
HLA Reference Manual 5/24/10 Chapter 13
13 The HLA Compile-Time Language

13.1 HLA Compile-Time Language, Macros, and Pragmas
This topic section describes one of HLA’s more impressive features - the compile time

language. Combined with the macro preprocessor, the HLA compile-time language lets you
customize the HLA language in almost an infinite variety of ways.

Compile-time programs are just that- programs that execute while HLA is compiling your
source file. You embed compile-time language statements directly in your HLA source files and
these short program fragments control how HLA compiles your assembly code.

This section doesn’t fully explain the HLA compile-time language because you’ve already
seen some major parts of it. For example, val constants in the HLA source file are equivalent to
compile-time variables. The "?" statement is the compile-time assignment statement. This topic
section, therefore, builds on the material that appears elsewhere in HLA Reference Manual.

13.2 Viewing the Output of the HLA Compile-Time Language
The HLA compile-time language can generate assembly language statements during the

compilation of an HLA program. Because it isn't always obvious what code the compile-time
language is generating, you'll sometimes need the ability to view the output of the HLA compiler.
This is easily accomplished using the HLA command-line option "-hla". This command-line option
tells HLA to produce an assembly language output file that uses a pseudo-HLA syntax. The result
is not compilable under HLA, but it will show you the "pure" assembly language output that HLA
produces from your original source file. Here's an example source file:
program demoCTLoutput;
var

array:dword[11];
begin demoCTLoutput;

#for(i := 0 to 10)

mov(i, array[i*4]);

#endfor;

end demoCTLoutput;

Here is the output that the HLA compiler produces for the main program when you supply the
"-hla" command-line option:
begin _HLAMain;
procedure start;
begin start;
end start;

 call BuildExcepts__hla_;
 pushd(0);
 push(ebp);
 push(ebp);
 lea([esp-4], ebp);
 sub(44, esp);
 and(-4, esp);

 mov(0, (type dword [ebp-48]));
 mov(1, (type dword [ebp-44]));
 mov(2, (type dword [ebp-40]));
Public Domain Created by Randy Hyde Page 245

HLA Reference Manual 5/24/10 Chapter 13
 mov(3, (type dword [ebp-36]));
 mov(4, (type dword [ebp-32]));
 mov(5, (type dword [ebp-28]));
 mov(6, (type dword [ebp-24]));
 mov(7, (type dword [ebp-20]));
 mov(8, (type dword [ebp-16]));
 mov(9, (type dword [ebp-12]));
 mov(10, (type dword [ebp-8]));
QuitMain__hla_::
 pushd(0);
 call((type dword __imp__ExitProcess@4));
end _HLAMain;

13.3 #linker Directive
 The #linker directive passes a single string argument along to the linker. This is typically

done to specify the name of some object or library file to link with the current file during the link
edit phase. This directive has the following syntax:

#linker("linker directive or file")

For example, under Linux the following #linker commands tell HLA to have the linker link in
part of the C Standard Library:
#if(os.linux)

#linker("-I /lib/ld-linux.so.2")
#linker("-lc")

#endif

As you can see from this example, each #linker string argument is really just a command-line
argument that is passed along to the GNU ld linker (which is exactly how the #linker command
operates under any OS). If multiple #linker commands appear in a source file (as is the case in this
example), HLA concatenates the command-line arguments together (with a space separating them)
prior to passing the command-line arguments to the linker.

13.4 The #Include Directive
 Like most languages, HLA provides a source inclusion directive that inserts some other file

into the middle of a source file during compilation. HLA’s #include directive is very similar to the
pragma of the same name in C/C++ and you primarily use them both for the same purpose:
including library header files into your programs.

HLA’s include directive has the following syntax:

#include(string_expression)

Note that any arbitrary compile-time string expression is legal. You are not limited to a literal
string constant.

The #include directive is legal anywhere whitespace is legal. The string specifies a filename
that HLA will insert into the program during compilation at the point the #include appears. If HLA
cannot find the file specified by the string constant in the current directory (or in the directory
specified if the string contains a pathname), then HLA tries to find the file in the location specified
by the "hlainc" environment variable. If HLA still doesn’t find the file, HLA will report an error.

Although you can use the #include directive to insert any arbitrary text at an arbitrary point in
your program, the vast majority of the time you will use #include to include a library header file
(either an HLA Standard Library header file or a library header file you’ve written) into your
program. HLA requires that you compile all external files at lex level zero. Therefore, if you are
Public Domain Created by Randy Hyde Page 246

HLA Reference Manual 5/24/10 Chapter 13
including some declarations into your program, the #include directive should be just inside the
main program. Convention dictates that #include directives that include library headers should
appear immediately after the program or unit header in a file.

13.5 The #IncludeOnce Directive
When composing complex header files, particularly when constructing library header files,

you may find in necessary to insert a #include("file") directive into some other header files.
Generally, this is not a problem, HLA certainly allows nested include files (up to 256 files deep).
However, unless you are very careful about how you organize your files, it is very easy to create an
"include loop" where one header file includes another and that other header file includes the first.
Attempting to compile a program that includes either header file results in an infinite "include
loop" during compilation; clearly, this is not desirable.

 The standard way to handle this situation is to surround all the statements in an include file
with a #if statement as follows:

#if(!@defined(headerfilename_hhf))

?headerfilename_hhf := true;

<< Statements associated with this header file go here >>

#endif

The first time HLA includes this file the symbol "headerfilename_hhf" is not defined, so HLA
processes the statements in the body of the #if statement. The very first statement defines this
"headerfilename_hhf" symbol (the value and type of this symbol are irrelevant for our purposes;
only the fact that the symbol exists is important). Thereafter, if some other header file includes this
file a second (or additional) time, the "headerfilename_hhf" symbol is defined, so HLA skips all the
statements in the header file since the value of the boolean expression in the #if statement is false.
Therefore, HLA only processes the statements of this header file (at least those inside the #if
statement) the first time it encounters this particular header file.

A drawback to this scheme is that HLA must still open the header file and read every line from
the file, even if it ignores all the lines in the file. For large header files, (e.g., the "stdlib.hhf" header
file) this can consume a significant amount of time during compilation. The #includeonce
directive provides a solution for this problem.

You use the #includeonce directive just like the #include directive. The only difference
between the two is that HLA keeps track of all files it has processed using the #include or
#includeonce directives and will not process a header file a second time if you attempt to include it
using the #includeonce directive.

Whenever HLA processes the #includeonce directive, it first compares its string operand with
a list of strings appearing in previous #include or #includeonce directives. If it matches one of
these previous strings, then HLA ignores the #includeonce directive; if the include filename does
not appear in HLA’ internal list, then HLA adds this filename to the list and includes the file.

Note that HLA’s #includeonce directive only compares strings for equality. If you use two
separate filenames for the same file, HLA will not detect this and it will include the file a second
time. E.g., if the current directory is "C:\hlafiles" then the following sequence will include the file
"whoops.hhf" twice:

#IncludeOnce("whoops.hhf")
#IncludeOnce("c:\whoops.hhf")

Also note that the #include directive will include its file regardless of whether the program
previously included that file with a #includeonce directive, e.g., the following sequence also
includes "whoops.hhf" twice:

#IncludeOnce("whoops.hhf")
#Include("whoops.hhf")
Public Domain Created by Randy Hyde Page 247

HLA Reference Manual 5/24/10 Chapter 13
For these two reasons, it’s still a good idea to protect all header files using the #if technique
mentioned earlier, even if you use the #includeonce directive throughout.

13.6 Macros
HLA has one of the most powerful macro expansion facilities of any programming language.

HLA’s macros are the key to extending the HLA language. The following subsections describe
HLA’s powerful macro processing facilities.

13.6.1 Standard Macros
HLA provides powerful macro capabilities. You can declare macros almost anywhere

whitespace is allowed in a program using the following syntax:

#macro identifier (optional_parameter_list) ;
statements

#endmacro

Note that a semicolon does not follow the #endmacro clause.
Example:

#macro MyMacro;
?i = i + 1;

#endmacro

The optional parameter list must be a list of one or more identifiers separated by commas.
Unlike procedure declarations, you do not associate a type with macro parameters. HLA
automatically associates the type "text" with macro parameters (except for two special cases noted
below). Example:

#macro MacroWParms(a, b, c);
?a = b + c;

#endmacro

 Optionally, the last (or only) name in the identifier list may take the form identifier[].
This syntax tells the macro that it may allow a variable number of parameters and HLA will create
an array of string objects to hold all the parameters (HLA uses a string array rather than a text array
because text arrays are illegal). Example:

#macro MacroWVarParms(a, b, c[]);
?a = b + @text(c[0]) + c[1]);

#endmacro

If the macro does not allow any parameters, then you follow the identifier with a semicolon
(i.e., no parentheses or parameter identifiers). See the first example in this section for a macro
without any parameters.

When using the array form (variable parameters) in a macro argument list, HLA will parse the
remaining actual parameters and shove them into the array, one (perceived) parameter per string
array element. Sometimes, however, you might want to handle the parameter parsing chores
yourself (for example, to allow commas as part of an actual macro parameter) rather than have
HLA handle this task for you. HLA provides an option to tell it to grab all remaining (or simply all)
parameter text passed in the actual parameter list and stores all this data into a compile-time string
object. To achieve this, you prefix the last (or only) formal macro parameter with the reserved word
string, e.g.,

#macro MacroWStringParms(a, b, string c);
Public Domain Created by Randy Hyde Page 248

HLA Reference Manual 5/24/10 Chapter 13
<<macro body>>
#endmacro

In this example, the first two actual parameters will be assigned to the text objects a and b within
the macro. Any remaining parameters will be collected as a single string and stored into the c
formal parameter as a string.

One very useful purpose for string macro parameters is to allow you to grab a list of parameters
you want to pass on to some other macro or procedure as a single object. E.g.,

procedure abc(a:byte; b:word; c:dword);
begin abc;
 .
 .
 .
end abc;

#macro CallsAbc(string abcParms);
 .
 .
 .
 abc(@text(abcParms));
 .
 .
 .
#endmacro
 .
 .
 .
 CallsAbc(1, 2, 3);

The final macro invocation in this sequence passes the three parameters "1,2,3" to the abc function.

 Occasionally you may need to define some symbols that are local to a particular macro
invocation (that is, each invocation of the macro generates a unique symbol for a given identifier).
The local identifier list allows you to do this. To declare a list of local identifiers, simply following
the parameter list (after the parenthesis but before the semicolon) with a colon (":") and a comma
separated list of identifiers, e.g.,

#macro ThisMacro(parm1):id1,id2;
...

HLA automatically renames each symbol appearing in the local identifier list so that the new
name is unique throughout the program. HLA creates unique symbols using some form such as
_XXXX_HLA_ where XXXX is some hexadecimal numeric value. To guarantee that HLA can
generate unique symbols, you should avoid defining symbols of this form in your own programs (in
general, symbols that begin and end with an underscore are reserved for use by the compiler and the
HLA standard library). Example:

#macro LocalSym : i,j;

j: cmp(ax, 0)
jne(i)
dec(ax)
jmp(j)

i:
#endmacro
Public Domain Created by Randy Hyde Page 249

HLA Reference Manual 5/24/10 Chapter 13
Without the local identifier list, multiple expansions of this macro within the same procedure
would yield multiple statement definitions for i and j. With the local statement present, however,
HLA substitutes symbols similar to _0001_HLA_ and _0002_HLA_ for i and j for the first
invocation and symbols like _0003_HLA_ and _0004_HLA_ for i and j on the second invocation,
etc. This avoids duplicate symbol errors if you do not use (poorly chosen) identifiers like
_0001_HLA_ and _0004_HLA_ in your code.

The statements section of the macro may contain any legal HLA statements (including
definitions of other macros). However, the legality of such statements is controlled by where you
expand the macro.

To invoke a macro, you simply supply its name and an appropriate set of parameters. Unless
you specify a variable number of parameters (using the array syntax) then the number of actual
parameters must exactly match the number of formal parameters. If you specify a variable number
of parameters, then the number of actual parameters must be greater than or equal to the number of
formal parameters (not counting the array parameter).

During macro expansion, HLA automatically substitutes the text associated with an actual
parameter for the formal parameter in the macro’s body. The array parameter, however, is a string
array rather than a text array so you will have force the expansion yourself using the @text
function:

#macro example(variableParms[]);
?@text(variableParms[0]) := @text(variableParms[1]);

#endmacro

Actual macro parameters consist of a string of characters up to, but not including a separate
comma or the closing parentheses, e.g.,

example(v1, x+2*y)

"v1" is the text for parameter #1, "x+2*y" is the text for parameter #2. Note that HLA strips
all leading whitespace and control characters before and after the actual parameter when expanding
the code in-line. The example immediately above would expand do the following:

?v1 := x+2*y;

 If (balanced) parentheses appear in some macro’s actual parameter list, HLA does not count
the closing parenthesis as the end of the macro parameter. That is, the following is legal:

example(v1, ((x+2)*y))

This expands to:

?v1 := ((x+2)*y);

 If you need to embed commas or unmatched parentheses in the text of an actual parameter, use
the HLA literal quotes #(and)# to surround the text. Everything (except surrounding whitespace)
inside the literal quotes will be included as part of the macro parameter’s text. Example:

example(v1, #(array[0,1,i])#)

The above expands to:

?v1 := array[0,1,i];

Without the literal quote operator, HLA would have expanded the code to

?V1 := array[0;
Public Domain Created by Randy Hyde Page 250

HLA Reference Manual 5/24/10 Chapter 13
and then generated an error because (1) there were too many actual macro parameters (four instead
of two) and (2) the expansion produces a syntax error.

Of course, HLA’s macro parameter parser does not consider commas appearing inside string
or character constants as parameter separators. The following is legal, as you would expect:

example(charVar, ‘,’)

As you may have noticed in these examples, a macro invocation does not require a terminating
semicolon. Macro expansion occurs upon encountering the closing parenthesis of the macro
invocation. HLA uses this syntax to allow a macro expansion anywhere in an HLA source file.
Consider the following:

#macro funny(dest)
, dest);

#endmacro

mov(0 funny(ax)

This code expands to "mov(0, ax);" and produces a legal machine instruction. Of course, this
is a truly horrible example of macro use (the style is really bad), but it demonstrates the power of
HLA macros in your program. This "expand anywhere" philosophy is the primary reason macro
invocations do not end with a semicolon.

13.6.2 Where You Declare a Macro Affects its Visibility
You may declare a macro almost anywhere whitespace is allowed in a program. This increases

the utility of macros as part of the HLA Compile-time Language. However, there are some issues
of which you should be aware when declare macros at arbitrary points; this section will discuss
those issues so you can avoid some pitfalls of this new flexibility.

First, unless you have good reason to do otherwise, you really should declare your macros in a
declaration section of your program. Long-time HLA programmers have grown used to finding
them there and, by placing your macros in a declaration section (e.g., wherever a procedure
declaration is allowed), you’ll make your programs easier to read because other programmers can
look for such declarations in a few known locations. Arbitrarily scattering your macro declarations
all over the place can make your programs harder to read. In addition, it should be understood that
you must declare a macro before the first invocation.

Like other identifiers in an HLA program, macro identifiers have a scope that limits their
visibility. If you declare a macro within a procedure, then that macro’s identifier is only visible
within that procedure and you cannot invoke (call) the macro outside of the procedure (that is,
beyond the end statement associated with the procedure). Note that this is true even if you declare
the macro in the body of the procedure, outside the procedure’s declaration section, e.g.,

procedure SomeProc;
begin SomeProc;

#macro mov0eax;
mov(0, eax)

#endmacro

mov0eax; // legal here

end SomeProc;

mov0eax; // undefined symbol here.

If you declare a macro in a namespace or within an HLA class, you may invoke that macro
from outside the namespace or class declaration by prefixing the macro identifier with the
Public Domain Created by Randy Hyde Page 251

HLA Reference Manual 5/24/10 Chapter 13
namespace or class or object identifier using the normal dot-notation for access to fields of the
namespace or class. Note that you may invoke namespace or class macros within the namespace or
class without the namespace prefix (just as you may access other symbol types within the
namespace or class without the prefix).

You may also embed macro definitions within records and unions. However, when you do this
HLA will insert the macro’s symbol into the field list for the record or union. Because HLA does
not provide a way to access anything other than variable fields of a record or union outside the
declaration of that type, you will not be able to invoke the macro from outside the record or union
declaration. However, you may invoke that macro within the same record/union declaration that
contains the macro definition, e.g.,

type
r :record

i:int32;
#macro inrec;

k:int32;
#endmacro
j:int32;
inrec; // Legal expansion here

endrecord;

var
r.inrec; // this is not legal here. Use a namespace or class to do

this.

Because of some limitations of the HLA implementation language (Flex/Bison), there is an
important peculiarity you should know when declaring macros. In particular, HLA may process a
macro declaration before it finishes processing whatever occurs immediately before the macro.
Therefore, if the successful definition of a macro depends on whatever appears immediately before
the macro, the declaration may fail. Though this is rare, it does occur occasionally. Should this
happen to you, try an insert an innocuous syntactical item (like a semicolon) before the macro
declaration.

13.6.3 Multi-part (Context Free) Macro Invocations:
HLA macros provide some very powerful facilities not found in other macro assemblers. One

of the unique features that HLA macros provide is support for multi-part (or context-free) macro
invocations. This feature is accessed via the #terminator and #keyword reserved words.
Consider the following macro declaration:
program demoTerminator;

#include("stdio.hhf");

#macro InfLoop:TopOfLoop, LoopExit;
TopOfLoop:

#terminator endInfLoop;
jmp TopOfLoop;
LoopExit:

#endmacro;

static
i:int32;

begin demoTerminator;

mov(0, i);
InfLoop
Public Domain Created by Randy Hyde Page 252

HLA Reference Manual 5/24/10 Chapter 13
stdout.put("i=", i, nl);
inc(i);

endInfLoop;

end demoTerminator;

The #terminator keyword, if it appears within a macro, defines a second macro that is
available for a one-time use after invoking the main macro. In the example above, the
endInfLoop macro is available only after the invocation of the InfLoop macro. Once you invoke
the EndInfLoop macro, it is no longer available (though the macro calls can be nested, more on
that later). During the invocation of the #terminator macro, all local symbols declared in the
main macro (InfLoop above) are available (note that these symbols are not available outside the
macro body. In particular, you could refer to neither TopOfLoop nor LoopExit in the statements
appearing between the InfLoop and endInfLoop invocations above). The code above, by the
way, emits code similar to the following:

_0000_HLA_:
stdout.put("i=", i, nl);
inc(i);
jmp _0000_HLA_;

_0001_HLA_:

The macro expansion code appears in italics. This program, therefore, generates an infinite loop
that prints successive integer values.

These macros are called multi-part macros for the obvious reason: they come in multiple
pieces (note, though, that HLA only allows a single #terminator macro). They are also referred
to as Context-Free macros because of their syntactical nature. Earlier, this document claimed that
you could refer to the #terminator macro only once after invoking the main macro. Technically,
this should have said "you can invoke the terminator once for each outstanding invocation of the
main macro." In other words, you can nest these macro calls, e.g.,

InfLoop

mov(0, j);
InfLoop

inc(i);
inc(j);
stdout.put("i=", i, " j=", j, nl);

endInfLoop;

endInfLoop;

The term Context-Free comes from automata theory; it describes this nestable feature of these
macros.

As should be painfully obvious from this InfLoop macro example, it would be nice if one
could define more than one macro within this context-free group. Furthermore, the need often
arises to define limited-scope scope macros that can be invoked more than once (limited-scope
means between the main macro call and the terminator macro invocation). The #keyword
definition allows you to create such macros.

In the InfLoop example above, it would be nice if you could exit the loop using a statement
like brkLoop (note that break is an HLA reserved word and cannot be used for this purpose). The
#keyword section of a macro allows you to do exactly this. Consider the following macro
definition:
Public Domain Created by Randy Hyde Page 253

HLA Reference Manual 5/24/10 Chapter 13
#macro InfLoop:TopOfLoop, LoopExit;
TopOfLoop:

#keyword brkLoop;
jmp LoopExit;

#terminator endInfLoop;
jmp TopOfLoop;
LoopExit:

#endmacro;

As with the #terminator section, the #keyword section defines a macro that is active after
the main macro invocation until the terminator macro invocation. However, #keyword macro
invocations do not terminate the multi-part invocation. Furthermore, #keyword invocations may
occur more that once. Consider the following code that might appear in the main program:

mov(0, i);
InfLoop

mov(0, j);
InfLoop

inc(j);
stdout.put("i=", i, " j=", j, nl);
if(j >= 10) then

brkLoop;

endif

endInfLoop;
inc(i);
if(i >= 10) then

brkLoop;

endif;

endInfLoop;

The brkLoop invocation inside the "if(j >= 10)" statement will break out of the inner-most
loop, as expected (another feature of the context-free behavior of HLA’s macros). The brkLoop
invocation associated with the "if(i >= 10)" statement breaks out of the outer-most loop. Of
course, the HLA language provides the forever..endfor loop and the break and breakif
statements, so there is no need for this InfLoop macro, nevertheless, this example is useful
because it is easy to understand. If you are looking for a challenge, try creating a statement similar
to the C/C++ switch/case statement; it is perfectly possible to implement such a statement with
HLA’s macro facilities, see the HLA Standard Library for an example of the switch statement
implemented as a macro.

