
HLA Reference Manual 5/24/10 Chapter 12
12 HLA Classes and Object-Oriented Programming

12.1 Class Data Types
HLA supports object-oriented programming via the class data type. A class declaration takes

the following form:

class

<< declarations >>

endclass;

Classes allow const, val, var, static, readonly, storage, procedure, iterator, and method
declarations. In general, just about everything allowed in a program declaration section except
labels, types, and namespaces are legal in a class declaration.

Unlike C++ and Object Pascal, where the class declarations are nearly identical to the record/
struct declarations, HLA class declarations are noticeably different than HLA records because you
supply const, var, static, etc., declaration sections within the class. As an example, consider the
following HLA class declaration:

type
SomeClass:

class

var
i:int32;

const

pi:=3.14159;

method incrementI;

endclass;

Unlike records, you must put each declaration into an appropriate section. In particular, data
fields must appear in a static, readonly, storage, or var section.

Note that the body of a procedure or method does not appear in the class declaration. Only
prototypes (forward declarations) appear within the class definition itself. The actual procedure or
method is declared elsewhere in the code.

12.2 Classes, Objects, and Object-Oriented Programming in
HLA

HLA provides support for object-oriented program via classes, objects, and automatic method
invocation. Indeed, supporting method calls requires HLA to violate an important design principle
(that HLA generated code does not disturb values in any registers except ESP and EBP).
Nevertheless, supporting object-oriented programming and automatic method calls was so
important, an exception was made in this instance. More on that in a moment.

It is worthwhile to review the syntax for a class declaration. First, class declaration may only
appear in a type section within an HLA program. You cannot define classes in the var, static,
storage, or readonly sections and HLA does not allow you to create class constants1. Within the
type section, a class declaration takes one of the following forms:
Public Domain Created by Randy Hyde Page 222

HLA Reference Manual 5/24/10 Chapter 12
type
baseClass:

class
Declarations, including const,
val, var, and static sections, as
well as procedures, methods, and
macros.

endclass;

derivedClass:
class inherits(baseClass)

Declarations, including const,
val, var, and static sections, as
well as procedure and method prototypes, and
macros.

endclass;

Note that you may not include type sections or namespace sections in a class. Allowing type
sections in a class creates some special problems (having to due with the possibility of nested class
definitions). Name spaces are illegal because they allow type sections internally (and there is no
real need for name spaces within a class).

Note that you may only place procedure, iterator, and method prototypes in a class
definition. Procedure and method prototypes look like a forward declaration without the forward
reserved word; they use the following syntax:

procedure procName(optional_parameters); options
method methodName(optional_parameters); options
iterator iterName(optional_parameters); optional_external

procName, iterName, and methodName are the names you wish to assign to these program
units. Note that you do not preface these names with the name of the class and a period.

If the procedure, iterator, or method has any parameters, they immediately following the
procedure/iterator/method name enclosed in parentheses. The parentheses must not be present if
there are no parameters. A semicolon immediately follows the parameters, or the procedure/
method name if there are no parameters.

12.3 The THIS and SUPER Reserved Words
Within a class method, procedure, or iterator, you will often need to access one of the class

fields of the current object. Upon entry into a class method or iterator, the ESI register will always
be pointing at the class object’s data. Upon entry into a class procedure, the ESI register will either
contain NULL (if you call the class procedure directly, specifying the class name rather than an
object name) or a pointer to the object’s data (if you call the class procedure using an object name
or object pointer name). You can use HLA’s type coercion operation to access the object’s data
fields or call other methods in the class, e.g.,:

method someClass.SomeMethod;
begin SomeMethod;

mov((type someClass [esi]).someField, eax);
(type someClass [esi]).someOtherMethod(eax);

1. Of course, you may create class variables (objects) by specifying the class type name in the var or static
sections.
Public Domain Created by Randy Hyde Page 223

HLA Reference Manual 5/24/10 Chapter 12
end SomeMethod;

Of course, you must take care not to overwrite the value passed in ESI to the method (or iterator or
procedure) when using it in this fashion.

HLA offers a special reserved word, this, that simplifies accessing fields of the current
object. The this keyword automatically expands to “(type current_object_class [esi])”, so you
could write the previous code thusly:

method someClass.SomeMethod;
begin SomeMethod;

mov(this.someField, eax);
this.someOtherMethod(eax);

end SomeMethod;

Note that calling a class function associated with any other object will load ESI with the
address of that object’s data; so if you make such a call within a method the current value in ESI
may be replaced. Using this after such a call will produce undefined results:

method someClass.aMethod;
begin aMethod;

someOtherObject.itsMethod(0);
mov(this.someField, eax); // Incorrect! ESI is wiped out!

end aMethod;

On occasion, a method may need to call the base class’ version of that method in order to
handle some operations done by the base class. The intent might be like the following (incorrect
example):

method derivedClass.someFunction;
begin someFunction;

// Attempt to call the base class’ method:

(type baseClass [esi]).someFunction();

// Do some work specific to this class:
.
.
.

end someFunction;

