
HLA Reference Manual

1 HLA Overview ..1
1.1.1 What is a "High Level Assembler"?...1
1.1.2 What is an "Assembler" ...4
1.1.3 Is HLA a True Assembly Language?...4
1.1.4 HLA Design Goals ...5
1.1.5 How to Learn Assembly Programming Using HLA..7
1.1.6 Legal Notice ...7
1.1.7 Teaching Assembly Language using HLA ..8

2 The Quick Guide to HLA ..25
2.2.1 Overview ..25
2.2.2 Running HLA...25
2.2.3 HLA Language Elements ...26

2.2.3.1 Comments ..26
2.2.3.2 Special Symbols ..26
2.2.3.3 Reserved Words...27
2.2.3.4 External Symbols and Assembler Reserved Words27
2.2.3.5 HLA Identifiers...27
2.2.3.6 External Identifiers ..27

2.2.4 Data Types in HLA ..27
2.2.4.1 Native (Primitive) Data Types in HLA ...27
2.2.4.2 Composite Data Types...28
2.2.4.3 Array Data Types...28
2.2.4.4 Record Data Types ..28

2.2.5 Literal Constants ..29
2.2.5.1 Numeric Constants...29

2.2.5.1.1 Decimal Constants ..29
2.2.5.1.2 Hexadecimal Constants...29
2.2.5.1.3 Binary Constants ...29
2.2.5.1.4 Real (Floating Point) Constants ..29
2.2.5.1.5 Boolean Constants...29
2.2.5.1.6 Character Constants ..29
2.2.5.1.7 String Constants ..30
2.2.5.1.8 Pointer Constants ..30
2.2.5.1.9 Structured Constants ...30

2.2.6 Constant Expressions in HLA..30
2.2.7 Program Structure ..31
2.2.8 Procedure Declarations ..31

2.2.8.1 Declarations ...32
2.2.8.2 Type Section ..32
2.2.8.3 Const Section...33
2.2.8.4 Static Section ...33

2.2.8.4.1 The @NOSTORAGE Option ...33

2.2.8.4.2 The EXTERNAL Option ..33
2.2.8.5 Macros ...34

2.2.9 The #Include Directive...35
2.2.10 The Conditional Compilation Statements (#if) ..35
2.2.11 The 80x86 Instruction Set in HLA...36

2.2.11.1 Zero Operand Instructions (Null Operand Instructions)..............................36
2.2.11.2 General Arithmetic and Logical Instructions ..36
2.2.11.3 The XCHG Instruction ..37
2.2.11.4 The CMP Instruction ...37
2.2.11.5 The Multiply Instructions ..37
2.2.11.6 The Divide Instructions ...38
2.2.11.7 Single Operand Arithmetic and Logical Instructions38
2.2.11.8 Shift and Rotate Instructions ...38
2.2.11.9 The Double Precision Shift Instructions..38
2.2.11.10 The Lea Instruction...39
2.2.11.11 The Sign and Zero Extension Instructions...39
2.2.11.12 The Push and Pop Instructions ..39
2.2.11.13 Procedure Calls..39
2.2.11.14 The Ret Instruction ..40
2.2.11.15 The Jmp Instructions..40
2.2.11.16 The Conditional Jump Instructions..40
2.2.11.17 The Conditional Set Instructions ...40
2.2.11.18 The Input and Output Instructions...41
2.2.11.19 The Interrupt Instruction..41
2.2.11.20 Bound Instruction ..41
2.2.11.21 The Enter Instruction ...41
2.2.11.22 CMPXCHG Instruction ...41
2.2.11.23 The XADD Instruction ..42
2.2.11.24 BSF and BSR Instructions ...42
2.2.11.25 The BSWAP Instruction ..42
2.2.11.26 Bit Test Instructions...42
2.2.11.27 Floating Point Instructions...42
2.2.11.28 MMX and SSE Instructions...42

2.2.12 Memory Addressing Modes in HLA..42
2.2.13 Type Coercion in HLA...44

3 Installing HLA ...45
3.3.1 Installing HLA Under Windows ..45

3.3.1.1 New Easy Installation:...45
3.3.1.2 Manual Installation under Windows..45

3.3.1.2.1 What You’ve Just Done ..46
3.3.1.2.2 Running HLA..49

3.3.1.3 Standard Configurations Under Windows...52
3.3.2 Installing HLA Under Linux, Mac OSX, or FreeBSD (*NIX)............................54

3.3.2.1 Standard Configurations under Linux/FreeBSD/Mac OSX57
3.3.3 Non-Standard Configurations under Windows and Linux...................................57
3.3.4 Customizing HLA ..57

3.3.4.1 Changing the Location of HLA ...58
3.3.4.2 Setting Auxiliary Paths ..59
3.3.4.3 Setting the Default Back-End Assembler ..59

4 Using HLA with the HIDE Integrated Development Environment1
4.4.1 The HLA Integrated Development Environment (HIDE)......................................1

4.4.1.1 Description...1
4.4.1.2 Operation ...1
4.4.1.3 First Execution...1
4.4.1.4 The Windows...1

4.4.1.4.1 Editor...2
4.4.1.4.2 Output..2
4.4.1.4.3 Tool Bar ..2
4.4.1.4.4 Tab Bar..2
4.4.1.4.5 Status Bar ..2
4.4.1.4.6 Panel..2
4.4.1.4.7 Project Panel ...3
4.4.1.4.8 Properties ..4

4.4.1.5 Compiling Simple Programs ...4
4.4.1.6 Menus ..4

4.4.1.6.1 Edit ..4
4.4.1.6.2 View ..5
4.4.1.6.3 Project ...6
4.4.1.6.4 Make..6
4.4.1.6.5 Tools..7
4.4.1.6.6 Options ..9
4.4.1.6.7 HIDE Settings ...10
4.4.1.6.8 SetPaths ...12
4.4.1.6.9 User ...13
4.4.1.6.10 Help...14

4.4.1.7 HIDE Macros...14
4.4.1.8 Project Manager...14
4.4.1.9 Auto Completion ...17
4.4.1.10 CommandLine Tools ...18

4.4.1.10.1 kMake..18
4.4.1.11 Project File Format ..18
4.4.1.12 Licences ...22

4.4.1.12.1 HIDE ...22
4.4.1.12.2 PellesC ..23
4.4.1.12.3 HLA ..23

4.4.2 The RadASM/HLA Integrated Development Environment.................................24
4.4.2.1 Integrated Development Environments ...24
4.4.2.2 HLA Project Organization...24
4.4.2.3 Using Makefiles...25
4.4.2.4 Installing RadASM ..31
4.4.2.5 Running RadASM ...31
4.4.2.6 The RadASM Project Management Window..32

4.4.2.7 Compiling and Executing an Existing RadASM Project...............................38
4.4.2.8 Creating a New Project in RadASM..41
4.4.2.9 Working With RadASM Projects ..48
4.4.2.10 Build Options with RadASM/HLA ...50
4.4.2.11 Editing HLA Source Files Within RadASM ...55
4.4.2.12 Managing Complex Projects with RadASM ...59
4.4.2.13 Project Maintenance with Batch Files ...60
4.4.2.14 Project Maintenance with Make Files ...61
4.4.2.15 RadASM Menus ..64

4.4.2.15.1 The RadASM File Menu...64
4.4.2.15.2 Edit Menu Items..67
4.4.2.15.3 The View Menu ..67
4.4.2.15.4 Format Menu...68
4.4.2.15.5 The Project Menu..68
4.4.2.15.6 Make Menu ...72
4.4.2.15.7 The Tools Menu ..72
4.4.2.15.8 The Window Menu ...72
4.4.2.15.9 The Option Menu ..72

4.4.2.16 Customizing RadASM...74
4.4.2.16.1 The RADASM.INI Initialization File ...74
4.4.2.16.2 The HLA.INI Initialization File ..77

5 HLA Internal Operation...84
6 Using the HLA Command-Line Compiler ...86
7 HLA v2.x Language Reference Manual ..93

7.7.1 HLA Language Elements ...93
7.7.2 Comments...93
7.7.3 Special Symbols ...93
7.7.4 Reserved Words ...93
7.7.5 External Symbols and Assembler Reserved Words...100
7.7.6 HLA Identifiers ..100
7.7.7 External Identifiers ...100
7.7.8 HLA Literal Constants ...101

8 HLA Data Types ..102
8.8.1 Data Types in HLA ..102
8.8.2 Native (Primitive) Data Types in HLA..102

8.8.2.1 Enumerated Data Types...103
8.8.2.2 HLA Type Compatibility...104

8.8.3 Composite Data Types ...105
8.8.4 Array Data Types ...105
8.8.5 Union Data Types...105
8.8.6 Record Data Types ...106
8.8.7 Pointer Types..111
8.8.8 Thunks..112
8.8.9 Class Types ..114
8.8.10 Regular Expression Types..114

9 HLA Literal Constants and Constant Expressions ..115

9.9.1 HLA Literal Constants ...115
9.9.1.1 Numeric Constants...115

9.9.1.1.1 Decimal Constants ..115
9.9.1.1.2 Hexadecimal Constants...115
9.9.1.1.3 Binary Constants ...116
9.9.1.1.4 Numeric Set Constants..116
9.9.1.1.5 Real (Floating-Point) Constants..116

9.9.1.2 Boolean Constants ...117
9.9.1.3 Character Constants ...117
9.9.1.4 Unicode Character Constants ..117
9.9.1.5 String Constants...117
9.9.1.6 Unicode String Constants ..117
9.9.1.7 Character Set Constants...118

9.9.2 Structured Constants ..118
9.9.2.1 Array Constants ...118
9.9.2.2 Record Constants ...119
9.9.2.3 Union Constants ..120
9.9.2.4 Pointer Constants ...123
9.9.2.5 Regular Expression Constants ...123

