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18 Advanced HLA Programming

18.1 Writing a DLL in HLA
Dynamic link libraries provide an efficient mechanism for sharing code and cross-language

linkage.  The HLA language does not require any specific syntax to create a DLL;  most of the
work is done by the linker.  However, to successfully write and call DLLs with HLA, you must
follow some standard conventions.

Acknowledgement: I learned much of the material needed to write DLLs in HLA by visiting
the following web page and looking at the CRCDemo file (which demonstrates how to write DLLs
in assembly language).  For more information on DLLs in assembly, you might want to take a look
at this page yourself:

http://www.geocities.com/SiliconValley/Heights/7394/index.html

I certainly acknowledge stealing lots of information and ideas from this CRC code and
documentation.

18.1.1 Creating a Dynamic Link Library

Win32 Dynamic Link Libraries provide a mechanism whereby two or more programs can
share the same set of library object modules on the disk.  At the very least, DLLs save space on the
disk;  if properly written and loaded into memory, DLLs can also share run-time memory and
reduce swap space usage on the hard disk.

Perhaps even more important that saving space, DLLs provide a mechanism whereby two
different programming languages may communicate with one another.  Although there is usually
no problems calling an assembly language (i.e., HLA) module from any given high level language,
DLLs do provide one higher level of generality.  In order to achieve this generality, Microsoft had
to carefully describe the calling mechanism between DLLs and other modules.  In order to
communicate data, all languages that support DLLs need to agree on the calling and parameter
passing mechanisms.

Microsoft has laid down the following rules for DLLs (among others):

• Procedures/functions with a fixed parameter list use the stdcall calling mechanism.

• Procedures/functions with a variable number of parameters use the C calling mechanism.

• Parameters can be bytes, words, doublewords, pointers, or strings.  Pointers are machine
addresses; strings are pointers to a zero-terminated sequence of characters, and it is up to
the two modules to agree on how to interpret byte, word, or dword data (e.g., char, int16,
uns32, etc.)

Stdcall procedures push their parameters from left to right as they are encountered in the
parameter list.  In stdcall procedures, it is the procedure’s responsibility to clean up the parameters
pushed on the stack.

HLA uses the stdcall calling mechanism for the HLL-style procedure calls, so this simplifies
the interface to DLL code when using fixed parameter lists (variable parameter lists are rare in
DLLs, but should they be necessary, one can always drop down into “pure” assembly in HLA and
accomodate the DLL).

The only other issue, with respect to stdcall conventions, is the naming convention.  The
stdcall mechanism mangles procedure names.  In particular, a procedure name like “XXXX” is
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translated to “_XXX@nn” where “nn” is the number of bytes of parameters passed to the
procedure.  HLA does not automatically mangle procedure names, but using the “external”
directive you can easily specify the mangled name.

DLLs must provide a special procedure that Windows calls to initialize the procedure.  This
DLL entry point must use an HLA definition like the following:

procedure dll( instance:dword; reason:dword; reserved:dword );   external( "_dll@12" );

This function must return true in AL if the DLL can be successfully initialized;  it returns false
if it cannot properly initialize the DLL.  Note that “dll” and “_dll@12” are example names;  you
may use any reasonable identifiers you choose here.

The DLL initialization function always has three parameters.  The second parameter is the only
one of real interest to the DLL initialization code.  This parameter contains the reason for calling
this code, which is one of the following constants defined in the w.hhf header file:

• w.DLL_PROCESS_ATTACH

• w.DLL_PROCESS_DETACH

• w.DLL_THREAD_ATTACH

• w.DLL_THREAD_DETACH

The w.DLL_XXXXX_ATTACH values indicate that some program is linking in the DLL.
During these calls, you should open any files, initialize any variables, and execute any other
initialization code that may be necessary for the proper operation of the DLL.  Note that, by default,
all processes that attach to a DLL get their own copy of any data defined in the DLL.  Therefore,
you do not have to worry about disturbing previous links to the DLL during the current
initialization process.

The w.DLL_XXXXX_DETACH values indicate that a process or thread is shutting down.
During these calls, you should close any files and perform any other necessary cleanup (e.g.,
freeing memory) that you would normally do before a program ends.

The following code demonstrates a short DLL:

unit dllExample;
#include( "w.hhf" );

static
    ThisInstance: dword;
    
procedure dll( instance:dword; reason:dword; reserved:dword ); 
        @stdcall; @external( "_dll@12" );
        
procedure dllFunc1( dw:dword ); @stdcall; @external( "_dllFunc1@4" );
procedure dllFunc2( dw2:dword ); @stdcall; @external( "_dllFunc2@4" );

procedure dll( instance:dword; reason:dword; reserved:dword ); @nodisplay;
begin dll;

    // Save the instance value.
    
    mov( instance, eax );
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    mov( eax, ThisInstance );
    
    if( reason = w.DLL_PROCESS_ATTACH ) then
    
        // Do this code if we're attaching this DLL to a process...
        
    endif;
    
    // Return true if successful, false if unsuccessful.
    
    mov( true, eax );
    
end dll;

    
procedure dllFunc1( dw:dword ); @nodisplay;
begin dllFunc1;

    mov( dw, eax );
    
end dllFunc1;

procedure dllFunc2( dw2:dword ); @nodisplay;
begin dllFunc2;

    push( edx );
    mov( dw2, eax );
    mul( dw2, eax );
    pop( edx );
    
end dllFunc2;

end dllExample;

As you can see here, there is very little difference between a standard unit and an HLA unit
intended to become a DLL.  The name mangling is one difference, placing the external declarations
directly in the file (rather than in an include file) is another difference.  The only functional
difference is the presence of the DLL initialization procedure (“dll” in this example).

The real work in creating a DLL occurs during the link phase.  You cannot compile a DLL the
same way you compile a standard HLA program - some additional steps are necessary.  Creating a
DLL requires lots of command line parameters, so it is best to create a makefile and a “linker” file
to avoid excess typing at the command line.  Consider the following make file for the module
above:

dll.dll: dll.obj
link dll.obj @dll.linkresp

dll.obj: dll.hla
hla -@ -c dll.hla

This makefile generates the dll.dll file (it will also produce several other files, dll.lib being the
most important one).  The real work appears in the “dll.linkresp” linker file.  This file contains the
following text:
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-DLL 
-entry:dll 
-base:0x40000000 
-out:dll.dll 
-export:dll 
-export:dllFunc1 
-export:dllFunc2

The “-DLL” option tells the linker to produce a “dll.dll” and a “dll.lib” file rather than just a
“dll.exe” file (note: the linker will also produce some other files, but these two are the ones
important to us).

The “-entry:dll” option tells the linker that the name of the DLL initialization code is the
procedure “dll”.  If you change the name of your DLL initialization code, you should also change
this option.

The “-base:0x40000000” option tells the linker that this DLL has a base address of 1GByte.
For efficiency reasons, you should try to specify a unique value here.  If two active DLLs specify
the same base address, different processes cannot concurrently share the two DLLs.  The programs
will still operate, but they will not share the code, wasting some memory and requiring longer load
times.

The “-out:dll.dll” command specifies the output name for the DLL.  The suffix should be “.dll”
and the base filename should be an appropriate name for your DLL (“dll” was appropriate in this
case, it would not be appropriate in other cases).

The “-export” options specify the names of the external procedures you wish to make available
to other modules.  Alternately, you may create a “.DEF” file and use the “-DEF:deffilename.def”
option to pass the exported file names on to the linker (see the Microsoft documentation for a
description of DEF files).

If you run this make file, it will compile the dll.hla source file producing the dll.dll and dll.lib
object modules.

18.1.2 Linking and Calling Procedures in a Dynamic Link Library

Creating a DLL in HLA is only half the battle.  The other half is calling a procedure in a DLL
from an HLA program.  Here is a sample program that calls the DLL procedures in the previous
section:

// Sample program that calls routines in dll.dll.
//
//  Compile this with the command line option:
//
//      hla dllmain dll.lib
//
//  Of course, you must build the DLL first.

program callDLL;
#include( "stdlib.hhf" );

procedure dllFunc1( dw:dword ); @stdcall; @external( "_dllFunc1@4" );
procedure dllFunc2( dw:dword ); @stdcall; @external( "_dllFunc2@4" );
     

begin callDLL;

    xor( eax, eax );
    dllFunc1( 12345 );
    stdout.put( "After dllFunc1, eax = ", (type uns32 eax ), nl );
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    dllFunc2( 100 );
    stdout.put( "After dllFunc2, eax = ", (type uns32 eax ), nl );

end callDLL;

To compile this main program, you would use the following HLA command 
line:

hla dllmain dll.lib

The “dll.lib” file contains the linkages necessary to load and link in the 
dll module at run-time.

18.1.3 Going Farther
This document only explains “implicitly loaded” DLLs.  Implicitly loaded DLLs are always

loaded into memory when the main module loads into memory.  If you want to control the loading
of the DLL module into memory, you will want to take a look at “explicitly loaded” DLLs.  Such
DLLs, however, will have to be the subject of a different example.
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18.2 Compiling HLA
Source code has been shipped with the HLA releases since HLA v1.18. However, until Bison

1.875 became available, compiling HLA required a special, hacked, version of Bison that ran under
Linux.  This made development of HLA (particularly under Linux) a bit painful.  Fortunately, as of
Bison 1.875, it is now possible to compile the HLA source code using standard versions of Flex and
Bison available from the Free Software Foundation (the GNU folks).  You must, however, have
Bison 1.875 or later to successfully translate the HLAPARSE.BSN file.  Under Windows, the
CYGWIN package containing Flex and Bison works great. I (Randy Hyde) have never actually
built HLAPARSE.BSN under Linux, so I don’t have any experience with this process. It may be
trivial, it may be impossible. I’ve never tried it. I always generate HLAPARSE.C under Windows
using Bison and then I copy the C file over to Linux for compilation there.

First, a couple of comments about the source code:  HLA v1.x and v2.x are prototype systems.
This means that there are massive kludges in the code.  The whole system evolved over time rather
than being designed properly in the first place (no apologies for this, that’s the whole purpose of a
prototype).  So if you looking for wonderfully structured code that’s easy to follow, HLA will
disappoint you.  I learned quite a bit about FLEX and BISON while writing HLA and,
unfortunately, it shows.  There are many ways I’ve done things that someone who was more
familiar with FLEX/Bison would have done differently (heck, there are a lot of things I would do
differently, in hindsight).  None of this is worth fixing since such work is better put to writing v2.x
of HLA.

The HLA source code is almost 200,000 lines long.  The Bison file alone is about 100,000
lines of code.  Messing with HLA source code is not an undertaking for the weak of heart.
Although much of the code is commented, there is very little “high level documentation” (i.e.,
design documentation) available that would explain why I’ve done certain things or to provide the
general philosophy behind the code.  I offer the source code in this form;  it is up to you to decide
whether you want to spend the time needed to figure it all out.

One note about support:  I will be more than happy to answer questions about HLA in the
Yahoo AoA/HLA Programming newsgroup.  However, I do not have time to answer individual
questions asked via email concerning the source code.  I apologize ahead of time, but releasing a
program of this magnitude to the public could wind up burying me with questions.  Because of the
possible volume of emails this product could produce, I must ignore all requests for help that arrive
via email.  Of course, bug reports are always welcome via email.  Send everything else to one of the
two aforementioned newsgroups.

I have developed HLA with the following tools:

• CodeWright Editor (it takes a decent editor to handle files in excess of 100,000 lines of
code).

• Microsoft Visual C++ (v9)

• Flex

• Bison (must be 1.875 or later)

• Microsoft nmake

• GCC 2.9x (Linux, FreeBSD, and Mac OS X versions)

• HLA  (a couple of modules are written in HLA itself).

• MASM v9.

• Gas (Linux, FreeBSD, Mac OSX)
I have supplied a makefile that should automatically build the HLA system for you.  See the

makefile in the main source directory for details. For Linux, there is a “makefile.linux” file that you
should use.  For FreeBSD use “makefile.freebsd” and for the Macintosh, use “makefile.mac”,

HLA is probably not portable.  I have made no attempt to ensure that the code compiles with
anything other than GCC and MSVC++, so undoubtedly it won’t compile on anything else without
some effort.  I have eliminated *most* of the compiler warnings, so porting to some other
compilers shouldn’t be too difficult.

Porting HLA to generate assembly code for an assembler other than MASM, NASM, FASM,
Gas,or TASM is a major undertaking.   TASM took a couple of weeks to pull off and TASM is
mostly compatible with MASM. Gas took about a month of evenings and FASM took several
weekends.  Fortunately, if you choose to do this, I’ve made the process easier and easier with each
new back-end assembler I added.  Porting HLA to generate object code other than PE/COFF, ELF,
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or Mach-o is a serious undertaking.  I spent a couple of months on each of the three object formats
that HLA currently supports.

Porting to other operating systems (other than Windows, Mac OSX, FreeBSD and Linux) is
certainly possible.  The compiler should be fairly easy to port.  The real work is in porting the
Standard Library.  I’ve looked into porting HLA to QNX, but haven’t pursued this for a couple of
reasons: (1) QNX’s version of GCC is older and has problems compiling the source code, (2) QNX
doesn’t really support assembly level calls to the OS so I’d have to port the HLA standard library
on top of the C standard library code (which is ugly).  NetBSD and OpenBSD should be easy - just
a simple modification of the FreeBSD port.  At one time I looked into a BeOS port, but then BeOS
died, so I gave up.  Solaris/Sun OS is a possibility, but now that Oracle has bought out Sun, who
knows where that OS is going?
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18.3 Code Generation for HLA HLL Control Structures
Note: This is a very old and incomplete document. It was written back in the early days of HLA

v1.x.  While the general principles still apply, the specific examples of code generated by
HLA have changed quite a bit. Nevertheless, the information is still useful to some people
so I’ve included this document here. If there is sufficient interest, I can be convinced to
update and finish this document.

One of the principal advantages of using assembly language over high level languages is the
control that assembly provides.  High level languages (HLLs) represent an abstraction of the
underlying hardware.  Those who write HLL code give up this control in exchange for the
engineering efficiencies enjoyed by HLL programmers.  Some advanced HLL programmers (who
have a good mastery of the underlying machine architecture) are capable of writing fairly efficient
programs by recognizing what the compiler does with various high level control constructs and
choosing the appropriate construct to emit the machine code they want.  While this “low-level
programming in a high level language” does leave the programmer at the mercy of the compiler-
writer, it does provide a mechanism whereby HLL programmers can write more efficient code by
chosing those HLL constructs that compile into efficient machine code.

Although the High Level Assembler (HLA) allows a programmer to work at a very low level,
HLA also provides structured high-level control constructs that let assembly programmers use
higher-level code to help make their assembly code more readable.  Those assembly language
programmers who need (or want) to exercise maximum control over their programs will probably
want to avoid using these statements since they tend to obscure what is happening at a really low
level.  At the other extreme, those who would always use these high-level control structures might
question if they really want to use assembly language in their applications;  after all, if they’re
writing high level code, perhaps they should use a high level language and take advantage of
optimizing technology and other fancy features found in modern compilers.  Between these two
extremes lies the typical assembly language programmer.  The one who realizes that most code
doesn’t need to be super-efficient and is more interested in productively producing lots of software
rather than worrying about how many CPU cycles the one-time initialization code is going to
consume.  HLA is perfect for this type of programmer because it lets you work at a high level of
abstraction when writing code whose performance isn’t an issue and it lets you work at a low level
of abstraction when working on code that requires special attention.

Between code whose performance doesn’t matter and code whose performance is critical lies a
big gray region:  code that should be reasonably fast but speed isn’t the number one priority.  Such
code needs to be reasonably readable, maintainable, and as free of defects as possible.  In other
words, code that is a good candidate for using high level control and data structures if their use is
reasonably efficient.

Unlike various HLL compilers, HLA does not (yet!) attempt to optimize the code that you
write.  This puts HLA at a disadvantage: it relies on the optimizer between your ears rather than the
one supplied with the compiler.  If you write sloppy high level code in HLA then a HLL version of
the same program will probably be more efficient if it is compiled with a decent HLL compiler.
For code where performance matters, this can be a disturbing revelation (you took the time and
bother to write the code in assembly but an equivalent C/C++ program is faster).  The purpose of
this article is to describe HLA’s code generation in detail so you can intelligently choose when to
use HLA’s high level features and when you should stick with low-level assembly language.