This won’t work as intended. The code above will likely end up in an infinite loop because the
current object’s virtual method table (VMT) entry for someFunction points at the
derivedClass.someFunction method. Simply coercing the type of [esi] won’t change this
(indeed, this is how polymorphism in object-oriented programming works). If you really want to
call the base class’ method, you should use the super keyword. The super keyword is similar to
this except that it is only valid for method calls. Consider the following example:

method derivedClass.someFunction;
begin someFunction;
Public Domain Created by Randy Hyde Page 224

HLA Reference Manual 5/24/10 Chapter 12
// Attempt to call the base class’ method:

super.someFunction();

// Do some work specific to this class:
.
.
.

end someFunction;

The difference between this and super is that the super keyword loads the EDI register
(which points at the VMT) with the address of the base class’ VMT rather than the current classes
VMT. This forces the call to the base class’ method rather than to the current (derived) class’
method. See the discussion of the override keyword later in the chapter for more details on
derived and base class methods.

12.4 Class Procedure and Method Prototypes
Class procedure and method prototypes allow two options: an @returns clause and/or an

external clause. The @pascal, @cdecl, @stdcall, @nodisplay and @noframe options
are not allowed in the prototype. See the section on procedures for more details on the @returns
and external clauses. The iterator only allows the external option.

You can also use new style procedure declarations in an HLA class to declare procedures,
iterators, and macros. Here is a simple example of a class using the new style syntax:
type

myClass:
class

proc
classProc:procedure(i:int32);
classMethod:method(j:int32);
classIterator:iterator(k:int32);

endproc;

endclass;

Unlike procedures and methods, if you define a macro within a class you must supply the body
of the macro within the class definition.

Consider the following example of a class declaration:

type
baseClass:

class

var
i:int32;

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

endclass;
Public Domain Created by Randy Hyde Page 225

HLA Reference Manual 5/24/10 Chapter 12
By convention, all classes should have a class procedure named create. This is the
constructor for the class. The create procedure should return a pointer to the class object in the ESI
register, hence the @returns("esi"); clause in this example.

This procedure includes two accessor functions, geti and seti, that provide access to the
class variable i. Note that HLA classes do not support the public, private, and protected visibility
options found in HLLs like C++ and Delphi. HLA’s design assumes that assembly language
programmers are sufficiently disciplined such that they will not access fields that should be
private1.

Of course, the class’ procedures and methods must be defined at one point or another. Here are
some reasonable examples of these class definitions (a full explanation will appear later):

procedure baseClass.create;
begin create;

push(eax);
if(esi = 0) then

malloc(@size(baseClass));
mov(eax, esi);

endif;
mov(baseClass._VMT_, this._pVMT_);
pop(eax);
ret();

end create;

procedure baseClass.geti; @nodisplay; @noframe;
begin geti;

mov(this.i, eax);
ret();

end geti;

method baseClass.seti(ival:int32); @nodisplay;
begin seti;

push(eax);
mov(ival, eax);
mov(eax, this.i);
pop(eax);

end seti;

These procedure and method declarations look almost like regular procedure declarations with
one important difference: the class name and a period precede the procedure or method name on the
first line of the procedure/method declaration. Note, however, that only the procedure or method
name appears after the begin and end clauses.

Another important difference is the procedure options. Only the @nodisplay/@display,
@noalignstack/@alignstack, and @noframe/@frame options are legal here (the converse

1. Actually, HLA was designed this way because far too often programmers make fields private and other
programmers decide they really needed access to those fields, software engineering be damned. HLA relies upon
the discipline of the programmers to stay out of trouble on this matter.
Public Domain Created by Randy Hyde Page 226

HLA Reference Manual 5/24/10 Chapter 12
of the class procedure/method prototype definitions which only allow external and @returns).
Note that class procedures, methods, and iterators do not support the @pascal, @cdecl, or
@stdcall procedure options (they always use the Pascal calling convention).

Class procedures and methods must be defined at the same lex level and within the same scope
as the class declaration. Usually class declarations are a lex level zero (i.e., inside the main
program or within a unit), so the corresponding procedure and method declarations must appear at
lex level zero as well. Of course, it is legal to declare a class type within some other procedure (at
lex level one or higher). If you do this, the class procedure and method declarations must appear at
the same level.

Note that class declarations also support the new procedure declaration syntax with a proc
section. Here is the previous example using the new style procedure declarations:
type

baseClass:
class

var
i:int32;

proc
create :procedure {@returns("esi")};
geti :procedure {@returns("eax")};
seti :method(ival:int32); external;

endclass;

proc
baseClass.create: procedure;
begin create;

push(eax);
if(esi = 0) then

malloc(@size(baseClass));
mov(eax, esi);

endif;
mov(baseClass._VMT_, this._pVMT_);
pop(eax);
ret();

end create;

baseClass.geti :procedure: @nodisplay @noframe;
begin geti;

mov(this.i, eax);
ret();

end geti;

baseClass.seti :method(ival:int32); @nodisplay;
begin seti;

push(eax);
mov(ival, eax);
mov(eax, this.i);
Public Domain Created by Randy Hyde Page 227