9.9.3 Constant Expressions in HLA..124
9.9.3.1 Type Checking and Type Promotion...124
9.9.3.2 Type Coercion in HLA ..125
9.9.3.3 !expr...126
9.9.3.4 - expr (unary negation operator) ..127
9.9.3.5 expr1 * expr2 ...128
9.9.3.6 expr1 div expr2 ..129
9.9.3.7 expr1 mod expr2 ..129
9.9.3.8 expr1 / expr2 ..129
9.9.3.9 expr1 << expr2...130
9.9.3.10 expr1 >> expr2...130
9.9.3.11 expr1 + expr2...130
9.9.3.12 expr1 - expr2..130
9.9.3.13 Comparisons (=, ==, <>, !=, <, <=, >, and >=) ...131
9.9.3.14 expr1 & expr2 ..131
9.9.3.15 expr1 in expr2 ..131
9.9.3.16 expr1 | expr2 ..131
9.9.3.17 expr1 ^ expr2 ...131
9.9.3.18 (expr)..132
9.9.3.19 [comma_separated_list_of_expressions]...132
9.9.3.20 record_type_name : [comma separated list of field expressions]............132
9.9.3.21 identifier...132
9.9.3.22 identifier1.identifier2 {...} ...132
9.9.3.23 identifier [index_list] ...133

10 HLA Program Structure and Organization ..134
10.10.1 HLA Program Structure ...134
10.10.2 The HLA Declaration Section..135

10.10.2.1 The HLA LABEL Declaration Section ...135
10.10.2.2 The HLA CONST Declaration Section ...142
10.10.2.3 The HLA VAL Declaration Section and the Compile-Time "?" Statement..
146
10.10.2.4 The HLA TYPE Declaration Section ..150

10.10.2.4.1 typeID..151
10.10.2.4.2 newTypeID : typeID; ..152
10.10.2.4.3 newTypeID : typeID [list_of_array_bounds];.................................152
10.10.2.4.4 newTypeID : procedure (<<optional_parameter_list>>);.................153
10.10.2.4.5 newTypeID : record <<record_field_declarations>> endrecord;153
10.10.2.4.6 newTypeID : union <<union_field_declarations>> endunion;........153
10.10.2.4.7 newTypeID : class <<class_field_declarations>> endclass;............153
10.10.2.4.8 newTypeID : pointer to typeID;..153
10.10.2.4.9 newTypeID : enum{ <<list_of_enumeration_identifiers>> };153

10.10.2.5 The HLA VAR Declaration Section..153
10.10.2.6 The HLA STATIC Declaration Section ..160
10.10.2.7 The HLA STORAGE Declaration Section..164
10.10.2.8 The HLA READONLY Declaration Section ..165
10.10.2.9 The HLA PROC Declaration Section..167
10.10.2.10 THE HLA NAMESPACE Declaration Section167

11 HLA Procedure Declarations and Procedure Calls..171
11.11.1 Procedure Declarations ..171

11.11.1.1 Original Style Procedure Declarations ..171
11.11.1.2 "New Style" Procedure Declarations...175

11.11.2 Overloaded Procedure/Iterator/Method Declarations177
11.11.3 The _vars_ and _parms_ Constants and the _display_ Array182
11.11.4 External Procedure Declarations..183
11.11.5 Forward Procedure Declarations..184
11.11.6 Setting Default Procedure Options...185
11.11.7 Disabling HLA’s Automatic Code Generation for Procedures......................186
11.11.8 Procedure Calls and Parameters in HLA..191
11.11.9 Calling HLA Procedures ..192
11.11.10 Parameter Passing in HLA, Value Parameters...193

11.11.10.1 Passing Byte-Sized Parameters by Value ..194
11.11.10.2 Passing Word-Sized Parameters by Value ..198
11.11.10.3 Passing Double-Word-Sized Parameters by Value200
11.11.10.4 Passing Quad-Word-Sized Parameters by Value200
11.11.10.5 Passing Tbyte-Sized Parameters by Value ..201
11.11.10.6 Passing Lword-Sized Parameters by Value...201
11.11.10.7 Passing Large Parameters by Value ..202

11.11.11 Parameter Passing in HLA, Reference, Value/Result, and Result Parameters ..
203
11.11.12 Untyped Reference Parameters ..207
11.11.13 Pass by Value/Result and Pass by Result Parameters208
11.11.14 Parameter Passing in HLA, Name and Lazy Evaluation Parameters...........213
11.11.15 Hybrid Parameter Passing in HLA...215

11.11.16 Parameter Passing in HLA, Register Parameters ...216
11.11.17 Instruction Composition and Parameter Passing in HLA216
11.11.18 Lexical Scope ...218

12 HLA Classes and Object-Oriented Programming ...222
12.12.1 Class Data Types..222
12.12.2 Classes, Objects, and Object-Oriented Programming in HLA.......................222
12.12.3 The THIS and SUPER Reserved Words ..223
12.12.4 Class Procedure and Method Prototypes..225
12.12.5 Inheritance..228
12.12.6 Abstract Methods ...232
12.12.7 Classes versus Objects ...232
12.12.8 Initializing the Virtual Method Table Pointer ..233
12.12.9 Creating the Virtual Method Table ..234
12.12.10 Calling Methods and Class Procedures..234
12.12.11 Non-object Calls of Class Procedures..236
12.12.12 Static Class Fields ..237
12.12.13 Taking the Address of Class Procedures, Iterators, and Methods................239
12.12.14 Program Unit Initializers and Finalizers ..240

13 The HLA Compile-Time Language...245
13.13.1 HLA Compile-Time Language, Macros, and Pragmas..................................245
13.13.2 Viewing the Output of the HLA Compile-Time Language245
13.13.3 #linker Directive...246
13.13.4 The #Include Directive...246
13.13.5 The #IncludeOnce Directive ..247
13.13.6 Macros..248

13.13.6.1 Standard Macros ..248
13.13.6.2 Where You Declare a Macro Affects its Visibility251
13.13.6.3 Multi-part (Context Free) Macro Invocations: ..252
13.13.6.4 Macro Invocations and Macro Parameters: ...256
13.13.6.5 Processing Macro Parameters..257

13.13.7 Built-in Functions:..259
13.13.8 Constant Type Conversion Functions ..260

13.13.8.1 Bitwise Type Transfer Functions...261
13.13.8.2 General functions...261
13.13.8.3 String functions: ..265
13.13.8.4 String/Pattern matching functions ...266
13.13.8.5 Symbol and constant related functions and assembler control functions 272
13.13.8.6 Pseudo-Variables ...277
13.13.8.7 Text emission functions...280
13.13.8.8 Miscellaneous Functions ...280

13.13.9 #Text and #endtext Text Collection Directives..281
13.13.10 #String and #endstring Text Collection Directives281
13.13.11 Regular Expression Macros and the @match/@match2 Functions281

13.13.11.1 #regex..#endregex..283
13.13.11.2 The #return Clause...283
13.13.11.3 Regular Expression Elements ..284

13.13.11.4 Kleene Star, Plus, and Numeric Range Specifications284
13.13.11.5 Matching Characters in a Regular Expression.......................................285
13.13.11.6 Case-insensitive Character Matching in a Regular Expression.............286
13.13.11.7 Negated Character Matching ...286
13.13.11.8 String Matching in Regular Expressions ...286
13.13.11.9 Case-insenstive String Matching in Regular Expressions287
13.13.11.10 Negated String Matching...287
13.13.11.11 String List Matching ..288
13.13.11.12 Character Set Matching in a Regular Expression288
13.13.11.13 Negated Character Set Matching ...289
13.13.11.14 Matching Arbitrary Characters ..289
13.13.11.15 Sequences (Concatenation) - The ‘,’ Operator289
13.13.11.16 Alternation - The "|" Operator ...289
13.13.11.17 Subexpressions - The "()" operator..290
13.13.11.18 Extracting Substrings - The Extraction Operator "<>:"291
13.13.11.19 Invoking Other #regex Macros in a Regular Expression.....................291
13.13.11.20 Lookahead (peeking) ...292
13.13.11.21 Utility Matching Functions..292
13.13.11.22 Backtracking ..294
13.13.11.23 Lazy Versus Greedy Evaluation ..295
13.13.11.24 The @match and @match2 Functions...296
13.13.11.25 Compiling and Precompiling Regular Expressions.............................297
13.13.11.26 The #match..#endmatch Block ..298
13.13.11.27 Using Regular Expressions in Your Assembly Programs299

13.13.12 The #asm..#endasm and #emit Directives..299
13.13.13 The #system Directive..300
13.13.14 The #print and #error Directives ..301
13.13.15 Compile-Time File Output (#openwrite, #append, #write, #closewrite)301
13.13.16 Compile-time File Input (#openread, @read, #closeread)302
13.13.17 The Conditional Compilation Statements (#if) ..302
13.13.18 The Compile-Time Loop Statements (#while and #for)303
13.13.19 Compile-Time Functions (macros) ..305
13.13.20 Sample Macro: A Modified IF..ELSE..ENDIF Statement...........................306
13.13.21 Text Processing, Lexical Analysis and the #text..#endtext Block309

14 HLA Language Reference and User Manual...321
14.14.1 High Level Language Statements ..321
14.14.2 Exception Handling in HLA:try..exception..endtry321
14.14.3 Exception Handling in HLA:try..always..endtry..326
14.14.4 Exception Handling in HLA:raise..327
14.14.5 IF..THEN..ELSEIF..ELSE..ENDIF Statement in HLA.................................328
14.14.6 Boolean Expressions for High-Level Language Statements..........................329
14.14.7 WHILE..WELSE..ENDWHILE Statement in HLA333
14.14.8 REPEAT..UNTIL Statement in HLA ..334
14.14.9 The FOR..ENDFOR Statement in HLA..334
14.14.10 The FOREVER..ENDFOR Statement in HLA ..336
14.14.11 The BREAK and BREAKIF Statements in HLA ..336

14.14.12 The CONTINUE and CONTINUEIF Statements in HLA..........................336
14.14.13 The BEGIN..END, EXIT, and EXITIF Statements in HLA.......................337
14.14.14 The SWITCH/CASE/DEFAULT/ENDSWITCH Statement in HLA.........339
14.14.15 The JT and JF Medium Level Instructions in HLA341
14.14.16 Iterators and the HLA Foreach Loop ..342