18.3.1 The HLA Standard Library
The HLA Standard Library was designed to make learning assembly language programming

easy for beginning programmers.  Although the code in the library isn’t terrible, very little effort
was made to write top-performing code in the library.  At some point in the future this may change
as work on the library progresses, but if you’re looking to write very high-performance code you
should probably avoid calling routines in the HLA Standard Library from (speed) critical sections
of your program.

Don’t get the impression from the previous paragraph that HLA’s Standard Library contains a
bunch of slow-poke routines, however.  Many of the HLA Standard Library routines use decent
algorithms and data structures so they perform quite well in typical situations.  For example, the
HLA string format is far more efficient than strings in C/C++.  The world’s best C/C++ strlen
routine is almost always going to be slower than HLA str.len function.  This is because HLA uses a
better definition for string data than C/C++, it has little to do with the actual implementation of the
str.len code.  This is not to say that HLA’s str.len routine cannot be improved; but the routine is
very fast already.
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One problem with using the HLA Standard Library is the frame of mind it fosters during the
development of a program.  The HLA Standard Library is strongly influenced by the C/C++
Standard Library and libraries common in other high level languages.  While the HLA Standard
Library is a wonderful tool that can help you write assembly code faster than ever before, it also
encourages you to think at a higher level.  As any expert assembly language programmer can tell
you, the real benefits of using assembly language occur only when you “think in assembly” rather
than in a high level language.  No matter how efficient the routines in the Standard Library happen
to be, if you’re “writing C++ programs with MOV instructions” the result is going to be little better
than writing the code in C++ to begin with.  

One unfortunate aspect of the HLA Standard Library is that it encourages you to think at a
higher level and you’ll often miss a far more efficient low-level solution as a result.  A good
example is the set of string routines in the HLA Standard Library.  If you use those routines, even if
they were written as efficiently as possible, you may not be writing the fastest possible program
you can because you’ve limited your thinking to string objects which are a higher level abstraction.
If you did not have the HLA Standard Library laying around and you had to do all the character
string manipulation yourself, you might choose to treat the objects as character arrays in memory.
This change of perspective can produce dramatic performance improvement under certain
circumstances.

The bottom line is this:  the HLA Standard Library is a wonderful collection of routines and
they’re not particularly inefficient.  They’re very easy and convenient to use.  However, don’t let
the HLA Standard Library lull you into choosing data structures or algorithms that are not the most
appropriate for a given section of your program.

18.3.2 Compiling to MASM Code -- The Final Word
The remainder of this document will discuss, in general, how HLA translates various HLL-

style statements into assembly code.  Sometimes a general discussion may not provide specific
answers you need about HLA’s code generation capabilities.  Should you have a specific question
about how HLA generates code with respect to a given code sequence, you can always run the
compiler and observe the output it produces.  To do this, it is best to create a simple program that
contains only the construct you wish to study and compile that program to assembly code.  For
example, consider the following very simple HLA program:

program t;
    
begin t;

    if( eax = 0 ) then
    
        mov( 1, eax );
        
    endif;
        
end t;

If you compile this program using the command window prompt “hla -s t.hla” then HLA
produces the following (MASM) assembly code output (in the “t.asm” output file)1:

                if      @Version lt 612
                .586
                else
                .686
                .mmx
                .xmm
                endif
                .model  flat, syscall

1. This code is from an older version of HLA.  The actual code HLA generates today is different.  But the
concepts this document covers still apply.
Public Domain Created by Randy Hyde Page 441



HLA Reference Manual 5/24/10 Chapter 18
offset32        equ     <offset flat:>
                assume  fs:nothing
?ExceptionPtr   equ     <(dword ptr fs:[0])>
                externdef ??HWexcept:near32
                externdef ??Raise:near32
 
std_output_hndl equ     -11     
 
                externdef __imp__ExitProcess@4:dword
                externdef __imp__GetStdHandle@4:dword
                externdef __imp__WriteFile@20:dword
 
cseg            segment page public 'code'
cseg            ends
readonly        segment page public 'data'
readonly        ends
strings         segment page public 'data'
strings         ends
dseg            segment page public 'data'
dseg            ends
bssseg          segment page public 'data'
bssseg          ends
 
 
strings         segment page public 'data'
 
?dfltmsg        byte    "Unhandled exception error.",13,10
?dfltmsgsize    equ     34
?absmsg         byte    "Attempted call of abstract procedure or 
method.",13,10
?absmsgsize     equ     55
strings         ends
dseg            segment page public 'data'
?dfmwritten     word    0
?dfmStdOut      dword   0
 
                public  ?MainPgmCoroutine
?MainPgmCoroutine byte 0 dup (?)
                dword   ?MainPgmVMT
                dword   0       ;CurrentSP
                dword   0       ;Pointer to stack
                dword   0       ;ExceptionContext
                dword   0       ;Pointer to last caller
?MainPgmVMT     dword   ?QuitMain
dseg            ends
cseg            segment page public 'code'
 
?QuitMain       proc    near32
                pushd   1
                call    dword ptr __imp__ExitProcess@4
 
?QuitMain       endp
 
cseg            ends
 
 
cseg            segment page public 'code'
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??DfltExHndlr   proc    near32
 
                pushd   std_output_hndl
                call    __imp__GetStdHandle@4
                mov     ?dfmStdOut, eax
                pushd   0       ;lpOverlapped
                pushd   offset32 ?dfmwritten    ;BytesWritten
                pushd   ?dfltmsgsize    ;nNumberOfBytesToWrite
                pushd   offset32 ?dfltmsg       ;lpBuffer
                pushd   ?dfmStdOut              ;hFile
                call    __imp__WriteFile@20
 
                pushd   0
                call    dword ptr __imp__ExitProcess@4
 
??DfltExHndlr   endp
 
                public  ??Raise
??Raise proc    near32
                jmp     ??DfltExHndlr
??Raise endp
 
                public  ??HWexcept
??HWexcept      proc    near32
                mov     eax, 1
                ret
??HWexcept      endp
 
?abstract       proc    near32
 
                pushd   std_output_hndl
                call    __imp__GetStdHandle@4
                mov     ?dfmStdOut, eax
                pushd   0       ;lpOverlapped
                pushd   offset32 ?dfmwritten    ;BytesWritten
                pushd   ?absmsgsize     ;nNumberOfBytesToWrite
                pushd   offset32 ?absmsg        ;lpBuffer
                pushd   ?dfmStdOut              ;hFile
                call    __imp__WriteFile@20
 
                pushd   0
                call    dword ptr __imp__ExitProcess@4
 
?abstract       endp
 
 
                public  ?HLAMain
?HLAMain        proc    near32
 
 
; Set up the Structured Exception Handler record
; for this program.
 
                push    offset32 ??DfltExHndlr
                push    ebp
                push    offset32 ?MainPgmCoroutine
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                push    offset32 ??HWexcept
                push    ?ExceptionPtr
                mov     ?ExceptionPtr, esp
                mov     dword ptr ?MainPgmCoroutine+12, esp
 
                pushd   0               ;No Dynamic Link.
                mov     ebp, esp        ;Pointer to Main's locals
                push    ebp             ;Main's display.
                mov     [ebp+16], esp
                cmp     eax, 0
                jne     ?1_false
                mov     eax, 1
?1_false:
                push    0
                call    dword ptr __imp__ExitProcess@4
?HLAMain        endp
cseg            ends
                end

The code of interest in this example is at the very end, after the comment “;Main’s display”
appears in the text.  The actual code sequence that corresponds to the IF statement in the main
program is the following:

                cmp     eax, 0
                jne     ?1_false
                mov     eax, 1
?1_false:

Note: you can verify that this is the code emitted by the IF statement by simply removing the
IF, recompiling, and comparing the two assembly outputs.  You’ll find that the only difference
between the two assembly output files is the four lines above.  Another way to “prove” that this is
the code sequence emitted by the HLA IF statement is to insert some comments into the assembly
output file using HLA’s #ASM..#ENDASM directives.  Consider the following modification to the
“t.hla” source file:

program t;
    
begin t;
 
    #asm
    ; Start of IF statement:
    #endasm
    
    if( eax = 0 ) then
    
        mov( 1, eax );
        
    endif;
    
    #asm
    ; End if IF statement.
    #endasm
        
end t;
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HLA’s #asm directive tells the compiler to simply emit everything between the #asm and
#endasm keywords directly to the assembly output file.  In this example the HLA program uses
these directives to emit a pair of comments that will bracket the code of interest in the output file.
Compiling this to assembly code (and stripping out the irrelevant stuff before the HLA main
program) yields the following:

                public  ?HLAMain
?HLAMain        proc    near32
 
 
; Set up the Structured Exception Handler record
; for this program.
 
                push    offset32 ??DfltExHndlr
                push    ebp
                push    offset32 ?MainPgmCoroutine
                push    offset32 ??HWexcept
                push    ?ExceptionPtr
                mov     ?ExceptionPtr, esp
                mov     dword ptr ?MainPgmCoroutine+12, esp
 
                pushd   0               ;No Dynamic Link.
                mov     ebp, esp        ;Pointer to Main's locals
                push    ebp             ;Main's display.
                mov     [ebp+16], esp
 
;#asm
 
 
        ; Start of IF statement:
        ;#endasm
 
                cmp     eax, 0
                jne     ?1_false
                mov     eax, 1
?1_false:
 
;#asm
 
 
        ; End if IF statement.
        ;#endasm
 
                push    0
                call    dword ptr __imp__ExitProcess@4
?HLAMain        endp
cseg            ends
                end
 

This technique (embedding bracketing comments into the assembly output file) is very useful
if it is not possible to isolate a specific statement in its own source file when you want to see what
HLA does during compilation.
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18.3.3 The HLA if..then..endif Statement, Part I
Although the HLA IF statement is actually one of the more complex statements the compiler

has to deal with (in terms of how it generates code), the IF statement is probably the first statement
that comes to mind when something thinks about high level control structures.  Furthermore, you
can implement most of the other control structures if you have an IF and a GOTO (JMP) statement,
so it makes sense to discuss the IF statement first.  Nevertheless, there is a bit of complexity that is
unnecessary at this point, so we’ll begin our discussion with a simplified version of the IF
statement;  for this simplified version we’ll not consider the ELSEIF and ELSE clauses of the IF
statement.

The basic HLA IF statement uses the following syntax:

if( simple_boolean_expression ) then

    << statements to execute if the expression evaluates true >>

endif;

At the machine language level, what the compiler needs to generate is code that does the
following:

<< Evaluate the boolean expression >>

<< Jump around the following statements if the expression was false >>

<< statements to execute if the expression evaluates true >>

<< Jump to this point if the expression was false >>

The example in the previous section is a good demonstration of what HLA does with a simple
IF statement.  As a reminder, the HLA program contained

    if( eax = 0 ) then
    
        mov( 1, eax );
        
    endif;

and the HLA compiler generated the following assembly language code:

                cmp     eax, 0
                jne     ?1_false
                mov     eax, 1
?1_false:

Evaluation of the boolean expression was accomplished with the single “cmp eax, 0”
instruction.  The “jne ?1_false” instruction jumps around the “mov eax, 1” instruction (which is the
statement to execute if the expression evaluates true) if the expression evaluates false.  Conversely,
if EAX is equal to zero, then the code falls through to the MOV instruction.  Hence the semantics
are exactly what we want for this high level control structure.

HLA automatically generates a unique label to branch to for each IF statement.  It does this
properly even if you nest IF statements.  Consider the following code:

program t;
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begin t;
 
    if( eax > 0 ) then
    
        if( eax < 10 ) then
        
            inc( eax );
            
        endif;
        
    endif;
    
        
end t;
 

The code above generates the following assembly output:

                cmp     eax, 0
                jna     ?1_false
                cmp     eax, 10
                jnb     ?2_false
                inc     eax
?2_false:
?1_false:
 
 

As you can tell by studying this code, the INC instruction only executes if the value in EAX is
greater than zero and less than ten.

Thus far, you can see that HLA’s code generation isn’t too bad.  The code it generates for the
two examples above is roughly what a good assembly language programmer would write for
approximately the same semantics.

18.3.4 Boolean Expressions in HLA Control Structures
The HLA IF statement and, indeed, most of the HLA control structures rely upon the

evaluation of a boolean expression in order to direct the flow of the program.  Unlike high level
languages, HLA restricts boolean expressions in control structures to some very simple forms.
This was done for two reasons: (1) HLA’s design frowns upon side effects like register
modification in the compiled code, and (2) HLA is intended for use by beginning assembly
language students; the restricted boolean expression model is closer to the low level machine
architecture and it forces them to start thinking in these terms right away.

With just a few exceptions, HLA’s boolean expressions are limited to what HLA can easily
compile to a CMP and a condition jump instruction pair or some other simple instruction sequence.
Specifically, HLA allows the following boolean expressions:

operand1 relop operand2

relop is one of:

=  or ==        (either one, both are equivalent)
<> or !=        (either one, both are equivalent)
<
<=
>
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>=

A CPU flag specification.
A CPU register.
A boolean or byte variable.

In the expressions above operand1 and operand2 are restricted to those operands that are legal
in a CMP instruction.  This is because HLA translates expressions of this form to the two
instruction sequence:

cmp( operand1, operand2 );

jXX someLabel;

where “jXX” represents some condition jump whose sense is the opposite of that of the
expression (e.g., “eax > ebx” generates a “JNA” instruction since “NA” is the opposite of “>”).

Assuming you want to compare the two operands and jump around some sequence of
instructions if the relationship does not hold, HLA will generate fairly efficient code for this type of
expression.   One thing you should watch out for, though, is that HLA’s high level statements (e.g.,
IF) make it very easy to write code like the following:

if( i = 0 ) then

   ...

elseif( i = 1 ) then

    ...

elseif( i = 2 ) then

    ...
.
.
.
endif;

This code looks fairly innocuous, but the programmer who is aware of the fact that HLA emits
the following would probably not use the code above:

     cmp( i, 0 );
     jne lbl;
       .
       .
       .
lbl: cmp( i, 1 );
     jne lbl2;
       .
       .
       .
lbl2: cmp( i, 2 );
       .
       .
       .

A good assembly language programmer would realize that it’s much better to load the variable
“i” into a register and compare the register in the chain of CMP instructions rather than compare the
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variable each time.  The high level syntax slightly obscures this problem;  just one thing to be
aware of.

HLA’s boolean expressions do not support conjunction (logical AND) and disjunction (logical
OR).  The HLA programmer must manually synthesize expressions involving these operators.
Doing so forces the programmer to link in lower level terms, which is usually more efficient.
However, there are many common expressions involving conjunction that HLA could efficiently
compile into assembly language.  Perhaps the most common example is a test to see if an operand
is within (or outside) a range specified by two constants.  In a HLL like C/C++ you would typically
use an expression like “(value >= low_constant && value <= high_constant)” to test this condition.
HLA allows four special boolean expressions that check to see if a register or a memory location is
within a specified range.  The allowable expressions take the following forms:

register in constant .. constant
register not in constant .. constant
 
memory in constant .. constant
memory not in constant .. constant
 

Here is a simple example of the first form with the code that HLA generates for the expression:

    if( eax in 1..10 ) then
    
        mov( 1, ebx );
 
    endif;
 

Resulting (MASM) assembly code:

                cmp     eax, 1
                jb      ?1_false
                cmp     eax, 10
                ja      ?1_false
                mov     ebx, 1
?1_false:
 

Once again, you can see that HLA generates reasonable assembly code without modifying any
register values.  Note that if modifying the EAX register  is okay, you can write slightly better code
by using the following sequence:

                dec     eax
                cmp     eax, 9
                ja      ?1_false
                mov     ebx, 1
?1_false:
 

While, in general, a simplification like this is not possible you should always remember how
HLA generates code for the range comparisons and decide if it is appropriate for the situation.

