
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defined outside a namespace.  Using namespaces to encapsulate a large number of symbols can
dramatically improve compile times. For example, the w.hhf header file (that encapsulates all of its
identifiers in the w namespace) used to take about 45 seconds to process on a Pentium IV
processor, prior to putting all the symbols into a namespace. After adding namespaces to HLA, the
compile time was reduced to a couple of seconds.  So if you're creating a large project with
hundreds or thousands of data variables and other symbols, you might want to consider sticking
those symbols into a namespace in order to reduce compilation time.
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