The discussion above introduced the #keyword and #terminator macro sections in an
informal way. There are a few details omitted from that discussion. First, the full syntax for HLA
macro declarations is actually:

#macro identifier (optional_parameter_list) :optional_local_symbols;
statements

#keyword identifier (optional_parameter_list) :optional_local_symbols;
statements
Public Domain Created by Randy Hyde Page 254

HLA Reference Manual 5/24/10 Chapter 13
note: additional #keyword declarations may appear here

#terminator identifier (optional_parameter_list)
:optional_local_symbols;

statements
#endmacro

There are three things that should immediately stand out here: (1) you may define more than
one #keyword within a macro. (2) #keywords and #terminators allow optional parameters. (3)
#keywords and #terminators allow their own local symbols.

 The scope of the parameters and local symbols isn’t particularly intuitive (although it turns out
that the scope rules are exactly what you would want). The parameters and local symbols declared
in the main macro declaration are available to all statements in the macro (including the statements
in the #keyword and #terminator sections). The InfLoop macro used this feature since the
JMP instructions in the brkLoop and endInfLoop sections referred to the local symbols declared
in the main macro. The InfLoop macro did not declare any parameters, but had they been present,
the brkLoop and endInfLoop sections could have used those parameters as well.

Parameters and local symbols declared in a #keyword or #terminator section are local to
that particular section. In particular, parameters and/or local symbols declared in a #keyword
section are not visible in other #keyword sections or in the #terminator section.

One important issue is that local symbols in a multipart macro are visible in the main code
between the start of the multipart macro and the terminating macro. That is, if you have some
sequence like the following:

InfLoop

jmp LoopExit;

endInfLoop;

The HLA substitutes the appropriate internal symbol (e.g., _xxxx_HLA_) for the LoopExit
symbol. This is somewhat unintuitive and might be considered a flaw in HLA’s design. Future
versions of HLA may deal with this issue; in the meantime, however, some code takes advantage of
this feature (to mask global symbols) so it’s not easy to change without breaking a lot of code. Be
forewarned before taking advantage of this "feature", however, that it will probably change in HLA
v3.x. An important aspect of this behavior is that macro parameter names are also visible in the
code section between the initial macro and the terminator macro. Therefore, you must take care to
choose macro parameter names that will not conflict with other identifiers in your program. E.g.,
the following will probably lead to some problems:

static
i:int32;

#macro parmi(i);
mov(i, eax);

#terminator endParmi;
mov(eax, i);

#endmacro
.
.
.
parmi(xyz);
mov(i, ebx);// actually moves xyz into ebx, since the parameter i

// overrides the global variable i here.
endParmi;
Public Domain Created by Randy Hyde Page 255

HLA Reference Manual 5/24/10 Chapter 13
13.6.4 Macro Invocations and Macro Parameters:
As mentioned earlier, HLA treats all non-array macro parameters as text constants that are

assigned a string corresponding to the actual parameter(s) passed to the macro. I.e., consider the
following:

#macro SetI(v);
?i := v;

#endmacro

SetI(2);

The above macro and invocation is roughly equivalent to the following:

const
v : text := "2";
?i := v;

When utilizing variable parameter lists in a macro, HLA treats the parameter object as a string
array rather than a text array (because HLA does not support text arrays). For example, consider
the following macro and invocation:

#macro SetI2(v[]);
?i := v[0];

#endmacro

SetI2(2);

Although this looks quite similar to the previous example, there is a subtle difference between
the two. The former example will initialize the constant (value) i with the int32 value 2. The
second example will initialize i with the string value "2".

If you need to treat a macro array parameter as text rather than as a string object, use the HLA
@text function that expands a string parameter as text. E.g., the former example could be rewritten
as:

#macro SetI2(v[]);
?i := @text(v[0]);

#endmacro

SetI2(2);

In this example, the @text function tells HLA to expand the string value v[0] (which is "2")
directly as text, so the "SetI2(2)" invocation expands as
?i := 2;
rather than as
?i := "2";

On occasion, you may need to do the converse of this operation. That is, you may want to treat
a standard (non-array) macro parameter as a string object rather than as a text object. You can
accomplish this by using the @string(text_object) function. When HLA encounters this construct,
it will substitute a string constant for the identifier. The following example demonstrates one
possible use of this feature:

program demoString;
Public Domain Created by Randy Hyde Page 256

HLA Reference Manual 5/24/10 Chapter 13
#macro seti3(v);
#print("i is being set to " + @string(v))
?i := v;

#endmacro

begin demoString;

seti3(4)
#print("i = " + string(i))
seti3(2)
#print("i = " + string(i))

end demoString;

Note that HLA supports a second, deprecated, form: @string:identifier. Though you might
see this form in older source code, you should not use this form in HLA v2.x programs as this
feature will probably be eliminated from a future version of HLA.

If an identifier is a text constant (e.g., a macro parameter or a const/value identifier of type
text), special care must be taken to modify the string associated with that text object. A simple val
expression like the following won’t work:
?textVar:text := "SomeNewText";

The reason this doesn’t work is subtle: if textVar is already a text object, HLA immediately
replaces textVar with its corresponding string; this includes the occurrence of the identifier
immediately after the "?" in the example above. So were you to execute the following two
statements:
?textVar:text := "x";
?textVar:text := "1";

the second statement would not change textVar’s value from "x" to "1". Instead, the second
statement above would be converted to:

?x:text := "1";

and textVar’s value would remain "x". To overcome this problem, HLA provides a special
syntactical entity that converts a text object to a string and then returns the text object ID. The
syntax for this special form is @tostring:identifier. The example above could be rewritten as:

?textVar:text := "x";
?@tostring:textVar:text := "1";

In this example, textVar would be a text object that expands to the string "1".

13.6.5 Processing Macro Parameters
As described earlier, HLA processes as parameters all text between a set of matching

parentheses after the macro’s name in a macro invocation. HLA macro parameters are delimited by
the surrounding parentheses and commas. That is, the first parameter consists of all text beyond the
left parenthesis up to the first comma (or up to the right parenthesis if there is only one parameter).
The second parameter consists of all text just beyond the first comma up to the second comma (or
right parenthesis if there are only two parameters); and so on. The last parameter consists of all text
from the last comma to the closing right parenthesis. Within a single parameter, any text appearing
between "(" and ")", "[" and "]", or "{" and "}" will be considered as a single parameter, even if
there are commas present. Therefore, procedure calls (with parameters), array element accesses,
character set constants, macro invocations, and other such items will constitute a single macro
parameter. The follow macro invocation, for example, has three arguments because the
parmMacro invocation counts as a single parameter:
Public Domain Created by Randy Hyde Page 257

HLA Reference Manual 5/24/10 Chapter 13
ThreeParms(a, parmMacro(0, 1), b);

This example demonstrates another feature of HLA’s macro processing system - HLA uses
deferred macro parameter expansion. That is, the text of a macro parameter is expanded when
HLA encounters the formal parameter within the macro’s body, not while HLA is processing the
actual parameters in the macro invocation (which would be eager evaluation).

There are three exceptions to the rule of deferred parameter evaluation: (1) text constants are
always expanded in an eager fashion (that is, the value of the text constant, not the text constant’s
name, is passed as the macro parameter). (2) The @text function, if it appears in a parameter list,
expands the string parameter in an eager fashion. (3) The @eval function immediately evaluates its
parameter; the discussion of @eval appears a little later.

In general, there is very little difference between eager and deferred evaluation of macro
parameters. In some rare cases, there is a semantic difference between the two. For example,
consider the following two programs:

program demoDeferred;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:string := "2";

begin demoDeferred;

?i := two(z, 2);
#print("i=" + string(i))

end demoDeferred;

In the example above, the code passes the actual parameter "z" as the value for the formal
parameter "x". Therefore, whenever HLA expands "x" it gets the value "z", which is a local
symbol inside the "two" macro, that expands to the value "1". Therefore, this code prints "3" ("1"
plus y’s value which is "2") during assembly. Now consider the following code:

program demoEager;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:string := "2";

begin demoEager;

?i := two(@text(z), 2);
#print("i=" + string(i))

end demoEager;

The only differences between these two programs are their names and the fact that demoEager
invocation of "two" uses the @text function to eagerly expand z’s text. As a result, the formal
parameter "x" is given the value of z’s expansion ("2") and HLA ignores the local value for "z" in
macro "two". This code prints the value "4" during assembly. Note that changing "z" in the main
program to a text constant (rather than a string constant) has the same effect:
Public Domain Created by Randy Hyde Page 258

HLA Reference Manual 5/24/10 Chapter 13
program demoEager;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:text := "2";

begin demoEager;

?i := two(z, 2);
#print("i=" + string(i))

end demoEager;

This program also prints "4" during assembly.

One place where deferred vs. eager evaluation can get you into trouble is with some of the
HLA built-in functions. Consider the following HLA macro:

#macro DemoProblem(Parm);

#print(string(Parm))

#endmacro
.
.
.

DemoProblem(@linenumber);

(The @linenumber function returns, as an uns32 constant, the current line number in the file).

When this program fragment compiles, HLA will use deferred evaluation and pass the text
@linenumber as the parameter Parm. Upon compilation of this fragment, the macro will expand
to "#print(string(@linenumber))" with the intent, apparently, being to print the line number of the
statement containing the DemoProblem invocation. In reality, that is not what this code will do.
Instead, it will print the line number, in the macro, of the "#print(string (Parm));" statement. By
delaying the substitution of the current line number for the @linenumber function call until inside
the macro, deferred execution produces the wrong result. What is really needed here is eager
evaluation so that the @linenumber function expands to the line number string before being
passed as a parameter to the DemoProblem macro. The @eval built-in function provides this
capability. The following coding of the DemoProblem macro invocation will solve the problem:

DemoProblem(@eval(@linenumber));

Now the compiler will execute the @linenumber function and pass that number as the macro
parameter text rather than the string "@linenumber". Therefore, the #print statement inside the
macro will print the actual line number of the DemoProblem statement rather than the line number
of the #print statement.

Keep these minor differences in mind if you run into trouble using macro parameters.

13.7 Built-in Functions:
HLA provides several built-in functions that take constant operands and produce constant

results. It is important that you differentiate these compile-time functions from run-time functions.
These functions do not emit any object code, and therefore do not exist while your program is
running. They are only available while HLA is compiling your program. Note that many of these
Public Domain Created by Randy Hyde Page 259

HLA Reference Manual 5/24/10 Chapter 13
functions are trivial to implement in assembly language or have counterparts in the HLA standard
library. Therefore, the fact that they are not available at run-time shouldn’t prove to be much of a
problem.

13.8 Constant Type Conversion Functions
boolean(const_expr)

The expression must be an ordinal or string expression. If const_expr is numeric, this
function returns false for zero and true for everything else. If const_expr is a character, this
function returns true for "T" and false for "F". It generates an error for any other character value. If
const_expr is a string, the string must contain "true" or "false" else HLA generates an error.

int8(const_expr)
int16(const_expr)
int32(const_expr)
int64(const_expr)
int128(const_expr)
uns8(const_expr)
uns16 const_expr)
uns32(const_expr)
uns64(const_expr)
uns128(const_expr)
byte(const_expr)
word(const_expr)
dword(const_expr)
qword(const_expr)
lword(const_expr)

These functions convert their parameter to the specified integer. For real operands, the result is
truncated to form a numeric operand. For all other numeric operands, the result is ranged checked.
For character operands, the ASCII code of the specified character is returned. For boolean objects,
zero or one is returned. For string operands, the string must be a sequence of decimal characters
that are converted to the specified type. Note that byte, word, and dword, …, types are
synonymous with uns8, uns16, and uns32, …, for the purposes of range checking.

real32(const_expr)
real64(const_expr)
real80(const_expr)

These functions are similar to the earlier integer functions, except these functions produce the
obvious real results. Only numeric and string parameters are legal.

char(const_expr)

Const_expr must be an ordinal or string value. This function returns a character whose
ASCII code is that ordinal value. For strings, this function returns the first character of the string.

string(const_expr)

This function produces a reasonable string representation of the parameter. Almost all data
types are legal.

cset(const_expr)

The parameter must be a character, string, or character set. For character parameters, this
function returns the singleton set containing only the specified character. For strings, each
character in the string is unioned into the set and the function returns the result. If the parameter is
a character set, this function makes a copy of that character set.
Public Domain Created by Randy Hyde Page 260

HLA Reference Manual 5/24/10 Chapter 13
13.8.1 Bitwise Type Transfer Functions
The type conversion functions of the previous section will automatically convert their

operands from the source type to the destination type. Sometimes you might want to change the
type of some object without changing its value. For many "conversions" this is exactly what takes
place. For example, when converting an uns8 object to an uns16 value using the uns16(---)
function, HLA does not modify the bit pattern at all. For other conversions, however, HLA may
completely change the underlying bit pattern when doing the conversion. For example, when
converting the real32 value 1.0 to a dword value, HLA completely changes the underlying bit
pattern ($3F80_0000) so that the dword value is equal to one. On occasion, however, you might
actually want to copy the bits straight across so that the resulting dword value is $3F80_0000. The
HLA bit-transfer type conversion compile-time functions provide this facility.

The HLA bit-transfer type conversion functions are the following:
@int8(const_expr)
@int16(const_expr)
@int32(const_expr)
@int64(const_expr)
@int128(const_expr)
@uns8(const_expr)
@uns16 const_expr)
@uns32(const_expr)
@uns64(const_expr)
@uns128(const_expr)
@byte(const_expr)
@word(const_expr)
@dword(const_expr)
@qword(const_expr)
@lword(const_expr)
@real32(const_expr)
@real64(const_expr)
@real80(const_expr)
@char(const_expr)
@cset(const_expr)

The above functions extract eight, 16, 32, 64, or 128 bits from the constant expression for use
as the value of the function. Note that supplying a string expression as an argument isn’t
particularly useful since the functions above will simply return the address of the string data in
memory while HLA is compiling the program. The @byte function provides an additional syntax
with two parameters; see the next section for details.

@string(const_expr)

HLA string objects are pointers (in both the language as well as within the compiler). So
simply copying the bits to the internal string object would create problems since the bit pattern
probably is not a valid pointer to string data during the compilation. With just a few exceptions,
what the @string function does is takes the bit data of its argument and translates this to a string
(up to 16 characters long). Note that the actual string may be between zero and 16 characters long
since the HLA compiler (internally) uses zero-terminated strings to represent string constants.
Note that the first zero byte found in the argument will end the string.

If you supply a string expression as an argument to @string, HLA simply returns the value of
the string argument as the value for the @string function. If you supply a text object as an
argument to the @string function, HLA returns the text data as a string without first expanding the
text value . If you supply a pointer constant as an argument to the @string function, HLA returns
the string that HLA will substitute for the static object when it emits the assembly file.

13.8.2 General functions
 @abs(numeric_expr)

Returns the absolute equivalent of the numeric value passed as a parameter.
Public Domain Created by Randy Hyde Page 261

HLA Reference Manual 5/24/10 Chapter 13
 @byte(integer_expr, which)

The which parameter is a value in the range 0..15. This function extracts the specified byte
from the value of the integer_expression parameter. (This is an extension of the @byte type
transfer function.)

@byte(real32_expr, which)

The which parameter is a value in the range 0..3. This function extracts the specified byte
from the value of the real32_expression parameter.

@byte(real64_expr, which)

The which parameter is a value in the range 0..7. This function extracts the specified byte
from the value of the real64_expression parameter.

@byte(real80_expr, which)

The which parameter is a value in the range 0..9. This function extracts the specified byte
from the value of the real80_expression parameter.

 @ceil(real_expr)

This function returns the smallest integer value larger than or equal to the expression passed as
a parameter. Note that although the result will be an integer, this function returns a real80 value.

 @cos(real_expr)

The real parameter is an angle in radians. This function returns the cosine of that angle.

 @date

This function returns a string of the form "YYYY/MM/DD" containing the current date.

 @env(string_expr)

This function returns a string containing the value of a system environment variable (whose
name you pass as the string parameter). If the specified environment variable does not exist, this
function returns the empty string.

 @exp(real_expr)

This function returns a real80 value that is the result of the computation e**real_expr (i.e., e
raised to the specified power).

 @extract(cset_expr)

This function returns a character from the specified character set constant. Note that this
function doesn’t actually remove the character from the set, if you want to do that, then you will
need to explicitly remove the character yourself. The following code demonstrates how to do this:

program extractDemo;

val
c:cset := {'a'..'z'};

begin extractDemo;

#while(c <> {})

?b := @extract(c);
#print("b=" + b)
?c := c - {b};
Public Domain Created by Randy Hyde Page 262

HLA Reference Manual 5/24/10 Chapter 13
#endwhile

end extractDemo;

 @floor(real_expr)

This function returns the largest integer value less than or equal to the supplied expression.
Note that the returned result is of type real80 even though it has no fractional component.

 @isalpha(char_expr)

This function returns true if the character expression is an upper or lower case alphabetic
character.

 @isalphanum(char_expr)

This function returns true if the parameter is an alphabetic or numeric character. It returns
false otherwise.

 @isdigit(char_expr)

This function returns true if the character expression is a decimal digit.

 @islower(char_expr)

This function returns true if the character expression is a lower case alphabetic character.

 @isspace(char_expr)

This function returns true if the character expression is a "whitespace" character. Typically,
this would be spaces, tabs, newlines, returns, linefeeds, etc.

 @isupper(char_expr)

This function returns true if the character expression is an upper case alphabetic character.

 @isxdigit(char_expr)

This function returns true if the supplied character expression is a hexadecimal digit.

 @log(real_expr)

This function returns the natural (base e) logarithm of the supplied parameter.

 @log10(real_expr)

This function returns the base-10 logarithm of the supplied parameter.

 @max(comma_separated_list_of_ordinal_or_real_values)

This function returns the largest value from the specified list.

 @min(comma_separated_list_of_ordinal_or_real_values)

This function returns the least of the values in the specified list.

 @odd(int_expr)

This function returns true if the integer expression is an odd number.

 @random(int_expr)
Public Domain Created by Randy Hyde Page 263

HLA Reference Manual 5/24/10 Chapter 13
This function returns a random uns32 value.

 @randomize(int_expr)

This function uses the integer expression passed as a parameter as the new seed value for the
random number generator.

 @sin(real_expr)

This function returns the sine of the angle (in radians) passed as a parameter.

 @sort(array_expr, int_expr, left_compare_id, right_compare_id, str_expr)

This function returns an array containing the elements of array_expr sorted in ascending order.
The second parameter (int_expr) specifies the number of elements in the array to sort (sorting
always begins with element zero and continues for int_expr elements). Note that @sort always
returns an array that is the same size as array_expr, but only the first int_expr elements are sorted.

Because array_expr elements can be an arbitrary type, you must supply a mechanism for
comparing individual elements of the array. This is accomplished using the last three parameters to
@sort. First, you must supply the names of two HLA val objects as the left_compare_id and
right_compare_id parameters. These two value objects must be the same type as an element of
array_expr. The last parameter must be a string constant holding the name of a macro that will
compare the values in these two identifiers and return true if left_compare_id is less than
right_compare_id (This has to be a string constant so that HLA won’t attempt to immediately
expand the macro when encountering the name).

Though it shouldn’t matter much, the current implementation of @sort uses a quick-sort
algorithm. There is no guarantee that this function will continue to use quicksort in the future,
however.

Here’s a quick example:
#macro abcmp;

(a < b)
#endmacro

val
a:int32;
b:int32;
array:int32[8] := [8,7,6,5,4,3,2,1];
sortedArray:int32[8] := @sort(array, @elements(array), a, b, "abcmp"

);

 @sqrt(real_expr)

This function returns the square root of the parameter.

 @system(string_expr)

This function executes the system command specified by the string (i.e., a command-line
operation for a shell interpreter). It captures all the output sent to the standard output device by this
command and returns that data as a string value.

 @tan(real_expr)

This function returns the tangent of the angle (in radians) passed as a parameter.

 @time

This function returns a string of the form "HH:MM:SS xM" (x= A or P) denoting the time at
the point this function was called (according to the system clock).
Public Domain Created by Randy Hyde Page 264

HLA Reference Manual 5/24/10 Chapter 13
13.8.3 String functions:
 @delete(str_expr, int_start, int_len)

This function returns a string consisting of the str_expr passed as a parameter with
(possibly) some characters removed. This function removes int_len characters from the string
starting at index int_start (note that strings have a starting index of zero).