By the way, the “not in” form of the range comparison does generate slightly different code
that the form above.  Consider the following:

    if( eax not in 1..10 ) then
    
        mov( 1, eax );
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    endif;

HLA generates the following (MASM) assembly language code for the sequence above:

 
                cmp     eax, 1
                jb      ?2_true
                cmp     eax, 10
                jna     ?1_false
?2_true:
                mov     eax, 1
?1_false:
 

As you can see, though the code is slightly different it is still exactly what you would  probably
write if you were writing the low level code yourself.

HLA also allows a limited form of the boolean expression that checks to see if a character
value in an eight-bit register is a member of a character set constant or variable.  These expressions
use the following general syntax:

reg8 in CSet_Constant

reg8 in CSet_Variable

 
reg8 not in CSet_Constant

reg8 not in CSet_Variable

 

These forms were included in HLA because they are so similar to the range comparison
syntax.  However, the code they generate may not be particularly efficient so you should avoid
using these expression forms if code speed and size need to be optimal.  Consider the following:

    if( al in {'A'..'Z','a'..'z', '0'..'9'} ) then
    
        mov( 1, eax );
                
    endif;

This generates the following (MASM) assembly code:

strings         segment page public 'data'
?1_cset          byte 00h,00h,00h,00h,00h,00h,0ffh,03h
                 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings         ends
 
                push    eax
                movzx   eax, al
                bt      dword ptr ?1_cset, eax
                pop     eax
                jnc     ?1_false
                mov     eax, 1
?1_false:

This code is rather lengthy because HLA never assumes that it can disturb the values in the
CPU registers.  So right off the bat this code has to push and pop EAX since it disturbs the value in
EAX.  Next, HLA doesn’t assume that the upper three bytes of  EAX already contain zero, so it
zero fills them.  Finally, as you can see above, HLA has to create a 16-byte character set in memory
in order to test the value in the AL register.  While this is convenient, HLA does generate a lot of
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code and data for such a simple looking expression.  Hence, you should be careful about using
boolean expressions involving character sets if speed and space is important.  At the very least, you
could probably reduce the code above to something like:

                movzx( charToTest, eax );
                bt( eax, {'A'..'Z','a'..'z', '0'..'9'});
                jnc SkipMov;
                mov(1, eax );
SkipMov:

This generates code like the following:

strings         segment page public 'data'
?cset_3          byte   00h,00h,00h,00h,00h,00h,0ffh,03h
                 byte   0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings         ends
 
                movzx   eax, byte ptr ?1_charToTest[0]  ;charToTest
                bt      dword ptr ?cset_3, eax
                jnc     ?4_SkipMov
                mov     eax, 1
 
?4_SkipMov:
 

As you can see, this is slightly more efficient.  Fortunately, testing an eight-bit register to see if
it is within some character set (other than a simple range, which the previous syntax handles quite
well) is a fairly rare operation, so you generally don’t have to worry about the code HLA generates
for this type of boolean expression.

HLA lets you specify a register name or a memory location as the only operand of a boolean
expression.  For registers, HLA will use the TEST instruction to see if the register is zero or non-
zero.  For memory locations, HLA will use the CMP instruction to compare the memory location’s
value against zero.  In either case, HLA will emit a JNE or JE instruction to branch around the code
to skip (e.g., in an IF statement) if the result is zero or non-zero (depending on the form of the
expression). 

register
!register
 
memory
!memory
 

You should not use this trick as an efficient way to test for zero or not zero in your code.  The
resulting code is very confusing and difficult to follow.  If a register or memory location appears as
the sole operand of a boolean expression, that register or memory location should hold a boolean
value (true or false).  Do not think that “if( eax ) then...” is any more efficient than
“if(eax<>0) then...” because HLA will actually emit the same exact code for both statements (i.e., a
TEST instruction).  The second is a lot easier to understand if you’re really checking to see if EAX
is not zero (rather than it contains the boolean value true), hence it is always preferable even if it
involves a little extra typing.

Example:

    if( eax != 0 ) then
    
        mov( 1, ebx );
                
Public Domain Created by Randy Hyde Page 451



HLA Reference Manual 5/24/10 Chapter 18
    endif;
    
    if( eax ) then
    
        mov( 2, ebx );
        
    endif;

The code above generates the following assembly instruction sequence:

 
                test    eax,eax ;Test for zero/false.
                je      ?2_false
                mov     ebx, 1
?2_false:
                test    eax,eax ;Test for zero/false.
                je      ?3_false
                mov     ebx, 2
?3_false:
 

Note that the pertinent code for both sequences is identical.  Hence there is never a reason to
sacrifice readability for efficiency in this particular case.

The last form of boolean expression that HLA allows is a flag designation.  HLA uses symbols
like @c, @nc, @z, and @nz to denote the use of one of the flag settings in the CPU FLAGS
register.  HLA supports the use of the following flag names in a boolean expression:

@c, @nc, @o, @no, @z, @nz, @s, @ns, @a, @na, @ae, @nae, @b, @nb, @be, 
@nbe, @l, @nl, @g, @ne, @le, @nle, @ge, @nge, @e, @ne

Whenever HLA encounters a flag name in a boolean expression, it efficiently compiles the
expression into a single conditional jump instruction.  So the following IF statement’s expression
compiles to a single instruction:

if( @c ) then

    << do this if the carry flag is set >>

endif;

The above code is completely equivalent to the sequence:

    jnc SkipStmts;

    << do this if the carry flag is set >>

SkipStmts:

The former version, however, is more readable so you should use the IF form wherever
practical.
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18.3.5 The JT/JF Pseudo-Instructions
The JT (jump if true) and JF (jump if false) pseudo-instructions take a boolean expression and

a label.  These instructions compile into a conditional jump instruction (or sequence of instructions)
that jump to the target label if the specified boolean expression evaluates false.  The compilation of
these two statements is almost exactly as described for boolean expressions in the previous section.
The principle difference is that HLA sneaks in a (MASM) macro declaration because of technical
issues involving code generation.  Other than this one minor issue in the MASM source code, the
code generation is exactly as described above.

The following are a couple of examples that show the usage and code generation for these two
statements.

lbl2:
    jt( eax > 10 ) label;
label:    
    jf( ebx = 10 ) lbl2;
 
 
; Translated Code:
 
?2_lbl2:
?3_BoolExpr     macro   target
                cmp     eax, 10
                ja      target
                endm
                ?3_BoolExpr     ?4_label
 
?4_label:
?5_BoolExpr     macro   target
                cmp     ebx, 10
                jne     target
                endm
                ?5_BoolExpr     ?2_lbl2
 

18.3.6 The HLA if..then..elseif..else..endif Statement, Part II
With the discussion of boolean expressions out of the way, we can return to the discussion of

the HLA IF statement and expand on the material presented earlier.  There are two main topics to
consider: the inclusion of the ELSEIF and ELSE clauses and the HLA hybrid IF statement.  This
section will discuss these additions.

The ELSE clause is the easiest option to describe, so we’ll start there.  Consider the following
short HLA code fragment:

    if( eax < 10 ) then
    
        mov( 1, ebx );
        
    else
    
        mov( 0, ebx );
                
    endif;

HLA’s code generation algorithm emits a JMP instruction upon encountering the ELSE clause;
this JMP transfers control to the first statement following the ENDIF clause.  The other difference
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between the IF/ELSE/ENDIF and the IF/ENDIF statement is the fact that a false expression
evaluation transfers control to the ELSE clause rather than to the first statement following the
ENDIF.  When HLA compiles the code above, it generates machine code like the following:

                cmp     eax, 10
                jnb     ?2_false   ;Branch to ELSE section if false

                mov     ebx, 1
                jmp     ?2_endif   ;Skip over ELSE section

; This is the else section:

?2_false:
                mov     ebx, 0
?2_endif:
 

About the only way you can improve upon HLA’s code generation sequence for an IF/ELSE
statement is with knowledge of how the program will operate.  In some rare cases you can generate
slightly better performing code by moving the ELSE section somewhere else in the program and
letting the THEN section fall straight through to the statement following the ENDIF (of course, the
ELSE section must jump back to the first statement after the ENDIF if you do this).  This scheme
will be slightly faster if the boolean expression evaluates true most of the time.  Generally, though,
this technique is a bit extreme.

The ELSEIF clause, just as its name suggests, has many of the attributes of an ELSE and and
IF clause in the IF statement.  Like the ELSE clause, the IF statement will jump to an ELSEIF
clause (or the previous ELSEIF clause will jump to the current ELSEIF clause) if the previous
boolean expression evaluates false.  Like the IF clause, the ELSEIF clause will evaluate a boolean
expression and transfer control to the following ELSEIF, ELSE, or ENDIF clause if the expression
evaluates false;  the code falls through to the THEN section of the ELSEIF clause if the expression
evaluates true.  The following examples demonstrate how HLA generates code for various forms of
the IF..ELSEIF.. statement:

Single ELSEIF clause:

    if( eax < 10 ) then
    
        mov( 1, ebx );
        
    elseif( eax > 10 ) then
    
        mov( 0, ebx );
                
    endif;
 
 
; Translated code:
 
                cmp     eax, 10
                jnb     ?2_false
                mov     ebx, 1
                jmp     ?2_endif
?2_false:
                cmp     eax, 10
                jna     ?3_false
                mov     ebx, 0
?3_false:
?2_endif:
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Single ELSEIF clause with an ELSE clause:

    if( eax < 10 ) then
    
        mov( 1, ebx );
        
    elseif( eax > 10 ) then
    
        mov( 0, ebx );
        
    else
    
        mov( 2, ebx );
                
    endif;
 

; Converted code:

                cmp     eax, 10
                jnb     ?2_false
                mov     ebx, 1
                jmp     ?2_endif
?2_false:
                cmp     eax, 10
                jna     ?3_false
                mov     ebx, 0
                jmp     ?2_endif
?3_false:
                mov     ebx, 2
?2_endif:
 

IF statement with two ELSEIF clauses:

    if( eax < 10 ) then
    
        mov( 1, ebx );
        
    elseif( eax > 10 ) then
    
        mov( 0, ebx );
        
    elseif( eax = 5 ) then
    
        mov( 2, ebx );
                
    endif;

; Translated code:

                cmp     eax, 10
                jnb     ?2_false
                mov     ebx, 1
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                jmp     ?2_endif
?2_false:
                cmp     eax, 10
                jna     ?3_false
                mov     ebx, 0
                jmp     ?2_endif
?3_false:
                mov     ebx, 2
?2_endif:

IF statement with two ELSEIF clauses and an ELSE clause:

    if( eax < 10 ) then
    
        mov( 1, ebx );
        
    elseif( eax > 10 ) then
    
        mov( 0, ebx );
        
    elseif( eax = 5 ) then
    
        mov( 2, ebx );
        
    else
    
        mov( 3, ebx );
                
    endif;

; Translated code:

                cmp     eax, 10
                jnb     ?2_false
                mov     ebx, 1
                jmp     ?2_endif
?2_false:
                cmp     eax, 10
                jna     ?3_false
                mov     ebx, 0
                jmp     ?2_endif
?3_false:
                cmp     eax, 5
                jne     ?4_false
                mov     ebx, 2
                jmp     ?2_endif
?4_false:
                mov     ebx, 3
?2_endif:
 

Public Domain Created by Randy Hyde Page 456



HLA Reference Manual 5/24/10 Chapter 18
This code generation algorithm generalizes to any number of ELSEIF clauses.  If you need to
see an example of an IF statement with more than two ELSEIF clauses, feel free to run a short
example through the HLA compiler to see the result.

In addition to processing boolean expressions, the HLA IF statement supports a hybrid syntax
that lets you combine the structured nature of the IF statement with the unstructured nature of
typical assembly language control flow.  The hybrid form gives you almost complete control over
the code generation process without completely sacrificing the readability of an IF statement.  The
following is a typical example of this form of the IF statement:

    if
    { 
        cmp( eax, 10 ); 
        jna false; 
    }
    
        mov( 0, eax );
                        
    endif;

; The above generates the following assembly code:

                cmp     eax, 10
                jna     ?2_false
?2_true:
                mov     eax, 0
?2_false:

Of course, the hybrid IF statement fully supports ELSE and ELSEIF clauses (in fact, the IF and
ELSEIF clauses can have a potpourri of hybrid or traditional boolean expression forms).  The
hybrid forms, since they let you specify the sequence of instructions to compile, put the issue of
efficiency squarely in your lap.  About the only contribution that HLA makes to the inefficiency of
the program is the insertion of a JMP instruction to skip over ELSEIF and ELSE clauses.

Although the hybrid form of the IF statement lets you write very efficient code that is more
readable than the traditional “compare and jump” sequence, you should keep in mind that the
hybrid form is definitely more difficult to read and comprehend than the IF statement with boolean
expressions.  Therefore, if the HLA compiler generates reasonable code with a boolean expression
then by all means use the boolean expression form; it will probably be easier to read.

18.3.7 The While Statement
The only difference between an IF statement and a WHILE loop is a single JMP instruction.

Of course, with an IF and a JMP you can simulate most control structures, the WHILE loop is
probably the most typical example of this.  The typical translation from WHILE to IF/JMP takes
the following form:

while( expr ) do
 
    << statements >>
 
endwhile;

// The above translates to:
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label:
    if( expr ) then

          << statements >>
          jmp label;

    endif;

Experienced assembly language programmers know that there is a slightly more efficient
implementation if it is likely that the boolean expression is true the first time the program
encounters the loop.  That translation takes the following form:

    jmp testlabel;
label:

    << statements >>

testlabel:
    JT( expr ) label;   // Note: JT means jump if expression is true.

This form contains exactly the same number of instructions as the previous translation.  The
difference is that a JMP instruction was moved out of the loop so that it executes only once (rather
than on each iteration of the loop).  So this is slightly more efficient than the previous translation.
HLA uses this conversion algorithm for WHILE loops with standard boolean expressions.

If you look at HLA’s output code, you’ll discover that it is really complex and messy.  The
reason has to do with HLA’s code generation algorithm.  In order to move code around in the
program (required in order to move the test of the boolean expression below the statements that
comprise the body of the loop) HLA writes a MASM macro at the top of the loop and then expands
that macro at the bottom of the loop.  The following short example demonstrates how HLA
transforms WHILE statements:

    while( eax > 0 ) do
    
        mov( 0, eax );
                        
    endwhile;

; Translated code:

                jmp     ?2_continue

?2_true:
?2_while:
 
?2_macro        macro
?2_continue:
                cmp     eax, 0
                ja      ?2_while
                endm
 
                mov     eax, 0
                ?2_macro
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?2_exitloop:
 

As you’ll find by carefully studying this code, HLA emits a macro definition at the point it
encounters the WHILE statement.  Then it emits an expansion of that macro at the bottom of the
loop.  This effectively moves the code associated with the computation of the boolean expression to
the bottom of the loop.

Because of this code motion, there is very little overhead associated with a WHILE loop that
you haven’t already seen (i.e., the IF statement).  Therefore, with one exception, the WHILE and IF
statements share the same efficiency concerns.  The single exception is the hybrid WHILE
statement.  For technical reasons, HLA cannot move the code associated with the termination check
of a hybrid WHILE loop to the bottom of the loop.  Therefore, whenever you use the hybrid form of
the WHILE statement HLA compiles the code you supply at the top of the loop, it adds a JMP
instruction to the bottom of the loop, and that JMP instruction executes on each iteration.  If this is
a problem for your code, you should probably consider a different implementation of the loop.

Example of the compilation of a hybrid WHILE loop:

    while
    {
        cmp( eax, 0 );
        jne false;
        
    }
    
        mov( 0, eax );
                        
    endwhile;
 
 
; Translated code:
 
?2_while:
?2_continue:
                cmp     eax, 0
                jne     ?2_false
?2_true:
                mov     eax, 0
                jmp     ?2_while
?2_exitloop:
?2_false:

18.3.8 repeat..until
To Be Written...

18.3.9 for..endfor
To Be Written...

18.3.10 forever..endfor
To Be Written...

18.3.11 break, breakif
To Be Written...
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18.3.12 continue, continueif
To Be Written...

18.3.13 begin..end, exit, exitif
To Be Written...

18.3.14 foreach..endfor
To Be Written...