15 HLA Units and External Compilation ...345
15.15.1 HLA Units and External Compilation..345
15.15.2 External Declarations ...345
15.15.3 HLA Naming Conventions and Other Languages ...347
15.15.4 HLA Calling Conventions and Other Languages ..348
15.15.5 Calling Procedures Written in a Different Language.....................................349
15.15.6 Calling HLA Procedures From Another Language..349
15.15.7 Linking in Code Written in Other Languages..349
15.15.8 Calling HLA Code From Other Languages ...349
15.15.9 Exercising Complete Control with HLA..356

15.15.9.1 Overhead Present in an HLA Program ..357
15.15.9.1.1 The "empty" Program ...357

15.15.9.2 The empty Program, Part II ...362
15.15.9.3 Overhead Associated With Exceptions ...364
15.15.9.4 Overhead Associated with Procedures, Iterators, and Methods371
15.15.9.5 Overhead Associated with Procedure Calls...379
15.15.9.6 Bloat in the HLA Standard Library ...384
15.15.9.7 Taking Control with HLA Units..384
15.15.9.8 Hello World, Revisited ..387

16 The HLA Memory Model and Memory Addressing Modes390
16.16.1 The HLA Memory Model ..390
16.16.2 Memory Addressing Modes in HLA..390
16.16.3 Type Coercion in HLA...394

17 HLA v2.x Language Reference Manual ..397
17.17.1 The 80x86 Instruction Set in HLA...397
17.17.2 Zero Operand Instructions (Null Operand Instructions)398
17.17.3 General Arithmetic and Logical Instructions ...402
17.17.4 The XCHG Instruction ...403
17.17.5 The CMP Instruction..404
17.17.6 The Multiply Instructions...404
17.17.7 The Divide Instructions..406
17.17.8 Single Operand Arithmetic and Logical Instructions.....................................408
17.17.9 Shift and Rotate Instructions ..409
17.17.10 The Double Precision Shift Instructions ..409
17.17.11 The Lea Instruction ...410
17.17.12 The Sign and Zero Extension Instructions ...411
17.17.13 The Push and Pop Instructions ...411
17.17.14 Procedure Calls ..412
17.17.15 The Ret Instruction...414
17.17.16 The Jmp Instructions ..414
17.17.17 The Conditional Jump Instructions ..415

17.17.18 The Conditional Set Instructions..415
17.17.19 The Conditional Move Instructions..415
17.17.20 The Input and Output Instructions ...416
17.17.21 The Interrupt Instruction ..416
17.17.22 Bound Instruction...416
17.17.23 The Enter Instruction..417
17.17.24 CMPXCHG Instruction..417
17.17.25 CMPXCHG8B Instruction ...418
17.17.26 The XADD Instruction...418
17.17.27 BSF and BSR Instructions..419
17.17.28 The BSWAP Instruction...419
17.17.29 Bit Test Instructions ...419
17.17.30 Floating Point Instructions ...420
17.17.31 Additional Floating-Point Instructions for Pentium Pro and Later Processors..
423
17.17.32 MMX Instructions ..423
17.17.33 SSE Instructions ...425
17.17.34 OS/Priviledged Mode Instructions ...429
17.17.35 Other Instructions and features ..431

18 Advanced HLA Programming ...433
18.18.1 Writing a DLL in HLA...433

18.18.1.1 Creating a Dynamic Link Library..433
18.18.1.2 Linking and Calling Procedures in a Dynamic Link Library436
18.18.1.3 Going Farther...437

18.18.2 Compiling HLA..438
18.18.3 Code Generation for HLA HLL Control Structures.......................................440

18.18.3.1 The HLA Standard Library..440
18.18.3.2 Compiling to MASM Code -- The Final Word441
18.18.3.3 The HLA if..then..endif Statement, Part I..446
18.18.3.4 Boolean Expressions in HLA Control Structures....................................447
18.18.3.5 The JT/JF Pseudo-Instructions ..453
18.18.3.6 The HLA if..then..elseif..else..endif Statement, Part II453
18.18.3.7 The While Statement ...457
18.18.3.8 repeat..until ..459
18.18.3.9 for..endfor ..459
18.18.3.10 forever..endfor ...459
18.18.3.11 break, breakif ...459
18.18.3.12 continue, continueif ...460
18.18.3.13 begin..end, exit, exitif ..460
18.18.3.14 foreach..endfor...460
18.18.3.15 try..unprotect..exception..anyexception..endtry, raise460

18.18.4 A Modified IF..ELSE..ENDIF Statement ..461
18.18.5 Object Oriented Programming in Assembly ..468

18.18.5.1 Hoopla and Hyperbole...468
18.18.5.2 Some Basic Definitions ...468
18.18.5.3 OOP Language Facilities...469

18.18.5.4 Classes in HLA..469
18.18.5.5 Objects ...471
18.18.5.6 Inheritance ...473
18.18.5.7 Overriding..473
18.18.5.8 Virtual Methods vs. Static Procedures...474
18.18.5.9 Writing Class Methods, Iterators, and Procedures476
18.18.5.10 Object Implementation ..479

18.18.5.10.1 Virtual Method Tables ..482
18.18.5.10.2 Object Representation with Inheritance ..484

18.18.5.11 Constructors and Object Initialization ...487
18.18.5.12 Dynamic Object Allocation Within the Constructor488

18.18.6 Compiling Resource Scripts Using HLA...491
18.18.6.1 The Motivation ..491
18.18.6.2 The HLA Solution ...491
18.18.6.3 The Resource..Endresource Declaration Section.....................................492

18.18.7 Structures in Assembly Language Programs ...493
18.18.7.1 What is a Record (Structure)?..493
18.18.7.2 Record Constants ...494
18.18.7.3 Arrays of Records ..495
18.18.7.4 Arrays and Records as Record Fields ..495
18.18.7.5 Controlling Field Offsets Within a Record..496
18.18.7.6 Aligning Fields Within a Record...497
18.18.7.7 Using Records/Structures in an Assembly Language Program...............499
18.18.7.8 Implementing Structures in an Assembler...500

HLA Reference Manual 5/24/10 Chapter 1
1 HLA Overview

HLA, the High Level Assembler, is a vast improvement over traditional assembly languages.
With HLA, programmers can learn assembly language faster than ever before and they can write
assembly code faster than ever before. John Levine, comp.compilers moderator, makes the case for
HLA when describing the PL/360 machine specific language:

1999/07/11 19:36:51, the moderator wrote:

"There's no reason that assemblers have to have awful syntax. About 30 years ago I
used Niklaus Wirth's PL360, which was basically a S/360 assembler with Algol
syntax and a a little syntactic sugar like while loops that turned into the obvious
branches. It really was an assembler, e.g., you had to write out your expressions with
explicit assignments of values to registers, but it was nice. Wirth used it to write
Algol W, a small fast Algol subset, which was a predecessor to Pascal. ... -John"

PL/360, and variants that followed like PL/M, PL/M-86, and PL/68K, were true "mid-level
languages" that let you work down at the machine level while using more modern control structures
(i.e., those loosely based on the PL/I language). Although many refer to "C" as a "medium-level
language", C truly is high level when compared with languages like PL/*. The PL/* languages
were very popular with those who needed the power of assembly language in the early days of the
microcomputer revolution. While it’s stretching the point to say that PL/M is "really an
assembler," the basic idea is sound. There really is no reason that assemblers have to have an awful
syntax.

HLA bridges the gap between very low level languages and very high level languages. Unlike
the PL/* languages, HLA really is an assembly language. You can do just about anything with
HLA that you can do with a traditional assembler like MASM, TASM, NASM, or Gas. If you want
to write low-level assembly code using x86 machine instructions, HLA does not get in your way;
if you want to use compares and conditional branches rather than structured control statements, you
can. On the other hand, if you prefer to use more readable high-level control structures, HLA
allows this, as well. HLA lets you work at the level you are most comfortable with and at the level
that is most appropriate for the task at hand.

Beyond supplying a "non-awful" syntax, HLA has one other important feature -- it’s
extensible. HLA provides special features that let you add new statements to the language. So if
HLA is not "high level" (or "low level") enough for your tastes, you can extend it. This document
will expend considerable effort describing exactly how to do this in a later section.

In addition to the HLA language itself, the HLA system provides one other very important
component - the HLA Standard Library. This is a collection of hundreds of functions that you can
use to write assembly language programs as quickly and easily as you would write C programs.

1.1 What is a "High Level Assembler"?
The name "High Level Assembler" and its abbreviation "HLA" is certainly not new1. Nor is

the concept of a high level assembler. David Salomon in his 1992 text "Assemblers and Loaders"
(Ellis Horwood, ISBN 0-13-052564-2) uses these terms to describe various assembly languages
dating back to 1966. Furthermore, both IBM and Motorola have assembler products with very
similar names (e.g., IBM’s HLAsm, though it’s somewhat debatable whether HLAsm is truly a
high level assembler).

Salomon offers the following definitions for a High Level Assembler (or HLA):
A high-level assembler language (HLA) is a programming language where each
instruction is translated into a few machine instructions. The translator is somewhat
more complex than an assembler, but much simpler than a compiler. Such a
language should not have features like the if, for, and case control structures,

1. This section will use the term "HLA/86" when specifically taking about the High Level Assembler product
this documentation describes and use "HLA" as a generic term. After this section, this documentation will use the
term "HLA" to specifically describe the "HLA/86" product.
Public Domain Created by Randy Hyde Page 1

HLA Reference Manual 5/24/10 Chapter 1
complex arithmetic, logical expressions, and multi-dimensional arrays. It should
consist of simple instructions, closely resembling traditional assembler instructions,
and of a few simple data types.