 @index(str_expr1, int_start, str_expr2)

This function searches for str_expr2 within str_expr1 starting at character position
int_start within str_expr1. If the string is found, this function returns the index into
str1_expr1 of the first match (starting at int_start). This function returns -1 if there is no
match.

 @insert(str_expr1, int_start, str_expr2)

This function inserts str_expr2 into str_expr1 just before the character at index
int_start.

@left(str_expr, int_length)

This function returns the left-most int_length characters of the specified string.

@leftdel(str_expr, int_length)

This function deletes the left-most int_length characters of the specified string and returns
the result.

@length(str_expr)

This function returns the length of the specified string.

@lowercase(str_expr, int_start)

This function returns a string of characters from str_expr with all uppercase alphabetic
characters converted to lower case. Only those characters from int_start on are copied into the
result string.

@replace(str_expr1, str_expr2, str_expr3)

This function searches for every occurrence of str_expr2 found within str_expr1. It replaces
each occurrence found with str_expr3 and returns the resultant string.

@replace(str_expr1, str_array_expr2)

An extended version of the @replace function. The second argument must be an arra of
strings with an even number of elements. For each pair of strings this function will replace each
occurrence of the first string of the pair found in str_expr1 with the value of the second string in
the pair. E.g., ?resultStr := @replace(“Hello there world”, [[“there”, “”], [“ world”, “world”]]);

@right(str_expr, int_length)

This function returns the right-most int_length characters of the specified string.

@rightdel(str_expr, int_length)

This function deletes the right-most int_length characters of the specified string and returns
the result.

@rindex(str_expr1, int_start, str_expr2)

Similar to the index function, but this function searches for the last occurrence of str_expr2
in str_expr1 rather than the first occurrence.

@strbrk(str_expr, int_start, cset_expr)
Public Domain Created by Randy Hyde Page 265

HLA Reference Manual 5/24/10 Chapter 13
This function returns the index of the first character beyond int_start in str_expr that is a
member of the cset_expr parameter. This function returns -1 if none of the characters are in the
set.

@strset(char_expr, int_len)

This function returns a string consisting of int_len copies of char_expr.

@strspan(str_expr, int_start, cset_expr)

This function returns the index of the first character beyond position int_start in str_expr
that is not a member of the cset_expr parameter. This function returns -1 if all of the characters
are in the set.

@substr(str_expr, int_start, int_len)

This function returns the substring specified by the starting position and length in str_expr.

@tokenize(str_expr, int_start, cset_delims, cset_quotes)

This function returns an array of strings obtained by doing a lexical scan of the str_expr
passed as a parameter (starting at character index int_start). Each element of this array consists
of all characters between any sequences of delimiter characters (specified by the cset_delims
parameter). The only exceptions are strings appearing between bracketing (quoting) symbols. The
fourth parameter specifies the possible bracketing characters. If cset_quotes contains a
quotation mark (") then all sequences of characters between a pair of quotes will be treated as a
single string. Similarly, if cset_quotes contains an apostrophe, then all characters between a pair
of apostrophes will be treated as a single string. If the cset_quotes parameters contains one of
the pairs "(" / ")", "{" / "}", or "[" / "]" (both characters from a given pair must be present), then
@Tokenize will consider all characters between these bracketing symbols to be a single string.

You should use the @elements function to determine how many strings are present in the
resulting array of strings (this will always be a one-dimensional array, although it is possible for it
to have zero elements).

@trim(str_expr, int_start)

This function returns a string consisting of the characters in str_expr starting at position
int_start with all leading and trailing whitespace removed.

@uppercase(str_expr, int_start)

This function returns a string consisting of the characters in str_expr starting at position
int_start with all lower case alphabetic character converted to uppercase.

13.8.4 String/Pattern matching functions
The HLA string/pattern matching functions all attempt to match a string against a pattern.

These functions all return a boolean result indicating success or failure (i.e., whether the string
matches the pattern).

Most of these functions have two optional parameters: Remainder and Matched. If the
function succeeds it generally copies the matched string into the val string constant specified by the
Matched parameter and it copies all the characters in the InputStr parameter the follow the
matched text into the Remainder parameter. You may specify the Remainder parameter without
also specifying the Matched parameter, but if you need the matched result, you must specify all
the parameters. The Remainder and Matched parameters appear in italics in all of the following
functions to denote that they are optional.

If the function fails, the values of the Remainder and Matched parameters are generally
undefined.

 @peekCset(InputStr, charSet, Remainder, Matched)
Public Domain Created by Randy Hyde Page 266

HLA Reference Manual 5/24/10 Chapter 13
This function checks the first character of InputStr to see if it is a member of charSet. The
function returns true/false depending on the result of the set membership test. If the function
succeeds it copies the value of the InputStr parameter to Remainder and creates a single
character string from the first character of InputStr and stores this into Matched.

 @oneCset(InputStr, charSet, Remainder, Matched)

This function checks the first character of InputStr to see if it is a member of charSet. The
function returns true/false depending on the result of the set membership test. If the function
succeeds, it copies all characters but the first of InputStr parameter to Remainder and copies the
first character of InputStr into Matched.

 @uptoCset(InputStr, charSet, Remainder, Matched)

This function matches all characters up to, but not including, a single character from the
charSet character set parameter. If the InputStr parameter does not contain a character in the
specified character set, this function fails. If it succeeds, it copies all the matched characters (not
including the character in the character set) to the Matched parameter and it copies all remaining
characters (including the character in the character set) to the Remainder parameter.

 @zeroOrOneCset(InputStr, charSet, Remainder, Matched)

If the first character of InputStr is a member of charSet, this function succeeds and returns
that character in the Matched parameter. It also returns the remaining characters in the string in the
Remainder parameter.

This function always succeeds (since it matches zero characters). If the first character of
InputStr is not in charSet, then this function returns InputStr in Remainder and returns the
empty string in Matched.

 @exactlynCset(InputStr, charSet, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are in the character set
specified by charSet. The n+1st character must not be in the character set specified by
charSet. If this function succeeds (i.e., returns true), then it copies the first n characters to the
Matched string and it copies all remaining characters into the Remainder string. If this function
fails and returns false, Remainder and Matched are undefined.

 @firstnCset(InputStr, charSet, n, Remainder, Matched)

This function is very similar to exactlyncset except it doesn’t require that the n+1st
character not be a member of the charSet set. If the first n characters of InputStr are in
charSet, this function succeeds (returning true) and copies those n characters into the Matched
string; it also copies any following characters into the Remainder string.

 @nOrLessCset(InputStr, charSet, n, Remainder, Matched)

This function always succeeds. It will match between zero and n characters in InputStr from
the charSet set. The n+1st character may be in charSet, this function doesn’t care and only
matches up to the nth character. This function copies up to n matched characters to the Matched
string (the empty string if it matches zero characters); the remaining characters in the string are
copied to the Remainder parameter.

 @nOrMoreCset(InputStr, charSet, n, Remainder, Matched)

This function succeeds if it matches at least n characters from InputStr against the charSet
set. It returns false if there are fewer than n characters from charSet at the beginning of
InputStr. If this function succeeds, it copies the characters it matches to the Matched string and
all characters after that sequence to the Remainder string.

 @ntomCset(InputStr, charSet, n, Remainder, Matched)
Public Domain Created by Randy Hyde Page 267

HLA Reference Manual 5/24/10 Chapter 13
This function succeeds if InputStr begins with at least n characters from charSet. If
additional characters in InputStr are in this set, ntomcset will match up to m characters (n < m).
It will not match any additional characters beyond the mth character, although those characters may
be in the charSet set without affecting the success/failure of this routine. If this routine succeeds,
it copies all the characters it matches to the Matched parameter and any remaining characters to the
Remainder parameter.

 @exactlyntomCset(InputStr, charSet, n, Remainder, Matched)

Similar to the ntomcset function, except this function fails if more than m characters at the
beginning of InputStr are in the specified character set.

 @zeroOrMoreCset(InputStr, charSet, Remainder, Matched)

This function always succeeds. If the first character of InputStr is not in charSet, this
function copies InputStr to Remainder, sets matched to the empty string, and returns true. If
some sequence of characters at the beginning of InputStr is in charSet, this function copies those
characters to Matched and copies the following characters to Remainder.

 @oneOrMoreCset(InputStr, charSet, Remainder, Matched)

This function succeeds if InputStr begins with at least one character from charSet. It will
match all characters at the beginning of InputStr that are members of charSet. It copies the
matched chars to the Matched string and any remaining characters to the Remainder string. It
fails if the first character of InputStr is not a member of charSet.

 @peekChar(InputStr, Character, Remainder, Matched)

This function succeeds if the first character of InputStr matches Character. If it succeeds,
it copies the character to the Matched string and copies the entire string (including the first
character) to Remainder.

 @oneChar(InputStr, Character, Remainder, Matched)

This function succeeds if the first character if InputStr is equal to Character. If it
succeeds, it copies the matched character to Matched and any remaining characters to Remainder.
If it fails, then Remainder and Matched are undefined.

 @uptoChar(InputStr, Character, Remainder, Matched)

This function matches all characters up to, but not including, the specified character. If fails if
the specified character is not in the InputStr string. If this function succeeds and returns true, it
copies the matched character to the Matched string and copies all remaining characters to the
Remainder string (the Remainder string will begin with the value found in Character). If this
function fails, it leaves Remainder and Matched undefined.

 @zeroOrOneChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character this function returns true and sets Remainder equal to
InputStr and sets Matched to the empty string. If the first character of InputStr is equal to
Character, then this function returns that character in Matched and returns any remaining
characters from InputStr in Remainder.

 @zeroOrMoreChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character, this function returns true and sets Remainder equal to
InputStr and setsMatched to the empty string. If InputStr begins with a sequence of
characters that are all equal to Character, then this function returns those characters in Matched
and returns any remaining characters from InputStr in Remainder.
Public Domain Created by Randy Hyde Page 268

HLA Reference Manual 5/24/10 Chapter 13
 @oneOrMoreChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character this function returns true and sets Remainder equal to
InputStr and sets Matched to the empty string. If InputStr begins with a sequence of
characters that are all equal to Character, then this function returns those characters in Matched
and returns any remaining characters from InputStr in Remainder.

 @exactlynChar(InputStr, Character, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. The
n+1st character cannot be equal to Character. If this function succeeds, it returns a string
consisting of n copies of Character in Matched and returns any remaining characters in
Remainder. Matched and Remainder are undefined if this function returns false.

 @firstnChar(InputStr, Character, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. The
n+1st character may or may not be equal to Character. If this function succeeds, it returns a
string consisting of n copies of Character in Matched and returns any remaining characters in
Remainder.

 @nOrLessChar(InputStr, Character, n, Remainder, Matched)

This function always returns true. It matches up to n copies of Character at the beginning of
InputStr. More than n characters can be equal to Character and this routine will still succeed.
However, this routine only matches the first n copies of Character in InputStr. It copies the
matched characters to the Matched string and copies any remaining characters to the Remainder
string.

 @nOrMoreChar(InputStr, Character, n, Remainder, Matched)

The normorechar function matches any string that begins with at least n copies of
Character. If it succeeds, it copies the sequence of Character chars to the Matched string and
copies any remaining characters (that must begin with something other than Character) to the
Remainder string. This function fails and returns false if the string doesn’t begin with at least n
copies of Character. Note that the Remainder and Matched variables are undefined if this
function fails.

 @ntomChar(InputStr, Character, n, m, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. It will
match up to m characters (m >= n). The m+1st character does not have to be different than
Character, although this function will match, at most, m characters. If this function succeeds, it
copies the matched characters to the Matched string and any following characters to the
Remainder string. If this function fails and returns false, the values of Matched and Remainder
are undefined.

 @exactlyntomChar(InputStr, Character, n, m, Remainder, Matched)

This function succeeds and returns true if there are at least n copies of Character at the
beginning of InputStr and no more than m copies of Character at the beginning of InputStr.
If this function succeeds, it copies the matched characters at the beginning of InputStr to the
Matched parameter and any following characters to the Remainder parameter. If this function
fails, the values of Remainder and Matched are undefined upon return.

 @peekiChar
 @oneiChar
 @uptoiChar
 @zeroOrOneiChar
 @zeroOrMoreiChar
Public Domain Created by Randy Hyde Page 269

HLA Reference Manual 5/24/10 Chapter 13
 @oneOrMoreiChar
 @exactlyniChar
 @firstniChar
 @nOrLessiChar
 @nOrMoreiChar
 @ntomiChar
 @exactlyntomiChar

These functions use the same syntax as the standard xxxxxChar functions. The difference is
that these functions do a case insensitive comparison of the Character parameter with the
InputStr parameter.

 @matchStr(InputStr, String, Remainder, Matched)

This function checks to see if the string specified by String appears as the first set of
characters at the beginning of InputStr. This function returns true if InputStr begins with
String. If this function succeeds, it copies String to Matched and any following characters to
Remainder.

 @matchiStr(InputStr, String, Remainder, Matched)

Just like @matchStr except this function does a case insensitive comparison.

 @uptoStr(InputStr, String, Remainder, Matched)

The uptoStr function matches all characters in InputStr up to, but not including, the string
specified by String. If it succeeds, it copies all the matched characters (not including the string
specified by String) into the Matched parameter and any following characters to Remainder. If
this function returns false, the values of Remainder and Matched are undefined.

 @uptoiStr(InputStr, String, Remainder, Matched)

Same as @uptoStr function except that this function does a case insensitive comparison.

 @matchToStr(InputStr, String, Remainder, Matched)

This function is similar to @uptoStr except this function matches all characters up to and
including the characters in the String parameter.

 @matchToiStr(InputStr, String, Remainder, Matched)

Same as @matchToStr except this function does a case insensitive comparison.

 @matchID(InputStr, Remainder, Matched)

This is a special matching function that matches characters in InputStr that correspond to an
HLA identifier. That is, InputStr must begin with an alphabetic character or an underscore and
@matchID will match all following alphanumeric or underscore characters. If this function
succeeds by matching a prefix of InputStr that looks like an identifier, it copies the matched
characters to Matched and all following characters to Remainder. This function returns false if
the first character of InputStr is not an underscore or an alphabetic character. Note that the first
character beyond a matched identifier can be anything other than an alphanumeric or underscore
character and this function will still succeed.

 @matchIntConst(InputStr, Remainder, Matched)
Public Domain Created by Randy Hyde Page 270

HLA Reference Manual 5/24/10 Chapter 13
This function matches a string of one or more decimal digit characters (i.e., an unsigned
integer constant). The Matched parameter, if present, must be an int32 val object. If
@matchIntConst succeeds, it will convert the string to an integer and copy this integer to the
Matched parameter; it will also copy any characters following the integer string to the Remainder
parameter.

 @matchRealConst(InputStr, Remainder, Matched)

This function matches a sequence of characters at the beginning of InputStr that correspond
to a real constant (note that a simple sequence of digits, i.e., an integer, satisfies this). The number
may have a leading plus or minus sign followed by at least one decimal digit, an optional fractional
part and an optional exponent part (see the definition of an HLA real literal constant for more
details). If this function succeeds, it converts the string to a real80 value and stores this value into
Matched (which must be a real80 val object). The characters after the matched string are copied
into the Remainder parameter. If this function fails, the values of Matched and Remainder are
undefined.

 @matchNumericConst(InputStr, Remainder, Matched)

This is a combination of @matchRealConst and @matchIntConst. It checks the prefix of
InputStr. If it corresponds to an integer constant it will behave like @matchIntConst. If the
prefix string corresponds to a real constant, this function behaves like @matchRealConst. If the
prefix matches neither, this function returns false.

 @matchStrConst(InputStr, Remainder, Matched)

This function matches a sequence of characters that correspond to an HLA literal string
constant. Note that such constants generally contain quotes surrounding the string. If this function
returns true, it copies the matched string, minus the quote delimiters, to the Matched parameter and
it copies the following characters to the Remainder parameter. If this function fails, those two
parameter values are undefined.

This function automatically handles several idiosyncrasies of HLA literal string constants. For
example, if two adjacent quotes appear within a string, @matchStrConst copies only a single
quote to the Matched parameter. If two quoted strings appear at the beginning of InputStr
separated only by whitespace (a space or any control character other than NUL), then this function
concatenates the two strings together. Likewise, any character objects (surrounded by apostrophes
or taking the form #ddd, #$hh, or #%bbbbbbbb where ddd is a decimal constant, hh is a
hexadecimal constant, and bbbbbbbb is a binary constant) are automatically concatenated into the
result string. See the definition of HLA literal constants for more details.

 @zeroOrMoreWS(InputStr, Remainder)

This function always succeeds. It matches zero or more whitespace characters (white space is
defined here as a space or any control character other than NUL [ASCII code zero]). This function
copies any characters following the white space characters to the Remainder parameter (this could
be the empty string).

 @oneOrMoreWS(InputStr, Remainder)

This function matches one or more whitespace characters (white space is defined here as a
space or any control character other than NUL [ASCII code zero]). If this function succeeds, it
copies any characters following the white space characters to the Remainder parameter. If this
function fails, the Remainder string’s value is undefined.

 @WSorEOS(InputStr, Remainder)
Public Domain Created by Randy Hyde Page 271

HLA Reference Manual 5/24/10 Chapter 13
This function always succeeds. It matches zero or more whitespace characters (white space is
defined here as a space or any control character) or the end of string token (a zero terminating byte).
This function copies any characters following the white space characters to the Remainder
parameter (this could be the empty string if it matches EOS or there is only white space at the end
of the string).

 @WSthenEOS(InputStr)

This function matches zero or more whitespace characters (white space is defined here as a
space or any control character) immediately followed by the EOS token (a zero terminating byte).
Technically, it allows a Remainder parameter, but such a parameter will always be set to the
empty string if this function succeeds, so it’s hardly useful to supply the parameter.

 @peekWS(InputStr, Remainder)

This function returns true if the first character if InputStr is a white space character. If it
succeeds and the Remainder parameter is present, this function copies InputStr to Remainder.

 @EOS(InputStr)

This function returns true if InputStr is the empty string.

 @reg(InputStr)

This function returns true if InputStr matches a valid register name.

 @reg8(InputStr)

This function returns true if InputStr matches a valid eight-bit register name.

 @reg16(InputStr)

This function returns true if InputStr matches a valid 16-bit register name.

 @reg32(InputStr)

This function returns true if InputStr matches a valid 32-bit register name.

13.8.5 Symbol and constant related functions and assembler
control functions

 @name(identifier)

This function returns a string of characters that corresponds to the name of the identifier (note:
after text/macro expansion). This is useful inside macros when attempting to determine the name
of a macro parameter variable (e.g., for error messages, etc). This function returns the empty string
if the parameter is not an identifier.

 @type(identifier_or_expression)

This function returns a unique integer value that specifies the type of the specified symbol.
Unfortunately, this unique integer may be different across assemblies. Do not use this function
when comparing types of objects in different source code modules. This is a deprecated function.
Future versions of the assembler will return the same value as @typename. Do not use this
function in new code, and change any existing uses to use @typename instead.

 @typename(identifier_or_expression)

This function returns the string name of the type of the identifier or constant expression.
Examples include "int32", "boolean", and "real80".
Public Domain Created by Randy Hyde Page 272

HLA Reference Manual 5/24/10 Chapter 13
 @basetype(identifier_or_expression)

Similar to @typename, except this function returns the underlying primitive type for array and
pointer objects. For other types, it behaves just like @typename.

 @ptype(identifier_or_expression)

This function returns a small integer constant denoting the primitive type of the specified
identifier or expression. Primitive types would include things like int32, boolean, and real80. See
the "hla.hhf" header file for the latest set of constant definitions for @pType. At the time this was
written, the definitions were (though don't count on these particular values):

// pType constants.

hla.ptIllegal:= 0;
hla.ptBoolean:= 1;
hla.ptEnum:= 2;

hla.ptUns8:= 3;
hla.ptUns16:= 4;
hla.ptUns32:= 5;
hla.ptUns64:= 6;
hla.ptUns128:= 7;

hla.ptByte:= 8;
hla.ptWord:= 9;
hla.ptDWord:= 10;
hla.ptQWord:= 11;
hla.ptTByte:= 12;
hla.ptLWord:= 13;

hla.ptInt8:= 14;
hla.ptInt16:= 15;
hla.ptInt32:= 16;
hla.ptInt64:= 17;
hla.ptInt128:= 18;

hla.ptChar:= 19;
hla.ptWChar:= 20;

hla.ptReal32:= 21;
hla.ptReal64:= 22;
hla.ptReal80:= 23;
hla.ptReal128:= 24;

hla.ptString:= 25;
hla.ptZString:= 26;
hla.ptWString:= 27;
hla.ptCset:= 28;

hla.ptArray:= 29;
hla.ptRecord:= 30;
hla.ptUnion:= 31;
hla.ptRegex:= 32;
hla.ptClass:= 33;
hla.ptProcptr:= 34;
hla.ptThunk:= 35;
Public Domain Created by Randy Hyde Page 273

HLA Reference Manual 5/24/10 Chapter 13
hla.ptPointer:= 36;

hla.ptLabel:= 37;
hla.ptProc:= 38;
hla.ptMethod:= 39;
hla.ptClassProc:= 40;
hla.ptClassIter := 41;
hla.ptIterator:= 42;
hla.ptProgram:= 43;
hla.ptMacro:= 44;
hla.ptText:= 45;
hla.ptRegExMac:= 46;

hla.ptNamespace:= 47;
hla.ptSegment:= 48;
hla.ptAnonRec:= 49;
hla.ptAnonUnion := 50;
hla.ptVariant:= 51;
hla.ptError:= 52;

// Total Number of ptypes we support:

hla.sizePTypes:= 53;

 @baseptype(identifier_or_expression)

This function returns a small integer constant denoting the underlying primitive type of the
specified identifier or expression. See the discussion for @ptype for details. The difference
between @ptype and @baseptype is that @baseptype returns the element type for arrays and the
base type for ptPointer types.