18.3.15 try..unprotect..exception..anyexception..endtry, raise
To Be Written...
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18.4 A Modified IF..ELSE..ENDIF Statement
The IF statement is another statement that doesn’t always do exactly what you want.  Like the

_while.._onbreak.._endwhile example above, it’s quite possible to redefine the IF statement so that
it behaves the way we want it to.  In this section you’ll see how to implement a variant of the
IF..ELSE..ENDIF statement that nests differently than the standard IF statement.

HLA’s particular variant of the IF statement has several limitations.  One of the major
limitations is the inability to combine logical sub-expressions using logical conjunction (and) and
logical disjunction (or).  It is possible to simulate conjunction and disjunction if you carefully
structure your code. Consider the following example:

// "C" code employing logical-AND operator:

if( expr1 && expr2 )
{

<< statements >>
}

// Equivalent HLA version:

if( expr1 ) then

if( expr2 ) then

<< statements >>

endif;

endif;

In both cases ("C" and HLA) the << statements>> block executes only if both expr1 and
expr2 evaluate true.  So other than the extra typing involved, it is often very easy to simulate logical
conjunction by using two IF statements in HLA.

There is one very big problem with this scheme.  Consider what happens if you modify the "C"
code to be the following:

// "C" code employing logical-AND operator:

if( expr1 && expr2 )
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

The only way to convert this to HLA (using the standard HLA high level control constructs) is
by duplicating the ’false’ statements.  This introduces a bit of inefficiency into your code.  As a
result, many HLA programmers will switch to low-level control constructs or HLA’s hybrid
control structures in order to avoid duplicating code.  Unfortunately, dropping down into low-level
code may make your program harder to read.  It would be nice if you could efficiently handle this
situation without making your code unreadable.  Fortunately, you can do exactly this by creating a
new version of the IF statement using HLA’s multi-part macro facilities.
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Before describing how to create this new type of IF statement, we must digress for a moment
and explore an interesting feature of HLA’s multi-part macro expansion: KEYWORD macros do
not have to use unique names.  Whenever you declare an HLA KEYWORD macro, HLA accepts
whatever name you choose.  If that name happens to be already defined, then the KEYWORD
macro name takes precedence as long as the macro is active (that is, from the point you invoke the
macro name until HLA encounters the TERMINATOR macro).  Therefore, the KEYWORD macro
name hides the previous definition of that name until the termination of the macro.  This feature
applies even to the original macro name;  that is, it is possible to define a KEYWORD macro with
the same name as the original macro to which the KEYWORD macro belongs.  This is a very
useful feature because it allows you to change the definition of the macro within the scope of the
opening and terminating invocations of the macro.

Although not pertinent to the IF statement we are construction, you should note that parameter
and local symbols in a macro also override any previously defined symbols of the same name.  So
if you use that symbol between the opening macro and the terminating macro, you will get the
value of the local symbol, not the global symbol.  E.g.,

var
i:int32;
j:int32;

.

.

.
macro abc:i;

?i:text := "j";
.
.
.

terminator xyz;
.
.
.

endmacro
.
.
.

mov( 25, i );
mov( 10, j );
abc

mov( i, eax );   // Loads j’s value (10), not 25 into eax.
xyz;

The code above loads 10 into EAX because the "mov(i, eax);" instruction appears between the
opening and terminating macros abc..xyz.  Between those two macros the local definition of i takes
precedence over the global definition.  Since i is a text constant that expands to j, the
aforementioned MOV statement is really equivalent to "mov(j, eax);"  That statement, of course,
loads 10 into EAX.  Since this problem is difficult to see while reading your code, you should
choose local symbols in multi-part macros very carefully.  A good convention to adopt is to
combine your local symbol name with the macro name, e.g.,
macro abc : i_abc;

You may wonder why HLA allows something to crazy to happen in your source code, in a
moment you’ll see why this behavior is useful (and now, with this brief message out of the way,
back to our regularly scheduled discussion).

Before we digressed to discuss this interesting feature in HLA multi-part macros, we were
trying to figure out how to efficiently simulate the conjunction and disjunction operators in an IF
statement without resorting to low-level code.  The problem in the example appearing earlier in this
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section is that you would have to duplicate some code in order to convert the IF..ELSE statement
properly.  The following code shows this problem:

// "C" code employing logical-AND operator:

if( expr1 && expr2 )
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

// Corresponding HLA code using the "nested-IF" algorithm:

if( expr1 ) then

if( expr2 ) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

else

<< ’false’ statements >>

endif;

Note that this code must duplicate the "<< ’false’ statements >>" section if the logic is to
exactly match the original "C" code.  This means that the program will be larger and harder to read
than is absolutely necessary.

One solution to this problem is to create a new kind of IF statement that doesn’t nest the same
way standard IF statements nest.  In particular,  if we define the statement such that all IF clauses
nested with an outer IF..ENDIF block share the same ELSE and ENDIF clauses.  If this were the
case, then you could implement the code above as follows:

if( expr1 ) then

if( expr2 ) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;
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If expr1 is false, control immediately transfers to the ELSE clause.  If the value of expr1 is
true, the control falls through to the next IF statement.  

If expr2 evaluates false, then the program jumps to the single ELSE clause that all IFs share in
this statement.  Notice that a single ELSE clause (and corresponding ’false’ statements) appear in
this code; hence the code does not necessarily expand in size.  If expr2 evaluates true, then control
falls through to the ’true’ statements, exactly like a standard IF statement.

Notice that the nested IF statement above does not have a corresponding ENDIF.  Like the
ELSE clause, all nested IFs in this structure share the same ENDIF.  Syntactically, there is no need
to end the nested IF statement;  the end of the THEN section ends with the ELSE clause, just as the
outer IF statement’s THEN block ends.

Of course, we can’t actually define a new macro named "if" because you cannot redefine HLA
reserved words.  Nor would it be a good idea to do so even if these were legal (since it would make
your programs very difficult to comprehend if the IF keyword had different semantics in different
parts of the program.  The following program uses the identifiers "_if", "_then", "_else", and
"_endif" instead.  It is questionable if these are good identifiers in production code (perhaps
something a little more different would be appropriate).  The following code example uses these
particular identifiers so you can easily correlate them with the corresponding high level statements.

/***********************************************/
/*                                             */
/* if.hla                                      */
/*                                             */
/* This program demonstrates a modification of */
/* the IF..ELSE..ENDIF statement using HLA's   */
/* multi-part macros.                          */
/*                                             */
/***********************************************/

program newIF;
#include( "stdlib.hhf" )

// Macro implementation of new form of if..then..else..endif.
//
// In this version, all nested IF statements transfer control
// to the same ELSE clause if any one of them have a false
// boolean expression.  Syntax:
//
//  _if( expression ) _then
//
//      <<statements including nested _if clauses>>
//
//  _else // this is optional
//
//      <<statements, but _if clauses are not allowed here>>
//
//  _endif
//
//
// Note that nested _if clauses do not have a corresponding
// _endif clause.  This is because the single _else and/or
// _endif clauses terminate all the nested _if clauses
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// including the first one.  Of course, once the code
// encounters an _endif another _if statement may begin.

// Macro to handle the main "_if" clause.
// This code just tests the expression and jumps to the _else
// clause if the expression evaluates false.

macro _if( ifExpr ):elseLbl, hasElse, ifDone;

    ?hasElse := false;
    jf(ifExpr) elseLbl; 
    

// Just ignore the _then keyword.
    
keyword _then;
    

// Nested _if clause (yes, HLA lets you replace the main
// macro name with a keyword macro).  Identical to the
// above _if implementation except this one does not
// require a matching _endif clause.  The single _endif
// (matching the first _if clause) terminates all nested
// _if clauses as well as the main _if clause.

keyword _if( nestedIfExpr );
    jf( nestedIfExpr ) elseLbl;
    
    // If this appears within the _else section, report
    // an error (we don't allow _if clauses nested in
    // the else section, that would create a loop).
    
    #if( hasElse )
    
        #error( "All _if clauses must appear before the _else clause" )
        
    #endif

// Handle the _else clause here.  All we need to is check to
// see if this is the only _else clause and then emit the
// jmp over the else section and output the elseLbl target.

keyword _else;
    #if( hasElse )
    
        #error( "Only one _else clause is legal per _if.._endif" )
        
    #else
    
        // Set hasElse true so we know that we've seen an _else
        // clause in this statement.
        
        ?hasElse := true;
        jmp ifDone;
        elseLbl:
Public Domain Created by Randy Hyde Page 465



HLA Reference Manual 5/24/10 Chapter 18
        
    #endif
        
// _endif has two tasks.  First, it outputs the "ifDone" label
// that _else uses as the target of its jump to skip over the
// else section.  Second, if there was no else section, this
// code must emit the "elseLbl" label so that the false conditional(s)
// in the _if clause(s) have a legal target label.
        
terminator _endif;

    ifDone:
    #if( !hasElse )
    
        elseLbl:
        
    #endif
        
endmacro;

static
    tr:boolean := true;
    f:boolean := false;

begin newIF;

    // Real quick demo of the _if statement:
    
    _if( tr ) _then
    
        _if( tr ) _then
        _if( f ) _then
        
            stdout.put( "error" nl );
            
    _else
    
        stdout.put( "Success" );
        
    _endif
    
end newIF;

Just in case you’re wondering, this program prints "Success" and then quits.  This is because
the nested "_if" statements are equivalent to the expression "true && true && false" which, of
course, is false.  Therefore, the "_else" portion of this code should execute.

The only surprise in this macro is the fact that it redefines the _if macro as a keyword macro
upon invocation of the main _if macro.  The reason this code does this is so that any nested _if
clauses do not require a corresponding _endif and don’t support an _else clause.

Implementing an ELSEIF clause introduces some difficulties, hence its absence in this
example.  The design and implementation of an ELSEIF clause is left to the more serious reader1.

1. I.e., I don’t even want to have to think about this problem!
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18.5 Object Oriented Programming in Assembly

18.5.1 Hoopla and Hyperbole
Before discussing object-oriented programming (OOP) in assembly language, it is probably a

good idea to take a step back and explore the general benefits of using OOP. After all, without such
knowledge, the question of "why bother to use OOP in assembly" is unanswerable.

First of all, despite what some OOP proponents claim, object-oriented programming is not an
all-encompassing facility that replaces whatever programming paradigm you currently use. Object-
oriented programming techniques are a tool. When used in an appropriate fashion, that tool can
save you considerable effort. When misapplied, it can make your programs considerably worse. In
some sense, OOP techniques are like recursion: incredibly valuable where it’s called for, but
inefficient and kludgy when you attempt to use it to solve a problem for which it is not well suited.
Fortunately, OOP is well suited for many applications, hence its popularity among high-level
language (HLL) programmers.

One of the main benefits to object-oriented programming is that it makes it easier to reuse
code.Traditionally, to reuse code you would create huge libraries of different functions and call
those functions to perform common tasks. The only problem with the library approach is that in
order to effectively reuse your code, you had to write very generic library routines. The result was
bloated and slow code (that often handled lots of special cases that would never occur in a specific
application); attempts to produce "lean and mean" library routines often meant writing dozens or
even hundreds of minor variations of the same functions. It often wasn’t possible to easily extend
such routines to handle new requirements. This was especially difficult if the source code for the
original library routines was not available.

Object-oriented programming techniques provid a solution to this problem. Through OOP-
oriented features such as inheritence and polymorphism, it is possible to extend a simplified library
function to handle the specific requirements of a given application without having to rewrite the
entire code base.

Because OOP techniques allow you to extend a given set of library routines in ways specific to
an application, you would get the impression that this programming paradigm is perfect for
assembly language programmers (who want "lean and mean" code that doesn’t carry around a lot
of bloat). Unfortunately, there are two problems with this idea. First of all, you’ll find that
traditional OOP languages tend to have huge class libraries associated with them. And because of
the "layered" approach that OOP fosters, including one, seemingly small, function can wind up
including half of the library in your application (ever wondered why a "Hello World" program in
Delphi is 256K?). Another problem with the OOP is that it does require a small amount of overhead
to implement. This reason alone has scared many assembly language programmers away from
using object-oriented programming techniques. 

Despite the drawbacks and overblown expectations of OOP (that never seem to be met), OOP
techniques are useful for solving many problems. The object-oriented programming paradigm is a
handy tool that should appear in your programmer’s toolbox - ready to use when the need arises.
Just as you wouldn’t use a hammer for a job that requires a screwdriver, you shouldn’t use OOP in
an inappropriate situation. However, when the job calls for a screwdriver, it’s nice to have one
handy; likewise, when OOP techniques are appropriate, they can provide a fast and efficient
solution to a given programming problem.

18.5.2 Some Basic Definitions
To begin with, it’s probably a good idea to define a few terms this paper will use. Without

further ado:

• CLASS: a class is a data type template (i.e., record or structure) that specifies the data and
procedure components of a "class object".

• INSTANCE: an instance is a block of memory with enough storage to hold the data
associated with a class variable (see OBJECT).

• OBJECT: a variable of some class type. While there is a subtle difference between objects
and instances (having to do with the lifetime of the storage bound to an object), we’ll treat
the two terms as synonyms for our purposes.

• METHOD: a procedure or function associated with a class.

• INHERITENCE: the ability to reuse fields from another base (or ancestor) class.
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• POLYMORPHISM: an attribute of classes whereby different (types of) objects can be
manipulated by the same method calls. For example, a "print" method could display the
value of several different object types without requiring a single function that handles
every possible data type one could dream up.

• INFORMATION HIDING: the use of private data fields and procedures/methods to
control the access of an object’s internal representation, with the hope of keeping the
implementation of a data type independent from its use. This allows easy modification to
the data structure without breaking any code that uses the data structure.

• ABSTRACT DATA TYPE (ADT): An abstract data type is a collection of data objects
and the functions (which we’ll call methods) that operate on the data.  In a pure abstract
data type, the ADT’s methods are the only code that has access to the data fields of the
ADT;  external code may only access the data using function calls to get or set data field
values (these are the ADT’s accessor methods).

18.5.3 OOP Language Facilities
As any die-hard C programmer can tell you, you don’t need an "object-oriented programming

language" in order to write object-oriented code. Then again, as any C++ programmer will tell you,
it’s far easier to write the code and the resulting code is far easier to read and maintain if you do use
an object-oriented programming language when writing object-oriented applications. The same is
true in assembly language - you don’t need an assembler that supports object-oriented
programming facilities to write object-oriented assembly code, but it’s not very effective to do so.

Today, there are two and a half 80x86 assemblers that provide reasonable support for object-
oriented programming in assembly language: HLA (the High-Level Assembler), TASM, and
MASM. HLA and TASM directly support classes, objects, and other object-oriented programming
facilities. MASM does not, but its STRUCT directive is sufficiently flexible that you can easily
create macros to simulate most of the object-oriented programming facilities provided HLA and
TASM. Arguably, HLA provides the most complete set of object-oriented programming facilities,
so this article will use HLA in its examples. The basic concepts, however, apply to both TASM and
MASM as well as HLA.

18.5.4 Classes in HLA
HLA’s classes provide a good mechanism for creating abstract data types. Fundamentally, a

class is little more than a RECORD declaration that allows the definition of fields other than data
fields (e.g., procedures, constants, and macros).  The inclusion of other program declaration objects
in the class definition dramatically expands the capabilities of a class over that of a record.  For
example, with a class it is now possible to easily define an ADT since classes may include data and
methods that operate on that data (procedures).

The principle way to create an abstract data type in HLA is to declare a class data type.
Classes in HLA always appear in the TYPE section and use the following syntax:
classname : class

<< Class declaration section >>

endclass;

The class declaration section is very similar to the local declaration section for a procedure
insofar as it allows CONST, VAL, VAR, and STATIC variable declaration sections.  Classes also
let you define macros and specify procedure, iterator, and method prototypes (method declarations
are legal only in classes).  Conspicuously absent from this list is the TYPE declaration section.
You cannot declare new types within a class.

A method is a special type of procedure that appears only within a class.  A little later you will
see the difference between procedures and methods, for now you can treat them as being one and
the same.  Other than a few subtle details regarding class initialization and the use of pointers to
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classes, their semantics are identical1.  Generally, if you don’t know whether to use a procedure or
method in a class, the safest bet is to use a method.