HLA Reference Manual 5/24/10 Chapter 12
pop(eax);

end seti;

12.5 Inheritance
HLA classes support inheritance using the inherits reserved word. Consider the following

class declaration that inherits the fields from the baseClass declaration in the previous section:

derivedClass:
class inherits(baseClass)

var
j:int32;
f:real64;

endclass;

This class inherits all the fields from baseClass and adds two new fields, j and f. This
declaration is roughly equivalent to:

derivedClass:

var
i:int32;

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

var
j:int32;
f:real64;

endclass;

It is "roughly" equivalent because there is no need to create the derivedClass.create and
derivedClass.geti procedures or the derivedClass.seti method. This class inherits the
procedures and methods written for baseClass along with the field definitions.

Like records, it is possible to "override" the var fields of a base class in a derived class. To do
this, you use the overrides keyword. Note that this keyword is valid only for var fields in a class,
you may not override static objects with this keyword. Example:

derivedClass:
class inherits(baseClass)

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

var
overrides i: dword; // New copy of i for this class.
j:int32;
Public Domain Created by Randy Hyde Page 228

HLA Reference Manual 5/24/10 Chapter 12
f:real64;

endclass;

While on the subject of class var objects, you should be aware that class var objects are not
(necessarily) allocated on the stack in an activation record as are local var variables in a
procedure, method, or iterator. Class var objects are allocated in storage associated with a class
object, that actual memory could be on the stack, in static memory, or on the heap.

Occasionally, you may want to override a procedure in a base class. For example, it is very
common to supply a new constructor in each derived class (since the constructor may need to
initialize fields in the derived class that are not present in the base class). The override1

keyword tells HLA that you intend to supply a new procedure or method declaration and you do not
want to call the corresponding functions in the base class. Consider the following modifications to
derivedClass that override the create procedure and seti method:

derivedClass:
class inherits(baseClass)

var
j:int32;
f:real64;

override procedure create;
override method seti;

endclass;

When you override a procedure or method, you are not allowed to specify any parameters or
procedure options except the external option. This is because the parameters and @returns
strings must exactly match the declarations in the base class. So even though seti in this derived
class doesn’t have an explicit parameter declared, the ival parameter is still required in a call to
seti.

Of course, once you override procedures and methods in a derived class, you must provide
those program units in your code. Here is an example of a section of a program that provides
overridden procedures and methods along with their declarations:

type

 base: class

 var
 i:int32;

 procedure create;
 method geti;
 method seti(ival:int32);

 endclass;

 derived:class inherits(base)

 var

1. Note that the syntax is override, not overrides as is used for overriding data fields. This is an
unfortunate consequence of HLA’s grammar.
Public Domain Created by Randy Hyde Page 229

HLA Reference Manual 5/24/10 Chapter 12
 j:int32;

 override procedure create;
 override method seti;

 method getj;
 method setj(jval:int32);

 endclass;

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 malloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

 method base.geti; @nodisplay; @noframe;
 begin geti;

 mov(this.i, eax);
 ret();

 end geti;

 method base.seti(ival:int32); @nodisplay;
 begin seti;

 push(eax);
 mov(ival, eax);
 mov(eax, this.i);
 pop(eax);

 end seti;

 procedure derived.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);
Public Domain Created by Randy Hyde Page 230

HLA Reference Manual 5/24/10 Chapter 12

 endif;

 // Do any initialization done by the base class:

 call base.create;

 // Do our own specific initialization.

 mov(&derived._VMT_, this._pVMT_);
 mov(1, this.j);

 // Return

 pop(eax);
 ret();

 end create;

 method derived.seti(ival:int32); @nodisplay;
 begin seti;

 push(eax);
 mov(ival, eax);

 // call inherited code to do whatever it does:

 (type base [esi]).seti(ival);

 // Now handle the code that we do specially.

 mov(eax, this.j);

 // Okay, return to caller.

 pop(eax);

 end seti;

 method derived.setj(jval:int32); @nodisplay;
 begin setj;

 push(jval);
 pop(this.j);

 end setj;

 method derived.getj; @nodisplay; @noframe;
 begin getj;

 mov(this.j, eax);
 ret();

 end getj;
Public Domain Created by Randy Hyde Page 231

HLA Reference Manual 5/24/10 Chapter 12
12.6 Abstract Methods
Sometimes you will want to create a base class as a template for other classes. You will never

create instances (variables) of this base class, only instances of classes derived from this class. In
object-oriented terminology, we call this an abstract class. Abstract classes may contain certain
methods that will always be overridden in the derived classes. Hence, there is no need to actually
supply the method for this base class. HLA, however, always checks to verify that you supply all
methods associated with a class. Therefore, you normally have to supply some sort of method,
even if it’s just an empty method, to satisfy the compiler. In those instances where you really don’t
need such a method, this is an annoyance. HLA’s abstract methods provide a solution to this
problem.