 @class(identifier_or_expression)

This returns a symbol’s class type. The class type is constant, value, variable, static, etc., this
has little to do with the class abstract data type See the "hla.hhf" header file for the current symbol
class definitions. At the time this was written, the definitions were:

hla.cIllegal:= 0;
hla.cConstant:= 1;
hla.cValue:= 2;
hla.cType := 3;
hla.cVar := 4;
hla.cParm := 5;
hla.cStatic:= 6;
hla.cLabel:= 7;
hla.cProc := 8;
hla.cIterator:= 9;
hla.cClassProc:= 10;
hla.cClassIter := 11;
hla.cMethod:= 12;
hla.cMacro:= 13;
hla.cKeyword:= 14;
hla.cTerminator:= 15;
hla.cRegEx:= 16;
hla.cProgram:= 17;
hla.cNamespace:= 18;
hla.cSegment := 19;
Public Domain Created by Randy Hyde Page 274

HLA Reference Manual 5/24/10 Chapter 13
hla.cRegister:= 20;
hla.cNone := 21;

 @size(identifier_or_expression)

This function returns the size, in bytes, of the specified object.

 @elementsize(identifier_or_expression)

This function returns the size, in bytes, of an element of the specified array. If the parameter is
not an array identifier, this function generates an assembly-time error.

 @offset(identifier)

For var, parm, method, and class iterator objects only, this function returns the integer offset
into the activation record (or object record) of the specified symbol.

 @staticname(identifier)

For static/readonly/storage objects, procedures, methods, iterators, and external objects, this
function returns a string specifying the "static" name of that string. HLA emits this name to the
assembly output file for certain objects (when producing an assembly language output file).

 @lex(identifier)

This function returns an integer constant specifying the static lexical nesting for the specified
symbol. Variables declared in the main program have a lex level of zero. Variables declared in
procedures (etc.) that are in the main program have a lex level of one. This function is useful as an
index into the _display_ array when accessing non-local variables.

 @IsExternal(identifier)

This function returns true if the specified identifier is an external symbol.

 @arity(identifier_or_expression)

This function returns zero if the specified identifier is not an array. Otherwise, it returns the
number of dimensions of that array.

 @dim(array_identifier_or_expression)

This function returns a single array of integers with one element for each dimension of the
array passed as a parameter. Each element of the array returned by this function gives the number
of elements in the specified dimension. For example, given the following code:

val threeD: int32[2, 4, 6];
tdDims:= @dim(threeD);

The tdDims constant would be an array with the three elements [2, 4, 6];

 @elements(array_identifier_or_expression)

This function returns the total number of elements in the specified array. For multi-
dimensional array constants, this function returns the number of all elements, not just a particular
row or column.

 @defined(identifier)

This function returns true if the specified identifier is has been previously defined in the
program and is currently in scope.

 @pclass(identifier)
Public Domain Created by Randy Hyde Page 275

HLA Reference Manual 5/24/10 Chapter 13
If the specified identifier is a parameter, this function returns a small integer indicating how the
parameter was passed to the function. These constants are defined in the hla.hhf header file. At
this time this document was written, these constants had the following values.

hla.illegal_pc:= 0;
hla.valp_pc:= 1;
hla.refp_pc:= 2;
hla.vrp_pc:= 3;
hla.result_pc:= 4;
hla.name_pc:= 5;
hla.lazy_pc:= 6;

valp_pc means pass by value. refp_pc means pass by reference. vrp_pc means pass by
value/result (value/returned). result_pc means pass by result. name_pc means pass by name.
lazy_pc means pass by lazy evaluation.

 @localsyms(record_union_procedure_method_or_iterator_identifier)

This function returns an array of string listing the local names associated with the argument. If
the argument is a record or union object, the elements of the string array contain the field names for
the specified record or union. Note that the field names appear in their declaration order (that is,
element zero contains the name of the first field, element one contains the name of the second field,
etc.).

If the argument is a procedure, method, or iterator, the string array this function returns is a list
of all the local identifiers in that program unit. Note that the local object names appear in the
reverse order of their declarations (that is, element zero contains the name of the last local name in
the program unit, element one contains the second identifier, etc.). Note that parameters are
considered local identifiers and will appear in this array. Also note that HLA automatically
predefines several symbols when you declare a program unit; those HLA declared symbols also
appear in the array of strings @localsyms creates.

Currently, @localsyms does not allow namespace, program, or class identifiers. This
restriction may be lifted in the future if there is sufficient need.

 @isconst(expr)

This function returns true if the specified parameter is a constant identifier or expression.

 @isreg(expr)

This function returns true if the specified parameter is one of the 80x86 general purpose
registers. It returns false otherwise.

 @isreg8(expr)

This function returns true if the specified parameter is one of the 80x86 eight-bit general
purpose registers. It returns false otherwise.

 @isreg16(expr)

This function returns true if the specified parameter is one of the 80x86 16-bit general purpose
registers. It returns false otherwise.

 @isreg32(expr)

This function returns true if the specified parameter is one of the 80x86 32-bit general purpose
registers. It returns false otherwise.

 @isfreg(expr)

This function returns true if the specified parameter is one of the 80x86 FPU registers. It
returns false otherwise.
Public Domain Created by Randy Hyde Page 276

HLA Reference Manual 5/24/10 Chapter 13
 @ismem(expr)

This function returns true if the specified expression is a memory address.

 @isclass(expr)

This function returns true if the specified parameter is a class or a class object.

 @istype(identifier)

This function returns true if the specified identifier is a type id.

 @linenumber

This function returns the current line number in the source file.

 @linenumberstk(expr)

The expression must be a small unsigned integer value. @linenumberstk(0) returns the current
line number in the source file (exactly like @linenumber). If the expression evaluates to some value
larger than zero, the @linenumberstack crawls up the macro/include/text expansion/regular
expression include stack and prints the line number of the invocation at the level specified by the
argument. Note that @linenumberstk(1) prints the line number of the invocation of the current
macro (or include, etc.). If the expression is larger than the number of entries on the line number
stack, this function returns the line number of the first invocation.

 @filename

This function returns the name of the current source file.

 @filenamestk(expr)

The expression must be a small unsigned integer value. @filenamestk(0) returns the current
filename for the source file (exactly like @filename). If the expression evaluates to some value
larger than zero, the @filenamestack crawls up the macro/include/text expansion/regular
expression include stack and prints the filename of the invocation at the level specified by the
argument. If the expression is larger than the number of entries on the filename stack, this function
returns the filename of the main file.

 @curlex

This function returns the current static lex level (e.g., zero for the main program).

 @curoffset

This function returns the current var offset within the activation record.

 @curdir

This function returns +1 if processing parameters, it returns -1 otherwise. This corresponds to
whether variable offsets are increasing or decreasing in an activation record during compilation.
This function also returns +1 when processing fields in a record or class. This function returns zero
when processing fields in a union.

 @addofs1st

This function returns true when processing local variables, it returns false when processing
parameters and record/class/union fields.

 @lastobject

This function returns a string containing the name of the last macro object processed.

 @curobject
This function returns a string containing the name of the last class object processed.
Public Domain Created by Randy Hyde Page 277

HLA Reference Manual 5/24/10 Chapter 13
@curvar

This function returns a string containing the name of the last memory object processed.

13.8.6 Pseudo-Variables
HLA provides several special identifiers that act as functions in expressions and as variables in

val assignments. These "pseudo-variables" let you control the code emission during compilation.
Typically, you would use these pseudo-variables in a statement like "?@bound:=true;" in order to
set their values.

 @errorprefix

This variable contains a string (default the empty string). Whenever the assembler reports an
error message, it first checks this string to see if it is not the empty string. If the string is not the
empty string, then HLA will print this string before printing the error message. This pseudo-
variable is useful when processing macros and an error message might not appear until deep into
the macro expansion. The programmer can set up a helpful string (perhaps using the
@lineNumberStack and/or @fileNameStack functions) to print when an error occurs.

 @parmoffset

This variable contains the starting offset for parameters. This is generally eight for most
procedures since the parameters start at offset eight. You can change this value during assembly by
assigning a value to this variable (e.g., ?@parmoffset = 10;). However, this activity is not
recommended except by advanced programmers.

 @localoffset

This variable returns the starting offset for local variables in an activation record. This is
typically zero. You can change this value during assembly by assigning a value to this variable
(e.g., ?@localoffset = -10;). However, this activity is not recommended except by advanced
programmers.

 @basereg

This variable returns a string containing either "ebp" or "esp". You assign either ebp or esp
(the registers, not a string) to this variable. This sets the base register that HLA uses for automatic
(var) variables. The default is ebp. Examples:

?SaveBase :string := @basereg;
?@basereg := esp;
<< code that uses esp to access locals and parameters>>
?@basereg := @text(SaveBase); // Restore to original register.

Note the use of @text to convert the string to an actual register name. This must be done because
HLA only allows the assignment of the actual ebp/esp registers to @basereg, not a string.

 @enumsize

This assembly time variable specifies the size (in bytes) of enumerated objects. This has a
default value of one.

 @minparmsize

This assembly time variable has the initial value four. You should not change the value of this
object when running under Win32, *NIX, or other 32-bit OS.

 @bound

This assembly time variable is a boolean value that indicates whether HLA compiles the
bound instruction into actual machine code (or ignores the bound instruction).

 @into
Public Domain Created by Randy Hyde Page 278

HLA Reference Manual 5/24/10 Chapter 13
This assembly time variable is a boolean value that indicates whether HLA compiles the into
instruction into actual machine code.

 @label

This assembly time variable is an integer value that must be assigned a value greater than zero.
This value controls how HLA generates internal unique symbols. HLA normally translates non-
external/non-public symbols to some form such as "originalSymbol__XXX_nnnn" where
originalSymbol is the identifier appearing in the HLA source file, XXX is some special string
(currently "HLA" as this is being written, but this is subject to change in future versions of HLA),
and nnnn is a decimal integer string. HLA increments the value of nnnn for each symbol it
generates, thus ensuring that all internal symbols are unique within a given source file.

A problem can occur with HLA's unique symbol generation algorithm if you're generating an
assembly language source file for use with an assembler such as MASM that has an option to make
all symbols public. Usually, symbols of the form "originalSymbol__XXX_nnnn" are private to a
given source file, such symbols are almost never public. However, if you compile HLA code to a
MASM source file and them compile the MASM code with the "all symbols public" option, it's
quite possible, when linking multiple files together, that you wind up with duplicate symbol errors
from the linker. In such (rare) cases, you can use the @label pseudo-variable to work around this
problem by changing the value HLA uses for its internal label counter. For example, if the linker
complains that the symbol "false__HLA_1023" is multiply defined, you can use the @label
pseudo-variable to change the symbol number suffixes in one of the source files using a statement
like following near the beginning of your source file:

?@label := 5000;
Be careful about using this pseudo-variable; you should only change the value once and you

should only change it near the beginning of a source file. If you reset the @label value to a smaller
value somewhere beyond the start of the source file, you can create internal symbol conflicts in
your source file. Use this option with care!

 @exceptions

This assembly time variable controls whether HLA emits full exception handling code or an
abbreviated set of routines. If this variable contains true, then HLA emits the full exception
handling code. If false, the HLA emits the minimal amount of code to pass exceptions on to
Windows or *NIX. Note that this variable only affects code generation in the main program, it
does not affect the code generation in a unit. This variable must be set to true before the begin
clause associated with the main program if it is to have any effect. Note that including the
EXCEPTS.HHF file automatically sets this to true; so you will have to explicitly set it to false if
you include this file (or some other file that includes EXCEPTS.HHF, like STDLIB.HHF).

 @optstring

By default, HLA folds string constants to generate better code. This means that whenever you
ask the compiler to emit code for a string constant like "Hello World" the compiler will first check
to see if it has already emitted such a string. If so, the compiler uses the reference to the original
string constant rather than emitting a second copy of the string; this shortens the size of your
program if there are multiple occurrences of the same string in the program. Since string constants
generally go into a read-only section of memory, the program cannot accidentally change this
unique occurrence. The @optstrings pseudo-variable lets you control this optimization. If
@optstrings is true (the default condition), then HLA folds all duplicate string constants; if
@optstrings is false, then HLA emits duplicate strings to the code.

 @trace

This boolean variable controls the emission of "trace" statements by the HLA compiler. This
feature is offered in lieu of a decent debugger for tracing through HLA programs. When this
variable is false (the default), HLA emits the code you specify. However, if you set this compile-
time variable to true, HLA emits the following code before most statements in the program:

traceLine(filename, linenumber);

The filename parameter is a string that specifies the current filename HLA is processing. The
linenumber parameter is an uns32 value that specifies the current line number in the file. You are
Public Domain Created by Randy Hyde Page 279

HLA Reference Manual 5/24/10 Chapter 13
responsible for supplying the "_traceLine_" procedure somewhere in your program. Here’s a
typical implementation:

procedure trace(filename:string; linenumber:uns32); @external(
"_traceLine_");
procedure trace(filename:string; linenumber:uns32); @nodisplay;
begin trace;

pushfd(); // This function must preserve all registers and flags!
stdout.put(filename, ": #", linenumber, nl);
popfd();

end trace;

As the comments above note, it is your responsibility to preserve all registers and flags in the
traceLine procedure. If you fail to do this, it will corrupt those values in the code that calls
traceLine.

A common operation inside the _traceLine_ procedure is to display register values. Don’t
forget that EBP’s and ESP’s values are modified by this call. Furthermore, if you do any
processing whatsoever at all, the flag values will change. To obtain EBP’s value prior to the call,
fetch the double-word at address [EBP+0]. To obtain ESP’s value, take the value of EBP inside
traceLine and subtract 16 from it (EBP, return address, and eight bytes of parameters are on
the stack). Obviously if you build _traceLine_’s activation record yourself, these values can
change. To display the flag values, access the copy of the FLAGs register you pushed on the stack
(at offset [EBP-4] in the code above).

In addition to simply displaying values, you can write some very sophisticated debugging
routines that let you set breakpoints, watch values, and so on. Someday the HLA Standard Library
will include some trace support functions, until then have fun doing whatever you want.

13.8.7 Text emission functions
 @text(str_expr)

This function replaces itself with the text of the specified parameter. The result is then
processed by HLA. E.g.,

 @text("mov(0, eax);");

The above is equivalent to the single move instruction.

 @string(identifier)

The identifier must be a constant of type text. HLA replaces this item with the string data
assigned to the text object.

 @string:identifier

The identifier must be a constant of type text. HLA replaces this item with the string data
assigned to the text object. Note that this operation is deprecated. HLA now allows @string(
textVal) to convert a text object to a string value.

 @tostring:identifier

Like @string:identifier, the identifier must be a constant of type text. Also like
@string:identifier, HLA replaces this item with the string data assigned to the text object.
However, this function also converts identifier from a text to a string object.
Public Domain Created by Randy Hyde Page 280

HLA Reference Manual 5/24/10 Chapter 13
13.8.8 Miscellaneous Functions
 @section

This function returns a 32-bit bitmap that identifies the current point in the source.
Identification is as follows:

Bit 0: Currently processing the CONST section.
Bit 1: Currently processing the VAL section.
Bit 2: Currently processing the TYPE section.
Bit 3: Currently processing the VAR section.
Bit 4: Currently processing the STATIC section.
Bit 5: Currently processing the READONLY section.
Bit 6: Currently processing the STORAGE section.

Bit 12:Currently processing statements in the "main" program.
Bit 13:Currently processing statements in a procedure.
Bit 14:Currently processing statements in a method.
Bit 15:Currently processing statements in an iterator.
Bit 16:Currently processing statements in a #macro.
Bit 17:Currently processing statements in a #keyword macro.
Bit 18:Currently processing statements in a #terminator macro.
Bit 19:Currently processing statements in a thunk.

Bit 23:Currently processing statements in a Unit.
Bit 24:Currently processing statements in a Program.

Bit 25:Currently processing statements in a record.
Bit 26:Currently processing statements in a union.
Bit 27:Currently processing statements in a class.
Bit 28:Currently processing statements in a namespace.

This function is useful in macros to determine if a macro expansion is legal at a given point in
a program.

13.9 #Text and #endtext Text Collection Directives
The #TEXT and #ENDTEXT directives surround a block of text in an HLA program from

which HLA will create an array of string constants. The syntax for these directives is:

 #text(identifier)

<< arbitrary lines of text >>

#endtext

The identifier must either be an undefined symbol or an object declared in the VAL
section.

This directive converts each line of text between the #text and #endtext directives into a string
and then builds an array of strings from all this text. After building the array of strings, HLA
assigns this array to the identifier symbol. This is a val constant array of strings. The
#text..#endtext directives may appear anywhere in the program where white space is allowed.

Although these directives provide an easy way to initialize a constant array of strings, the real
purpose for these directives is to allow the inclusion of Domain Specific Embedded Language
(DSEL) text within an HLA program. Presumably, a parser (written with macros, regular
Public Domain Created by Randy Hyde Page 281

HLA Reference Manual 5/24/10 Chapter 13
expression macros, and the HLA compile-time language) would process the statements between the
#text and #endtext directives.

13.10#String and #endstring Text Collection Directives
The #string and #endstring directives surround a block of text in an HLA program from

which HLA will create a single string constant. The syntax for these directives is:

 #string(identifier)

<< arbitrary lines of text >>

#endstring

Either the identifier must be an undefined symbol or an object declared in the val section.
These directives are similar in principle to the #text..#endtext directives except that they

produce a single string (including new line characters) holding the entire block of text rather than
an array of strings.

Although these directives provide an easy way to initialize a string, the real purpose for these
directives is to allow the inclusion of Domain Specific Embedded Language (DSEL) text within an
HLA program. Presumably, a parser (written with macros, regular expression macros, and the
HLA compile-time language) would process the statements between the #string and #endstring
directives.

13.11Regular Expression Macros and the @match/@match2
Functions

Regular expression macros contain sequences of pattern-matching statements that you can use
to determine if some string takes a particular form. With HLA’s regular expression macros and the
attendant @match and @match2 functions, you can develop sophisticated language processors
inside HLA and specify whatever syntax you like (well, within certain bounds) for those languages.

Technical Note: although these features are called "regular expression macros", the
purists out there will note that "regular expression" is actually a misnomer here.
HLA’s regular expression macros actually handle a subset of the context-free
languages. This language facility is called "regular expression macros" because most
programmers, even those not intimately familiar with automata theory, recognize the
term and associate "pattern matching" with the term. Hence the use of the term
"regular expression" when "context-free grammar" would probably be a better
choice. For those of you who aren’t intimately familiar with automata theory design,
fear not: the context-free languages are a proper superset of the regular languages
and you’re not being short-changed here. HLA’s "regular expression" macros will
actually handle all the stuff you can do with a regular expression, and more.

Before describing the syntax for a regular expression macro, it’s probably best to begin by
discussing how you use them in a program. This will better motivate you when this document
actually discusses the regular expression syntax.

Regular expressions are used for pattern matching.1 Generally, a regular expression is applied
to some string of text and a boolean "success (matched) / failure (no match)" result comes back
from the operation. The HLA compile-time function @match (and @match2) is how you achieve
this task. The basic syntax for the @match2 function is the following:

1. Actually, the purists will argue that regular expressions are used for pattern generation, not recognition.
Because these two facilities are technically equivalent in theoretical computer science, this documentation will
ignore this issue and claim that regular expressions are pattern matching devices.
2. For brevity, this document will use @match to imply the use of @match or @match2. The two functions are
almost identical in usage other than how they handle whitespace.
Public Domain Created by Randy Hyde Page 282

HLA Reference Manual 5/24/10 Chapter 13
@match(stringToMatch, RegexMacroName, ReturnsResult, Remainder,
MatchedString)

This function returns the boolean result true if the regular expression specified by
RegexMacroName matches some prefix of the string stringToMatch. The remaining three
arguments are optional, though if one argument is present then any preceding arguments must also
be present.