You do not place procedure/iterator/method code within a class.  Instead you simply supply
prototypes for these routines.  A routine prototype consists of the PROCEDURE, ITERATOR, or
METHOD reserved word, the routine name, any parameters, and a couple of optional procedure
attributes (@USE, RETURNS, and EXTERNAL).  The actual routine definition (i.e., the body of
the routine and any local declarations it needs) appears outside the class.

The following example demonstrates a typical class declaration appearing in the TYPE
section:

TYPE
TypicalClass: class

const
TCconst := 5;

val
TCval := 6;

var
TCvar : uns32; // Private field used only by TCproc.

static
TCstatic : int32;

procedure TCproc( u:uns32 ); returns( "eax" );
iterator TCiter( i:int32 ); external;
method TCmethod( c:char );

endclass;

As you can see, classes are very similar to records in HLA.  Indeed, you can think of a record
as being a class that only allows VAR declarations.  HLA implements classes in a fashion quite
similar to records insofar as it allocates sequential data fields in sequential memory locations.  In
fact, with only one minor exception, there is almost no difference between a RECORD declaration
and a CLASS declaration that only has a VAR declaration section.  Later you’ll see exactly how
HLA implements classes, but for now you can assume that HLA implements them the same as it
does records and you won’t be too far off the mark.

You can access the TCvar and TCstatic fields (in the class above) just like a record’s fields.
You access the CONST and VAL fields in a similar manner.   If a variable of type TypicalClass has
the name obj, you can access the fields of obj as follows:

mov ( obj.TCconst, eax );
mov( obj.TCval, ebx );
add( obj.TCvar, eax );
add( obj.TCstatic, ebx );
obj.TCproc( 20 ); // Calls the TCproc procedure in 

TypicalClass.
etc.

If an application program includes the class declaration above, it can create variables using the
TypicalClass type and perform operations using the above methods. Unfortunately, the application
program can also access the fields of the ADT data type with impunity. For example, if a program
created a variable MyClass of type TypicalClass, then it could easily execute instructions like

1. Note, however, that the difference between procedures and methods makes all the difference in the world to
the object-oriented programming paradigm.  Hence the inclusion of methods in HLA’s class definitions.
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“MOV( MyClass.TCvar, eax );” even though this field might be private to the implementation
section. Unfortunately, if you are going to allow an application to declare a variable of type
TypicalClass, the field names will have to be visible.  While there are some tricks we could play
with HLA’s class definitions to help hide the private fields, the best solution is to thoroughly
comment the private fields and then exercise some restraint when accessing the fields of that class.
Specifically, this means that ADTs you create using HLA’s classes cannot be “pure” ADTs since
HLA allows direct access to the data fields.  However, with a little discipline, you can simulate a
pure ADT by simply electing not to access such fields outside the class’ methods, procedures, and
iterators.

Prototypes appearing in a class are effectively FORWARD declarations. Like normal forward
declarations, all procedures, iterators, and methods you define in a class must have an actual
implementation later in the code.  Alternately, you may attach the EXTERNAL keyword to the end
of a procedure, iterator, or method declaration within a class to inform HLA that the actual code
appears in a separate module. As a general rule, class declarations appear in header files and
represent the interface section of an ADT.  The procedure, iterator, and method bodies appear in the
implementation section which is usually a separate source file that you compile separately and link
with the modules that use the class.

The following is an example of a sample class procedure implementation:

procedure TypicalClass.TCproc( u:uns32 ); nodisplay;
<< Local declarations for this procedure >>

begin TCproc;

<< Code to implement whatever this procedure does >>

end TCProc;

There are several differences between a standard procedure declaration and a class procedure
declaration.  First, and most obvious, the procedure name includes the class name (e.g.,
TypicalClass.TCproc).  This differentiates this class procedure definition from a regular procedure
that just happens to have the name TCproc.  Note, however, that you do not have to repeat the class
name before the procedure name in the BEGIN and END clauses of the procedure (this is similar to
procedures you define in HLA NAMESPACEs). 

A second difference between class procedures and non-class procedures is not obvious.  Some
procedure attributes (@USE, EXTERNAL, RETURNS, @CDECL, @PASCAL, and
@STDCALL) are legal only in the prototype declaration appearing within the class while other
attributes (@NOFRAME, @NODISPLAY, @NOALIGNSTACK, and ALIGN) are legal only
within the procedure definition and not within the class.  Fortunately, HLA provides helpful error
messages if you stick the option in the wrong place, so you don’t have to memorize this rule.

If a class routine’s prototype does not have the EXTERNAL option, the compilation unit (that
is,  the PROGRAM or UNIT) containing the class declaration must also contain the routine’s
definition or HLA will generate an error at the end of the compilation.  For small, local, classes
(i.e., when you’re embedding the class declaration and routine definitions in the same compilation
unit) the convention is to place the class’ procedure, iterator, and method definitions in the source
file shortly after the class declaration.  For larger systems (i.e., when separately compiling a class’
routines), the convention is to place the class declaration in a header file by itself and place all the
procedure, iterator, and method definitions in a separate HLA unit and compile them by
themselves.

18.5.5 Objects
Remember, a class definition is just a type.  Therefore, when you declare a class type you

haven’t created a variable whose fields you can manipulate.  An object is an instance of a class;
that is, an object is a variable that is some class type.  You declare objects (i.e., class variables) the
same way you declare other variables: in a VAR, STATIC, or STORAGE section1.   A pair of
sample object declarations follow:

1. Technically, you could also declare an object in a READONLY section, but HLA does not allow you to define
class constants, so there is little utility in declaring class objects in the READONLY section.
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var
T1: TypicalClass;
T2: TypicalClass;

For a given class object, HLA allocates storage for each variable appearing in the VAR section
of the class declaration.  If you have two objects, T1 and T2, of type TypicalClass then T1.TCvar is
unique as is T2.TCvar.  This is the intuitive result (similar to RECORD declarations);  most data
fields you define in a class will appear in the VAR declaration section.

Static data objects (e.g., those you declare in the STATIC section of a class declaration) are not
unique among the objects of that class; that is, HLA allocates only a single static variable that all
variables of that class share.  For example, consider the following (partial) class declaration and
object declarations:

type
sc: class

var
i:int32;

static
s:int32;
.
.
.

endclass;

var
s1: sc;
s2: sc;

In this example, s1.i and s2.i are different variables.  However, s1.s and s2.s are aliases of one
another  Therefore, an instruction like “mov( 5, s1.s);” also stores five into s2.s.  Generally you use
static class variables to maintain information about the whole class while you use class VAR
objects to maintain information about the specific object.  Since keeping track of class information
is relatively rare, you will probably declare most class data fields in a VAR section.

You can also create dynamic instances of a class and refer to those dynamic objects via
pointers.  In fact, this  is probably the most common form of object storage and access.  The
following code shows how to create pointers to objects and how you can dynamically allocate
storage for an object:

var
pSC: pointer to sc;

.

.

.
malloc( @size( sc ) );
mov( eax, pSC );

.

.

.
mov( pSC, ebx );
mov( (type sc [ebx]).i, eax );

Note the use of type coercion to cast the pointer in EBX as type sc.
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18.5.6 Inheritance
Inheritance is one of the most fundamental ideas behind object-oriented programming. The

basic idea behind inheritance is that a class inherits, or copies, all the fields from some class and
then possibly expands the number of fields in the new data type. For example, suppose you created
a data type point  which describes a point in the planar (two dimensional) space. The class for this
point might look like the following:

type
point: class

var
x:int32;
y:int32;

method distance;

endclass;

Suppose you want to create a point in 3D space rather than 2D space. You can easily build
such a data type as follows:

type
point3D: class inherits( point );

var
z:int32;

endclass;

The INHERITS option on the CLASS declaration tells HLA to insert the fields of point at the
beginning of the class. In this case, point3D inherits the fields of point.  HLA always places the
inherited fields at the beginning of a class object. The reason for this will become clear a little later.
If you have an instance of point3D which you call P3, then the following 80x86 instructions are all
legal:

mov( P3.x, eax );
add( P3.y, eax );
mov( eax, P3.z );
P3.distance();

Note that the P3.distance method invocation in this example calls the point.distance method.
You do not have to write a separate distance method for the point3D class unless you really want to
do so (see the next section for details).  Just like the x and y fields, point3D objects inherit point’s
methods.

18.5.7 Overriding
Overriding is the process of replacing an existing method in an inherited class with one more

suitable for the new class. In the point and point3D examples appearing in the previous section, the
distance method (presumably) computes the distance from the origin to the specified point. For a
point on a two-dimensional plane, you can compute the distance using the function:

However, the distance for a point in 3D space is given by the equation:

dist = x2+y2

dist = x2+y2+z2
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Clearly, if you call the distance function for point for a point3D object you will get an incorrect
answer.  In the previous section, however, you saw that the P3 object calls the distance function
inherited from the point class.  Therefore, this would produce an incorrect result.

In this situation the point3D data type must override the distance method with one that
computes the correct value.  You cannot simply redefine the point3D class by adding a distance
method prototype:

type
point3D: class inherits( point )

var
z:int32;

method distance;   // This doesn’t work!

endclass;

The problem with the distance method declaration above is that point3D already has a distance
method – the one that it inherits from the point class.  HLA will complain because it doesn’t like
two methods with the same name in a single class.

To solve this problem, we need some mechanism by which we can override the declaration of
point.distance and replace it with a declaration for point3D.distance.  To do this, you use the
OVERRIDE keyword before the method declaration:

type
point3D: class inherits( point )

var
z:int32;

override method distance;   // This will work!

endclass;

The OVERRIDE prefix tells HLA to ignore the fact that point3D inherits a method named
distance from the point class.  Now, any call to the distance method via a point3D object will call
the point3D.distance method rather than point.distance.  Of course, once you override a method
using the OVERRIDE prefix, you must supply the method in the implementation section of your
code, e.g., 

method point3D.distance; nodisplay;

<< local declarations for the distance function>>

begin distance;

<< Code to implement the distance function >>

end distance;

18.5.8 Virtual Methods vs. Static Procedures
A little earlier, this chapter suggested that you could treat class methods and class procedures

the same.  There are, in fact, some major differences between the two (after all, why have methods
if they’re the same as procedures?).  As it turns out, the differences between methods and
procedures is crucial if you want to develop object-oriented programs.  Methods provide the second
feature necessary to support true polymorphism: virtual procedure calls1.   A virtual procedure call
is just a fancy name for an indirect procedure call (using a pointer associated with the object).  The
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key benefit of virtual procedures is that the system automatically calls the right method when using
pointers to generic objects.

Consider the following declarations using the point class from the previous sections:

var
P2: point;
P: pointer to point;

Given the declarations above, the following assembly statements are all 
legal:

mov( P2.x, eax );
mov( P2.y, ecx );
P2.distance(); // Calls point3D.distance.

lea( ebx, P2 ); // Store address of P2 into P.
mov( ebx, P );
P.distance(); // Calls point.distance.

Note that HLA lets you call a method via a pointer to an object rather than directly via an
object variable.  This is a crucial feature of objects in HLA and a key to implementing virtual
method calls.

The magic behind polymorphism and inheritance is that object pointers are generic.  In
general, when your program references data indirectly through a pointer, the value of the pointer
should be the address of the underlying data type associated with that pointer.  For example, if you
have a pointer to a 16-bit unsigned integer, you wouldn’t normally use that pointer to access a 32-
bit signed integer value.  Similarly, if you have a pointer to some record, you would not normally
cast that pointer to some other record type and access the fields of that other type1.  With pointers to
class objects, however, we can lift this restriction a bit.  Pointers to objects may legally contain the
address of the object’s type or the address of any object that inherits the fields of that type.
Consider the following declarations that use the point and point3D types from the previous
examples:

var
P2: point;
P3: point3D;
p: pointer to point;

.

.

.
lea( ebx, P2 );
mov( ebx, p );
p.distance(); // Calls the point.distance method.

.

.

.
lea( ebx, P3 );
mov( ebx, p ); // Yes, this is semantically legal.
p.distance(); // Surprise, this calls point3D.distance.

Since p is a pointer to a point object, it might seem intuitive for p.distance to call the
point.distance method.  However, methods are polymorphic.  If you’ve got a pointer to an object

1. Polymorphism literally means “many-faced.”  In the context of  object-oriented programming polymorphism
means that the same method name, e.g., distance, and refer to one of several different  methods.
1. Of course, assembly language programmers break rules like this all the time.  For now, let’s assume we’re
playing by the rules and only access the data using the data type associated with the pointer.
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and you call a method associated with that object, the system will call the actual (overridden)
method associated with the object, not the method specifically associated with the pointer’s class
type.

Class procedures behave differently than methods with respect to overridden procedures.
When you call a class procedure indirectly through an object pointer, the system will always call
the procedure associated with the underlying class associated with the pointer.  So had distance
been a procedure rather than a method in the previous examples, the “p.distance();” invocation
would always call point.distance, even if p is pointing at a point3D object.  The section on Object
Initialization, later in this chapter, explains why methods and procedures are different (see “Object
Implementation” on page 479).

Note that iterators are also virtual; so like methods an object iterator invocation will always
call the (overridden) iterator associated with the actual object whose address the pointer contains.
To differentiate the semantics of methods and iterators from procedures, we will refer to the
method/iterator calling semantics as virtual procedures and the calling semantics of a class
procedure as a static procedure.

18.5.9 Writing Class Methods, Iterators, and Procedures
For each class procedure, method, and iterator prototype appearing in a class definition, there

must be a corresponding procedure, method, or iterator appearing within the program (for the sake
of brevity, this section will use the term routine to mean procedure, method, or iterator from this
point forward).  If the prototype does not contain the EXTERNAL option, then the code must
appear in the same compilation unit as the class declaration.  If the EXTERNAL option does follow
the prototype, then the code may appear in the same compilation unit or a different compilation unit
(as long as you link the resulting object file with the code containing the class declaration).  Like
external (non-class) procedures and iterators, if you fail to provide the code the linker will complain
when you attempt to create an executable file.  To reduce the size of the following examples, they
will all define their routines in the same source file as the class declaration.

HLA class routines must always follow the class declaration in a compilation unit.  If you are
compiling your routines in a separate unit, the class declarations must still precede the code with
the class declaration (usually via an #INCLUDE file).  If you haven’t defined the class by the time
you define a routine like point.distance, HLA doesn’t know that point is a class and, therefore,
doesn’t know how to handle the routine’s definition.

Consider the following declarations for a point2D class:

type
point2D: class

const
UnitDistance: real32 := 1.0;

var
x: real32;
y: real32;

static
LastDistance: real32;

method distance( fromX: real32;  fromY:real32 ); returns( "st0" );
procedure InitLastDistance;

endclass;

The distance function for this class should compute the distance from the object’s point to
(fromX,fromY).  The following formula describes this computation:

A first pass at writing the distance method might produce the following code:

x fromX– 2 y fromY– 2+
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method point2D.distance( fromX:real32; fromY:real32 ); nodisplay;
begin distance;

fld( x ); // Note: this doesn’t work!
fld( fromX ); // Compute (x-fromX)
fsub();
fld( st0 ); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld( y ); // This doesn’t work either.
fld( fromY ); // Compute (y-fromY)
fsub();
fld( st0 ); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

This code probably looks like it should work to someone who is familiar with an object-
oriented programming language like C++ or Delphi.  However, as the comments indicate, the
instructions that push the x and y variables onto the FPU stack don’t work – HLA doesn’t
automatically define the symbols associated with the data fields of a class within that class’
routines.

To learn how to access the data fields of a class within that class’ routines, we need to back up
a moment and discover some very important implementation details concerning HLA’s classes.  To
do this, consider the following variable declarations:

var
Origin: point2D;
PtInSpace: point2D;

Remember, whenever you create two objects like Origin and PtInSpace, HLA reserves storage
for the x and y data fields for both of these objects.  However, there is only one copy of the
point2D.distance method in memory.  Therefore, were you to call Origin.distance and
PtInSpace.distance, the system would call the same routine for both method invocations.  Once
inside that method, one has to wonder what an instruction like “fld( x );” would do.  How does it
associate x with Origin.x or PtInSpace.x?  Worse still, how would this code differentiate between
the data field x and a global object x?  In HLA, the answer is “it doesn’t.”  You do not specify the
data field names within a class routine by simply using their names as though they were common
variables.  