You declare an abstract method in a class declaration as follows:

type
c: class

method absMethod(parameters: uns32); abstract;

proc
anotherAbsMethod:method(parms:uns32) {@returns("eax")};

abstract;

endclass;

The abstract keyword must follow the @returns option if the @returns option is present. In the
new style procedure syntax, the abstract option must follow the declaration.

The abstract keyword tells HLA not to expect an actual method associated with this class.
Instead, it is the responsibility of all classes derived from "c" to override this method. If you
attempt to call an abstract method, HLA will raise an exception and abort program execution.

12.7 Classes versus Objects
An object is an instance of a class. In plain English, this means that a class is only a data type

while an object is a variable whose type is some class type. Therefore, actual objects may be
declared in the var, static, readonly, or storage declaration section. Here are a couple of typical
examples:

var
b: base;

static
d: derived;

Each of these declarations reserves storage for all the data in the specified class type.
For reasons that will shortly become clear, most programmers use pointers to objects rather

than directly declared objects. Pointer declarations look like the following:

var
ptrToB: pointer to base;

static
ptrToD: pointer to derived;

Of course, if you declare a pointer to an object, you will need to allocate storage for the object
(call the HLA Standard Library mem.alloc routine) and initialize the pointer variable with the
Public Domain Created by Randy Hyde Page 232

HLA Reference Manual 5/24/10 Chapter 12
address of the allocated storage. As you will soon see, the class constructor typically handles this
allocation for you.

12.8 Initializing the Virtual Method Table Pointer
Whether you allocate storage for an object statically (in the static section), automatically (in

the var section), or dynamically (via a call to mem.alloc), it is important to realize that the object
is not properly initialized and must be initialized before making any method calls. Failure to do so
will most likely cause your program to crash when you attempt to call a method or access other data
in the class.

The first four bytes of every object contain a pointer to that object’s virtual method table. The
virtual method table, or VMT, is an array of pointers to the code for each method in the class. To
help you initialize this pointer, HLA automatically adds two fields to every class you create:
VMT which is a static double-word entry (the significance of this being a static entry will become
clear later) and _pVMT_ which is a var field of the class whose type is pointer to dword. _pVMT_
is where you must put a pointer to the virtual method table. The pointer value to store here is the
address of the _VMT_ entry. This initialization can be done using the following statement:

mov(&ClassName._VMT_, ObjectName._pVMT_);

ClassName represents the name of the class and ObjectName represents the name of the
static or var variable object. If you’ve allocated storage for an object pointer using mem.alloc,
you’d use code like the following:

mov(ObjectPtr, ebx);
mov(&ClassName._VMT_, (type ClassName [ebx])._pVMT_);

In this example, ObjectPtr represents the name of the pointer variable. ClassName still
represents the name of the class type.

Typically, the initialization of the pointer to the virtual method table takes place in the class’
constructor procedure (it must be a procedure, not a method!). Consider the example from the
previous section:

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

As you can see here, this example uses the keyword this._pVMT_ rather than (type
derived [esi])._pVMT_ That’s because this is a shorthand for using the ESI register as a
pointer to an object of the current class type.
Public Domain Created by Randy Hyde Page 233

HLA Reference Manual 5/24/10 Chapter 12
12.9 Creating the Virtual Method Table
For various technical reasons (related to efficiency), HLA does not automatically create the

virtual method table for you; you must explicitly tell HLA to emit the table of pointers for the
virtual method table. You can do this in either the static or the readonly declaration sections. The
simple way is to use a statement like the following in either the static or readonly section:

VMT(classname);

If you intend to reference a VMT outside the source file in which you declare it, you can use
the external option to make the symbol accessible, e.g.,

VMT(classname); external;

Note that an external declaration of this form is optional. HLA always makes the VMT name
for a class an external symbol. If you actually declare the VMT (using the first declaration above),
HLA also makes the VMT symbol public.

If you need to be able to access the pointers in this table, there are two ways to do this. First,
you can refer to the classname._VMT_ double-word variable in the class. Another way is to
directly attach a label to the VMT you create using a declaration like the following:

vmtLabel: VMT(classname);

The vmtLabel label will be a static object of type dword.
As for unnamed VMT declarations, HLA will automatically make the VMT symbol (and the

vmtLabel symbol) external and public. If you want to explicitly specify a named external VMT
declaration, you can do so with either of the following statements:

vmtLabel: VMT(classname); external;
vmtLabel: VMT(classname); external("externalVmtLabelName");

12.10Calling Methods and Class Procedures
Once the virtual method table of an object is properly initialized, you may call the methods and

procedures of that object. The syntax is very similar to calling a standard HLA procedure except
that you must prefix the procedure or method name with the object name and a period. For
example, assume you have some objects with the following types (base is the type in the examples
of the previous sections):

var
b: base;
pb: pointer to base;

With these variable declarations, and some code to initialize the pointers to the base virtual
method table, the calls to the base procedures and methods might look like the following:

b.create();
b.geti();
b.seti(5);

pb.create();
pb.geti();
pb.seti(eax);
Public Domain Created by Randy Hyde Page 234

HLA Reference Manual 5/24/10 Chapter 12
Note that HLA uses the same syntax for an object call regardless of whether the object is a
pointer or a regular variable.