Since Salomon describes a couple of high level assemblers that exceed this definition, he
offers a second definition for high level assemblers that is a bit higher-level:

A high-level assembler language (HLA) is a language that combines most of the
features of higher-level languages (easy to use control structures, variables, scope,
data types, block structure) with one important feature of assembler languages
namely, machine dependence.

Neither definition is particularly useful for describing HLA/86 and other HLAs like Terse,
MASM and TASM. Of course the term "High Level Assembler" is very nebulous and offers a fair
amount of latitude. Almost any macro assembler could pass as an HLA on the basis that a macro-
instruction expands into a few machine instructions.

David Salomon describes several different high level assemblers in his text. The examples he
describes are PL/360, NEAT/3, PL516, and BABBAGE.

PL/360 and PL516 are products that conform to the second definition above. They allow
simple arithmetic expressions and assignment statements, the use of high level control structures
(if, for, while, etc.), high level data declarations, and block structure (among other things). These
languages expose the underlying machine’s registers and allow the use of machine instructions
using a "functional" syntax.

The NEAT/3 language is a much lower-level language; basically it is an assembly language
for the NCR Century computers that provide COBOL-style data declarations. Most of its
"instructions" translate one-for-one into Century machine instructions, though it does automatically
insert code to convert data types from one format two another if the data types of an instruction’s
operands are incompatible.

The BABBAGE assembly language is an expression-based assembly language (very similar to
Terse). It allows simplified high level control structures like if and while. The interesting thing
about this assembler is that it was the only assembler for the GEC4000 family of computers.

In addition to the HLAs that Salomon describes, there have been several other high level
assemblers created over the years. PL/M and PL/M-86 was designed by Intel for their 8080 and
8086 CPU families. This was an obvious adaptation of the PL/360 style HLA for Intel’s CPUs.
PL/68 was also available for the Motorola 680x0 family. SL/65 was a similar adaptation of PL/360
for the 6502 family. At one point there was a product named "High Level Assembler" for the Atari
ST system (68K based). Jim Neil has also created an expression-based high level assembler
(similar in principle to Babbage) for Intel’s x86 family. MASM and TASM (for the x86) also fall
into the category of a high level assembler due to their inclusion of high level control structures and
logical expressions.

So where does HLA/86 fit into these definitions? In truth, the definition of HLA/86 falls
somewhere between these two definitions. So the following paragraphs will define the term "High
Level Assembler" as it should apply to HLA/86 and similar high level assemblers.

The first definition above is overly restrictive. It implies that any language that exceeds these
limits is a high level language, not a high level assembly or traditional assembly language.
Obviously, this definition is too restrictive in the sense that by this definition many traditional
assemblers would have to be considered as high level languages (even beyond a high level
assembler). Furthermore, it elevates many traditional assemblers to the status of an HLA even
though we wouldn’t normally think of them as high level assemblers; i.e., most macro assemblers
provide the ability to create instructions that translate into a few machine instructions. Macro
facilities, however, are something we expect out of a modern assembly language; their presence
doesn’t make the language a "high level" assembly language in most people’s mind. Furthermore,
most modern assemblers provide a mechanism for declaring multi-dimensional arrays (even though
you still have to use some sequence of instructions to index into said arrays).

The second definition David Salomon provides hits the other extreme. Arguably, languages
like C could be called HLAs under this definition (yes, there are some machine dependent features
in C, though probably not enough to satisfy David Salomon’s original intent).

The definition of high level assemblers like Terse, MASM, TASM, and HLA/86 fall
somewhere between these extremes. Therefore, this document will define a high level assembler as
follows:

A "high level assembly language" (HLAL) is a language that provides a set of
statements or instructions that practically map one-to-one to machine instructions of
the underlying architecture. The HLAL exposes the underlying machine architecture
Public Domain Created by Randy Hyde Page 2

HLA Reference Manual 5/24/10 Chapter 1
including access to machine registers, flags, memory, I/O, and addressing modes.
Any operation that is possible with a traditional assembler should be possible within
the HLAL. In addition to providing access to the underlying architecture, the HLAL
must provide some abstractions that are not normally found in traditional assemblers
and that are typically found in traditional high level languages; this could include
structured control statements (e.g., if, for, and while), high level data types and data
structuring facilities, extensive compile-time language facilities, run-time expression
evaluation, and standard library support. A "High Level Assembler" is a translator
that converts a high level assembly language to machine code.

There is a very important difference between this definition and the ones that David Salomon
provides. Specifically, a high-level assembly language must provide access to the underlying
machine architecture. Within the HLAL you must be able to specify any (reasonable) machine
instruction that is available on the CPU. The HLAL may provide other statements that do not
directly map to machine instructions (e.g., an if statement), but it must, at least, provide a set of
statements that practically map one-to-one with the machine instructions. The "practically"
modifier appears here for two reasons. First of all, some assembly source statements may map to
two or more different, but equivalent, machine instructions. A good example is the x86 "mov reg,
reg" which can map to two different (though equivalent) opcodes depending on the setting of the
direction bit in the opcode. Most assemblers will map the source statement to only one of these
opcodes, hence there is not truly a one-to-one mapping (since there exist some opcodes that do not
map back to some source instruction). Another allowable restriction is that the HLAL may limit
the programmer to a subset of the complete machine instruction set if it makes sense to do so (e.g.,
many modern x86 assemblers do not support 16-bit mode on the 80x86).

In addition to supporting the underlying machine architecture (which almost any traditional
assembler will do), the HLAL must also provide support for some features normally found in a
high level language. The definition does not require that a HLAL support all the features listed
above, nor is it restricted to just the features listed, but a HLAL must support some of the features
traditionally found in a high level language. The number and type of features the HLAL supports
determines how "high level" the assembly language is. Like HLLs, we can have "low-level"
HLALs, "medium-level" HLALs, "high-level" HLALs, and even "very high-level" HLALs.
NEAT/3, for example, would be a low-level HLAL since it provides higher-level data types,
conversions, and not much else.

MASM and TASM are probably best considered medium-to-high-level HLALs since they
provide high level data structuring facilities, structured control statements, high level procedure
definitions and invocations, a limited block structure, powerful compile-time language (macro)
facilities, standard library support (e.g., the UCR Standard Library and many other available library
modules), and other high level language features. In actual use, the programmer is expected to
normally use standard machine instructions and rise up to the high level statements only as
necessary.

The Terse language is a good example of a medium level HLAL since it uses an expression
syntax but otherwise maps statements fairly closely to the assembly counterparts. It does provide
some higher-level data structuring capabilities, though this is inherited from the underlying
assembler(s) on which Terse is based.

PL/360 and PL516 are definitely high-level HLALs because they fully support simplified
arithmetic expressions, control structures, high-level data types, and other features. These
languages provide access to the underlying architecture, but the emphasis is to use these languages
as a high level language and drop down to the machine instructions only as necessary.

HLA/86 probably falls in the high-level-to-very-high-level range because it provides high
level data types and data structuring abilities, high level and very high level control structures,
extensive parameter passing facilities (more than most high level languages), a very extensive
compile time language, a very extensive standard library, built-in parsing facilities for language
extension, and many other features. Generally, HLA/86 has a larger feature set than the other
HLALs described above. There are a few design goals that limit the "high-levelness" of HLA/86:

(1) With one exception, HLA never emits any code behind the programmer’s back that
modifies registers or flags (the one exception is object method invocation, and this is well
documented), and

(2) HLA doesn’t support arithmetic expressions (it does support a limited form of logical/
boolean expressions).

One interesting aspect of HLA/86 is that it is extensible. Using features built into the
language, you can extend HLA/86’s syntax by adding new statements and other features. This
Public Domain Created by Randy Hyde Page 3

HLA Reference Manual 5/24/10 Chapter 1
feature gives you the ability to make HLA/86 as high level as you desire (though it may take some
effort to achieve certain language features). The bottom line is this: in some ways, HLA/86 is
lower level than languages like PL/360 and PL516; in other ways, it’s higher level than these
HLALs. However, as the definition requires, almost anything you can do with a traditional
assembler is possible in HLA/86.

1.2 What is an "Assembler"
Because high-level assemblers are clearly different that traditional assemblers, one might

question whether a high level assembly language is truly an assembly language and whether
translators for high-level assembly languages can be properly called an assembler. Unfortunately,
there is a considerable range of opinions as to exactly what constitutes an "assembler" versus other
translators. This document will not attempt to get involved in this debate. Instead, this section
provides a set of definitions that are useful for describing assemblers at various levels of
abstraction.
Pure Assembler:

A "pure assembler" is a program that processes an assembly language source file
and translates the source code using a direct mapping from source code
instructions to individual machine instructions (each source instruction is
mapped to exactly one machine instruction). The assembler only provides
machine-primitive data types like bytes, words, double words, etc. A pure
assembler does not provide macro facilities. A pure assembler always produces
machine code as output.

Traditional Assembler:

A "traditional assembler" is a pure assembler plus macro facilities. The
assembler may provide some "built-in macros" and instruction synonyms, but in
general, the built-in statements should still map to individual machine
instructions (note that the programmer may extend this by writing macros).
There is no support by the assembler for run-time arithmetic or boolean
expressions. A traditional assembler may also provide some simple data typing
facilities (such as the ability to rename primitive data types as something else,
e.g., byte->char). A traditional assembler always emits machine code as output.

High Level Assembler:

A high-level assembler is a macro assembler plus some additional high-level
language-like facilities, such as high-level control constructs or high-level-like
procedure calls. If a programmer elects to ignore these additional facilities, they
still have all the capabilities of a macro assembler at their disposal.

1.3 Is HLA a True Assembly Language?
Some people are confused by HLA. On the one hand, it looks like a High Level Language,

employing syntax similar to Pascal and C/C++. On the other hand, it does support the machine
instructions found in a typical assembly language. Many people accuse HLA of being a compiler
rather than an assembler. What’s the truth?

The truth is, assembly languages have evolved, just as high-level languages have evolved, and
we can no longer use a definition for an assembler that made sense in the 1950s when describing
modern assemblers such as MASM, TASM, and HLA. Today, the best definition we can use is that
an assembler is a compiler for an assembly language. An assembler accepts a source file written in
some sort of assembly language and produces an object file as its output.