To differentiate Origin.x from PtInSpace.x within class routines, HLA automatically passes a
pointer to an object’s data fields whenever you call a class routine.  Therefore, you can reference
the data fields indirectly off this pointer.  HLA passes this object pointer in the ESI register.  This is
one of the few places where HLA-generated code will modify one of the 80x86 registers behind
your back:  anytime you call a class routine, HLA automatically loads the ESI register with
the object’s address.  Obviously, you cannot count on ESI’s value being preserved across class
routine class nor can you pass parameters to the class routine in the ESI register (though it is
perfectly reasonable to specify "@USE ESI;" to allow HLA to use the ESI register when setting up
other parameters).  For class methods and iterators (but not procedures), HLA will also load the
EDI register with the address of the class’ virtual method table (see “Virtual Method Tables” on
page 482).  While the virtual method table address isn’t as interesting as the object address, keep in
mind that HLA-generated code will overwrite any value in the EDI register when you call a
method or an iterator.  Again, "EDI" is a good choice for the @USE operand for methods since
HLA will wipe out the value in EDI anyway.

Upon entry into a class routine, ESI contains a pointer to the (non-static) data fields associated
with the class.  Therefore, to access fields like x and y (in our point2D example), you could use an
address expression like the following:
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(type point2D [esi].x

Since you use ESI as the base address of the object’s data fields, it’s a good idea not to disturb
ESI’s value within the class routines (or, at least, preserve ESI’s value if you need to access the
objects data fields after some point where you must use ESI for some other purpose).  Note that if
you call an iterator or a method you do not have to preserve EDI (unless, for some reason, you need
access to the virtual method table, which is unlikely).

Accessing the fields of a data object within a class’ routines is such a common operation that
HLA provides a shorthand notation for casting ESI as a pointer to the class object:  THIS.  Within a
class in HLA, the reserved word THIS automatically expands to a string of the form “(type
classname [esi])” substituting, of course, the appropriate class name for classname.  Using the
THIS keyword, we can (correctly) rewrite the previous distance method as follows:

method point2D.distance( fromX:real32; fromY:real32 ); nodisplay;
begin distance;

fld( this.x );
fld( fromX ); // Compute (x-fromX)
fsub();
fld( st0 ); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld( this.y );
fld( fromY ); // Compute (y-fromY)
fsub();
fld( st0 ); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

Don’t forget that calling a class routine wipes out the value in the ESI register.  This isn’t
obvious from the syntax of the routine’s invocation.  It is especially easy to forget this when calling
some class routine from inside some other class routine;  don’t forget that if you do this the internal
call wipes out the value in ESI and on return from that call ESI no longer points at the original
object.  Always push and pop ESI (or otherwise preserve ESI’s value) in this situation, e.g.,

.

.

.
fld( this.x ); // ESI points at current object.
.
.
.
push( esi ); // Preserve ESI across this method call.
SomeObject.SomeMethod();
pop( esi );
.
.
.
lea( ebx, this.x ); // ESI points at original object here.

The THIS keyword provides access to the class variables you declare in the VAR section of a
class.  You can also use THIS to call other class routines associated with the current object, e.g., 

this.distance( 5.0, 6.0 );  
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To access class constants and STATIC data fields you generally do not use the THIS pointer.
HLA associates constant and static data fields with the whole class, not a specific object.  To access
these class members, just use the class name in place of the object name.  For example,  to access
the UnitDistance constant in the point2D class you could use a statement like the following:

fld( point2D.UnitDistance );

As another example, if you wanted to update the LastDistance field in the point2D class each
time you computed a distance, you could rewrite the point2D.distance method as follows:

method point2D.distance( fromX:real32; fromY:real32 ); nodisplay;
begin distance;

fld( this.x );
fld( fromX ); // Compute (x-fromX)
fsub();
fld( st0 ); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld( this.y );
fld( fromY ); // Compute (y-fromY)
fsub();
fld( st0 ); // Compute the square of the difference.
fmul();

fsqrt();

fst( point2D.LastDistance ); // Update shared (STATIC) field.

end distance;

To understand why you use the class name when referring to constants and static objects but
you use THIS to access VAR objects, check out the next section.

Class procedures are also static objects, so it is possible to call a class procedure by specifying
the class name rather than an object name in the procedure invocation, e.g., both of the following
are legal:

Origin.InitLastDistance();
point2D.InitLastDistance();

There is, however, a subtle difference between these two class procedure calls.  The first call
above loads ESI with the address of the Origin object prior to actually calling the InitLastDistance
procedure.  The second call, however, is a direct call to the class procedure without referencing an
object;  therefore, HLA doesn’t know what object address to load into the ESI register.  In this case,
HLA loads NULL (zero) into ESI prior to calling the InitLastDistance procedure.  Because you can
call class procedures in this manner, it’s always a good idea to check the value in ESI within your
class procedures to verify that HLA contains an object address.  Checking the value in ESI is a
good way to determine which calling mechanism is in use.  Later, this chapter will discuss
constructors and object initialization;  there you will see a good use for static procedures and
calling those procedures directly (rather than through the use of an object).

18.5.10 Object Implementation
In a high level object-oriented language like C++ or Delphi, it is quite possible to master the

use of objects without really understanding how the machine implements them.  One of the reasons
for learning assembly language programming is to fully comprehend low-level implementation
details so one can make educated decisions concerning the use of programming constructs like
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objects.  Further, since assembly language allows you to poke around with data structures at a very
low-level, knowing how HLA implements objects can help you create certain algorithms that
would not be possible without a detailed knowledge of object implementation.  Therefore, this
section, and its corresponding subsections, explains the low-level implementation details you will
need to know in order to write object-oriented HLA programs.

HLA implements objects in a manner quite similar to records.  In particular, HLA allocates
storage for all VAR objects in a class in a sequential fashion, just like records.  Indeed, if a class
consists of only VAR data fields, the memory representation of that class is nearly identical to that
of a corresponding RECORD declaration.  Consider the following Student record declaration and
the corresponding class:

type
student: record

Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endrecord;

student2: class
Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endclass;

Student RECORD Implementation in Memory
Public Domain Created by Randy Hyde Page 480



HLA Reference Manual 5/24/10 Chapter 18
Student CLASS Implementation in Memory

If you look carefully at these two figures, you’ll discover that the only difference between the
class and the record implementations is the inclusion of the VMT (virtual method table) pointer
field at the beginning of the class object.  This field, which is always present in a class, contains the
address of the class’ virtual method table which, in turn, contains the addresses of all the class’
methods and iterators.  The VMT field, by the way, is present even if a class doesn’t contain any
methods or iterators.

As pointed out in previous sections, HLA does not allocate storage for STATIC objects within
the object’s storage.  Instead, HLA allocates a single instance of each static data field that all
objects share.  As an example, consider the following class and object declarations:

type
tHasStatic: class

var
i:int32;
j:int32;
r:real32;

static
c:char[2];
b:byte;

endclass;

var
hs1: tHasStatic;
hs2: tHasStatic;

 shows the storage allocation for these two objects in memory.

VMT

i

j

r

hs1

VMT

i

j

r

hs2

c[0]
c[1]

tHasStatic.c

tHasStatic.b
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Object Allocation with Static Data Fields

Of course, CONST, VAL, and #MACRO objects do not have any run-time memory
requirements associated with them, so HLA does not allocate any storage for these fields.  Like the
STATIC data fields, you may access CONST, VAL, and #MACRO fields using the class name as
well as an object name.  Hence, even if tHasStatic has these types of fields, the memory
organization for tHasStatic objects would still be the same as shown in .

Other than the presence of the virtual method table pointer (VMT), the presence of methods,
iterators, and procedures has no impact on the storage allocation of an object.  Of course, the
machine instructions associated with these routines does appear somewhere in memory.  So in a
sense the code for the routines is quite similar to static data fields insofar as all the objects share a
single instance of the routine.

18.5.10.1 Virtual Method Tables
When HLA calls a class procedure, it directly calls that procedure using a CALL instruction,

just like any normal non-class procedure call.  Methods and iterators are another story altogether.
Each object in the system carries a pointer to a virtual method table which is an array of pointers to
all the methods and iterators appearing within the object’s class.

Virtual Method Table Organization

Each iterator or method you declare in a class has a corresponding entry in the virtual method
table.  That dword entry contains the address of the first instruction of that iterator or method.  To
call a class method or iterator is a bit more work than calling a class procedure (it requires one
additional instruction plus the use of the EDI register).  Here is a typical calling sequence for a
method:

mov( ObjectAdrs, ESI ); // All class routines do this.
mov( [esi], edi ); // Get the address of the VMT into 

EDI
call( (type dword [edi+n])); // "n" is the offset of the method’s 

entry
//  in the VMT.

For a given class there is only one copy of the VMT in memory.  This is a static object so all
objects of a given class type share the same VMT.  This is reasonable since all objects of the same
class type have exactly the same methods and iterators (see ).

VMT

field1

field2

...

SomeObject

Method/ Iterator  #1

Method/ Iterator  #2

...

Method/ Iterator  #n

fieldn
Public Domain Created by Randy Hyde Page 482



HLA Reference Manual 5/24/10 Chapter 18
All Objects That are the Same Class Type Share the Same VMT

Although HLA builds the VMT record structure as it encounters methods and iterators within a
class, HLA does not automatically create the actual run-time virtual method table for you.  You
must explicitly declare this table in your program.  To do this, you include a statement like the
following in a STATIC or READONLY declaration section of your program, e.g.,

readonly
VMT( classname );

Since the addresses in a virtual method table should never change during program execution,
the READONLY section is probably the best choice for declaring VMTs.  It should go without
saying that changing the pointers in a VMT is, in general, a really bad idea.  So putting VMTs in a
STATIC section is usually not a good idea.

A declaration like the one above defines the variable classname._VMT_.  In  section 18.5.11
(see “Constructors and Object Initialization” on page 487) you see that you’ll need this name when
initializing object variables.  The class declaration automatically defines the classname._VMT_
symbol as an external static variable.  The declaration above just provides the actual definition of
this external symbol.

The declaration of a VMT uses a somewhat strange syntax because you aren’t actually
declaring a new symbol with this declaration, you’re simply supplying the data for a symbol that
you previously declared implicitly by defining a class.  That is, the class declaration defines the
static table variable classname._VMT_, all you’re doing with the VMT declaration is telling HLA
to emit the actual data for the table.  If, for some reason, you would like to refer to this table using a
name other than classname._VMT_, HLA does allow you to prefix the declaration above with a
variable name, e.g., 

readonly
myVMT: VMT( classname );

In this declaration, myVMT is an alias of classname._VMT_.  As a general rule, you should
avoid aliases in a program because they make the program more difficult to read and understand.
Therefore, it is unlikely that you would ever really need to use this type of declaration.

Like any other global static variable,  there should be only one instance of a VMT for a given
class in a program.    The best place to put the VMT declaration is in the same source file as the

Object1

Object2

Object3

VMT

Note:Objects are all the same class type
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class’ method, iterator, and procedure code (assuming they all appear in a single file).  This way
you will automatically link in the VMT whenever you link in the routines for a given class.

18.5.10.2 Object Representation with Inheritance
Up to this point, the discussion of the implementation of class objects has ignored the

possibility of inheritance.  Inheritance only affects the memory representation of an object by
adding fields that are not explicitly stated in the class declaration.

Adding inherited fields from a base class to another class must be done carefully. Remember,
an important attribute of a class that inherits fields from a base class is that you can use a pointer to
the base class to access the inherited fields from that base class in another class.  As an example,
consider the following classes:

type
tBaseClass: class

var
i:uns32;
j:uns32;
r:real32;

method mBase;
endclass;

tChildClassA: class inherits( tBaseClass );
var

c:char;
b:boolean;
w:word;

method mA;
endclass;

tChildClassB: class inherits( tBaseClass );
var

d:dword;
c:char;
a:byte[3];

endclass;

Since both tChildClassA and tChildClassB inherit the fields of tBaseClass, these two child
classes include the i, j, and r fields as well as their own specific fields.  Furthermore, whenever you
have a pointer variable whose base type is tBaseClass, it is legal to load this pointer with the
address of any child class of tBaseClass;  therefore, it is perfectly reasonable to load such a pointer
with the address of a tChildClassA or tChildClassB variable, e.g.,

var
B1: tBaseClass;
CA: tChildClassA;
CB: tChildClassB;
ptr: pointer to tBaseClass;

.

.

.
lea( ebx, B1 );
mov( ebx, ptr );
<< Use ptr >>

.

.
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.
lea( eax, CA );
mov( ebx, ptr );
<< Use ptr >>

.

.

.
lea( eax, CB );
mov( eax, ptr );
<< Use ptr >>

Since ptr points at an object of tBaseClass, you may legally (from a semantic sense) access the
i, j, and r fields of the object where ptr is pointing.  It is not legal to access the c, b, w, or d fields of
the tChildClassA or tChildClassB objects since at any one given moment the program may not
know exactly what object type ptr references.

In order for inheritance to work properly, the i, j, and r fields must appear at the same offsets
all child classes as they do in tBaseClass.  This way, an instruction of the form “mov((type
tBaseClass [ebx]).i, eax);” will correct access the i field even if EBX points at an object of type
tChildClassA or tChildClassB.   shows the layout of the child and base classes:

Layout of Base and Child Class Objects in Memory

Note that the new fields in the two child classes bear no relation to one another, even if they
have the same name (e.g., field c in the two child classes does not lie at the same offset).  Although
the two child classes share the fields they inherit from their common base class, any new fields they
add are unique and separate.  Two fields in different classes share the same offset only by
coincidence.

All classes (even those that aren’t related to one another) place the pointer to the virtual
method table at offset zero within the object.  There is a single VMT associated with each class in a
program;  even classes that inherit fields from some base class have a VMT that is (generally)
different than the base class’ VMT.  shows how objects of type tBaseClass, tChildClassA and
tChildClassB point at their specific VMTs:
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Virtual Method Table References from Objects

A virtual method table is nothing more than an array of pointers to the methods and iterators
associated with a class.  The address of the first method or iterator appearing in a class is at offset
zero, the address of the second appears at offset four, etc.  You can determine the offset value for a
given iterator or method by using the @offset function.  If you want to call a method or iterator
directly (using 80x86 syntax rather than HLA’s high level syntax), you code use code like the
following:

var
sc: tBaseClass;

.

.

.
lea( esi, sc ); // Get the address of the object (& VMT).
mov( [esi], edi ); // Put address of VMT into EDI.
call( (type dword [edi+@offset( tBaseClass.mBase )] );

Of course, if the method has any parameters, you must push them onto the stack before
executing the code above.  Don’t forget, when making direct calls to a method, that you must load
ESI with the address of the object.  Any field references within the method will probably depend
upon ESI containing this address.  The choice of EDI to contain the VMT address is nearly
arbitrary.  Unless you’re doing something tricky (like using EDI to obtain run-time type
information), you could use any register you please here.  As a general rule, you should use EDI

B1
tBaseClass :VMT

CA

tChildClassA :VMT

tChildClassB :VMT

CB

var 
      B1: tBaseClass ;
      CA: tChildClassA ;
      CB: tChildClassB ;
      CB2: tChildClassB ;
      CA2: tChildClassA ;

CA2

CB2

VMT Pointer
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when simulating class iterator/method calls because this is the convention that HLA employs and
most programmers will expect this.