Whenever HLA encounters a call to an object’s procedure or method, HLA emits some code
that will load the address of the object into the ESI register. This is the one place HLA emits code
that modifies the value in a general-purpose register! You must remember this and not expect
to be able to pass any values to an object’s procedure or methods in the ESI register. Likewise,
don’t expect the value in ESI to be preserved across a call to an object’s procedure or method. As
you will see shortly, HLA may also emit code that modifies the EDI register as well as the ESI
register. Therefor, don’t count on the value in EDI, either.

The value in ESI, upon entry into the procedure or method, is that object’s this pointer. This
pointer is necessary because the exact same object code for a procedure or method is shared by all
object instances of a given class. Indeed, the this reserved word within a method or class procedure
is really nothing more than shorthand for "(type ClassName [esi])".

Perhaps an obvious question is "What is the difference between a class procedure and a
method?" The difference is the calling mechanism. Given an object b, a call to a class procedure
emits a call instruction that directly calls the procedure in memory. In other words, class procedure
calls are very similar to standard procedure calls with the exception that HLA emits code to load
ESI with the address of the object1. Methods, on the other hand, are called indirectly through the
virtual method table. Whenever you call a method, HLA actually emits three machine instructions:
one instruction that load the address of the object into ESI, one instruction that loads the address of
the virtual method table (i.e., the first four bytes of the object) into EDI, and a third instruction that
calls the method indirectly through the virtual method table. For example, given the following four
calls:

b.create();
b.geti();

pb.create();
pb.geti();

HLA emits the following 80x86 assembly language code:

 lea(esi, [ebp-12]); //b
 call classname.create;

 lea(esi, [ebp-12]); //b
 mov([esi], edi);
 call((type dword ptr [edi+geti_offset_in_VMT]); //geti

 mov([ebp-16], esi); //pb
 call classname.create

 mov([ebp-16], esi); //b
 mov([esi], edi);
 call((type dword [edi+geti_offset_in_VMT]); //geti

HLA class procedures roughly correspond to C++’s static member functions. HLA’s methods
roughly correspond to C++’s virtual member functions. Read the next few sections on the impact
of these differences.

If you call a method within some other method using the super keyword, the code does not
fetch the VMT pointer from the current object. Instead, the code directly loads EDI with the
address of the appropriate VMT:

1. When calling a class procedure, HLA nevers disturbs the value in the EDI register. EDI is only tweaked when
you call methods.
Public Domain Created by Randy Hyde Page 235

HLA Reference Manual 5/24/10 Chapter 12
super.someMethod();

generates x86 code like the following:

 lea(edi, baseClass_VMT);
 call((type dword ptr [edi+methodOffsetInVMT]));

12.11Accessing VMT Fields
The VMT is basically an array of pointers. Offsets zero through (n-1)*4, where n is the

number of methods in a class (including inherited methods), hold pointers to each of the methods
associated with the class. The previous section described how HLA emits a call to a class method.
You can manually do this by simulating the same code that HLA emits. The @offset compile-time
function, when supplied with the name of a class method as its operand, will return an index into
the VMT where the address of that method is found. Therefore, you could manually call a method
using code like the following:

mov(objectPtr, esi); // or lea(esi, objectVar);
mov([esi], edi); // Get VMT pointer into EDI
call([edi+@offset(derivedClass.methodToCall)]);

In this example, derivedClass is the name of the class and methodToCall is the name of some
method in that class. Note that you must supply the full classname.methodname identifier to the
@offset compile-time function so HLA can properly identify the method. Of course, it’s
generally easier to call the method using objectPtr.methodToCall, but for those who insist on
calling the method using low-level code, this is how it is done.

You might be tempted to streamline the code above to something like the following:

mov(objectPtr, esi); // or lea(esi, objectVar);
call(derivedClass._VMT_[@offset(derivedClass.methodToCall)]);

Resist the temptation to do this at all costs! First, this defeats polymorphism; objectPtr might
actually contain a pointer to some other class that was derived from derivedClass. The code
immediately above will always call derivedClass.methodToCall, even if it actually should be
calling some_class_derived_from_derivedClass.methodToCall. The former example
will handle this correctly.

Before the super keyword was added to HLA, the accepted way to call a base class’ version of
some method was to manually call the method, as was done in the first example of this section
(though ESI usually contained the THIS/object pointer, so you didn’t normally need to load it into
ESI).