The real question, then, is not whether HLA is an assembler, but whether the HLA language is
an assembly language. Some people argue that any compiler that includes any sort of statement that
compiles into more than one machine instruction cannot be called an "assembler." However, such
an argument immediately eliminates macro assemblers. Eliminating macro assemblers is
unsatisfactory because almost every modern assembler provides, at the very least, some simple
macro facilities. Whether you implement an "IF" statement with a macro (generally supplied by the
assembler’s author, as is the case, for example, with FASM) that you have to include into your
source file, or via a ‘macro’ that the assembler’s author has provided as part of the assembler is
really a matter of implementation. To the end user of the assembler, the "IF" statement is just as
much a part of the language that they can use regardless of the implementation. The fact that
assemblers such as MASM, TASM, and HLA provide these high-level-like control structures in
Public Domain Created by Randy Hyde Page 4

HLA Reference Manual 5/24/10 Chapter 1
assembly language does not imply that the languages these products implement are not assembly
languages.

Some people argue that "high-level assemblers" such as MASM, TASM, and HLA are not
assemblers any more than C/C++ compilers could be considered assemblers if those C/C++
compilers support an in-line assembly capability. However, their arguments strengthen the case for
calling a product like HLA an "assembler." After all, if we’re going to continue to call C/C++ a
high-level language even though it provides support for machine instructions, then there is no
reason we cannot call a product like MASM, TASM, or HLA "assemblers" even though they
provide a modicum of support for high-level-like control structures. Ultimately, language's focus
determines its type. C/C++’s focus is on writing high-level language programs, with a few machine
instructions thrown in now and then when the high-level language doesn’t quite handle everything.
High-level assemblers, such as HLA, MASM, and TASM are focused on writing assembly
language modules. They have some high-level control structures thrown in to simplify some tasks
(e.g., in the case of HLA, the high-level control structures exists as a bridge between HLLs and
assembly during the learning process), but the focus is mainly on writing assembly language code.

Some people feel that if you learn HLA (or some other high level assembler), then you’re not
really learning "assembly language." This is utter nonsense. If you thoroughly learn HLA, you’ll
know assembly language programming inside and out. Switching to a different assembler from
HLA would be no different, say, than switching from Gnu’s Gas assembler to MASM (or vice
versa). One might bemoan the features lost in such a translation, but when going from HLA to
some other assembler you’re typically giving up features rather than gaining anything.

Still there is a pervasive argument that high-level control structures like IF/WHILE/FOR/etc.
don’t belong in a true assembler. Well, HLA, MASM, and TASM users can elect to ignore these
statements (as many old-time MASM programmers do; with HLA you can even disable these
statements). As long as the rest of the assembler supports a language that allows one to write
"pure" assembly language code, why would anyone question the validity of the title "assembly
language" for the code? (Unless, of course, they have an ax to grind.) For those who are
diametrically opposed to allowing any language that contains IF/WHILE/FOR/etc. statements to be
called assembly language, well, that’s why we call these things high level assembly languages: to
note the fact that they are a little more powerful than traditional assembly languages.

The bottom line is this: if you learn HLA, you will learn assembly language programming. As
long as you understand how to write the low-level code (within HLA) and don’t rely exclusively on
the high-level control statements in your programs, no one can truthfully question your assembly
language programming knowledge.

1.4 HLA Design Goals
HLA was originally conceived as a tool to teach assembly language programming. In early

1996 I decided to do a Windows version of my electronic text "the Art of Assembly Language
Programming" (AoA). After an attempt to develop a new version of the " UCR Standard Library
for 80x86 Programmers" (a mainstay of AoA), I came to the conclusion that MASM just wasn’t
powerful enough to make learning assembly language really easy. I decided to develop an
assembler with sufficient power, providing the tools for a good standard library as well as satisfy
some other requirements. Therefore, HLA has two important goals: provide a system that is
powerful enough to develop code and macros to make learning assembly language, which
simultaneously providing a system that is easy for beginners to learn.

The principle goal of HLA was to leverage student’s existing programming knowledge. For
example, a good Pascal programmer can get their first C/C++ program operational in a few
minutes. All they have to do is note the similarities between the two programming languages,
make the appropriate syntactical changes, and they’re up and running. Take that same Pascal
programmer and expect them to learn LISP or Prolog the same way, and you’ll not meet with the
same success. LISP and Prolog are completely different, they use a different "programming
paradigm," so the student has to "start over from scratch" when learning these languages. Although
assembly language is an imperative language (like Pascal and C/C++), there is a considerable
"paradigm shift" when moving from one of these high level languages to assembly. In HLA, I
wanted to create a language with high level control structures and declarations that made it possible
for someone familiar with an imperative language like Pascal or C/C++ to get their first HLA
program running in a matter of minutes (or, at worst, a matter of hours). Of course, to achieve this
goal, I needed to add high-level data declarations and high-level control constructs to the HLA
language.

The astute reader will quickly point out that high level control structures are not assembly
language and letting the students use these types of statements is not really teaching them assembly
Public Domain Created by Randy Hyde Page 5

HLA Reference Manual 5/24/10 Chapter 1
language. This is quite true; since the purpose of teaching an assembly language course is to teach
the students assembly language programming it is quite clear that HLA would fail if it only
provided these high level control structures (e.g., like the PL/M language does). Fortunately, this is
not the case. HLA supports all standard assembly language instructions including CMP and Jcc
instructions, so you can still write "pure" assembly language programs without using those high-
level language control structures. However, it does take time to learn the several hundred different
machine instructions. Traditionally, it’s taken my students (using only MASM) about five weeks
before they could really write any meaningful programs in assembly language (you have to cover
things like numeric representation, basic CPU architecture, addressing modes, data types, and
introduce the instruction set before any real programs can be written).

HLA lets students write meaningful programs within about a week of its introduction (e.g., the
first assignment I give in a typical quarter is to write an "addition table" program that computes the
outer product [addition table] of the two vectors 0..15 and 0..15, printing the table formatted
nicely). They achieve this by using statements they already know (like IF and WHILE) with the
injection of just a few assembly language concepts (registers, and the MOV and ADD instructions)
plus an introduction to the HLA Standard Library. Over the next several weeks, these students
write increasingly complex programs as they are introduced to new assembly language and HLA
concepts (e.g., data representation, basic architecture, addressing modes, data types, and additional
instructions). At about the sixth week, I begin "weaning" these students off the high-level language
statements and force them to use the low-level machine instructions. It turns out that they learn
how to simulate an IF statement at roughly the same point in the quarter as they did when they used
only MASM, but the big difference is that they’ve written a lot more code up to that point proving
out other concepts in machine organization and assembly language programming. In my limited
experience with classroom testing, I’ve found that students spend less time on the class, cover more
material, and retain the knowledge better (by the time of the final exam) than they did when I only
used MASM.

The general goal of reducing the learning curve for students is achieved several ways.

(1) As noted above, HLA allows a gradual transition from high-level languages into
pure assembly language. My favorite analogy here is the Nicoderm CQ smoking
cessation system ("gradual steps are better."). Like the Nicoderm system, HLA
allows students learn assembly language in gradual steps rather than throwing
them into the water and shouting "sink or swim!"

(2) In addition to letting the students employ high level language statements in their
assembly language programs, HLA contains several other familiar concepts and
syntactical items that ease the transition from high-level language programming
to assembly language. For example, HLA uses the familiar (to C/C++
programmers) "/*" and "*/" comment delimiters (as well as the "//" comment
delimiter). Statements generally end with a semicolon (just as in high level
languages). Machine instructions use a functional notation rather than
"mnemonic-operand" notation. Constant, type, and variable declarations should
look very familiar to Pascal programmers. HLA’s standard library should look
comfortable to anyone who has used the C/C++ standard library.

In addition to syntactical similarities, well-written HLA programs share a similar
programming style with modern high-level languages. Therefore, a student who has learned how
to write readable Pascal, C/C++, or Java programs will be able to write readable HLA programs
with almost no additional study. Contrast this with the style guide I’ve written for (MASM)
assembly language programmers that is quite a bit different than high level languages and takes a
while to master.

Another factor many people don’t consider is the evaluation of a programming project. At UC
Riverside instructors are given about 1.5-2 hours per student per quarter of reader (student grader)
time to grade projects. Experienced readers who can grade (or want to grade) assembly language
projects are few and far in-between. Most readers are "stuck" with grading the assembly class
rather than volunteer for the job. The fact that most student assembly language projects have a
horrible programming style and are hard to read only exacerbates this situation. HLA helps solve
this problem. Since good HLA programming style is very similar to good C/C++ style, UC
Riverside’s readers have a much easier time reading the projects and evaluating their programming
style. In addition, since the students have (presumably) learned good programming style in the
prerequisite course(s), they tend to write easier to read HLA programs than MASM programs. This
lets the instructor assign more projects without fear of exceeding my reader budget each quarter.
Public Domain Created by Randy Hyde Page 6

HLA Reference Manual 5/24/10 Chapter 1
HLA’s advantages are easily summed up by a complaint I had from a student once. She said
"HLA drives me nuts. It’s so similar to C++ that I often get confused and try out something that
would work in C++ only to have the HLA compiler reject it." I agreed with this student that this
was a bit of a problem, but I also mentioned, "what about all the times you’ve tried something from
C++ and it HAS worked?" She thought about it for a moment and walked away agreeing with my
assessment of her complaint. Had this student been learning assembly the traditional way, she
wouldn’t have bothered to try anything. She would had to have spent extra time learning how to
achieve what she wanted by reading an assembly text or she would have missed out on the
opportunity to actually learn something new. HLA’s similarity to C++ encouraged her to try
something out on her own. The experiments weren’t always successful, but in those cases where
they were, she benefited greatly from this. This anecdote, more than any other, sums up what my
goals with HLA were and describes the success I believe I have achieved with it.