Whenever a child class inherits fields from some base class, the child class’ VMT also inherits
entries from the base class’ VMT.  For example, the VMT for class tBaseClass contains only a
single entry – a pointer to method tBaseClass.mBase.  The VMT for class tChildClassA contains
two entries: a pointer to tBaseClass.mBase and tChildClassA.mA.   Since tChildClassB doesn’t
define any new methods or iterators, tChildClassB’s VMT contains only a single entry, a pointer to
the tBaseClass.mBase method.  Note that tChildClassB’s VMT is identical to tBaseClass’ VMT.
Nevertheless, HLA produces two distinct VMTs.  This is a critical fact that we will make use of a
little later.   shows the relationship between these VMTs:

Virtual Method Tables for Inherited Classes

Although the VMT always appears at offset zero in an object (and, therefore, you can access
the VMT using the address expression “[ESI]” if ESI points at an object), HLA actually inserts a
symbol into the symbol table so you may refer to the VMT symbolically.  The symbol _pVMT_
(pointer to Virtual Method Table) provides this capability.  So a more readable way to access the
VMT pointer (as in the previous code example) is

lea( esi, sc );
mov( (type tBaseClass [esi])._pVMT_, edi );
call( (type dword [edi+@offset( tBaseClass.mBase )] );

If you need to access the VMT directly,  there are a couple ways to do this.  Whenever you
declare a class object, HLA automatically includes a field named _VMT_ as part of that class.
_VMT_ is a static array of double word objects.  Therefore, you may refer to the VMT using an
identifier of the form classname._VMT_.  Generally, you shouldn’t access the VMT directly, but as
you’ll see shortly, there are some good reasons why you need to know the address of this object in
memory.

18.5.11 Constructors and Object Initialization
If you’ve tried to get a little ahead of the game and write a program that uses objects prior to

this point, you’ve probably discovered that the program inexplicably crashes whenever you attempt
to run it.  We’ve covered a lot of material in this chapter thus far, but you are still missing one
crucial piece of information – how to properly initialize objects prior to use.  This section will put
the final piece into the puzzle and allow you to begin writing programs that use classes.

Consider the following object declaration and code fragment:

var
bc: tBaseClass;

.

.

.
bc.mBase();

mBase mBase

mA

mBase

tBaseClass tChildClassA tChildClassB

Virtual Method Tables for Derived (inherited) Classes

Offset Zero

Offset Four
Public Domain Created by Randy Hyde Page 487



HLA Reference Manual 5/24/10 Chapter 18
Remember that variables you declare in the VAR section are uninitialized at run-time.
Therefore, when the program containing these statements gets around to executing bc.mBase, it
executes the three-statement sequence you’ve seen several times already:

lea( esi, bc);
mov( [esi], edi );
call( (type dword [edi+@offset( tBaseClass.mBase )] );

The problem with this sequence is that it loads EDI with an undefined value assuming you
haven’t previously initialized the bc object.  Since EDI contains a garbage value, attempting to call
a subroutine at address “[EDI+@offset(tBaseClass.mBase)]” will likely crash the system.
Therefore, before using an object, you must initialize the _pVMT_ field with the address of that
object’s VMT.  One easy way to do this is with the following statement:

mov( &tBaseClass._VMT_, bc._pVMT_ );

Always remember, before using an object, be sure to initialize the virtual method table
pointer for that field.  

Although you must initialize the virtual method table pointer for all objects you use, this may
not be the only field you need to initialize in those objects.  Each specific class may have its own
application-specific initialization that is necessary.  Although the initialization may vary by class,
you need to perform the same initialization on each object of a specific class that you use.  If you
ever create more than a single object from a given class, it is probably a good idea to create a
procedure to do this initialization for you.  This is such a common operation that object-oriented
programmers have given these initialization procedures a special name: constructors.

Some object-oriented languages (e.g., C++) use a special syntax to declare a constructor.
Others (e.g., Delphi) simply use existing procedure declarations to define a constructor.  One
advantage to employing a special syntax is that the language knows when you define a constructor
and can automatically generate code to call that constructor for you (whenever you declare an
object).  Languages, like Delphi, require that you explicitly call the constructor;  this can be a minor
inconvenience and a source of defects in your programs.  HLA does not use a special syntax to
declare constructors – you define constructors using standard class procedures.  As such, you will
need to explicitly call the constructors in your program;  however, you’ll see an easy method for
automating this in a later section of this chapter.

Perhaps the most important fact you must remember is that constructors must be class
procedures.  You must not define constructors as methods (or iterators).  The reason is quite
simple: one of the tasks of the constructor is to initialize the pointer to the virtual method table and
you cannot call a class method or iterator until after you’ve initialized the VMT pointer.  Since
class procedures don’t use the virtual method table, you can call a class procedure prior to
initializing the VMT pointer for an object.

By convention, HLA programmers use the name Create for the class constructor.  There is no
requirement that you use this name, but by doing so you will  make your programs easier to read
and follow by other programmers.

As you may recall, you can call a class procedure via an object reference or a class reference.
E.g., if clsProc is a class procedure of class tClass and Obj is an object of type tClass, then the
following two class procedure invocations are both legal:

tClass.clsProc();
Obj.clsProc();

There is a big difference between these two calls.  The first one calls clsProc with ESI
containing zero (NULL) while the second invocation loads the address of Obj into ESI before the
call.  We can use this fact to determine within a method the particular calling mechanism.

18.5.12 Dynamic Object Allocation Within the Constructor
As it turns out, most programs allocate objects dynamically using malloc and refer to those

objects indirectly using pointers.  This adds one more step to the initialization process – allocating
storage for the object.    The constructor is the perfect place to allocate this storage.  Since you
probably won’t need to allocate all objects dynamically,  you’ll need two types of constructors: one
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that allocates storage and then initializes the object, and another that simply initializes an object
that already has storage.

Another constructor convention is to merge these two constructors into a single constructor
and differentiate the type of constructor call by the value in ESI.  On entry into the class’ Create
procedure, the program checks the value in ESI to see if it contains NULL (zero).  If so, the
constructor calls malloc to allocate storage for the object and returns a pointer to the object in ESI.
If ESI does not contain NULL upon entry into the procedure, then the constructor assumes that ESI
points at a valid object and skips over the memory allocation statements.  At the very least, a
constructor initializes the pointer to the VMT;  therefore, the  minimalist constructor will look like
the following:

procedure tBaseClass.mBase; nodisplay;
begin mBase;

if( ESI = 0 ) then

push( eax );   // Malloc returns its result here, so save it.
malloc( @size( tBaseClass ));
mov( eax, esi );  // Put pointer into ESI;
pop( eax );

endif;

// Initialize the pointer to the VMT:
// (remember, "this" is shorthand for (type tBaseClass [esi])"

mov( &tBaseClass._VMT_, this._pVMT_ );

// Other class initialization would go here.

end mBase;

After you write a constructor like the one above, you choose an appropriate calling mechanism
based on whether your object’s storage is already allocated.  For pre-allocated objects (i.e., those
you’ve declared in VAR, STATIC, or STORAGE sections1 or those you’ve previously allocated
storage for via malloc) you simply load the address of the object into ESI and call the constructor.
For those objects you declare as a variable, this is very easy – just call the appropriate Create
constructor:

var
bc0: tBaseClass;
bcp: pointer to tBaseClass;

.

.

.
bc0.Create();  // Initializes pre-allocated bc0 object.

.

.

.
malloc( @size( tBaseClass ));  // Allocate storage for bcp object.
mov( eax, bcp );

.

.

.
bcp.Create();  // Initializes pre-allocated bcp object.

1. You generally do not declare objects in READONLY sections because you cannot initialize them.
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Note that although bcp is a pointer to a tBaseClass object, the Create method does not
automatically allocate storage for this object.  The program already allocates the storage earlier.
Therefore, when the program calls bcp.Create it loads ESI with the address contained within bcp;
since this is not NULL, the tBaseClass.Create procedure does not allocate storage for a new object.
By the way, the call to bcp.Create emits the following sequence of machine instructions:

mov( bcp, esi );
call tBaseClass.Create;

Until now, the code examples for a class procedure call always began with an LEA instruction.
This is because all the examples to this point have used object variables rather than pointers to
object variables.  Remember, a class procedure (method/iterator) call passes the address of the
object in the ESI register.  For object variables HLA emits an LEA instruction to obtain this
address.  For pointers to objects, however, the actual object address is the value of the pointer
variable;  therefore, to load the address of the object into ESI, HLA emits a MOV instruction that
copies the value of the pointer into the ESI register.

In the example above, the program preallocates the storage for an object prior to calling the
object constructor.  While there are several reasons for  preallocating object storage (e.g., you’re
creating a dynamic array of objects), you can achieve most simple object allocations like the one
above by calling a standard Create method (i.e., one that allocates storage for an object if ESI
contains NULL).  The following example demonstrates this:

var
bcp2: pointer to tBaseClass;

.

.

.
tBaseClass.Create();   // Calls Create with ESI=NULL.
mov( esi, bcp2 );      // Save pointer to new class object in bcp2.

Remember, a call to a tBaseClass.Create constructor returns a pointer to the new object in the
ESI register.  It is the caller’s responsibility to save the pointer this function returns into the
appropriate pointer variable; the constructor does not automatically do this for you.
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18.6 Compiling Resource Scripts Using HLA
HLA’s compile-time language facilities provide the ability to embed  domain-specific

languages directly in an HLA source file. This paper discusses how to create a domain-specific
embedded language that handles Windows Resources. This mini-language not only provides access
to these resources in your HLA source files, but it also creates a resource script file (.rc file) that
you may compile with the Microsoft Resource Compiler (RC.EXE).

18.6.1 The Motivation
Working with resources when writing Wi32 assembly language programs is usually a two-step

process. First, you write some assembly code that requests a resource object from the executable
file; then you write a resource script file that matches the resources, via some numeric identifier,
with the actual resource file on the disk. The problem with this approach is that you have to
maintain (and keep consistent) two sets of source files - an HLA/assembly source file and a
resource script (.rc) file. The reason you have to maintain two files is because the assembler
associates names with numeric values in a different way than Microsoft’s resource compiler. The
resource compiler uses C’s “#define” syntax, which is not compatible with constant declarations in
assembly language. Therefore, you have to create a set of definitions like the following for the
resource compiler:

#define resource_1 101
#define resource_2 102
#define resource_3 2005

When working in assembly language (e.g., HLA), you need to use statements like the following to
declare these symbolic names with these values:

const
resource_1 := 101;
resource_2 := 102;
resource_3 := 2005;

Although entering these two sets of constant defintions twice is a big pain, the real problem
comes when you modify either set of definitions and find that you need to edit the other set to keep
them consistent. At the very least, we’d like to be able to maintain one set of declarations to avoid
consistency problems.

Another problem with using resource scripts is that you have to maintain two separate files - an
assembly language source file and a resource script file. While breaking up programs into multiple
files isn’t always a bad idea, the resource file often contains common things (like strings) that
you’d like to find easily when working on small assembly projects. Sometimes, it’s just more
convenient to put the resources in the same soure file as your assembly source code. One final
problem with using a separate resource file is that the resource scripting language is radically
different from assembly syntax. It would be nice to be able to declare resources in an assembly
language source file like any other object and have the assembler handle the details of creating the
resource script (or compiling the resource) for you.

18.6.2 The HLA Solution
Although processing script files is a pipe dream within most assemblers, HLA’s compile-time

language provides sufficient capability to achieve this. Here are some of the HLA features that give
us the capability to create our own language within HLA:

• Context-free macros

• The ability to create (user-defined) output files during assembly

• The ability to execute system commands during assembly

• Conditional assembly and compile-time loops

• Powerful compile-time string processing facilities
The approach we will take here is to define a new “HLA declaration section” using a context-

free macro. Within this section a programmer will declare Win32 resource objects. HLA will create
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a resource script (.rc) file on the basis of the data appearing in this section, and will define a set of
symbolic constants by which the rest of the HLA program can refer to those objects. The basic
syntax for this new section will be the following:

resource( “filename.rc” )
<<resource definitions>>

endresource;

Between the resource and endresource statements, this code will construct the resource
script file using the filename you specify in the resource statement. Upon encountering the
endresource statement, HLA will close the script file and then execute Microsoft’s “rc.exe”
program to compile the resource code. The declarations between these two statements will also
generate symbols that the HLA code can use. In general, there will only be a single resource
declaration section in any one given HLA source file; the design of the macros that handle this
declaration section will assume that this is the case. In particular, you should avoid nesting
resource/endresource declaration sections. Though HLA allows this syntax, the efficiency
of the macros’ execution (at compile-time) is based on the assumption that you’ve only got one
resource/endresource declaration section in an HLA program.

18.6.3 The Resource..Endresource Declaration Section
To Be Written....
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18.7 Structures in Assembly Language Programs
Structures, or records, are an abstract data type that allows a programmer to collect different

objects together into a single, composite, object. Structures can help make programs easier to read,
write, modify, and maintain. Used appropriately, they can also help your programs run faster.
Despite the advantages that structures offer, their appearance in assembly language is a relatively
recent phenomenon (in the past two decades, or so), and many assemblers still do not support this
facility. Furthermore, many "old-timer" assembly language programmers attempt to argue that the
appearance of records violates the whole principle of "assembly language programming." This
article will certain refute such arguments and describe the benefits of using structures in an
assembly language program.

Despite the fact that records have been available in various assembly languages for years (e.g.,
Microsoft’s MASM assembler introduced structures in 80x86 assembly language in the 1980s), the
"lack of support for structures" is a common argument against assembly language by HLL
programmers who don’t know much about assembly. In some respects, their ignorance is justified -
- many assemblers don’t support structures or records. A second goal of this article is to educate
assembly language programmers to counter claims like "assembly language doesn’t support
structures." Hopefully, that same education will convince those assembly language programmers
who’ve never bothered to use structures, to consider their use.

This article will use the term "record" to denote a structure/record to avoid confusion with the
more general term "data structure". Note, however, that the terms "record" and "structure" are
synonymous in this article.

18.7.1 What is a Record (Structure)?
The whole purpose of a record is to let you encapsulate different, but logically related, data

into a single package. Here is a typical record declaration, in HLA using the RECORD /
ENDRECORD declaration:

type
   student:
            record
               Name:       string;
               Major:      int16;
               SSN:        char[12];
               Midterm1:   int16;
               Midterm2:   int16;
               Final:      int16;
               Homework:   int16;
               Projects:   int16;
            endrecord;

The field names within the record must be unique. That is, the same name may not appear two
or more times in the same record. However, in reasonable assemblers (like HLA) that support true
structures, all the field names are local to that record. With such assemblers, you may reuse those
field names elsewhere in the program.

The RECORD/ENDRECORD type declaration may appear in a variable declaration section
(e.g., an HLA STATIC or VAR section)  or in a TYPE declaration section.  In the previous
example the Student declaration appears in an HLA TYPE section, so this does not actually allocate
any storage for a Student variable.  Instead, you have to explicitly declare a variable of type
Student.  The following example demonstrates how to do this:

var
John: Student;

This allocates 28 bytes of storage: four bytes for the Name field (HLA strings are four-byte
pointers to character data found elsewhere in memory), 12 bytes for the SSN field, and two bytes
for each of the other six fields.

If the label John corresponds to the base address of this record, then the Name field is at offset
John+0, the Major field is at offset John+4, the SSN field is at offset John+6, etc.
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To access an element of a structure you need to know the offset from the beginning of the
structure to the desired field. For example, the Major field in the variable John is at offset 4 from
the base address of John. Therefore, you could store the value in AX into this field using the
instruction 

mov( ax, (type word John[4]) );

Unfortunately, memorizing all the offsets to fields in a record defeats the whole purpose of
using them in the first place. After all, if you’ve got to deal with these numeric offsets why not just
use an array of bytes instead of a record?

Well, as it turns out, assemblers like HLA that support true records commonly let you refer to
field names in a record using the same mechanism C/C++ and Pascal use: the dot operator. To store
AX into the Major field, you could use “mov( ax, John.Major );”  instead of the previous
instruction. This is much more readable and certainly easier to use.

18.7.2 Record Constants
HLA lets you define record constants.  In fact, HLA is probably unique among x86 assemblers

insofar as it supports both symbolic record constants and literal record constants.  Record constants
are useful as initializers for static record variables.  They are also quite useful as compile-time data
structures when using the HLA compile-time language (that is, the macro processor language).
This section discusses how to create record constants.

A record literal constant takes the following form:

RecordTypeName:[ List_of_comma_separated_constants ]

The RecordTypeName is the name of a record data type you’ve defined in an HLA TYPE
section prior to this point.  To create a record constant you must have previously defined the record
type in a TYPE section of your program.