In HLA v2.8 and v2.9, several new fields were added to the VMT at negative offsets from the
VMT’s base address. At offset -4 there is a pointer to the parent class’ VMT (this field contains
NULL if this is a base class that has no parent class). At offset -8 is the size, in bytes, of an object
of the class’ type. At offset -12 is a string object that contains the name of the class associated with
the VMT. The HLA Standard Library hla.hhf header file contains a record definition you can use
to access these fields in a VMT:

namespace hla;

vmtRec:
record := -12;

vmtName :string;
vmtSize :uns32;
vmtParent :pointer to dword;

endrecord;
Public Domain Created by Randy Hyde Page 236

HLA Reference Manual 5/24/10 Chapter 12
end hla;

Using the record definition above, you could load the class’ name into EAX with a statement
like this:

mov((type hla.vmtRec derivedClass._VMT_).vmtName, eax);

Don’t forget to include the hla.hhf header file in order to gain access to the declaration of the
vmtRec record.

12.12Non-object Calls of Class Procedures
In addition to the difference in the calling mechanism, there is another major difference

between class procedures and methods: you can call a class procedure without an associated object.
To do so, you would use the class name and a period, rather than an object name and a period, in
front of the class procedure’s name. E.g.,

base.create();

Since there is no object here (remember, base is a type name, not a variable name, and types do
not have any storage allocated for them at run-time), HLA cannot load the address of the object into
the ESI register before calling create. This situation can create some big problems in your code if
you attempt to use the this pointer within a class procedure. Remember, an instruction like "mov(
this.i, eax);" really expands to "mov((type base [esi]).i, eax);" The question that should come to
mind is "where is ESI pointing when one makes a non-object call to a class procedure?"

When HLA encounters a non-object call to a class procedure, HLA loads the value zero
(NULL) into ESI immediately before the call. Therefore, ESI doesn’t contain junk but it does
contain the NULL pointer. If you attempt to dereference NULL (e.g., by accessing this.i) you
will probably bomb the program. Therefore, to be safe, you must check the value of ESI inside
your class procedures to verify that it does not contain zero.

The base.create constructor procedure demonstrates a great way to use class procedures to
your advantage. Take another look at the code:

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

This code follows the standard convention for HLA constructors with respect to the value in
ESI. If ESI contains zero (NULL), this function will allocate storage for a brand new object,
initialize that object, and return a pointer to the new object in ESI1. On the other hand, if ESI
Public Domain Created by Randy Hyde Page 237

HLA Reference Manual 5/24/10 Chapter 12
contains a non-null value, then this function does not allocate memory for a new object, it simply
initializes the object at the address provided in ESI upon entry into the code.

Certainly, you do not want to use this trick (automatically allocating storage if ESI contains
NULL) in all class procedures; but it’s still a real good idea to check the value of ESI upon entry
into every class procedure that accesses any fields using ESI or the this reserved word. One way to
do this is to use code like the following at the beginning of each class procedure in your program:

if(ESI = NULL) then

raise(AttemptToDerefZero);

endif;

If this seems like too much typing, or if you are concerned about efficiency once you’ve
debugged your program, you could write a macro like the following to solve your problem:

#macro ChkESI;
#if(CheckESI)

if(ESI = 0) then

raise(AttemptToDerefZero);

endif;
#endif

#endmacro

Now all you have to do is stick an innocuous ChkESI macro invocation at the beginning of
your class procedures (maybe on the same line as the begin clause to further hide it) and you’re in
business. By defining the boolean constant CheckESI to be true or false at the beginning of your
code, you can control whether this "inefficient" code is generated into your programs.

12.13Static Class Fields
There exists only one copy, shared by all objects, of any static, readonly, or storage data

objects in a class. Since there is only one copy of the data, you do not access variables in the class’
static section using the object name or the this pointer. Instead, you preface the field name with the
class name and a period.

For example, consider the following class declaration that demonstrates a very common use of
static variables within a class:

program DemoOverride;

#include("memory.hhf")
#include("stdio.hhf")
type

 CountedClass:
 class

 static
 CreateCnt:int32 := 0;

1. Of course, it is the caller’s responsibilty to save this pointer away into an object pointer variable upon return
from the class procedure.
Public Domain Created by Randy Hyde Page 238

HLA Reference Manual 5/24/10 Chapter 12

 procedure create;
 procedure DisplayCnt;

 endclass;

 procedure CountedClass.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;
 mov(&CountedClass._VMT_, this._pVMT_);
 inc(this.CreateCnt);
 pop(eax);
 ret();

 end create;

 procedure CountedClass.DisplayCnt; @nodisplay; @noframe;
 begin DisplayCnt;

 stdout.put("Creation Count=", CountedClass.CreateCnt, nl);
 ret();

 end DisplayCnt;

var
 b: CountedClass;
 pb: pointer to CountedClass;

begin DemoOverride;

 CountedClass.DisplayCnt();

 b.create();
 CountedClass.DisplayCnt();

 CountedClass.create();
 mov(esi, pb);
 CountedClass.DisplayCnt();

end DemoOverride;
Public Domain Created by Randy Hyde Page 239

HLA Reference Manual 5/24/10 Chapter 12
In this example, a static field (CreateCnt) is incremented by one for each object that is
created and initialized. The DisplayCnt procedure prints the value of this static field. Note that
DisplayCnt does not access any non-static fields of CountedClass. This is why it doesn’t
bother to check the value in ESI for zero.