The optional ReturnsResult argument must be an HLA val identifier. The @match function
will store a special #return string into this val object. We’ll look at what a #return string is a little
later in this documentation. For now, suffice to say that this is the "text" that the regex macro
expands into (regex macros do not expand in-place as standard HLA macros do). If this argument is
not present and the regex macro produces a #return string, then HLA simply throws away the
associated string data.

The optional Remainder argument must be an HLA val identifier. If this argument is present,
then the ReturnsResult argument must also be present. This argument is identical to the
"remainder" arguments of the string matching functions given earlier. When matching
stringToMatch with RegexMacroName, the regex macro might not match the entire string, only a
prefix of the string (this is still a successful match). Any remaining characters that are not matched
once @match exhausts the regular expression are collected and stored into the Remainder
argument,, if it is present. @match will not generate this string if you do not pass the Remainder
argument (and the string information is simply thrown away at that point).

The optional MatchedString argument must be an HLA val identifier. If this argument is
present, then the Remainder and ReturnsResult arguments must also be present. This argument is
identical to the "matched" arguments of the string matching functions given earlier. If the regular
expression macro successfully matches stringToMatch, then @match will store a copy of the
sequence that has been matched into this val argument.

Note that if the @match function returns false, because RegexMacroName failed to match the
characters in stringToMatch, then @match will not disturb the existing values of the
ReturnsResult, Remainder, and MatchedString parameters. Therefore, you should only expect
those arguments to contain reasonable values if @match returns true.

13.11.1 #regex..#endregex
The syntax for a regular expression macro is very similar to a standard macro declaration. Here

is the basic form:

#regex macroName (optional_parameter_list) : optional_locals_list;

<< regex body >>

#endregex

The optional_parameter_list and optional_locals_list items are identical (in syntax) to a macro
declaration. The following #regex statements demonstrate some of the legal permutations:

#regex noParmsOrLocals;
#regex onParmNoLocals(oneParm);
#regex oneLocalNoParms:oneLocal;
#regex variableParms(a, b, c[]);
#regex stringParms(string parms);

It’s actually a somewhat rare occurrence for a regular expression macro to have parameters. The
semantics for parameters (and locals) are different for compiled and precompiled regular
expression macros. Therefore, it’s a good idea to avoid using parameters unless they are necessary.

The body of a #regex macro consists of zero or more regular expression items following by an
optional #return clause. If the regular expression body is empty, then the regular expression will
match the empty string, which means it will match any string appearing in an @match function
call. The section Regular Expression Elements describes the exact syntax for the body of a regular
expression macro. The next section describes the optional #return clause.
Public Domain Created by Randy Hyde Page 283

HLA Reference Manual 5/24/10 Chapter 13
13.11.2 The #return Clause
A #regex macro declaration may optionally contain a #return clause immediately after the

regular expression body (and immediately before the #endregex clause). The #return clause
specifies a string expression to return (via the ReturnsResult argument in the @match function
call). Here is a typical example:

#regex newMov;
 <<body for newMov>>
#returns "mov(eax, ebx)"
#endregex

Note that an arbitrary HLA string expression is legal after the #returns clause, not just a
simple literal constant. So you can use the concatenation operation (+) or any other HLA compile-
time string functions to build up the #return string. Note that there is no semicolon at the end of
the string expression. The #endregex properly terminates the string expression.

If no #return clause is present in a #regex macro, then that #regex macro returns the empty
string as the #return string result.

The main purpose for the #return clause is to return some text to expand in the invoking code
should the @match function succeed. Unlike standard macros, you cannot expect to be able to
arbitrarily expand text found in a #regex macro because you only "invoke" #regex macros in an
@match function call, and those generally appear in a compile-time boolean expression. For
example, if the #regex macro above directly emitted the mov instruction during the invocation of
this macro, you’d get syntax errors whenever you made calls like:
#if(@match("Hello World", newMov))
 .
 .
#endif

because HLA would emit the mov instruction right into the boolean expression associated with the
#if statement (which is syntactically incorrect). By putting the #return value into a string and
returning that string result, the system can defer the expansion of the text until the caller gets to an
appropriate context, e.g., (from earlier)

#if(@match("Hello World", newMov, returnResult))

@text(returnResult);

#endif

This example expands the "mov(eax, ebx)" instruction if and only if the pattern matches "Hello
World".

If you would like the default situation to be "expand text if match" then it’s easy enough to
write a macro to do this job for you:

#macro expand(theStr, theRegex):returnResult;

#if(@match(theStr, theRegex, returnResult))

@text(returnResult);

#endif

#endmacro
 .
 .
expand("Hello World", newMov);
Public Domain Created by Randy Hyde Page 284

HLA Reference Manual 5/24/10 Chapter 13
The return string is automatically processed by the #match(regex)..#endmatch block. See the
description of #match..#endmatch for more details.

13.11.3 Regular Expression Elements
The "meat" of a regular expression macro is the sequence of regular expression elements that

appear in a #regex macro body. Each element in a regular expression body can match a part of the
source string. The following subsections describe each regular expression element in detail.

With only a couple exceptions (that will be noted as they arrive), each time a regular
expression element matches a character in the source string (the first parameter provided to
@match), the match operation consumes that character. For example, if the source string is "Hello
World" and the first regular expression element matches the single character ‘H’, then ‘H’ is
consumed from the source string (yielding "ello World") and further regular expression elements
operate on that remainder of the string.

13.11.4 Kleene Star, Plus, and Numeric Range Specifications
Most regular expression elements we’re about to explore match a single instance of

themselves. For example, a literal character constant in the body of a regular expression macro will
match a single character in the source string (see the next section). You can modify this match
operation by supplying one of the following suffixes to the literal character constant.

Examples:
‘c’* Matches zero or more ‘c’ characters.
‘c’+ Matches one or more ‘c’ characters.
‘c’:[4] Matches exactly four ‘c’ characters.
‘c’:[4,6] matches between four and six ‘c’ characters.
‘c’:[4,*] Matches four or more ‘c’ characters.

Exceptions to this syntax will be noted whenever they occur.

13.11.5 Matching Characters in a Regular Expression
A character literal constant within a #regex body matches the corresponding character in the

source string. For example, the following regular expression macro matches a string beginning with
the single character ‘c’:

#regex matchesC;

Suffix Meaning

* (Kleene star) Matches zero or more occurrences of the preceding operand.

+ (Kleene plus) Matches one or more occurrences of the preceding operand.

:[n] Matches exactly n occurrences of the preceding operand. ’ must be a reasonably-valued
unsigned integer constant expression.

:[n,m] Matches between n and m occurrences of the preceding operand. n and m must be
reasonable unsigned integer constants with n<m.

:[n,*] Matches n or more occurrences of the preceding operand. n must be a reasonably-
valued unsigned integer constant expression.
Public Domain Created by Randy Hyde Page 285

HLA Reference Manual 5/24/10 Chapter 13
‘c’
#endregex

Note that this form only allows a single character constant. In particular, you cannot specify an
arbitrary HLA character expression. However, you can also use the HLA @matchChar
(synonym: @oneChar) function in a regular expression body to specify a character expression.
@matchChar requires a single parameter that must evaluate to a single character. For example,

#regex matchesC;
@matchChar(char(uns8(‘b’) + 1)) // Matches ‘c’

#endregex

The single character match operation consumes a single character from the beginning of the
source string if it successfully matches the first character of the source string.

Examples of character matching repetition:
‘c’* Matches zero or more ‘c’ characters.
‘c’+ Matches one or more ‘c’ characters.
‘c’:[4] Matches exactly four ‘c’ characters.
‘c’:[4,6] matches between four and six ‘c’ characters.
‘c’:[4,*] Matches four or more ‘c’ characters.
@matchChar(char(uns8(‘b’) + 1))* Matches zero or more ‘c’ characters

13.11.6 Case-insensitive Character Matching in a Regular
Expression

You can perform a case-insensitive character match by prefixing a literal character constant
with the "!" operation. For example, !’c’ matches either ‘c’ or ‘C’. Here is an explicit example:

#regex matchesCorc;
!’c’

#endregex

If you want to specify a character expression rather than a single literal character constant, you
can use the @matchiChar function in a manner similar to @matchChar given earlier. This
operation also consumes a single character from the source string if a match occurs.

Examples of character matching repetition:
!‘c’* Matches zero or more ‘c’ or ‘C’ characters.
!‘c’+ Matches one or more ‘c’ or ‘C’ characters.
!‘c’:[4] Matches exactly four ‘c’ or ‘C’ characters.
!‘c’:[4,6] matches between four and six ‘c’ or ‘C’ characters.
!‘c’:[4,*] Matches four or more ‘c’ or ‘C’ characters.
@matchiChar(char(uns8(‘b’) + 1))* Matches zero or more ‘c’ or ‘C’
characters

Note that repetitive matches allow any combination of upper and lower case characters. For
example, !‘c’+ will match the sequence "ccCcCCc".

13.11.7 Negated Character Matching
Sometimes you’ll want to match "anything but a given character." The HLA #regex macro

body provides a shortcut for matching anything but a single character. By placing a minus sign in
front of a single literal character constant, you can tell HLA to match anything but that character.
E.g., -’c’ matches anything but the ‘c’ character. You can combine this with the "!" operator to
match anything but the upper or lower case version of a character. For example, -!’c’ matches
anything but ‘c’ or ‘C’.
Public Domain Created by Randy Hyde Page 286

HLA Reference Manual 5/24/10 Chapter 13
There is no generic function you can call like @matchChar or @matchiChar if you want to
specify a character expression rather than a character literal constant. However, you can easily
achieve the same effect by using negated character sets. See the discussion of matching character
sets a little later in this documentation.

If the first character of the source string is not the specified literal constant, then this operation
consumes the first character of the source string.

Examples of character matching repetition:
-‘c’* Matches zero or more characters that are not ‘c’.
-‘c’+ Matches one or more characters that are not ‘c’.
-‘c’:[4] Matches exactly four characters that are not ‘c’.
-‘c’:[4,6] matches between four and six characters that are not ‘c’.
-‘c’:[4,*] Matches four or more characters that are not ‘c’.

13.11.8 String Matching in Regular Expressions
A string literal constant within a #regex body matches the corresponding sequence of

characters in the source string. For example, the following regular expression macro matches a
string beginning with the sequence "str":

#regex matchesC;
"str"

#endregex

Note that this form only allows a single literal string constant. In particular, you cannot specify
an arbitrary HLA string expression. However, you can also use the HLA @matchStr function in a
regular expression body to specify a string expression. @matchStr requires a single parameter that
must evaluate to a single string. For example,

#regex matchesHelloWorld;
@matchStr("Hello " + "World") // Matches "Hello World"

#endregex

The string match operation consumes one character from the source string for each character in
the regular expression element, but only if the match is completely successful. This is, if the first
few characters of the source string match the regular expression element but not all the characters
match, then the operation consumes no characters.

Although it is not commonly done, the repetition operations apply to string objects as well as
characters. Examples of string matching repetition:

"str"* Matches zero or more "str" sequences.
"str"+ Matches one or more "str" sequences.
"str":[4] Matches exactly four "str" sequences.
"str":[4,6] matches between four and six "str" sequences.
"str":[4,*] Matches four or more "str" sequences.
@matchStr("Hello" + " world")* Matches zero or more "Hello world"
sequences.

13.11.9 Case-insenstive String Matching in Regular Expressions
Like character matching, you can do a case-insensitive string match by prefixing a string literal

constant with "!" or by using the @matchiStr function. E.g.,

#regex caseInsensitive;
@matchiStr("Hello world")

#endregex
Public Domain Created by Randy Hyde Page 287

HLA Reference Manual 5/24/10 Chapter 13
Another example:

#regex caseInsensitive;
!"Hello world"

#endregex

Although it is not commonly done, the repetition operations apply to string objects as well as
characters. Examples of case-insensitive string matching repetition:
!"str"* Matches zero or more "str" sequences (case insensitive).
!"str"+ Matches one or more "str" sequences (case insensitive).
!"str":[4] Matches exactly four "str" sequences (case insensitive).
!"str":[4,6] matches between four and six "str" sequences (case
insensitive).
!"str":[4,*] Matches four or more "str" sequences (case insensitive).
@matchiStr("Hello" + " world")*

Matches zero or more "Hello world" sequences (case insensitive).

13.11.10 Negated String Matching
You can put the "-" operator in front of a string literal expression to specify that the match

should fail if the following characters match a given string. For example,

#regex caseInsensitive;
-"Hello world"

#endregex

will succeed as long as the next 11 characters are not "Hello world". You can also apply the case-
insenstive operator to this sequence,,, e.g., -!"Hello worrld".

Note: negated string matching never consumes any characters from the source string. That is,
once this pattern succeeds, the source string contains the same data it did before the match
operation. Character consumption doesn’t make sense for this operation because the source string
could actually be shorter than the negated match string (in which case we still want the pattern to
succeed because the source string doesn’t begin with the negated string).

The repetition operators to not apply to negated string-matching operations.

13.11.11 String List Matching
The following regular expression syntax tells HLA to successfully match if any one of a list of

strings matches the front of the source string:

["string1", "string2", ..., "stringn"]

The match operation fails only if all the strings in the list fail to match the front of the source
string. If multiple strings match the start of the source string, then the first string in the list is the
one that will match. So if you want a maximal match, put the longest strings at the beginning of the
list, e.g.,

["these", "the", "th"]

Similarly, if you want a minimal match, put the shortest strings first in the list.

If this operation succeeds, then it consumes the matching characters from the source string.
The repetition operators to not apply to string list matching operations. If you really need this

capability, use the alternation operator (discussed later).
Public Domain Created by Randy Hyde Page 288

HLA Reference Manual 5/24/10 Chapter 13
13.11.12 Character Set Matching in a Regular Expression
A character set literal constant within a #regex body matches a character from the set in the

source string. For example, the following regular expression macro matches a string beginning with
any of the character ‘c’, ‘s’, or ‘t’:

#regex matchesC;
{‘c’, ‘s’, ‘e’, ‘t’}

#endregex

Note that this form only allows a single character set constant. In particular, you cannot specify
an arbitrary HLA character set expression. However, you can also use the HLA @matchCset
(synonym: @oneCset) function in a regular expression body to specify a character set expression.
@matchCset requires a single parameter that must evaluate to a single character. For example,

#regex matchesC;
@matchCset(-{‘c’,’C’} + numericCset) // Matches anything but ‘c’,

‘C’, or a digit
#endregex

The single character set match operation consumes a single character from the beginning of the
source string if it successfully matches the first character of the source string.

Examples of character matching repetition:
{’0’..’9’}* Matches zero or more digit characters.
{’0’..’9’}+ Matches one or more digit characters.
{’0’..’9’}:[4] Matches exactly four decimal digit characters.
{’0’..’9’}:[4,6] matches between four and six decimal digit characters.
{’0’..’9’}:[4,*] Matches four or more digit characters.
@matchCset({"0123456789"})* Matches zero or more digit characters

13.11.13 Negated Character Set Matching
Although you can use the @matchCset function to specify a negated character set (e.g.,

@matchCset(-someSet)), for simple literal character set constants HLA allows a shortcut
operation. Just put a minus sign in front of the literal character set constant. E.g., -{‘c’, ‘C’,’d’,’D’}
matches anything except upper/lower case C and D.

13.11.14 Matching Arbitrary Characters
You can match a single character (regardless of its value) using the negated empty character

set (i.e., -{}). However, HLA provides a shortcut for this - the period operator. A period appearing
in regular expression body will match any single character and consume that character from the
source string. It only fails if there are no more characters in the source string.
.* Matches zero or more characters.
.+ Matches one or more characters.
.:[4] Matches exactly four characters.
.:[4,6] matches between four and six characters.
.:[4,*] Matches four or more characters.

The .* pattern is useful at the beginning of a pattern if you want to match some subsequent
pattern anywhere in the source string. The .* pattern will skip over any characters up to the desired
pattern.

Note that there are some performance issues (at compile time) concerning the use of the
repeated "." operator in complex regular expressions. Please see the section on regular expression
performance later in this document.
Public Domain Created by Randy Hyde Page 289

HLA Reference Manual 5/24/10 Chapter 13
13.11.15 Sequences (Concatenation) - The ‘,’ Operator
Most regular expressions will consist of more than a single regular expression item. The ","

operator lets you create a sequence of regular expression items in a regular expression macro. The
resulting regular expression is effectively a concatenation of the match semantics. For example,
consider the following regular expression macro:

#regex identifier;
{‘a’..’z’, ‘A’..’Z’, ‘_’}, {‘a’..’z’, ‘A’..’Z’, ‘_’}*

#endregex

This regular expression matches a sequence of characters that begin with at least one alphabetic or
underscore character followed by zero or more alphanumeric or underscore characters (i.e., the
definition of an HLA identifier). Here is another example that matches signed integer literal
constants:

#regex intConst;
‘-’:[0,1], {‘0’..’9’}+

#endregex

The repetition operators do not apply to sequences (they apply, instead, to the last element of
the regular expression sequence). See the discussion of parentheses ("()") for a way to apply a
repetition to a sequence.

13.11.16 Alternation - The "|" Operator
The alternation operator ("|") lets HLA select from amongst several different alternative

regular expression elements. The basic syntax is:
RX1 | RX2

where RX1 and RX2 are two regular expressions (e.g., the regular expression elements we’ve
discussed thus far). The @match function will try to match the first regular expression against the
source string. If this succeeds, then the whole expression succeeds and the @match function
ignores the second alternative. If matching the first regular expression fails, then the @match
function tries to match against the second regular expression. The success or failure of the match is
then based on the result of this second match.

Because R | S is itself a regular expression, recursively we can come up with an arbitrary list of
alternatives, e.g.,

RX1 | RX2 | RX3 | RX4 | ... | RXn

The @match function will try to match the first expression. If that fails, it will try the second; if
that fails, it will try the third, etc. If any of the n regular expressions succeeds, then the alternation
succeeds and @match ignores any remaining regular expressions in the alternation expression. The
alternation sequence fails only if all the subpatterns fail. Note that the string list operator, ["str1",
"str2", str3", ..., "strn"] is just a shorthand for:

"str1" | "str2" | ... | "strn"

The repetition operators do not apply to alternative sequences (they apply, instead, to the last
element of the alternation sequence). See the discussion of parentheses ("()") for a way to apply a
repetition to an alternation sequence.

13.11.17 Subexpressions - The "()" operator
Like arithmetic operators, regular expression operators exhibit operator precedence. The

precedence order is repetitive operators (e.g., "*" and ":[2]"), sequences (","), and last, alternation
("|"). This precedence is natural and eliminates some ambiguity that would otherwise be present in
a regular expression. For example, consider the following regular expression sequence:
Public Domain Created by Randy Hyde Page 290

HLA Reference Manual 5/24/10 Chapter 13
 ‘c’, ‘d’ | ‘e’

Does this mean match the string "cd" or "e" (that is, match ‘c’, ‘d’ or match ‘e’), or does this mean
match either of the strings "cd" or "cd" (that is, match ‘c’ followed by ‘d’ or ‘e’)? An argument
could be made for either resolution of the ambiguity. However, the ‘,’ operator has higher
precedence than the "|" operator in HLA, so the first possibility is the one that HLA uses (that is, it
matches "cd" or "e").

No matter which choice is made with respect to precedence, there will be situations where you
need to override the precedence. As for arithmetic expressions, you can use the parentheses to
override precedence. For example, if you really want to match "cd" or "ce" in the previous
example, you could rewrite the expression as follows:

‘c’, (‘d’ | ‘e’)

You may apply the repetition operators to a parenthetical regular expression. For example, the
regular expression

‘c’, (‘d’ | ‘e’)*

matches the character ‘c’ followed by a string of zero or more ‘d’ and ‘e’ characters.

Some regular expression items don’t directly support the repetition operators. For example,
sequences don’t support the repetition operators (because of precedence issues). You can use
parentheses to overcome this problem, e.g.,

(‘a’, ‘b’, {‘c’,’d’}):+
matches a sequence of characters containing "abc" or "abd" (or both) repeated one or more times.

Note: some operators don’t support repetition because it just doesn’t make sense to do so. Be
careful when you force repetition on to an operation that doesn’t otherwise support it. It’s very easy
to create a regular expression that never succeeds, or always succeeds, by misapplying the
repetition operators.

13.11.18 Extracting Substrings - The Extraction Operator "<>:"
On occasion, you’ll want to save some part of the source string you’ve matched. Granted, the

@match function has a MatchedString argument that returns the entire matched string, but
sometimes you'll want to extract only a portion of the entire matched string. The regular expression
extraction operator lets you achieve this. The extraction operator uses the following syntax:

< Regular_Expression_sequence >:identifier

For the purposes of pattern matching, the extraction operator behaves exactly like the
subexpression (parentheses) operator. Everything between the two angle brackets ("<" and ">") is
used as a unit. If this sequence matches the source string, then the @match function will extract the
substring matched by this subexpression and store that string into the compile-time variable
specified by identifier. This identifier must be a regular expression macro parameter, a regular
expression local symbol, or a global val object.