The constant list appearing between the brackets are the data items for each of the fields in the
specified record.  The first item in the list corresponds to the first field of the record, the second
item in the list corresponds to the second field, etc.  The data types of each of the constants
appearing in this list must match their respective field types.  The following example demonstrates
how to use a literal record constant to initialize a record variable:

type
   point:
         record
            x:int32;
            y:int32;
            z:int32;
         endrecord;

static
   Vector: point := point:[ 1, -2, 3 ];

This declaration initializes Vector.x with 1, Vector.y with -2, and Vector.z with 3.
You can also create symbolic record constants by declaring record objects in the CONST or

VAL sections of an HLA program.  You access fields of these symbolic record constants just as
you would access the field of a record variable, using the dot operator.  Since the object is a
constant, you can specify the field of a record constant anywhere a constant of that field’s type is
legal.  You can also employ symbolic record constants as record variable initializers.  The
following example demonstrates this:

type
   point:
         record
            x:int32;
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            y:int32;
            z:int32;
         endrecord;

const
   PointInSpace: point := point:[ 1, 2, 3 ];

static
   Vector: point := PointInSpace;
   XCoord: int32 := PointInSpace.x;

18.7.3 Arrays of Records
It is a perfectly reasonable operation to create an array of records.  To do so, you simply create

a record type and then use the standard array declaration syntax when declaring an array of that
record type.  The following example demonstrates how you could do this:

type
   recElement:
      record
         << fields for this record >>
      endrecord;
      .
      .
      .
static
   recArray: recElement[4];

Naturally, you can create multidimensional arrays of records as well.  You would use the
standard row or column major order functions to compute the address of an element within such
records.  The only thing that really changes (from the discussion of arrays) is that the size of each
element is the size of the record object.

static
   rec2D: recElement[ 4, 6 ];

18.7.4 Arrays and Records as Record Fields     
Records may contain other records or arrays as fields. Consider the following definition:

type
   Pixel:
      record
         Pt:         point;
         color:      dword;
      endrecord;

The definition above defines a single point with a 32 bit color component. When initializing an
object of type Pixel, the first initializer corresponds to the Pt field, not the x-coordinate field. The
following definition is incorrect:

static
    ThisPt: Pixel := Pixel:[ 5, 10 ];   // Syntactically incorrect!

The value of the first field (“5”) is not an object of type point. Therefore, the assembler
generates an error when encountering this statement. HLA will allow you to initialize the fields of
Pixel using declarations like the following:
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static
    ThisPt: Pixel := Pixel:[ point:[ 1, 2, 3 ], 10 ];
    ThatPt: Pixel := Pixel:[ point:[ 0, 0, 0 ], 5 ];

Accessing Pixel fields is very easy. Like a high level language you use a single period to
reference the Pt field and a second period to access the x, y, and z fields of point:

      stdout.put( “ThisPt.Pt.x = “, ThisPt.Pt.x, nl );
      stdout.put( “ThisPt.Pt.y = “, ThisPt.Pt.y, nl );
      stdout.put( “ThisPt.Pt.z = “, ThisPt.Pt.z, nl );
       .
       .
       .
   mov( eax, ThisPt.Color );

You can also declare arrays as record fields. The following record creates a data type capable
of representing an object with eight points (e.g., a cube):

type
   Object8:
      record
         Pts:        point[8];
         Color:      dword;
      endrecord;

There are two common ways to nest record definitions.  As noted earlier in this section, you
can create a record type in a TYPE section and then use that type name as the data type of some
field within a record (e.g., the Pt:point field in the Pixel data type above).  It is also possible to
declare a record directly within another record without creating a separate data type for that record;
the following example demonstrates this:

type
   NestedRecs:
      record
         iField: int32;
         sField: string;
         rField:
            record
               i:int32;
               u:uns32;
            endrecord;
         cField:char;
      endrecord;

Generally, it’s a better idea to create a separate type rather than embed records directly in other
records, but nesting them is perfectly legal and a reasonable thing to do on occasion.

18.7.5 Controlling Field Offsets Within a Record
By default, whenever you create a record, most assemblers automatically assign the offset zero

to the first field of that record.  This corresponds to records in a high  level language and is the
intuitive default condition.  In some instances, however, you may want to assign a different starting
offset to the first field of the record.   The HLA assembler provides a mechanism that lets you set
the starting  offset of the first field in the record.

The syntax to set the first offset is
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name: 
    record := startingOffset;
        << Record Field Declarations >>
    endrecord;

Using the syntax above, the first field will have the starting offset specified by the
startingOffset int32 constant expression.  Since this is an int32 value, the starting offset value can
be positive, zero, or negative.

One circumstance where this feature is invaluable is when you have a record whose base
address is actually somewhere within the data structure.  The classic example is an HLA string.  An
HLA string uses a record declaration similar to the following:

   record
      MaxStrLen: dword;
      length: dword;
      charData: char[xxxx];
   endrecord;

However, HLA string pointers do not contain the address of the MaxStrLen field;  they point at
the charData field.  The str.strRec record type found in the HLA Standard Library Strings module
uses a record declaration similar to the following:

type
   strRec:
      record := -8;
         MaxStrLen: dword;
         length:    dword;
         charData:  char;
      endrecord;

The starting offset for the MaxStrLen field is -8.  Therefore, the offset for the length field is -4
(four bytes later) and the offset for the charData field is zero.  Therefore, if EBX points at some
string data, then “(type str.strRec [ebx]).length” is equivalent to “[ebx-4]” since the length field has
an offset of -4.

18.7.6 Aligning Fields Within a Record
To achieve maximum performance in your programs, or to ensure that your records properly

map to records or structures in some high level language, you will often need to be able to control
the alignment of fields within a record.  For example, you might want to ensure that a dword field’s
offset is an even multiple of four.  You use the ALIGN directive in a record declaration to do this.
The following example shows how to align some fields on important boundaries:

type
   PaddedRecord:
      record
         c: char;
            align(4);
         d: dword;
         b: boolean;
            align(2);
         w: word;
      endrecord;

Whenever HLA encounters the ALIGN directive within a record declaration, it automatically
adjusts the following field’s offset so that it is an even multiple of the value the ALIGN directive
specifies.  It accomplishes this by increasing the offset of that field, if necessary.  In the example
above, the fields would have the following offsets:  c:0, d:4, b:8, w:10. 
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If you want to ensure that the record’s size is a multiple of some value, then simply stick an
ALIGN directive as the last item in the record declaration.  HLA will emit an appropriate number
of bytes of padding at the end of the record to fill it in to the appropriate size.  The following
example demonstrates how to ensure that the record’s size is a multiple of four bytes:

type
   PaddedRec:
      record
         << some field declarations >>

         align(4);

      endrecord;

Be aware of the fact that the ALIGN directive in a RECORD only aligns fields in memory if
the record object itself is aligned on an appropriate boundary.   Therefore, you must ensure
appropriate alignment of any record variable whose fields you’re assuming are aligned.

If you want to ensure that all fields are appropriately aligned on some boundary within a
record, but you don’t want to have to manually insert ALIGN directives throughout the record,
HLA provides a second alignment option to solve your problem.  Consider the following syntax:

type
  alignedRecord3 : 
    record[4]
      << Set of fields >>
    endrecord;

The "[4]" immediately following the RECORD reserved word tells HLA to start all fields in
the record at offsets that are multiples of four, regardless of the object’s size (and the size of the
objects preceeding the field).  HLA allows any integer expression that produces a value in the range
1..4096 inside these parenthesis.  If you specify the value one (which is the default), then all fields
are packed (aligned on a byte boundary).  For values greater than one, HLA will align each field of
the record on the specified boundary.  For arrays, HLA will align the field on a boundary that is a
multiple of the array element’s size.  The maximum boundary HLA will round any field to is a
multiple of 4096 bytes.  

Note that if you set the record alignment using this syntactical form, any ALIGN directive you
supply in the record may not produce the desired results.  When HLA sees an ALIGN directive in a
record that is using field alignment, HLA will first align the current offset to the value specified by
ALIGN and then align the next field’s offset to the global record align value.

Nested record declarations may specify a different alignment value than the enclosing record,
e.g.,

type
   alignedRecord4 : record[4]
      a:byte;
      b:byte;
      c:record[8]
         d:byte;
         e:byte;
      endrecord;
      f:byte;
      g:byte;
   endrecord;

In this example, HLA aligns fields a, b, f, and g on dword boundaries, it aligns d and e (within c)
on eight-byte boundaries.  Note that the alignment of the fields in the nested record is true only
within that nested record.  That is, if c turns out to be aligned on some boundary other than an eight-
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byte boundary, then d and e will not actually be on eight-byte boundaries;  they will, however be on
eight-byte boundaries relative to the start of c.

In addition to letting you specify a fixed alignment value, HLA also lets you specify a
minimum and maximum alignment value for a record.  The syntax for this is the following:

type
   recordname : record[maximum : minimum]
      << fields >>
   endrecord;

Whenever you specify a maximum and minimum value as above, HLA will align all fields on
a boundary that is at least the minimum alignment value.  However, if the object’s size is greater
than the minimum value but less than or equal to the maximum value, then HLA will align that
particular field on a boundary that is a multiple of the object’s size.  If the object’s size is greater
than the maximum size, then HLA will align the object on a boundary that is a multiple of the
maximum size.  As an example, consider the following record:

type
   r: record[ 4:1 ];
      a:byte;           // offset 0
      b:word;           // offset 2
      c:byte;           // offset 4
      d:dword[2];       // offset 8
      e:byte;           // offset 16
      f:byte;           // offset 17
      g:qword;          // offset 20
   endrecord;

Note that HLA aligns g on a dword boundary (not qword, which would be offset 24) since the
maximum alignment size is four.  Note that since the minimum size is one, HLA allows the f field
to be aligned on an odd boundary (since it’s a byte).

If an array, record, or union field appears within a record, then HLA uses the size of an array
element or the largest field of the record or union to determine the alignment size.  That is, HLA
will align the field without the outermost record on a boundary that is compatible with the size of
the largest element of the nested array, union, or record.

HLA sophisticated record alignment facilities let you specify record field alignments that
match that used by most major high level language compilers.  This lets you easily access data
types used in those HLLs without resorting to inserting lots of ALIGN directives inside the record.

18.7.7 Using Records/Structures in an Assembly Language 
Program

In the "good old days" assembly language programmers typically ignored records. Records and
structures were treated as unwanted stepchildren from high-level languages, that weren’t necessary
in "real" assembly language programs. Manually counting offsets and hand-coding literal constant
offsets from a base address was the way "real" programmers wrote code in early PC applications.
Unfortunately for those "real programmers", the advent of sophisticated operating systems like
Windows and Linux put an end to that nonsense. Today, it is very difficult to avoid using records in
modern applications because too many API functions require their use. If you look at typical
Windows and Linux include files for C or assembly language, you’ll find hundreds of different
structure declarations, many of which have dozens of different members. Attempting to keep track
of all the field offsets in all of these structures is out of the question.  Worse, between various
releases of an operating system (e.g., Linux), some structures have been known to change, thus
exacerbating the problem. Today, it’s unreasonable to expect an assembly language programmer to
manually track such offsets - most programmers have the reasonable expectation that the assembler
will provide this facility for them.
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18.7.8 Implementing Structures in an Assembler
Unfortunately, properly implementing structures in an assembler takes considerable effort. A

large number of the "hobby" (i.e., non-commercial) assemblers were not designed from the start to
support sophisticated features such as records/structures. The symbol table management routines in
most assemblers use a "flat" layout, with all of the symbols appearing at the same level in the
symbol table database. To properly support structures or records, you need a hierarchical structure
in your symbol table database. The bad news is that it’s quite difficult to retrofit a hierarchical
structure over the top of a flat database (i.e., the symbol "hobby assembler" symbol table).
Therefore, unless the assembler was originally designed to handle structures properly, the result is
usually a major hacked-up kludge.

Four assemblers I’m aware of, MASM, TASM, OPTASM, and HLA, handle structures well.
Most other assemblers are still trying to simulate structures using a flat symbol table database, with
varying results.

Probably the first attempt people make at records, when their assembler doesn’t support them
properly, is to create a list of constant symbols that specify the offsets into the record. Returning to
our first example (in HLA):
type
   student:
            record
               Name:       string;
               Major:      int16;
               SSN:        char[12];
               Midterm1:   int16;
               Midterm2:   int16;
               Final:      int16;
               Homework:   int16;
               Projects:   int16;
            endrecord;

One attempt might be the following:

const
    Name := 0;
    Major := 4;
    SSN := 6;
    Midterm1 := 18;
    Midterm2 := 20;
    Final := 22;
    Homework := 24;
    Projects := 26;
    size_student := 28;

With such a set of declarations, you could reserve space for a student "record" by reserving
"size_student" bytes of storage (which almost all assemblers handle okay) and then you can access
fields of the record by adding the constant offset to your base address, e.g.,

static
    John : byte[ size_student ];
      .
      .
      .
    mov( John[Midterm1], ax );

There are several problems with this approach. First of all, the field names are global and must
be globally unique. That is, you cannot have two record types that have the same fieldname (as is
possible with the assembler supports true records). The second problem, which is fundamentally
more problematic, is the fact that you can attach these constant offsets to any object, not just a
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"student record" type object. For example, suppose "ClassAverage" is an array of words, there is
nothing stopping you from writing the following when using constant equate values to simulate
record offsets:

mov( ClassAverage[ Midterm1 ], ax );

Finally, and probably the most damning criticism of this approach, is that it is very difficult to
maintain code that accesses structures in this manner. Inserting fields into the middle of a record,
changing data types, and coming up with globally unique names can create all sorts of problems.
Many high-level language programmers who’ve tried to learn assembly language have given up
after discovering that they had to maintain records in this fashion in an assembly language program
(too bad they didn’t start off with a reasonable assembler that properly supports structures).

Manually maintaining all the constant offsets is a maintenance nightmare. So somewhere
along the way, some assembly language programmers figured out that they could write macros to
handle the declaration of constant offsets for them. For example, here’s how you could do this in an
HLA program:

program t;

#macro struct( _structName_, _dcls_[] ):
    _dcl_, _id_, _type_, _colon_, _offset_;

    ?_offset_ := 0;
    ?_dcl_:string;
    #for( _dcl_ in _dcls_ )
    
        ?_colon_ := @index( _dcl_ , 0, ":" );
        #if( _colon_ = -1 )
        
            #error
            ( 
                "Expected <id>:<type> in struct definition, encountered: ",
                _dcl_
            )
        
        #else
        
            ?_id_ := @substr( _dcl_, 0, _colon_ );
            ?_type_ := @substr( _dcl_, _colon_+1, @length( _dcl_ ) - 
_colon_ );
            ?@text( _id_ ) := _offset_;
            ?_offset_ := _offset_ + @size( @text( _type_ ));
            
        #endif;
        
    #endfor
    ?_structName_:text := "byte[" + @string( _offset_ ) + "]";
    
#endmacro

struct( threeItems, i:byte, j:word, k:dword )

static
    aStruct: threeItems;
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begin t;

    mov( (type byte aStruct[i]), al );
    mov( (type word aStruct[j]), ax );
    mov( (type dword aStruct[k]), eax );

    
end t;

The "struct" macro expects a set of valid HLA variable declarations supplied as macro
arguments. It generates a set of constants using the supplied variable names whose offsets are
adjusted according to the size of the objects previously appearing in the list. In this example, HLA
creates the following equates:

  i = 0
  j = 1
  k = 3

This declaration also creates a "data type" named "threeItems" which is equivalent to "byte[7]"
(since there are seven bytes in this record) that you may use to create variables of type "threeItems",
as is done in this example.

Creating structures with macros solves one of the three major problems: it makes it easier to
maintain the constant equates list, as you do not have to manually adjust all the constants when
inserting and removing fields in a record. This does not, however, solve the other problems
(particularly, the global identifier problem).

While fancier macros could be written, macros that generate identifiers like
"objectname_fieldName" that help solve the globally unique problem, the bottom line is that these
hacks begin to fail when you attempt to declare nested records, arrays within records, and arrays of
records (possibly containing nested records and arrays of records). The bottom line is this:
assemblers that don’t properly support structures are going to have problems when you’ve got to
work with data structures from high-level languages (e.g., OS API calls, where the OS is written in
C, such as Windows and Linux). You’re much better off using an assembler that fully supports
structures (and other advanced data types) if you need to use structures in your programs.
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