There is a big issue with respect to static fields in a class. If you include the header file
containing the class definition in more than one HLA source file (that is part of a single project),
HLA will create one copy of the static object for each source file. This can produce linkage errors if
you attempt to link those files together. The solution to this problem is to create an external symbol
in the class declaration:
type

 CountedClass:
 class

 static
 CreateCnt:int32;
 external("CountedClass_CreateCnt");

 procedure create;
 procedure DisplayCnt;

 endclass;

The external declaration in this example expects you to provide an external int32 object named
CountedClass_CreateCnt. You can do this (in one of the HLA source files) using code like the
following:
static

CreateCnt :int32; external("CountedClass_CreateCnt");
CreateCnt :int32 := 0;

12.14Taking the Address of Class Procedures, Iterators, and
Methods

You can use the static address-of operator ("&") to obtain the memory address of a class
procedure, method, or iterator by applying this operator to the class procedure/method/iterator’s
name with a classname prefix. E.g.,

type
c : class

procedure p;
method m;
iterator i;

endclass;

procedure c.p; begin p; end p;
method c.m; begin m; end m;
iterator c.i; begin i; end i;

.

.

.
mov(&c.p, eax);
mov(&c.m, ebx);
mov(&c.i, ecx);
Public Domain Created by Randy Hyde Page 240

HLA Reference Manual 5/24/10 Chapter 12
Please note that when you apply the address-of operator ("&") to a class procedure/method/
iterator you must specify the class name, not an object name, as the prefix to the procedure/method/
iterator name. That is, the following is illegal given the class definition for c, above:

static
myClass: c;

.

.

.
mov(&myClass.p, eax);

12.15Program Unit Initializers and Finalizers
HLA does not automatically call an object’s constructor like C++ does. There is no code

associated with a unit that automatically executes to initialize that unit as in (Turbo) Pascal or
Delphi. Likewise, HLA does not automatically call an object’s destructor. However, HLA does
provide a mechanism by which you can automatically execute initialization and shutdown code
without explicitly specifying the code to execute at the beginning and end of each procedure. This
is handled via the HLA _initialize_ and _finalize_ strings. All programs, procedures,
methods, and iterators have these two predeclared string constants (val strings, actually) associated
with them. Whenever you declare a program unit, HLA inserts these constants into the symbol
table and initializes them with the empty string.

HLA expands the _initialize_ string immediately before the first instruction it finds after
the begin clause for a program, procedure, iterator, or method. Likewise, it expands the
finalize string immediately before the end clause in these program units. Since, by default,
these string constants hold the empty string, they usually have no effect. However, if you change
the values of these constants within a declaration section, HLA emits the corresponding code at the
appropriate point. Consider the following example:

procedure HasInitializer;
?_initialize_ := "mov(0, eax);";

begin HasInitializer;

stdout.put("EAX = ", eax, nl);

end HasInitializer;

This program will print "EAX = 0000_0000" since the _initialize_ string contains an
instruction that moves zero into EAX.

Of course, the previous example is somewhat irrelevant since you could have more easily put
the mov instruction directly into the program. The real purpose of the initialize and finalize strings
in an HLA program is to allow macros and include files to slip in some initialization code. For
example, consider the following macro:

#macro init_int32(initValue):theVar;

:forward(theVar);
theVar: int32
?_initialize_ = _initialize_ +

"mov(" +
@string:initValue +
", " +
@string:theVar +
");";

#endmacro

Now consider the following procedure:
Public Domain Created by Randy Hyde Page 241

HLA Reference Manual 5/24/10 Chapter 12
procedure HasInitedVars;
var

i: init_int32(0);
j: init_int32(-1);
k: init_int32(1);

begin HasInitedVars;

stdout.put("i=", i, " j=", j, " k=", k, nl);

end HasInitedVars;

The first init_int32 macro above expands to (something like) the following code:

i: forward(_1002_);
1002: int32
?_initialize_ := _initialize_ +

 "mov(" +
 "0" +
 ", " +
 "i" +
");";

Note that the last statement is equivalent to:
?_initialize_ := _initialize_ + "mov(0, i);"

Also note that the text object _1002_ expands to "i".

If you take a step back from this code and look at it from a high level perspective, you can see
that what it does is initialize a var variable by emitting a mov instruction that stores the macro
parameter into the var object. This example makes use of the forward declaration clause in order
to make a copy of the variable’s name for use in the mov instruction. The following is a complete
program that demonstrates this example (it prints "i=1", if you’re wondering):

program InitDemo;
#include("stdlib.hhf")

 #macro init_int32(initVal):theVar;

 forward(theVar);
 theVar:int32;
 ?_initialize_ :=
 initialize +
 "mov(" +
 @string:initVal +
 ", " +
 @string:theVar +
 ");";
 #endmacro

var
 i:init_int32(1);

begin InitDemo;
Public Domain Created by Randy Hyde Page 242

HLA Reference Manual 5/24/10 Chapter 12
 stdout.put("i=", i, nl);

end InitDemo;

Note how this example uses string concatenation to append an initialization string to the end of
the existing string. Although _initialize_ and _finalize_ start out as the empty string, there
may be more than one initialization string required by the program. For example, consider the
following modification to the code above:

var
i:init_int32(1);
j:init_int32(2);

The two macro invocations above produce the initialization string "mov(1, i);mov(2,j);". Had
the macro not used string concatenation to attach its string to the end of the existing
initialize string and then only the last initialization statement would have been generated.