One very common use of the #return statement is to return some string composed of items
processed by the extraction operator. For example, if you want to create a LISP-like assembly
language, you could use a regular expression macro like the following (for the mov, add, and sub
instructions):

#regex stmt:mnemonic, op1, op2;

‘(‘,
<["mov"", "add", "sub"]>:mnemonic, // Match the mnemonic
‘,’,
<.*>:op1, // Everything up to the 2nd comma is the 1st operand
‘,’,
<.*>:op2, // Everything up to the ‘)’ is the 2nd operand
Public Domain Created by Randy Hyde Page 291

HLA Reference Manual 5/24/10 Chapter 13
‘)’
#return mnemonic + "(" + op1 + "," + op2 + ")" //Construct HLA statement
#endmacro

13.11.19 Invoking Other #regex Macros in a Regular Expression
HLA’s #regex macros allow you to call other #regex macros as though they were pattern

matching functions. This one feature alone is what gives HLA’s "regular expressions" the power to
handle many context-free grammars (rather than being limited to just the regular language subset).
If you include the name of some #regex macro within a regular expression, the @match function
will match the current source string using that other regular expression and it’s success or failure
will determine if the match proceeds upon return from that other #regex macro. Consider the
following example:

#regex ID;
{‘a’..’z’, ‘A’..’Z’, ‘_’}, {‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’}*

#endregex

#regex arrayAccess;
ID, ‘[‘, {‘0’..’9’}+, ‘]’

#endregex

The arrayAccess regular expression matches an identifier followed by a numeric constant
surrounded by braces, e.g., "myArray[4]".

Regular expression invocations can even be recursive. However, you must be careful not to
create an infinitely recursive loop (that is, creating a "left recursive" expression, using compiler
terminology). Advanced HLA users (and hopefully you are an advanced HLA user if you’re
reading this stuff) might think that they can use HLA’s conditional assembly directives (e.g., #if) to
halt the recursion. Though the compile-time language elements may appear in a #regex macro, they
don’t work the way you probably think that they do; in particular, they cannot be used to terminate
left recursion. There primary ways to make decisions in regular expressions is via success/failure
and via alternation. Specifically, if you have two regular expressions R and S, then the expression
"R, S" will not execute S if R fails. Similarly, the sequence "R | S" will not execute S if R succeeds.
If these two sequences are inside S, then you can stop infinite recursion via the success or failure of
R.

Eliminating left recursion (and left factoring, another important operation for creating
grammars that a predictive parser like @match can use) is a subject well beyond the scope of this
manual. Pick up any decent compiler design text for details.

There are some important compile-time performance issues associated with invoking regular
expression macros from within another regular expression.

13.11.20 Lookahead (peeking)
Sometimes when matching a string, you’ll need to look ahead one or more characters to

determine whether you can satisfy the current regular expression. A classic example is the "less
than" operator in many programming languages ("<"). A simple regular expression of the form ‘<‘
is insufficient because the next character might be "=" or ">" (for languages that use "<>" to denote
‘not equals’, such as HLA). Of course, with HLA’s regular expressions you could use the string list
["<=", "<>", "<"] to handle this specific match, but in general you might want the ability to look
ahead a character or two before deciding if you’re going to succeed. This is accomplished using the
peek operator and functions.

For literal constants, prefacing the constant with "/" tells the @match function that the
following literal constant must appear in the source string, but @match will not consume any of
those characters. For example, ‘a’/’b’ requires that the source string begin with "ab" but it only
consumes the ‘a’ from the source string. Similarly, !"ax"/-{‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’} matches
"ax" (case-insensitive) as long as whatever follows is not an alphanumeric or underscore character
(btw, this expression isn’t quite good enough, you’ll also want to allow end of string after the "ax",
but we haven’t discussed how to match end of string yet, so that will have to wait).
Public Domain Created by Randy Hyde Page 292

HLA Reference Manual 5/24/10 Chapter 13

@

@

@

@

@

@

@

@

@

@

@

@

@

You can also use the @peekChar, @peekiChar, @peekStr, @peekiStr, and @peekCset
functions to look ahead without consuming any characters in the source string. E.g, this last
example is equivalent to:

!"ax" @peekCset(-{‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’})

13.11.21 Utility Matching Functions
HLA’s regular expression macros support several utility functions that match common strings,

thus sparing you from having to write regular expressions for these common items. The following
table lists the built-in functions.

Name Parameters Supports
Repetition

Description

eos No Matches the end of the string.

ws Yes Matches a whitespace character.

reg No Matches an x86 general-purpose 8, 16, or 32-bit
register.

reg8 No Matches an x86 8-bit register name.

reg16 No Matches an x86 16-bit register name.

reg32 No Matches an x86 32-bit register name.

regfpu No Matches an x86 FPU register name (HLA syntax:
st0, st1, ..., st7).

regmmx No Matches an x86 MMX register name (HLA syntax:
mm0, mm1, ..., mm7)

regxmm No Matches an x86 SSE register name (HLA syntax:
xmm0, xmm1, ..., xmm7)

matchid No Matches a sequence that looks like an HLA
identifier (begins with alphabetic or underscore,
followed by zero or more alphanumeric or
underscore characters).

matchIntConst No Matches a sequence of one orr more decimal digits.

matchRealConst No Matches a sequence that is a syntactically (HLA)
valid floating-point literal constant.

matchStrConst No Matches an HLA string literal (including quotes
around the object).
Public Domain Created by Randy Hyde Page 293

HLA Reference Manual 5/24/10 Chapter 13

@

@

@

@

@

@

13.11.22 Backtracking
#regex regular expressions fully support backtracking during pattern matching. This means

that if a regular expression ambiguously specifies the text to match (and most non-trivial regular
expressions are ambiguous), then the @match function will back up and try possible alternatives if
one possibility fails. The most obvious example is the alternation operator. If you have a regular
expression of the form R | S and R fails to match, then the @match function will "back track" in the
source string to where R began its match (‘unconsuming any characters consumed by R) and retry
the match using S.

matchWord ("string") No Similar to @matchStr (or "literal String") except
that the next character after the string it matches
must not be alphanumeric or underscore.

matchiWord ("string") No Case-insensitive variant of @matchWord.

arb Yes Matches an arbitrary character. Similar to ‘.’ but
uses a lazy algorithm rather than a greedy algorithm
(that is, it matches as few characters as possible
rather than as many characters as possible when the
repetition operator allows an arbitrary number of
characters).

pos (n) No n is a small unsigned integer. This pattern succeeds
if the current character being matched is the nth
character in the original source string (the one
passed to @match). Note that the first character in
the string is at @pos(0).

tab (n) No n is a small unsigned integer. This pattern succeeds
if n is greater than or equal to the current character
position in the original source string. If the current
character position is less than n, then @tab matches
all characters up to the nth position. Note that the
first character in the string is at @tab(0).

at:identifier No This function stores the current zero-based index
into the source string into the val object identifier
(identifier can also be a #regex parameter or local
symbol). The type of this value is uns32.
Public Domain Created by Randy Hyde Page 294

HLA Reference Manual 5/24/10 Chapter 13
Alternation certainly isn’t the only case where backtracking occurs. Consider the following
regular expression:

.*, "hello"

This regular expression matches the string "hello" anywhere in the source string. The .* prefix
skips over an arbitrary number of characters and then "hello" must match some substring of the
source string. Note that the .* regular expression is greedy. That is, it will match as many characters
as possible. Indeed, when @match first encounters .*, it will match the remainder of the string.
Such a match, of course, will cause the next patter ("hello") to fail as there are no characters left in
the string. When this happens, @match will back up some characters (up to the first character that
.* matched) and then see if the following regular expression matches. If so, then @match succeeds.
If @match backs up all the way in the source string to where .* began matching in the source
string. The @match function fails only if it back tracks all the way to the start of what .* matches
and then the subsequent pattern still fails.

One thing to note here: because .* is greedy, a regular expression like .*, "hello" will match
everything up to the last occurrence of "hello" in the source string, not up to the first occurrence. If
you would prefer to match up to the first "hello" in the source string, you cannot use a greedy
algorithm when skipping arbitrary characters. The @arb function matches arbitrary characters, like
‘.’, except it uses a lazy (or deferred) matching algorithm, matching as few characters as possible.
An expression like @arb* begins by matching zero characters. If the subsequent pattern fails, it
matches one character. If the subsequent pattern fails, it tries matching two characters, and so on.
Therefore, the regular expression @arb*, "hello" will match up to the first occurrence of "hello" in
the source string.

Backtracking can be a very expensive operation if you’re not careful when designing your
regular expressions. Consider the following regular expression:

‘a’+, ‘a’+, ‘a’+

This regular expression (ambiguously) matches three or more ‘a’ characters. Consider what
happens, however, when it is fed a source string such as "aaa". The first ‘a’+ term above matches
the entire string. This causes the second ‘a’+ term to fail, so backtracking occurs. The first ‘a’+
term backs off one character and now the second ‘a’+ term can succeed. At this point, the third ‘a’+
term fails. So the second ‘a’+ expression attempts to backtrack, but it fails to match, so the first ‘a’+
term backs up one more character. Now, the second ‘a’+ term greedily grabs the two available
characters. The third ‘a’+ term fails at this point, so backtracking occurs yet again. The second ‘a’+
term backs up one character and, finally, the third ‘a’+ term succeeds. As you can see, this is a lot
of work to match a three-character string. In general, backtracking is exponential time complexity
(that is, the number of backtracking operations that can take place is proportional to 2**n, where n
is the number of regular expression elements). Fortunately, with a little care, you can usually avoid
the degenerate cases that exhibit such poor performance. For example, the previous expression
could be efficiently written as ‘a’:[3,*].

Matching an arbitrary number of characters is best done at the end of a regular expression
rather than at the beginning or in the middle of a regular expression. Doing so reduces the amount
of backtracking that will take place. If you cannot avoid matching an arbitrary sequence of
characters, then the next best thing to avoid is having two or more subexpressions in a regular
expression that match arbitrary expressions. When you have two or more subexpressions that can
match an arbitrary number of characters, backtracking can get ugly. Fortunately, you can usually
avoid such degenerate cases by carefully choosing your regular expressions.

13.11.23 Lazy Versus Greedy Evaluation
By default, the algorithms that @match uses are greedy. That is, if a given subexpression can

match an arbitrary number of characters it will attempt to match as many as possible. If matching
too many would cause the match operation to fail, then backtracking will come to the rescue and
allow the pattern match to succeed (if at all possible). If all you care about is whether the pattern
matches, then it really doesn’t matter whether the match algorithm is greedy or non-greedy. There
are two cases, however, where you might want to use a non-greedy ("lazy") algorithm: compile-
time performance and minimal string matching.

As you saw in the previous section on backtracking, using a greedy algorithm can produce
very slow performance in certain degenerate situations. A lazy algorithm (which matches as few
Public Domain Created by Randy Hyde Page 295

HLA Reference Manual 5/24/10 Chapter 13
characters as possible rather than as many characters as possible) will generally produce much
better performance as it can reduce the amount of backtracking that takes place. For example, if
you could run the ‘a’+, ‘a’+, ‘a’+ algorithm from the previous section using lazy evaluation, then it
would match the first three ‘a’ characters it finds and stop. No backtracking would take place.

Another issue with greedy evaluation is that it always matches the maximum length string.
Perhaps this is not what you want. Perhaps you want to match the minimal length string and then
process the remainder of the string (after the match) separately. For example, you might expect the
following pattern to match everything up to "hello" in the source string and leave the rest of the
source string in the remainder operand:

.*, "hello"

In fact, this regular expression matches everything up to the last occurrence of "hello" in the source
string. Therefore, if the source string is something like "hello world, hello people, hello creation"
then the remainder string winds up being " creation". Sometimes you want minimal string matching
so greedy evaluation is inappropriate.

You can specify lazy evaluation in a pattern using the following repetition forms (assume R is
some regular expression that supports repetition):

R::[n,m] Matches between n and m copies of R
R::[n,*] Matches n or more copies of R

Although you cannot directly specify lazy evaluation for the unadorned * and + operators, you can
easily synthesize lazy evaluation for these operators as follows:

R::[0,*] Matches zero or more copies of R
R::[1,*] Matches one or more copies of R

13.11.24 The @match and @match2 Functions
Consider a simple regular expression that matches a string of the form "id+id" (that is, a simple

arithmetic expression). The #regex macro might take the following form:

#regex simpleExpr;
@matchID, ‘+’, @matchID

#endregex

and you could use this regular expression with an @match invocation like this:

?boolResult := @match("value1+value2", simpleExpr);

This will work great right up to the point you try something like the following, at which point the
pattern matching operation will fail:

?falseResult := @match("value1 + value2", simpleExpr);

(notice that there are spaces around the ‘+’ operator in the source string.)

You can solve this problem, and allow arbitrary whitespace in an expression, by inserting
@ws* regular expressions at appropriate points in your regular expression. For example, you could
rewrite simpleExpr thusly:

#regex simpleExpr;
@ws*, @matchID, @ws*, ‘+’, @ws*, @matchID

#endregex

This new regular expression will ignore whitespace at all the appropriate points in the source string.

There are three problems with sticking @ws* terms throughout your regular expression. First,
it clutters up the regular expression and makes it difficult to read. Second, it’s easy to misplace (or
Public Domain Created by Randy Hyde Page 296

HLA Reference Manual 5/24/10 Chapter 13
leave out) one of the @ws* terms. Finally, a bunch of terms like @ws* can have a serious impact
on the processing time needed by @match when backtracking occurs.

The @match2 function solves these three problems. @match2 automatically skips any white
space present before each term it finds in a regular expression that it processes. This spares you
having to clutter your code with @ws* items, it guarantees that it skips whitespace before each
term, and the whitespace it skips is not subject to backtracking issues. Therefore, unless you want
absolute control over matching whitespace in your source strings, you should really use the
@match2 function rather than @match.

In some very rare cases, you may need the ability to switch between @match and @match2
semantics within the same regular expression. For example, if you want to be able to parse HLA-
style character constants, you might be tempted to use a regular expression like the following:

"‘’’’" | ‘’’’, ., ‘’’’

(That is, match ‘’’’ or a single character surrounded by apostrophes.)

Unfortunately, if you use @match2 to process this regular expression it will fail when you
attempt to match the character constant ‘ ‘. This is because @match2 will skip the space between
the two apostrophes. To avoid this problem, the solution is to make a recursive call to @match
within the regular expression, as follows:

"‘’’’" | @match(‘’’’, ., ‘’’’)

This guarantees @match semantics (no whitespace skipping) for the specified subexpression. Note
that there are no returns, remainder, or matched parameters allowed here, and the source string is
always the current string being processed.

You can also call @match2 in a similar manner if you want to guarantee @match2 semantics
in a subexpression.

13.11.25 Compiling and Precompiling Regular Expressions
To improve pattern matching performance, particularly when backtracking occurs, HLA does

not interpret the text of a #regex macro directly. Instead, HLA compiles a #regex macro into an
internal format and operates on that internal format rather than on the #regex text directly. This
effects the operation and usage of #regex macros in several subtle ways. To avoid complications
when using #regex macros, it’s important to understand how compiling #regex macros affects their
operation.

Prior to the introduction of #regex macros, there were two distinct times a programmer had to
be concerned with: assembly (compile) time and run time. For example, the #if statement operates
at compile time whereas the if statement operates at run time. In order to fully utilize the HLA
compile-time language, a programmer has to become comfortable with the difference between
compile-time operations and run-time code. #regex regular expressions also exhibit two distinct
phases - compile time and run time - though the confusing part is that both of these phases take
place during the HLA compilation phase. Unfortunately, and this is the confusing part, the
complete facilities of the HLA compile-time language are only available during regular expression
compilation, not while HLA is executing those regular expressions.

Consider, for a moment, the following #regex macro definition:

#regex sample(count);
#for(i:= 1 to count)

‘a’,
#endfor
‘b’

#endregex

At first glance, this code seems rather straightforward. You would think that it would match the
number of ‘a’ characters passed as the parameter, followed by a single ‘b’ character. If fact, the
behavior is subtlety different. As for machine instructions, the #for loop simply replicates the body
while compiling the regular expression. Once compiled, the number of matching ‘a’ characters is
Public Domain Created by Randy Hyde Page 297

HLA Reference Manual 5/24/10 Chapter 13
immutable. For example, if you compile a regular expression using the value 5 as the actual
argument value, the above regular expression macro is equivalent to:

#regex sample(count);
‘a’, ‘a’, ‘a’, ‘a’, ‘a’,
‘b’

#endregex

 Unless you recompile this regular expression with a different argument value, the value will never
be anything other than five.

Of course, one question that naturally rises is "how does one compile a #regex macro?" None
of the examples to date have require the use of a special "regular expression compiler" to process a
#regex macro before using it. Well, as it turns out, HLA will automatically compile a #regex macro
to its internal form if you use such a macro within an @match/@match2 function call or if a
#regex macro name appears within some other regular expression. Because the regular expression
is compiled on the spot, the distinction between compile time and run time for the regular
expression almost becomes a moot point.

The only problem with compiling a regular expression every time you encounter it is that
compilation can be an expensive operation if you recompile a regular expression on each use.
Consider the following #regex macros:

#regex matchHello;
"hello"

#endregex

#regex hasHello;
.*, matchHello

#endregex

The .* operand in hasHello guarantees that backtracking will occur within this regular
expression. Unfortunately, on each backtracking instance (and there will be five of them in this
case), HLA is forced to recompile the regular expression. This is extremely inefficient. For this
reason, you should try to avoid placing uncompiled regular expression macro invocations inside a
#regex definition. Instead, you should precompile the regular expression to the internal form and
specify that compiled version. This saves the expense of recompiling the regular expression on
each invocation of the internal #regex macro.

The obvious question is "how does one precompile a #regex macro?" This is accomplished by
creating a val object of type regex and assigning a #regex macro to that val identifier. For
example:

#regex matchHello;
"hello"

#endregex

val
compiledMatchHello :regex := matchHello;

When HLA sees a statement like this, it compiles the #regex macro (matchHello in this example)
to the internal form and stores this internal data structure into the regex val object
(compiledMatchHello in this example). Now you can use the compiled variant of the #regex macro
just like the macro itself with one very important difference - compiled regexes do not allow any
actual arguments. The processing of the #regex parameters (and any HLA compile-time language
statements appearing in the macro) takes place when the #regex macro is compiled, the statements
that would make use of those compile-time language statements is gone when HLA actually
executes the regular expression.

If you’re only going to use a regular expression macro once in a source file, precompiling the
macro won’t achieve anything. However, if you use a regular expression macro several times, and
especially if you use the regex macro within some other regular expression, you should get in the
habit of precompiling the #regex macro and using the compiled version. Here’s a good convention
Public Domain Created by Randy Hyde Page 298

HLA Reference Manual 5/24/10 Chapter 13
to use: prefix your #regex macro names with an underscore and then immediately follow the
#regex macro with a val statement that compiles the macro to the unadorned name, e.g.,
regex _matchHello;

"hello"
#endregex

val
matchHello :regex := matchHello;

13.11.26 The #match..#endmatch Block
Although you can use @match and regular expression macros as generic pattern-matching

functions in your HLA compile-time program, the true intended purpose of these pattern-matching
facilities is to allow you to write your own "mini-languages" (i.e., domain-specific languages)
directly in your HLA source files. The #match..#endmatch directives provide a convenient way to
compile such domain-specific languages (DSELs). A #match..#endmatch block takes the
following form:

#match(regexID)

<<body>>

#endmatch

The #match directive converts the block of text after the closing parenthesis and up to the
#endmatch directive into a single string, runs @match on this string along with the regular
expression specified by regexID, and then expands the return string to text if the @match function
returns true. This is roughly equivalent to:

?returnStr:string;
#if(@match(<<body text as a string>>, regexID, returnStr))

@text(returnStr);

#endif

Here is a hypothetical example of #match..#endmatch in action:

#match(smallBASIClanguage)

 for i = 1 to 10
 print i
 next i

#endmatch

Presumably, the smallBASIClanguage regular expression would contain the statements to compile
the body of the #match..#endmatch statement into the corresponding machine instructions.

13.11.27 Using Regular Expressions in Your Assembly Programs
Unless you’ve had a firm grounding in compiler theory and pattern-matching theory, you’re

probably wondering what the heck these #regex macros are all about. What do they have to do with
assembly language? Although this documentation cannot begin to go into details about automata
theory and whatnot, it is useful to describe exactly why you might want to create and use #regex
macros in your assembly programs.
Public Domain Created by Randy Hyde Page 299

HLA Reference Manual 5/24/10 Chapter 13
HLA’s standard macro facilities let you extend the HLA language, but you don’t have a whole
lot of say in the design of the syntax for those macro invocations. Though HLA’s context-free
macro facilities provide many options you just don’t see in other assemblers, the truth is that you’re
stuck using the standard HLA syntax when using macros. Regular expressions give you the ability
to design a syntax of your own choosing. You can even create full programming languages inside
HLA using #regex pattern matching macros. All you need to is place your "program" inside some
HLA compile-time string object (e.g., using the #text..#endtext directive) and then call @match to
compile your program.