1.5 How to Learn Assembly Programming Using HLA
Of course, a compiler without a language reference manual and tutorial is useless. This

document will provide a reference to the HLA programming language. It is not, however,
appropriate pedagogy for beginners (it’s more suitable for those who already know assembly
language programming and wish to learn HLA’s syntax). A better text for beginners is "The Art of
Assembly Language Programming, Second Edition" available from No Starch Press. This provides
a complete college level textbook that teaches assembly language programming from the ground up
using HLA. You can also find an electronic copy of "AoA" on Webster at http://
webster.cs.ucr.edu. Webster also contains the latest version of HLA as well as tons of HLA sample
source code. That’s the first place you should go for information on learning HLA.

1.6 Legal Notice
The HLA v2.x implementation is a prototype intended to test language design and

implementation features. I (Randall Hyde) have placed this code and language design in the public
domain so others may benefit from this work. However, keep in mind that, as a prototype, HLA is
not up to contemporary commercial standards for software quality. It is your responsibility to
evaluate whether HLA is suitable for whatever purpose you have.

At any given time, there are several known and unknown defects in this software. Some may
be corrected in later releases of HLA v2.x; some may never be corrected in the v2.x series. I
(Randall Hyde) do not warrant or guarantee this software in any way. In particular, you cannot
expect corrections of any given defect in the system. Obviously, I try to fix known problems (if
possible), but I refuse to be held legally responsible for such defects in the software.

The purpose of developing a prototype implementation of the HLA language was to try out
language design and implementation ideas. The prototype phase of HLA development is rapidly
coming to an end and an "official" HLA language design will be forthcoming. HLA v3.0 will
implement this new language. The only guarantees I make about compatibility between HLA v2.x
and HLA v3.0 is that there will be some incompatibilities. The exact nature and magnitude of those
incompatibilities is unknown at this point, but it is safe to assume that no HLA v2.x program will
compile under HLA v3.0 without at least some minor source code changes. So please don’t get the
idea that any investment you make in HLA source code will be protected in v3.0 (note: after the
release of v3.0 this is a relatively safe assumption to make, though there will still be no guarantees).

Because HLA is constantly changing (typical of a prototype), it is very difficult to keep the
documentation in phase with the language. You can expect this documentation (and all HLA
documentation) to contain omissions (e.g., of new features that have yet to be documented),
discussion of features removed from HLA, and incorrect descriptions of HLA features. Every
attempt will be made to keep the documentation in phase with the software, but like so many free
software projects, lack of time and motivation prevents perfection1.

This software is not fit for use in mission-critical or life-support software systems. This
software is principally intended for evaluation and educational (i.e., learning assembly language)
purposes only. It has been successfully used to develop commercial and industrial applications
(including a nuclear reactor control system) and it has been successfully used in educational
environments, but again, you are personally responsible for determining the fitness of this software
and documentation for your particular application and you must take responsibility for that choice.

1. You must admit, though, HLA’s documentation is better than that of most free software.
Public Domain Created by Randy Hyde Page 7

HLA Reference Manual 5/24/10 Chapter 1
HLA’s current design makes use of other software tools that I (Randall Hyde) did not write.
These tools include the Microsoft Linker, the Microsoft Librarian, the Pelles C linker, the Pelles C
librarian, and the Free Software Foundations ld and as programs. It can optionally make use of
programs such as MASM, FASM, TASM, and NASM. Because some of these tools are
commercial products and are covered by various license agreements, not all of these tools come
with the HLA distribution. For example, if you want to use the Microsoft or Borland tools, you’ll
have to obtain copies of them from some other source. Note that using HLA does not require the
Microsoft or Borland tools; HLA is simply compatible with these tools if you already own them
and would prefer to use them. HLA does ship with all the tools you need to effectively use HLA;
the use of these non-free tools is optional.

1.7 Teaching Assembly Language using HLA
I first began teaching assembly language programming at Cal Poly Pomona in the Winter

Quarter of 1987. I quickly discovered that good pedagogical material was difficult to come by;
even the textbooks available for the course left something to be desired. As a result, my students
were learning very little assembly language in the ten weeks available to the course. After about
two quarters, I decided to do something about the textbook problem, so I began writing a text I
entitled "How to Program the IBM PC Using 8088 Assembly Language" (obviously, this was back
in the days when schools still used PCs made by IBM and the main CPU you could always count on
was the 8088). "How to Program..." became the epitome of a "work in progress." Each quarter I
would get feedback from the students, update the text, and give it to Kinko's (and the UCR Printing
and Reprographics Department) to run off copies for my students the very next quarter.

The original "How to Program..." text provided a basic set of library routines to print strings,
input characters and lines of text, and a few other basic functions. This allowed the students to
quickly begin writing programs without having to learn about the INT instruction, DOS, or BIOS.
However, I discovered that students were spending a significant time each quarter writing their own
numeric conversion routines, string manipulation routines, etc. One student commented on "how
much easier it was to program in 'C' than assembly language since all those conversions and string
operations were built into the language." I replied that the real savings were due more to the 'C'
standard library than the language itself and that a comparable library for assembly language
programmers would make assembly language programming almost as easy as 'C' programming. At
that moment a little light when on in my head and I sat down and wrote the first few routines of
what ultimately became the "UCR Standard Library for 80x86 Assembly Language Programmers"
(You can still get a copy of the UCR stdlib from webster at the URL given above). As I finished
each group of routines in the standard library, I incorporated them into my courses. This reaped
immediate benefits as students spent less time writing numeric conversion routines and spent more
time learning assembly language. My students were getting into far more advanced topics than was
possible before the advent of the UCR Stdlib.

In the early 1990's, the 8088 CPU finally died off and IBM was no longer the major supplier of
PCs. Not only was it time to change the title of my text, but I also needed to update references to
the 8088 (that were specific to that chip) and bring the text into the world of the 80386 and 80486
processors. DOS was still King and 16-bit code was still what everyone was writing, but issues of
optimization and the like were a little outdated in the text. In addition to the changes reflecting the
new Intel CPUs, I also incorporated the UCR Standard Library into the text since it dramatically
improved the speed at which students progressed beyond the basic assembly programming skills. I
entitled the new version of the text "The Art of Assembly Language Programming," an obvious
knock-off of Knuth's series ("The Art of Computer Programming").

In early 1996 it became obvious to me that DOS was finally dying and I needed to modify
"The Art of Assembly Language Programming" (AoA) to use Windows as the development
platform. I wasn't interested in having students write Windows GUI applications in assembly
language. (The time spent teaching event-oriented programming would interfere with the teaching
of basic machine organization and assembly language programming.) However, it was clear that
the days of writing code that arbitrarily pokes around in memory and accesses I/O addresses
directly (things that AoA taught) were over. Therefore, I decided to get started on a new version of
AoA that used Windows as the basic development environment with the emphasis on writing
console applications.
Public Domain Created by Randy Hyde Page 8

HLA Reference Manual 5/24/10 Chapter 1
The UCR Standard Library was the single most important pedagogical tool I'd discovered that
dramatically improved my students' progress. As I began work on a new version of AoA for
Windows 3.1 my first task was to improve upon the UCR Standard Library to make it even easier
to use, more flexible, more efficient, and more "high level." After six months of part time work, I
eventually gave up on the UCR Stdlib v2.0. The idea was right; unfortunately, the tools at my
disposal (specifically, MASM 6.11) weren't quite up to the task. I was writing some tricky macros,
obviously exploiting code inside MASM that Microsoft's engineers had never run (i.e., I discovered
lots of bugs). I would code in some workarounds to the defects only to have the macro package
break at the next minor patch of MASM (e.g., from MASM 6.11a to MASM 6.11b).

There was also a robustness issue. Although MASM's macro capabilities are quite powerful
and it almost let me do everything I wanted, it was very easy to confuse the macro package. This
would cause MASM would generate some totally weird (but absolutely correct) diagnostic
messages that correctly described what was going wrong in the macro but made absolutely no sense
whatsoever at all. As it became clear that the UCR Stdlib v2.0 would never be robust enough for
student use, I decide to take a different approach.

About this time, I was talking with my Department Chair about the assembly language course.
We were identifying some of the problems that students had learning assembly language. One
problem, of course, was the paradigm shift- learning to solve problems using machine language
rather than a high level language. The second problem we identified is that students get to apply
very little of what they've learned from other courses to the assembly language class. A third
problem was the primitive tools available to assembly language programmers. Energized by this
discussion, I decided to see how I could solve these problems and improve the educational process.

Problem 1, the paradigm shift, had to be handled carefully. After all, the whole purpose of
having students take an assembly language programming course in the first place is to acquaint
them with the low-level operation of the machine. However, I felt it was certainly possible to
redefine parts of assembly language so that would be more familiar to students. For example, one
might test the carry flag after an addition to determine if an unsigned overflow has occurred using
code like the following:

 add eax, 5

 jnc NoOverflow

 << code to execute if overflow occurs >>

NoOverflow:

Although this code is straightforward, you would be surprised how many students cannot
visualize this code. On the other hand, if you feed them some pseudo code like:

 add eax, 5

 if(the carry flag is set) then

 << code to execute if overflow occurs >>

 endif
Public Domain Created by Randy Hyde Page 9

HLA Reference Manual 5/24/10 Chapter 1
Those same students won't have any problems understanding this code. To take advantage of
this difference in perspective, I decided to explore changing the definition of assembly language to
allow the use of the "if condition then do something" paradigm rather than the "if a condition is
false them skip over something" paradigm. Fundamentally, this does not change the material the
student has to learn; it just presents it from a different point of view to which they're already
accustomed. This certainly wasn't a gigantic leap away from assembly language as it existed in
1996. After all, MASM and other assemblers were already allowing statements like ".if" and
".endif" in the code. Therefore, I tried these statements out on a few of my students. What I
discovered is that the students picked up the basic "high level" syntax very rapidly. Once they
mastered the high level syntax, they were able to learn the low-level syntax (i.e., using conditional
jumps) faster than ever before.