You can put any number of statements into an initialization string, although the compiler tools
used to write HLA limit the length of the string to something less than 32,768 characters. In
general, you should try to limit the length of the initialization string to something less than 4,096
characters (this includes all initialization strings concatenated together within a single procedure).

Two very useful purposes for the initialization string include automatic constructor invocation
and Unit initialization code invocation. Let’s consider the unit situation first. Associated with
some unit you might have some code that you need to execute to initialize the code when the
program first loads in to memory, e.g.,

unit NeedsInit;
#include("NeedsInit.hhf")
static

i:uns32;
j:uns32;

procedure InitThisUnit;
begin InitThisUnit;

mov(0, i);
mov(1, j);

end InitThisUnit;
.
.
.

end NeedsInit;

Now suppose that the NeedsInit.hhf header file contains the following lines:

procedure InitThisUnit; @external;
?_initialize_ := _initialize_ + "InitThisUnit();";

When you include the header file in your main program (that uses this unit), the statement
above will insert a call to the InitThisUnit procedure into the main program. Therefore, the
main program will automatically call the InitThisUnit procedure without the user of this unit
having to explicitly make this call.

You can use a similar approach to automatically invoke class constructors and destructors in a
procedure. Consider the following program that demonstrates how this could work:
Public Domain Created by Randy Hyde Page 243

HLA Reference Manual 5/24/10 Chapter 12
program InitDemo2;
#include("stdlib.hhf")

type
_MyClass:

class
procedure create;
var

i: int32;

endclass;

#macro MyClass:theObject;
forward(theObject);
theObject: _MyClass;
?_initialize_ := _initialize_ +

@string:theObject +
".create();"

#endmacro

procedure _MyClass.create;
begin create;

push(eax);
if(esi = 0) then

mem.alloc(@size(_MyClass));
mov(eax, esi);

endif;
mov(&_MyClass._VMT_, this._pVMT_);
mov(12345, this.i);
pop(eax);

end create;

procedure UsesMyClass;
var

mc:MyClass;

begin UsesMyClass;

stdout.put("mc.i=", mc.i, nl);

end UsesMyClass;

static
vmt(_MyClass);

begin InitDemo2;

UsesMyClass();

Public Domain Created by Randy Hyde Page 244

HLA Reference Manual 5/24/10 Chapter 12
end InitDemo2;

The variable declaration mc:MyClass inside the UsesMyClass procedure (effectively)
expands to the following text:

mc: _MyClass;
?_initialize_ := _initialize_ + "mc.create();";

Therefore, when the UsesMyClass procedure executes, the first thing it does is call the
constructor for the mc/_MyClass object. Notice that the author of the UsesMyClass procedure
did not have to explicitly call this routine.

You can use the _finalize_ string in a similar manner to automatically call any destructors
associated with an object.

Note that if an exception occurs and you do not handle the exception within a procedure
containing _finalize_ code, the program will not execute the statements emitted by
finalize (any more than the program will execute any other statements within a procedure that
an exception interrupts). If you absolutely, positively, must ensure that the code calls a destructor
before leaving a procedure (via an exception), then you might try the following code:

?_initialize_ :=
initialize +
<<string to call constructor>> +
"try ";

?_finalize_ :=
finalize +
"anyexception push(eax); " +
<<string to call destructor>> +
"pop(eax); raise(eax); endtry; " +
<<string to call destructor>>;

This version slips a try..endtry block around the whole procedure. If an exception occurs, the
anyexception handler traps it and calls the associated destructor, then re-raises the exception so the
caller will handle it. If an exception does not occur, then the second call to the destructor above
executes to clean up the object before control transfers back to the caller. Note that this is not a
perfect solution because it does not prevent the programmer from slipping in their own try..endtry
statement with an anyexception clause that doesn't bother to execute the _finalize_ code.
Public Domain Created by Randy Hyde Page 245

	12 HLA Classes and Object-Oriented Programming
	12.1 Class Data Types
	12.2 Classes, Objects, and Object-Oriented Programming in HLA
	12.3 The THIS and SUPER Reserved Words
	12.4 Class Procedure and Method Prototypes
	12.5 Inheritance
	12.6 Abstract Methods
	12.7 Classes versus Objects
	12.8 Initializing the Virtual Method Table Pointer
	12.9 Creating the Virtual Method Table
	12.10 Calling Methods and Class Procedures
	12.11 Accessing VMT Fields
	12.12 Non-object Calls of Class Procedures
	12.13 Static Class Fields
	12.14 Taking the Address of Class Procedures, Iterators, and Methods
	12.15 Program Unit Initializers and Finalizers