Examples of #regex macros appear in the HLA examples download module. Please grab a
copy of these examples to see some working examples of HLA #regex macros.

13.12The #asm..#endasm and #emit Directives
These directives are deprecated and should not appear in new HLA programs. Much of the

need for these statements has gone away over the years as HLA’s instruction set was expanded to
incorporate most x86 instructions. These statements emit text to an output assembly language
source file; obviously, these statements have no effect when HLA produces object code directly.

Probably the biggest use of the #asm..#endasm directive today is to emit comments into the
assembly language source file that HLA produces. This is useful if you want to mark a section of
the assembly language code to determine statement boundaries in the output code. If you use this
scheme to inject comments into the output code, you should always encode your comments as
follows:

;/* comment text */

The ";" character begins comments in all output assembly languages except HLA and Gas; the
';' is a statement separator in HLA and Gas (which is an innocuous output character). The "/*" and
"*/" sequences are the comment delimiters in HLA and Gas. Of course, the (pseudo-) HLA output
from an HLA compilation is not compilable, so it doesn't really matter if you emit correct comment
syntax for pseudo-HLA output, but Gas uses the same comment syntax as HLA so that's the best
approach to use if you want your output to be portable across all assemblers.

Note that the HLA back engine will also ignore any text after a ';' up to the end of the line.
Therefore, you can emit this text when directly producing object files with the HLABE and it will
not impact the output code. Here is an example:

program seeCode;
begin seeCode;

#asm
; /* Beginning of main program body */
#endasm

mov(0, eax);
mov(1, ebx);
add(eax, ebx);

#asm
; /* End of main program body */
#endasm

end seeCode;

Here is the code that HLA emits with the "-masm -source" command-line parameters for the
main program:

_HLAMain proc near32

start proc near32
Public Domain Created by Randy Hyde Page 300

HLA Reference Manual 5/24/10 Chapter 13
start endp

 call BuildExcepts__hla_
 pushd 0
 push ebp
 push ebp
 lea ebp, [esp-4]

 ; /* Beginning of main program body */
 mov eax, 0
 mov ebx, 1
 add ebx, eax

 ; /* End of main program body */
QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
_HLAMain endp

13.13The #system Directive
The #system directive requires a single string parameter. It executes this string as an operating

system (shell/command interpreter) operation via the C "system" function call. This call is useful,
for example, to run a program during compilation that dynamically creates a text file that an HLA
program may include immediately after the #system invocation.

Example:
#system("dir")
Note that the #system directive is legal anywhere white space is allowable and doesn’t require

a semicolon at the end of the statement.

13.14The #print and #error Directives
The #print directive displays its parameter values during compilation. The basic syntax is the

following:

#print(comma, separated, list, of, constant, expressions, ...)

 The #print statement is very useful for displaying messages during assembly (e.g., when
debugging complex macros or compile-time programs). The items in the #print list must evaluate
to constant (const or val) values at compile time.

A common use for #print is to display "TODO" messages during compilation, alerting the
programmer to features that have yet to be implemented in the application. This helps remind the
programmer that code still needs to be written so they don't forget to incorporate that feature. For
example,

#print("TODO: Still need to add expression parser here")

 The #error directive behaves like #print insofar as it prints its parameter to the console
device during compilation. However, this instruction also generates an HLA error message and
does not allow the creation of an object file after compilation. This statement only allows a single
string expression as a parameter. If you need to print multiple values of different types, use string
concatenation and the @string function to achieve this. Example:
Public Domain Created by Randy Hyde Page 301

HLA Reference Manual 5/24/10 Chapter 13
#error("Error, unexpected value. Value = " + #string(theValue))

Notice that neither the #print nor the #error statements end with a semicolon.

13.15Compile-Time File Output (#openwrite, #append, #write,
#closewrite)

These compile-time statements let you do simple file output during compilation. The
#openwrite statement opens a single file for output, #write writes data to that output file, and
#closewrite closes the file when output is complete. These statements are useful for
automatically generating include files that the source file will include later on during the
compilation. These statements are also useful for storing bulk data for later retrieval or generating
a log during assembly.

The #openwrite statement uses the following syntax:
#openwrite(string_expression)

This call opens a single output file using the filename specified by the string expression. If the
system cannot open the file, HLA emits a compilation error. Note that #openwrite only allows one
output file to be active at a time. HLA will report an error if you execute #openwrite and there is
already an output file open. If the file already exists, HLA deletes it prior to opening it (so be
careful!). If the file does not already exist, HLA creates a new one with the specified name.

The #append statement has the same syntax as #openwrite. The difference is that using
#append will not first delete the file you are opening. Instead, all data written to the file will be
appended to the end of the existing file (if any).

The #write statement uses the same syntax as the #print directive. Note, however, that
#write doesn’t automatically emit a newline after writing all its operands to the file; if you want a
newline output you must explicitly supply it as the last parameter to #write.

The #closewrite statement closes the file opened via #openwrite or #append. HLA
automatically closes this file at the end of assembly if you leave it open. However, you must
explicitly close this file before attempting to use the data (via include or #openread) in your
program. Also, since HLA allows only one open output file at a time, you must use #closewrite
to close the file before you can open another with #openwrite.

Warning: Internally, the #write statement simply redirects the standard output stream to
send output to the write file and then invokes #print, restoring the standard output file handle
upon return. This creates a minor problem if there is a syntax error in the #write operand list --
the error message is written to the output file! If you’re having problems with the #write output,
temporarily change it to #print to see if there’s an error in the statement. This defect will
probably get fixed in some future version.

13.16Compile-time File Input (#openread, @read, #closeread)
These compile-time statements and function let you do simple file input during compilation.

The #openread statement opens a single file for input, @read is a compile-time function that
reads a line of text from the file, and #closeread closes the file when input is complete. These
statements are useful for reading files produced by #openwrite/#write/#closewrite or any
other text file during compilation.

The #openread statement uses the following syntax:
#openread(filename)

The filename parameter must be a string expression or HLA reports an error. HLA attempts to
open the specified file for reading; HLA prints an error message if it cannot open the file.

The @read function uses the following call syntax:
@read(val_object)

The val_object parameter must either be a symbol you’ve defined in a val section (or via "?") or it
must be an undefined symbol (in which case @read defines it as a val object). @read is an HLA
compile-time function (hence the "@" prefix rather than "#"; HLA uses "#" for compile-time
statements). It returns either true or false, true if the read was successful, false if the read
operation encountered the end of file. Note that if any other read error occurs, HLA will print an
error message and return false as the function result. If the read operation is successful, then HLA
Public Domain Created by Randy Hyde Page 302

HLA Reference Manual 5/24/10 Chapter 13
stores the string it read (up to 4095 characters) into the val object specified by the parameter.
Unlike #openread and #closeread, the @read function may not appear arbitrarily in your
source file. It must appear within a constant expression since it returns a boolean result (and it is
your responsibility to check for EOF).

 The #closeread statement closes the input file. Since you may only have one open input file
at a time, you must close an open input file with #closeread prior to opening a second file.
Syntax:

#closeread

Example of using compile-time file I/O:

#openwrite("hw.txt")
#write("Hello World", nl)
#closewrite
#openread("hw.txt")
?goodread := @read(s);
#closeread
#print("data read from file = ", s)

13.17The Conditional Compilation Statements (#if)
The conditional compilation statements in HLA use the following syntax:

#if(constant_boolean_expression)

<< Statements to compile if the >>
<< expression above is true. >>

#elseif(constant_boolean_expression)

<< Statements to compile if the >>
<< expression immediately above >>
<< is true and the first expres->>
<< sion above is false. >>

#else

<< Statements to compile if both >>
<< the expressions above are false. >>

#endif

 The #elseif and #else clauses are optional. As you would expect, there may be more than one
#elseif clause in the same conditional if sequence.

Unlike some other assemblers and high-level languages, HLA’s conditional compilation
directives are legal anywhere whitespace is legal. You could even embed them in the middle of an
instruction! While directly embedding these directives in an instruction isn’t recommended
(because it would make your code very hard to read), it’s nice to know that you can place these
directives in a macro and then replace an instruction operand with a macro invocation.

An important thing to note about this directive is that the constant expression in the #IF and
#ELSEIF clauses must be of type boolean or HLA will emit an error. Any legal constant
expression that produces a boolean result is legal here. In particular, you are limited to expressions
like those allowed by the HLA HLL IF statement.

Keep in mind that conditional compilation directives are executed at compile-time, not at run-
time. You would not use these directives to (attempt to) make decisions while your program is
actually running.
Public Domain Created by Randy Hyde Page 303

HLA Reference Manual 5/24/10 Chapter 13
13.18The Compile-Time Loop Statements (#while and #for)
The HLA compile time language also provides a couple of looping structures -- the #while

loop and the #for loop.
The #while..#endwhile compile-time loop takes the following form:

#while(constant_boolean_expression)

<< Statements to execute as long >>
<< as the expression is true. >>

#endwhile

While processing the #while..#endwhile loop, HLA evaluates the constant boolean
expression. If it is false, HLA immediately skips to the first statement beyond the #endwhile
directive.

If the expression is true, then HLA proceeds to compile the body of the #while loop. Upon
encountering the #endwhile directive, HLA jumps back up to the #while clause in the source
code and repeats this process until the expression evaluates false.

Warning: since HLA allows you to create loops in your source code that evaluation during the
compilation process, HLA also allows you to create infinite loops that will lock up the system
during compilation. If HLA seems to have gone off into la-la land during compilation and you’re
using #while loops in your code, it might not be a bad idea to put some #print directives into
your loop(s) to see if you’ve created an infinite loop.

Note: because of the limitations of HLA’s implementation language (FLEX and BISON), it is
not possible to begin a #while loop and have the matching #endwhile appear in a (different)
macro or TEXT constant. When the HLA compiler encounters a #while statement it scans the
source code looking for the matching #endwhile collecting up the statements that make up the
body of the loop. During this scan it does not expand TEXT constants or macros. Hence, if you
bury the #endwhile in a macro or TEXT constant HLA will not be able to find it. For
performance and functional reasons, HLA cannot expand macro and TEXT variables during this
scan. This is a limitation we will all have to live with until v3.0 of HLA (which will be rewritten in
a different language).

The #for..#endfor loop can take one of the following forms:

#for(loop_control_var := Start_expr to end_expr)

<< Statements to execute as long as the loop control variable’s >>
<< value is less than or equal to the ending expression. >>

#endfor

#for(loop_control_var := Start_expr downto end_expr)

<< Statements to execute as long as the loop control variable’s >>
<< value is greater than or equal to the ending expression. >>

#endfor

The HLA compile-time #for..#endfor statement is very similar to the for loops found in
languages like Pascal and BASIC. This is a definite loop that executes some number of times
determine when HLA first encounters the #for directive (this can be zero or more times, but the
number is computed only once when HLA encounters the #for). The loop control variable must
be a val object or an undefined identifier (in which case, HLA will create a new val object with the
specified name). In addition, the number control variable must be an eight, sixteen, or thirty-two
bit integer value (uns8, uns16, uns32, int8, int16, or int32). In addition, the starting and ending
expressions must be values that an int32 val object can hold.
Public Domain Created by Randy Hyde Page 304

HLA Reference Manual 5/24/10 Chapter 13
The #for loop with the to clause initializes the loop control variable with the starting value
and repeats the loop as long as the loop control variable’s value is less than or equal to the ending
expression’s value. The #for..to..#endfor loop increments the loop control variable on each
iteration of the loop.

The #for loop with the downto clause initializes the loop control variable with the starting
value and repeats the loop as long as the loop control variable’s value is greater than or equal to the
ending expression’s value. The #for..downto..#endfor loop decrements the loop control
variable on each iteration of the loop.

Note that the #for..to/downto..#endfor loop only computes the value of the ending
expression once, when HLA first encounters the #for statement. If the components of this
expression would change as a result of the execution of the #for loop’s body, this will not affect
the number of loop iterations.

The #for..#endfor loop can also take the following form:

#for(loop_control_var in composite_expr)

<< Statements to execute for each element present in the expression >>

#endfor

The composite_expr in this syntactical form may be a string, a character set, an array, or a record
constant.

This particular form of the #for loop repeats once for each item that is a member of the
composite expression. For strings, the loop repeats once for each character in the string and the
loop control variable is set to each successive character in the string. For character sets, the loop
repeats for each character that is a member of the set; the loop control variable is assigned the value
of each character found in the set (you should assume that the extraction of characters from the set
is arbitrary, even though the current implementation extracts them in order of their ASCII codes).
For arrays, this #for loop variant repeats for each element of the array and assigns each successive
array element to the loop control variable. For record constants, the #for loop extracts each field
and assigns the fields, in turn, to the loop control variable.
Examples:

#for(c in "Hello")
#print(c) // Prints the five characters ’H’, ’e’, ..., ’o’

#endfor

// The following prints a..z and 0..9 (not necessarily in that order):

#for(c in {’a’..’z’, ’0’..’9’})
#print(c)

#endfor

// The following prints 1, 10, 100, 1000

#for(i in [1, 10, 100, 1000])
#print(i)

#endfor

// The following prints all the fields of the record type r
// (presumably, r is a record type you’ve defined elsewhere):

#for(rv in r:[0, ’a’, "Hello", 3.14159])
#print(rv)

#endfor
Public Domain Created by Randy Hyde Page 305

HLA Reference Manual 5/24/10 Chapter 13
13.19Compile-Time Functions (macros)
Keep in mind that HLA macros are text expansion devices that may appear anywhere

whitespace is allowed. Therefore, you can use them for so much more than 80x86 instruction
synthesis. In particular, along with the "?" operator, you can create compile-time functions. For
example, consider the following macro that converts the first character of a string to upper case and
forces the remaining characters to lower case:

program macroFuncDemo;
#include("stdio.hhf");

 #macro Capitalize(s);
 @uppercase(@substr(s,0,1), 0) +
 @lowercase(@substr(s, 1, 1000), 0)
 #endmacro

static
 Hello: string := Capitalize("hELLO");
 World: string := Capitalize("world");

begin macroFuncDemo;

 stdout.put(Hello, " ", World, nl);

end macroFuncDemo;

13.20Sample Macro: A Modified IF..ELSE..ENDIF Statement
In this section we'll create a new kind of IF statement that doesn’t nest the same way standard

IF statements nest. In particular, if we define the statement such that all IF clauses nested with an
outer IF..ENDIF block share the same ELSE and ENDIF clauses. If this were the case, then you
could implement some as follows:

if(expr1) then

<< some 'true' statements >>

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

If expr1 is false, control immediately transfers to the ELSE clause. If the value of expr1 is
true, the control falls through to the next IF statement.
Public Domain Created by Randy Hyde Page 306

HLA Reference Manual 5/24/10 Chapter 13
If expr2 evaluates false, then the program jumps to the single ELSE clause that all IFs share in
this statement. Notice that a single ELSE clause (and corresponding ’false’ statements) appear in
this code; hence the code does not necessarily expand in size. If expr2 evaluates true, then control
falls through to the ’true’ statements, exactly like a standard IF statement.

Notice that the nested IF statement above does not have a corresponding ENDIF. Like the
ELSE clause, all nested IFs in this structure share the same ENDIF. Syntactically, there is no need
to end the nested IF statement; the end of the THEN section ends with the ELSE clause, just as the
outer IF statement’s THEN block ends.

Of course, we won't actually define a new macro named "if" because if we did (e.g., by using
the #id statement) we would no longer be able to use standard IF statements in an HLA program (at
least, not without the '~' prefix). Further, doing so would make your programs very difficult to
comprehend if the IF keyword had different semantics in different parts of the program. The
following program uses the identifiers "_if", "_then", "_else", and "_endif" instead. It is
questionable if these are good identifiers in production code (perhaps something a little more
different would be appropriate). The following code example uses these particular identifiers so
you can easily correlate them with the corresponding high-level statements.

/***/
/* */
/* if.hla */
/* */
/* This program demonstrates a modification of */
/* the IF..ELSE..ENDIF statement using HLA's */
/* multi-part macros. */
/* */
/***/

program newIF;
#include("stdlib.hhf")

// Macro implementation of new form of if..then..else..endif.
//
// In this version, all nested IF statements transfer control
// to the same ELSE clause if any one of them have a false
// boolean expression. Syntax:
//
// _if(expression) _then
//
// <<statements including nested _if clauses>>
//
// _else // this is optional
//
// <<statements, but _if clauses are not allowed here>>
//
// _endif
//
//
// Note that nested _if clauses do not have a corresponding
// _endif clause. This is because the single _else and/or
// _endif clauses terminate all the nested _if clauses
// including the first one. Of course, once the code
// encounters an _endif another _if statement may begin.
Public Domain Created by Randy Hyde Page 307

HLA Reference Manual 5/24/10 Chapter 13
// Macro to handle the main "_if" clause.
// This code just tests the expression and jumps to the _else
// clause if the expression evaluates false.

macro _if(ifExpr):elseLbl, hasElse, ifDone;

 ?hasElse := false;
 jf(ifExpr) elseLbl;

// Just ignore the _then keyword.

keyword _then;

// Nested _if clause (yes, HLA lets you replace the main
// macro name with a keyword macro). Identical to the
// above _if implementation except this one does not
// require a matching _endif clause. The single _endif
// (matching the first _if clause) terminates all nested
// _if clauses as well as the main _if clause.

keyword _if(nestedIfExpr);
 jf(nestedIfExpr) elseLbl;

 // If this appears within the _else section, report
 // an error (we don't allow _if clauses nested in
 // the else section, that would create a loop).

 #if(hasElse)

 #error("All _if clauses must appear before the _else clause")

 #endif

// Handle the _else clause here. All we need to is check to
// see if this is the only _else clause and then emit the
// jmp over the else section and output the elseLbl target.

keyword _else;
 #if(hasElse)

 #error("Only one _else clause is legal per _if.._endif")

 #else

 // Set hasElse true so we know that we've seen an _else
 // clause in this statement.

 ?hasElse := true;
 jmp ifDone;
 elseLbl:

 #endif
Public Domain Created by Randy Hyde Page 308

HLA Reference Manual 5/24/10 Chapter 13

// _endif has two tasks. First, it outputs the "ifDone" label
// that _else uses as the target of its jump to skip over the
// else section. Second, if there was no else section, this
// code must emit the "elseLbl" label so that the false conditional(s)

// in the _if clause(s) have a legal target label.

terminator _endif;

 ifDone:
 #if(!hasElse)

 elseLbl:

 #endif

endmacro;

static
 tr:boolean := true;
 f:boolean := false;

begin newIF;

 // Real quick demo of the _if statement:

 _if(tr) _then

 _if(tr) _then
 _if(f) _then

 stdout.put("error" nl);

 _else

 stdout.put("Success");

 _endif

end newIF;

Just in case you’re wondering, this program prints "Success" and then quits. This is because
the nested "_if" statements are equivalent to the expression "true && true && false" which, of
course, is false. Therefore, the "_else" portion of this code should execute.

The only surprise in this macro is the fact that it redefines the _if macro as a keyword macro
upon invocation of the main _if macro. The reason this code does this is so that any nested _if
clauses do not require a corresponding _endif and don’t support an _else clause.

Implementing an ELSEIF clause introduces some difficulties, hence its absence in this
example. The design and implementation of an ELSEIF clause is left to the more serious reader1.

1. I.e., I don’t even want to have to think about this problem!
Public Domain Created by Randy Hyde Page 309

HLA Reference Manual 5/24/10 Chapter 13
13.21Text Processing, Lexical Analysis and the #text..#endtext
Block

Although HLA’s multi-part macros are very powerful and flexible, they to have some
important limitations if you’re trying to create your own statements. In particular, if the statements
you want to create require some operands, the multi-part macro invocation forces you to specify
those operands within parentheses immediately after the macro’s name. While you can probably
live with this most of the time, there are some situations where you might want to specify the new
language feature using a different syntax. Well, with a bit of work it is certainly possible to do this.
HLA’s compile-time language actually provides all the tools you need to write a full-fledged
compiler. While extending HLA in this fashion is well beyond the scope of this text, it is
worthwhile to point you in the right direction, just in case you’re dying to do really fancy things
with HLA.

The key to creating your own personal structures in HLA lies with the HLA compile-time
string and pattern matching functions. These functions let you process strings of data in very
complex ways, translating that string data into whatever you please. Combined with HLA’s
#text..#endtext blocks, which let you copy a portion of your source file into string variables, it is
possible to write an HLA compile-time program that processes those portions of your source files.
Of course, once you process your source file as string data, you can use any syntax you choose (and
support) within that string data. You can design very sophisticated DSELs using this technique.