The second problem, students not being able to leverage their programming skills from other
classes, is largely linked to the syntax of Intel x86 assembly language. Many skills students pick
up, such as programming style, indentation, appropriate programming construct selection, etc., are
useless in a typical assembly language class. Even skills like commenting and choosing good
variable names are slightly different in assembly language programs. As a result, students spend
considerable (unproductive) time learning the new "rules of the game" when writing assembly
language programs. This directly equates to less progress over the ten-week quarter. Ideally,
students should be able to applying knowledge like program style, commenting style, algorithm
organization, and control construct selection they learned in a C/C++ or Pascal course to their
assembly language programs. If they could, they'd be "up and writing" in assembly language much
faster than before.

The third problem with teaching assembly language is the primitive state of the tools. While
MASM provides a wonderful set of high level language control constructs, very little else about
MASM supports this "brave new world" of assembly language I want to teach. For example,
MASM's variable declarations leave a lot to be desired (the syntax is straight out of the 1960's). As
I noted earlier, as powerful as MASM's macro facilities are, they weren't sufficient to develop a
robust library package for my students. I briefly looked at TASM, but it's "ideal" mode fared little
better than MASM. Likewise, while development environments for high-level languages have
been improving by leaps and bounds (e.g., Delphi and C++ Builder), assembly language
programmers are still using the same crude command line tools popularized in the early 1970's.
Codeview, which is practically useless under Windows, was the most advanced tool Microsoft
provided specifically for assembly language programmers.

Faced with these problems, I decided the first order of business was to create a new x86
assembly language and write a compiler for it. I decided to give this language the somewhat-less-
than-original name of "the High Level Assembler," or HLA (IBM and Motorola both already have
assemblers that use a variant of this name). It took three years, but the first version of HLA was
ready for public consumption in September of 1999.

I began using HLA in my CS 61 course (machine organization and assembly language
programming) at UCR in the Fall Quarter, 1999. With no pedagogical material other than a
roughly written reference guide to the language, I was expecting a complete disaster. It turns out
that I was pleasantly surprised. Although the students did have major problems, the course went far
more smoothly than I anticipated and we managed to cover about the same material I normally
covered when using MASM.

Although things were going far better than I expected, this is not to say that things were going
great, or even as smoothly as I would have liked. The major problem, of course, was the lack of a
textbook. The only material the students had to study from was their lecture notes. Clearly,
something needed to be done about this. Of course, the whole reason for spending three years
writing HLA was to allow me to write a new version of AoA. Therefore, in November 1999 I
began work on the new edition of the text. By the start of the Winter Quarter in January 2000, I had
roughed together five chapters, about 50% of the material was brand new and the other 50% was
cut, pasted, and updated from the older version of the text. During the quarter, I rushed out two
more chapters bringing the total to seven. The Winter Quarter went far more smoothly than the
Fall Quarter. Student projects were much better and the progress of the class outstripped any
assembly language course I'd taught prior to that point. Clearly, the class was benefiting from the
use of HLA.

By the start of the Spring Quarter in April 2000, I'd managed to make one proofreading pass
over the first six chapters and I'd written the first draft of the eighth chapter. By the middle of 2002,
The Art of Assembly Language was on-line and receiving rave reviews across the internet. In 2003,
No Starch Press published an edited and revised edition in "treeware" form.
Public Domain Created by Randy Hyde Page 10

HLA Reference Manual 5/24/10 Chapter 1
Well, this has been a long-winded report of HLA's justification. You're probably wondering
what HLA is and whether it is applicable to you (especially if you're a programmer rather than an
educator). Fair enough, the rest of this article will discuss the HLA system and how you would use
it.

HLA (under Windows) is a Win32 console application and it generates Win32 applications.
By default, it generates console applications although it does not restrict you to writing console
applications under Windows. There is absolutely no support for DOS applications. HLA v2.0 also
supports Mac OS X, Linux, and FreeBSD. Applications written in HLA that use the HLA Standard
Library can run under all four operating systems with nothing more than a recompile. This allows
a student, for example, to work under Windows at home and submit projects under Linux (or any of
the other OSes) at school.

When designing the HLA language, I chose a syntax that is very similar to common imperative
high-level languages such as Pascal/Delphi, Ada, Modula-2, FORTRAN77, C/C++, and Java. That
is not to say that HLA compiles Pascal programs, but rather, a Pascal programmer will note many
similarities between Pascal and HLA (and ditto for the other languages). HLA stole many of the
ideas for data declarations from the Algol-based languages (Pascal, Modula-2, and Ada), it grabbed
the ideas for many of its control structures from FORTRAN77, Ada, and C/C++/Java, and the
structure of the HLA Standard Library is based on the C Standard Library. So regardless of which
high level language you're most comfortable with in this set, you'll certainly recognize some
elements of your favorite HLL in HLA.

A carefully written HLA program will look almost like a high-level language program.
Consider the following sample program:

program SampleHLApgm;

#include("stdlib.hhf")

const

 HelloWorld := "Hello World";

begin SampleHLApgm;

 stdout.put("The classical 'Hello World' program: ", HelloWorld, nl);

end SampleHLApgm;

This program does the obvious thing. Anyone with any high-level language background can
probably figure out everything except the purpose of "nl" (which is the newline string imported by
the standard library). This certainly doesn't look like an assembly language program; there isn't
even a real machine instruction in sight. Of course, this is a trivial example; nonetheless, I've
managed to write reasonable HLA programs that were just over 1,000 lines of code that contained
only one or two identifiable machine language instructions. If it's possible to do this, how can I get
away with calling HLA an assembly language?
Public Domain Created by Randy Hyde Page 11

HLA Reference Manual 5/24/10 Chapter 1
The truth is, you can actually write a very similar looking program with MASM. Here's an
example I trot out for unbelievers. This code is compilable with MASM (assuming you include the
UCR Standard Library v2.0 and some additional code I've cut out for brevity:

var

 enum colors,<red,green,blue>

 colors c1, c2

endvar

Main proc

 mov ax, dseg

 mov ds, ax

 mov es, ax

 MemInit

 InitExcept

 EnableExcept

 finit

 try

 cout "Enter two colors:"

 cin c1, c2

 cout "You entered ",c1," and ",c2,nl

 .if c1 == red
Public Domain Created by Randy Hyde Page 12

HLA Reference Manual 5/24/10 Chapter 1
 cout "c1 was red"

 .endif

 except $Conversion

 cout "Conversion error occured",nl

 except $Overflow

 cout "Overflow error occured",nl

 endtry

 CleanUpEx

 ExitPgm ;DOS macro to quit program.

Main endp

As you can see, the only identifiable machine instructions here are the ones that initialize the
segment registers at the beginning of the program (which is unnecessary in a Win32 environment).
So allow me to blunt criticism from "die-hard" assembly fans right at the start: HLA doesn't open
up all kinds of new programming paradigms that weren't possible before. With some clever macros
(e.g., enum, cout, and cin in the MASM code), it is quite possible to do some amazing things. If
you're wondering why you should bother with HLA if MASM is so wonderful, don't forget my
comments about the robustness of these macros. Both HLA and MASM (with the UCR Standard
Library v2.0) work great as long as you write perfect code and don't make any mistakes. However,
if you do make mistakes, the MASM macro scheme rapidly gets ugly.

The "die-hard" assembly fan will probably observe that they would never write code like the
MASM code I've presented above; they would write traditional assembly code. They want to write
traditional code. They don't want this high level syntax forced upon them. Well, HLA doesn't
force you to use high-level control structures rather than machine instructions. You can always
write the low level code if you prefer it that way. Here is the original HLA program rewritten to
use familiar machine instructions:

program SampleHLApgm2;

#include("stdlib.hhf")

static
Public Domain Created by Randy Hyde Page 13

HLA Reference Manual 5/24/10 Chapter 1
 dword 37, 37;

 TcHWpStr: dword; @nostorage;

 byte "The classical 'Hello World' program: ",0,0,0;

 dword 11, 11;

 HWstr: dword; @nostorage;

 byte "Hello World",0;

begin SampleHLApgm2;

 lea(eax, TcHWpStr);

 push(eax);

 call stdout.puts;

 lea(eax, HWstr);

 push(eax);

 call stdout.puts;

 call stdout.newln;

end SampleHLApgm2;

The stdout.puts and stdout.newln procedures come from the HLA Standard Library. I will
leave it up to the interested reader to translate these into Win API Write calls if this code isn't
sufficiently low level to satisfy. Note that HLA strings are not simple zero terminated strings like
C/C++. This explains the extra zeros and dword values in the STATIC section (the dword values
hold the string lengths; I offer these without further explanation, see the HLA documentation for
more details on HLA's string format).

One thing you've probably noticed from this second example is that HLA uses a functional
notation for assembly language statements. That is, the instruction mnemonics look like function
calls in a high level language and the operands look like parameters to those functions. The neat
thing about this notation is that it easily allows the use of "instruction composition." Instruction
composition, like functional composition, means that you get to use one instruction as the operand
of another. For example, an instruction like "mov(mov(0, eax), ebx);" is perfectly legal in HLA.
Public Domain Created by Randy Hyde Page 14

HLA Reference Manual 5/24/10 Chapter 1
The HLA compiler will compile the innermost instruction first and then substitute the destination
operand of the innermost instruction for the operand position occupied by the instruction. HLA's
MOV instruction takes the generic form "MOV(source, destination);" so the former instruction
translates to the following two instruction sequence:

 mov(0, eax); // intel syntax: mov eax, 0
 mov(eax, ebx); // intel syntax: mov ebx, eax

By and of itself, instruction composition is somewhat interesting, but programmers striving to
write readable code need to exercise caution when using instruction composition. It is very easy to
write some unreadable code if you abuse instruction composition. E.g., consider:

 mov(add(mov(0, eax), sub(ebx, ecx)), edx), mov(i, esi));

Egads! What does this mess do? Some might consider the inclusion of instruction
composition in HLA to be a fault of the language if it allows you to write such unreadable code.
However, I've never felt it was the language syntax's job to enforce good programming style. If
there's really a reason for writing such messy code, the compiler shouldn't prevent it.