The #text..#endtext block uses the following syntax:
#text(identifier)

<< arbitrary lines of text >>

#endtext

The identifier symbol must be undefined or a val object within the current scope. HLA creates
a val objected named identifier that will be an array of strings. Each string in the array will contain
one line of text between the #text and #endtext reserved words. The array of strings will contain
the text immediately following "#text(identifier)" up to the character just before the #endtext
directive.

// textDemo.hla
//
// This program demonstrates how the #text and #endtext
// directives operate.

program textDemo;

// A quick demonstration of the #text..#endtext directives:

#text(lines) Hello
World
how are
you #endtext

// Print out the strings gathered into "lines" above
// so you can see the effect of the #text..#endtext directive:

?i := 0;
#while(i < @elements(lines))

 #print(i, ": '", lines[i], "'")
Public Domain Created by Randy Hyde Page 310

HLA Reference Manual 5/24/10 Chapter 13
 ?i := i + 1;

#endwhile
#print("------")

// A cleaner example (typical of what you would find in DSELs):

#text(MyDSELsource)

 if(x=y && a<b || c<>d) then

 print "This is my own special language, a=", a;

 endif;

#endtext

// Print the above text (to attempt to actually compile
// those statements in this example!)

?i := 0;
#while(i < @elements(MyDSELsource))

 #print(i, ": '", MyDSELsource[i], "'")
 ?i := i + 1;

#endwhile

begin textDemo;
end textDemo;

Demonstration of the #TEXT..#ENDTEXT Directives

The program above prints the following when you compile this program with HLA:
0: ' Hello'
1: 'World'
2: 'how are'
3: 'you '

0: ''
1: ''
2: ' if(x=y && a<b || c<>d) then'
3: ' '
4: ' print "This is my own special language, a=", a;'
5: ' '
6: ' endif;'
7: ' '
Public Domain Created by Randy Hyde Page 311

HLA Reference Manual 5/24/10 Chapter 13
8: ''

As this example suggests, if you want to create a DSEL (Domain Specific Embedded
Language) that supports an arbitrary syntax, you would insert your DSEL statements between the
#text and #endtext directives and then use the HLA compile-time language to process this text in
the associated array of strings.

In order to process these statements, one of the first activities will be to break up the text into
its constituent parts. In the second example above, this would correspond to breaking up those nine
strings into:
if
(
x
=
y
&&
a
<
b
||
c
<>
d
)
then
print
"This is my own special language, a="
,
a
;
endif
;

Each of these pieces is called a lexeme. Compiler writers call the process of breaking a stream
of text up into lexemes lexical analysis or scanning. A lexical analyzer or scanner is the code
responsible for actually breaking up the text. While a full treatment of lexical analysis is, again,
beyond the scope of this document1, some simple techniques you can use to write a scanner are
easy to understand and well within the scope of this chapter.

Some languages ignore white space and new lines in the source code; others treat these
characters as part of the syntax. For example, a language such as HLA ignores new lines, you can
cram your whole program onto a single physical source code line if you so desire2. Traditional
assemblers, on the other hand, only allow one statement per line and use the new line sequence to
separate these statements. In our current example (MyDSELsource), we’ll assume that the
language ignores white space and new line characters.

Actually, HLA’s #text..#endtext block automatically eliminates all new lines appearing in the
text. Instead of new lines, HLA copies each line of text (sans new line) to a separate string in the
string array. For our example this is unfortunate because it would be more convenient to treat the
entire block of text as a single string of characters. (Note: you could also use HLA's
#string..#endstring block to capture all the text into a single string, complete with newline
characters; if you do that, then you get to ignore the #while loop below; this example uses
#text..#endtext to demonstrate the process of processing one line at a time.) Therefore, one of the
first jobs of the scanner we are going to write is to combine these separate lines of text back
together. One simple solution is to execute some (compile-time) code like the following before
attempting to process the text:

1. That subject belongs in a text on compiler design and implementation.
2. That would be really bad programming style, but it is legal syntactically.
Public Domain Created by Randy Hyde Page 312

HLA Reference Manual 5/24/10 Chapter 13
?i := 0;
?source := "";
#while(i < @elements(MyDSELsource))

?source := source + " " + MyDSELsource[i];
?i := i + 1;

#endwhile

(Inserting a space between lines is necessary since HLA has removed the original separating
new line character sequence. This prevents the end of one line from running directly into the
beginning of the next line.)

There are two problems with the code above; first, and least important, is that this code wastes
a lot of memory. Once you are done there will be two copies of the source file hanging around in
memory. This is especially problematic if there is a lot of text between the #text and #endtext
directives. The second problem with this sequence is that it is slow, especially if it has to process a
lot of text.

A better solution is to grab a new line of text only after the scanner has finished processing all
the previous text. This is easily handled by including the following compile-time statements at the
beginning of the scanner code:
// Before executing the following code, you must initialize
// CurrentInput and lineNumber as follows:
//
// ?lineNumber := 0;
// ?CurrentInput := MyDSELsource[0];

?CurrentInput := @trim(CurrentInput, 0); // Remove leading spaces from
input.
#while(@length(CurrentInput) = 0)

?lineNumber := lineNumber + 1;
#if(lineNumber < @elements(MyDSELsource))

?CurrentInput := @trim(MyDSELsource[lineNumber], 0);

#endif

#endwhile

Notice that this code only returns an empty string when it exhausts all the lines of text in the
#text..#endtext block. You may test for "end of file" (or, at least, end of this sequence) by
explicitly testing for an empty string after the code above executes. Also, note that this code
automatically removes any leading and trailing spaces from the text it processes (the call to
@TRIM handles this). Therefore, when the above code executes, the first item to process appears
in the first character of the CurrentInput string (assuming, of course, that CurrentInput is not
empty).

Extracting single character lexemes from the input string is easy. You can use the @OneChar
function to see if the first character of a string matches a particular character. For example, if the
plus and minus signs are special lexemes in your language, then you can use code like the
following to see if CurrentInput (from above) begins with one of these characters:
#if(@OneChar(CurrentInput, ’+’, CurrentInput))

<< CurrentInput began with a ’+’. Note that we’ve extracted
the ’+’ from the beginning of CurrentInput in the call above >>

#elseif(@OneChar(CurrentInput, ’-’, CurrentInput))

Public Domain Created by Randy Hyde Page 313

HLA Reference Manual 5/24/10 Chapter 13
<< CurrentInput began with a ’-’. Otherwise this is the same
as the above. >>

#else ...

The compile-time pattern matching functions (e.g., @OneChar) only store the remainder
characters into the remainder operand (the third parameter above, which is CurrentInput) if they
return true. Therefore, if @OneChar in the first #if above does not match a plus sign at the
beginning of the CurrentInput string, it will not change the value of CurrentInput; instead, the
#elseif clause will test the original string. On the other hand, if the first call to @OneChar above
discovers that CurrentInput does begin with a plus sign, then it stores the characters in
CurrentInput following the plus sign into the remainder operand (which is CurrentInput). This
deletes the plus sign from the beginning of the string.

To match specific multi-character lexemes, you would use the compile-time @MatchStr
function. For example, to match the "&&" lexeme, you would use @MatchStr as follows:
#if(@MatchStr(CurrentInput, "&&", CurrentInput))

<< Drop down here if CurrentInput begins with "&&" >>
<< (this also extracts "&&" from the string. >>

#else ...

Like the @OneChar function, the @MatchStr call above only deletes the "&&" characters
from CurrentInput if the string begins with these two characters; otherwise @MatchStr does not
affect the string.

Extracting single character lexemes is generally quite easy, but you must be careful if some
multi-character lexemes begin with the same character as a single character lexeme. For example,
"<" is a common single-character lexeme that generally means "less than." Matching "<" as a
single character lexeme may create problems if you also need to match the two character lexeme
"<=" in your language. If you use the @OneChar function as we did above for plus and minus
then your code may treat the less than or equal operator as two one-character lexemes rather than as
a single two-character lexeme. The solution is to check for the longer lexemes first:
#if(@MatchStr(CurrentInput, "<=", CurrentInput))

<< Come here on "<=" >>

#elseif(@MatchStr(CurrentInput, "<>", CurrentInput))

<< Drop down here if the string begins with "<>" >>

#elseif(@OneChar(CurrentInput, ’<’, CurrentInput))

<< Do this if string begins with ’<’ but not "<=" or "<>" >>

#else ...

Simple lexemes like operators are very easy to process using HLA functions like @OneChar
and @MatchStr. However, there are many string patterns you will want to recognize that do not
consist of simple strings. Two common examples are numeric values and identifiers. To recognize
these lexemes we must use a general pattern that matches more than a single string. Fortunately,
HLA’s compile-time pattern matching functions are up to the task.

Let’s consider the example of an unsigned decimal integer constant first. Such lexemes begin
with a single numeric digit and may contain zero or more additional numeric digits. So the string is
always at least one character long and may be longer, as necessary. Recognizing a character from a
set of characters is easy; all you need do is call the @OneOrMoreCset function to match the value.
The following sample code demonstrates how easy this is:
#if(@OneOrMoreCset(CurrentInput, {’0’..’9’}, CurrentInput, theNumber))
Public Domain Created by Randy Hyde Page 314

HLA Reference Manual 5/24/10 Chapter 13
<< At this point, we’ve matched a string of digits,
"theNumber" contains the string we’ve matched and
"CurrentInput" contains the remainder of the string >>

#else ... // It wasn’t a numeric lexeme.

Note that the call to @OneOrMoreCset in the example above supplies the fourth, optional,
parameter. If @OneOrMoreCset successfully matches a string of digits, it will copy the string it
matched into this fourth parameter (which must be a VAL object). This fourth parameter was not
necessary in the previous examples because the code knew what string it matched since there was
only one possible string it could match. However, the call to @OneOrMoreCset above can match
a nearly infinite variety of different strings. Since you might actually want to use that value while
processing the statements in your language, it’s a good idea to save that value for future use, hence
the last parameter above. As usual, if @OneOrMoreCset fails to match the pattern you specify, it
does not affect the values of CurrentInput or theNumber.

Another common pattern you will often need to recognize is a string that represents an
identifier. Different languages may specify identifiers differently, but a common definition is that
an identifier must begin with an underscore or an alphabetic character and may contain additional
alphanumeric or underscore characters (this matches HLA’s definition of an identifier). HLA
actually has a special pattern matching function, @MatchID, that matches HLA-style identifiers;
we will not employ that function here so you can see how to write more complex patterns.

Recognizing an HLA identifier requires two steps: first, we must ensure that the identifier
begins with an alphabetic character or an underscore. This is easily accomplished with the
following @PeekCset function call:

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})

This call to the @PeekCset function returns true if CurrentInput begins with an underscore or
an alphabetic character, it returns false otherwise. It does not affect CurrentInput’s value.
Therefore, we can use this function to determine if our identifier begins with an appropriate
character. Once we know that it begins with an underscore or alphabetic character, we can easily
match the entire identifier by calling @OneOrMoreCset as follows:
@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)

This call will match all the characters in an identifier and leave those characters in the theID
string; as usual, it removes the identifier from the beginning of the CurrentInput string. You would
typically match an identifier using code like the following:

#if(@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’}))

#if
(

@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>
Public Domain Created by Randy Hyde Page 315

HLA Reference Manual 5/24/10 Chapter 13
#endif

#else ...

If you carefully study the above logic, you might think that you can shorten this to the
following code:
#if
(

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})
&& @OneOrMoreCset

(
CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>

#else ...

However, there is a subtle flaw in this logic. The HLA compile-time language uses complete
boolean evaluation. Therefore, if the call to @PeekCset returns false the code above will go ahead
and call @OneOrMoreCset. Most of the time, this will not adversely affect anything. However,
if the next set of characters in the input stream happen to be a set of numeric digits, the call to
@OneOrMoreCset will return true. Of course, false AND true is still false, but don’t forget that
@OneOrMoreCset has the side effect of modifying CurrentInput. This is probably not what
you’ve intended to do. If you are intent on using the "&&" operator, you can use code like to
following to eliminate the problem with the side effect that the pattern matching functions will
produce:
#if
(

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})
&& @OneOrMoreCset

(
CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
Remainder,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>

?CurrentInput := Remainder;

#else ...

In this example, the remainder of the string is copied into a temporary variable. The code only
overwrites CurrentInput (with the temporary value) if the full expression evaluates true.

Most languages will have a set of reserved words. Reserved words (or keywords) are generally
nothing more than identifiers that have special meaning within the context of a language. In the
MyDSEL example earlier, it is a good bet that the identifiers if, then, print, and endif are all
reserved words in this DSEL. The easiest way to handle (a small number of) reserved words is to
first recognize them as identifiers and then use a sequence of string comparisons to see if the
Public Domain Created by Randy Hyde Page 316

HLA Reference Manual 5/24/10 Chapter 13
identifier you’ve matched is actually a reserved word. You could use code like the following to do
this:

#if(@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’}))

#if
(

@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

#if(theID = "if")

<< It’s the "IF" reserved word >>

#elseif(theID = "then")

<< It’s the "THEN" reserved word >>

#elseif(theID = "endif")

<< It’s the "ENDIF" reserved word >>

#elseif(theID = "print")

<< It’s the "THEN" reserved word >>

#else

<< Okay, we’ve got an identifier and it’s in "theID" >>

#endif

#endif

#else ...

HLA lets you design and implement your own complex patterns. However, HLA does contain
some built-in pattern matching functions for some common patterns. These include functions that
match identifiers (@MatchID), integer constants (@MatchIntConst), floating-point constants
(@MatchRealConst), numeric (integer or floating point) constants (@MatchNumericConst), and
string constants (@MatchStrConst). These functions are generally much more convenient to use
and certainly more efficient than using patterns you’ve written to match these types of strings. As
long as HLA’s idea of an identifier, number, or string is suitable for your application, you should
use these pattern-matching functions for these purposes.

In addition to the specialized pattern matching functions above, HLA also provides special
pattern matching function that deal with whitespace and the end of a string. These functions
include @ZeroOrMoreWS, @OneOrMoreWS, @WSorEOS, @WSthenEOS, @PeekWS, and
@EOS. See the HLA Compile-time Language document for more details on these functions.

With the basic tools and techniques out of the way, now it’s time to look at how we would
actually write a scanner using the HLA macro (compile-time function/procedure) facilities. The
following program provides a small lexer for the "MyDSELsource" example above.
Public Domain Created by Randy Hyde Page 317

HLA Reference Manual 5/24/10 Chapter 13
// textDemo2.hla
//
// This program demonstrates how to write a lexical
// analyzer (scanner) with the HLA compile-time language.

program textDemo2;

// DSEL text to scan:

#text(MyDSELsource)

if(x=y && a<b || c<>d) then

print "This is my own special language, a=", a;

endif;

#endtext

// Compile-time function that scans the text above.

macro lexer(Input, index):CurrentInput, Matched;

?CurrentInput:string := "";
?Matched:string := "";

#if(@elements(Input) = 0)

"Expected an array of strings as 'lexer' argument"

#else

?CurrentInput := @trim(Input[index], 0);

// The following #while loop removes all blank lines.

#while(@length(CurrentInput) = 0 && index < @elements(Input))

?index := index + 1;
#if(index < @elements(Input))

?CurrentInput := @trim(Input[index], 0);

#else

?CurrentInput := "#endtext";

#endif

#endwhile
Public Domain Created by Randy Hyde Page 318

HLA Reference Manual 5/24/10 Chapter 13
// If we reached the end of the input, just return
// "#endtext" for this example. The demo code that
// calls this function automatically stops after this
// point.

#if(index >= @elements(Input))

"#endtext"

#else

// Okay, we've got a non-empty string.
// Do the lexical analysis on it.

#if(@OneChar(CurrentInput, '=', CurrentInput))

"=" // Return this item as the lexeme.

// Note: we must check for "<>" before checking for "<".

#elseif(@MatchStr(CurrentInput, "<>", CurrentInput))

"<>"

#elseif(@OneChar(CurrentInput, '<', CurrentInput))

"<"

#elseif(@OneChar(CurrentInput, '(', CurrentInput))

"("

#elseif(@OneChar(CurrentInput, ')', CurrentInput))

")"

#elseif(@OneChar(CurrentInput, ',', CurrentInput))

","

#elseif(@OneChar(CurrentInput, ';', CurrentInput))

";"

#elseif(@MatchStr(CurrentInput, "&&", CurrentInput))

"&&"

#elseif(@MatchStr(CurrentInput, "||", CurrentInput))

"||"

#elseif(@MatchStrConst(CurrentInput, CurrentInput, Matched))

// For the purposes of this program, put the quotes
Public Domain Created by Randy Hyde Page 319

HLA Reference Manual 5/24/10 Chapter 13
// back around the string constant (@MatchStrConst
// removes the delimiting quotes).

("""" + Matched + """")

#elseif(@MatchID(CurrentInput, CurrentInput, Matched))

// We've matched an ID, see if it is actually one
// of the reserved words:

#if(Matched = "if")

("rw: if")

#elseif(Matched = "then")

("rw: then")

#elseif(Matched = "endif")

("rw: endif")

#else

// If it's not one of our reserved words, then
// just return the ID:

("id: " + Matched)

#endif

#else

#error("Unexpected lexeme: " + CurrentInput)
?CurrentInput := "";
""

#endif
?Input[index] := CurrentInput;

#endif

#endif
?CurrentInput:string := "";
?Matched:string := "";

endmacro;

val
lineNumber := 0;

#while(lineNumber < @elements(MyDSELsource))

#print(lexer(MyDSELsource, lineNumber))
Public Domain Created by Randy Hyde Page 320

HLA Reference Manual 5/24/10 Chapter 13
#endwhile

begin textDemo2;
end textDemo2;

Sample Lexical Analyzer
Public Domain Created by Randy Hyde Page 321

	13 The HLA Compile-Time Language
	13.1 HLA Compile-Time Language, Macros, and Pragmas
	13.2 Viewing the Output of the HLA Compile-Time Language
	13.3 #linker Directive
	13.4 The #Include Directive
	13.5 The #IncludeOnce Directive
	13.6 Macros
	13.6.1 Standard Macros
	13.6.2 Where You Declare a Macro Affects its Visibility
	13.6.3 Multi-part (Context Free) Macro Invocations:
	13.6.4 Macro Invocations and Macro Parameters:
	13.6.5 Processing Macro Parameters

	13.7 Built-in Functions:
	13.8 Constant Type Conversion Functions
	13.8.1 Bitwise Type Transfer Functions
	13.8.2 General functions
	13.8.3 String functions:
	13.8.4 String/Pattern matching functions
	13.8.5 Symbol and constant related functions and assembler control functions
	13.8.6 Pseudo-Variables
	13.8.7 Text emission functions
	13.8.8 Miscellaneous Functions

	13.9 #Text and #endtext Text Collection Directives
	13.10 #String and #endstring Text Collection Directives
	13.11 Regular Expression Macros and the @match/@match2 Functions
	13.11.1 #regex..#endregex
	13.11.2 The #return Clause
	13.11.3 Regular Expression Elements
	13.11.4 Kleene Star, Plus, and Numeric Range Specifications

	Suffix
	Meaning
	13.11.5 Matching Characters in a Regular Expression
	13.11.6 Case-insensitive Character Matching in a Regular Expression
	13.11.7 Negated Character Matching
	13.11.8 String Matching in Regular Expressions
	13.11.9 Case-insenstive String Matching in Regular Expressions
	13.11.10 Negated String Matching
	13.11.11 String List Matching
	13.11.12 Character Set Matching in a Regular Expression
	13.11.13 Negated Character Set Matching
	13.11.14 Matching Arbitrary Characters
	13.11.15 Sequences (Concatenation) - The ‘,’ Operator
	13.11.16 Alternation - The "|" Operator
	13.11.17 Subexpressions - The "()" operator
	13.11.18 Extracting Substrings - The Extraction Operator "<>:"
	13.11.19 Invoking Other #regex Macros in a Regular Expression
	13.11.20 Lookahead (peeking)
	13.11.21 Utility Matching Functions

	Name
	Parameters
	Supports Repetition
	Description
	Description
	13.11.22 Backtracking
	13.11.23 Lazy Versus Greedy Evaluation
	13.11.24 The @match and @match2 Functions
	13.11.25 Compiling and Precompiling Regular Expressions
	13.11.26 The #match..#endmatch Block
	13.11.27 Using Regular Expressions in Your Assembly Programs
	13.12 The #asm..#endasm and #emit Directives
	13.13 The #system Directive
	13.14 The #print and #error Directives
	13.15 Compile-Time File Output (#openwrite, #append, #write, #closewrite)
	13.16 Compile-time File Input (#openread, @read, #closeread)
	13.17 The Conditional Compilation Statements (#if)
	13.18 The Compile-Time Loop Statements (#while and #for)
	13.19 Compile-Time Functions (macros)
	13.20 Sample Macro: A Modified IF..ELSE..ENDIF Statement
	13.21 Text Processing, Lexical Analysis and the #text..#endtext Block
	@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})