Although you can produce some truly unreadable messes with instruction composition, if you
use it properly it can enhance the readability of your programs. For example, HLA lets you
associate an arbitrary string with a procedure that HLA will substitute for that procedure name
when the procedure call appears as an operand of another instruction. Most functions that return a
value in a register specify that register name as their "returns" string (the string HLA substitutes for
the procedure call). For example, the "str.eq(str1, str2)" function compares the two string operands
and returns true or false in AL depending on the result of the comparison. This allows you to write
code like the following:

 if(str.eq(str1, "Hello")) then

 stdout.put("str1 = 'Hello'" nl);

 endif;

HLA directly translates the IF statement into the following sequence:

 str.eq(str1, "Hello");
 if(@c) then

 stdout.put("str1= 'Hello'" nl);

 endif;

Arguably, the former version is a little more readable than the latter version. Instruction
composition, when you use it in this fashion, lets you write code that "looks" a little more high level
Public Domain Created by Randy Hyde Page 15

HLA Reference Manual 5/24/10 Chapter 1
without the compiler having to generate lots of extra code (as it would if HLA supported a
generalized arithmetic expression parser).

Like MASM, HLA supports a wide variety of high level control structures. HLA's set is both
higher level and lower level at the same time. There is a good reason HLA's control structures
aren't always as powerful as MASM's. First, with the sole exception of object method invocations,
I made a rule that HLA's high level control structures would not modify any general purpose
registers behind the programmer's back. MASM, for example, may modify the value in EAX for
certain boolean expressions or parameter values it must compute.

Although I designed HLA as a tool to teach assembly language programming, this is also a tool
that I intend to use so I included many goodies for advanced assembly language programmers. For
example, HLA's macro facilities are more powerful than I've seen in any programming-language-
based macro processor. One unique feature of HLA's macro preprocessor is the ability to create
"context free" control structures using macros. For example, suppose that you decide that you need
a new type of looping construct that HLA doesn't provide; let's say, a loop that will repeat once for
each character in a string supplied as a parameter to the loop. Let's call this loop
"OnceForEachChar" and decide on the following syntax:

 OnceForEachChar(SomeString)

 << Loop Body >>

 endOnceForEachChar;

On each iteration of this loop, the AL register will contain the corresponding character from
the string specified as the OnceForEachChar operand. You can easily implement this loop using
the following HLA macro:

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.

 TopOfLoop:

 inc((type dword [esp])); // Bump up index into string.
 #if(@IsConst(SomeString))

// Load address of string constant into EAX.

 lea(eax, SomeString);

 #else

 mov(SomeString, eax); // Get ptr to string.

 #endif
 add([esp], eax); // Point at next available character
 mov([eax], al); // Get the next available character
 cmp(al, 0); // See if we're at the end of the string
 je LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop; // Return to the top of the loop and repeat.

 LoopExit:
Public Domain Created by Randy Hyde Page 16

HLA Reference Manual 5/24/10 Chapter 1
 add(4, esp); // Remove index into string from stack.

#endmacro

Anyone familiar with MASM's macro processor should be able to figure out most of this code.
Note that the symbols "TopOfLoop" and "LoopExit" are local symbols to this macro. Hence, if you
repeat this macro several times in the code, HLA will emit different actual labels for these symbols
to the MASM output file. The "@IsConst" is an HLA compile-time function that returns true if its
operand is a constant. Obtaining the address for a constant is fundamentally different than
obtaining the address of a string variable (since HLA string variables are actually pointers to the
string data). The most interesting feature of this macro definition is the "terminator" line. This
actually defines a second macro that is active only after HLA encounters the "OnceForEachChar"
macro and control returns to the first statement after the OnceForEachChar invocation. Invocations
of "context free" macros always occur in pairs; that is, for every "OnceForEachChar" invocation
there must be a matching "endOnceForEachChar" invocation. The following program
demonstrates this macro in use; it also demonstrates that you can nest this newly created control
structure in your program:

program SampleHLApgm3;
#include("stdlib.hhf")

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.
 TopOfLoop:
 inc((type dword [esp]));
 #if(@IsConst(SomeString))

 lea(eax, SomeString);

 #else

 mov(SomeString, eax);

 #endif
 add([esp], eax);
 mov([eax], al);
 cmp(al, 0);
 je LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop;

 LoopExit:

 add(4, esp);

#endmacro
Public Domain Created by Randy Hyde Page 17

HLA Reference Manual 5/24/10 Chapter 1
static
 strVar: string := ":" nl;

begin SampleHLApgm3;

 OnceForEachChar("Hello")

 stdout.putc(al);
 OnceForEachChar(strVar)

 stdout.putc(al);

 endOnceForEachChar;

 endOnceForEachChar;

end SampleHLApgm3;

This program produces the output:

H:
e:
l:
l:
o:

Here's some sample MASM code, similar to what the HLA compiler emits (when using the -
masm and -source command-line options) for the sequence above:

strings segment page public 'data'
 align 4
?635_len dword 5
 dword 5
?635_str byte "Hello",0,0,0

strings ends

 pushd -1

?634__0278_:
 inc dword ptr [esp+0] ;(type dword [esp])
 lea eax, ?635_str
 add eax, [esp+0] ;[esp]
 mov al, [eax+0] ;[eax]
 cmp al, 0
 je ?636__0279_
 push eax
 call stdio_putc ;putc
Public Domain Created by Randy Hyde Page 18

HLA Reference Manual 5/24/10 Chapter 1
 pushd -1

?639__027d_:
 inc dword ptr [esp+0] ;(type dword [esp])
 mov eax, dword ptr ?630_strVar[0] ;strVar
 add eax, [esp+0] ;[esp]
 mov al, [eax+0] ;[eax]
 cmp al, 0
 je ?640__027e_
 push eax
 call stdio_putc ;putc
 jmp ?639__027d_

?640__027e_:
 add esp, 4
 jmp ?634__0278_

?636__0279_:
 add esp, 4

In addition to the "terminator" clause, HLA macros also support a "keyword" clause that let
you bury reserved words within a context-free language construct. For example, although the HLA
language provides a SWITCH/CASE statement, you can create a new one with slightly different
semantics. I implemented the SWITCH .. CASE .. DEFAULT .. ENDCASE statement using
HLA's macro facilities (as a demonstration of HLA's power). An HLA SWITCH statement (using
this macro) takes the following form:

switch(reg32)

 case(constantList1)

 << statements >>

 case (constantList2)

 << statements >>

 .
 .
 .

 default // This is optional

 << statements >>

endswitch;

The switch macro implements the "switch" and "endswitch" reserved words using the macro
and terminator clauses in the macro declaration. It implements the "case" and "default" reserved
words using the HLA "keyword" clause in a macro definition. The "keyword" clause is similar to
the "terminator" clause except it doesn't force the end of the macro expansion in the invoking code.
The actual code for the HLA SWITCH statement is a little too complex to present here, so I will
Public Domain Created by Randy Hyde Page 19

HLA Reference Manual 5/24/10 Chapter 1
extend the example of the OnceForEachChar macro to demonstrate how you code use the
"keyword" clause in a macro.

Let's suppose you wanted to add a "_break" clause to the "OnceForEachChar" loop (I'm using
"_break" with an underscore because "break" is an HLA reserved word). You could easily modify
the "OnceForEachChar" macro to achieve this by using the following code:

#macro OnceForEachChar(SomeString): TopOfLoop, LoopExit;

 pushd(-1); // index into string.
 TopOfLoop:

 inc((type dword [esp]));
 #if(@IsConst(SomeString))

 lea(eax, SomeString);

 #else

 mov(SomeString, eax);

 #endif
 add([esp], eax);
 mov([eax], al);
 cmp(al, 0);
 je LoopExit;

#keyword _break;
 jmp LoopExit;

#terminator endOnceForEachChar;

 jmp TopOfLoop;

LoopExit:

 add(4, esp);

#endmacro

The "#keyword" clause defines a macro ("_break") that is active between the
"OnceForEachChar" and "endOnceForEachChar" invocations. This macro simply expands to a
jmp instruction that exits the loop. Note that if you have nested "OnceForEachChar" loops and you
"_break" out of the innermost loop, the code only jumps out of the innermost loop, exactly as you
would expect.

HLA's macro facilities are part of a larger feature I refer to as the "HLA Compile-Time
Language." HLA actually contains a built-in interpreter than executes while it is compiling your
program. The compile-time language provides conditional compilation (the #IF..#ELSE..#ENDIF
statements in the previous example), interpreted procedure calls (macros), looping constructs
(#WHILE..#ENDWHILE), a very powerful constant expression evaluator, compile-time I/O
facilities (#PRINT, #ERROR, #INCLUDE, and #TEXT..#ENDTEXT), and dozens of built-in
compile time functions (like the @IsConst function above).
Public Domain Created by Randy Hyde Page 20

HLA Reference Manual 5/24/10 Chapter 1
The HLA built-in string functions (not to be confused with the HLA Standard Library's string
functions) are actually powerful enough to let you write a compiler for a high level language
completely within HLA. I mentioned earlier that it is possible to write an expression compiler
within HLA; I was serious. The HLA compile-time language will let you write a sophisticated
recursive descent parser for arithmetic expressions (and other context-free language constructs, for
that matter).

HLA is a great tool for creating low-level Domain Specific Embedded Languages (DSELs).
DSELs are mini-languages that you create on a project-by-project basis to help reduce development
time. HLA's compile time language lets you create some very high level constructs. For example,
HLA implements a very powerful string pattern matching language in the "patterns" module found
in the HLA Standard Library. This module lets you write pattern-matching programs that use
techniques found in language like SNOBOL4 and Icon. As a final example, consider the following
HLA program that translate RPN (reverse polish notation) expressions into their equivalent
assembly language (HLA) statements and displays the results to the standard output:

// This program translates user RPN input into an
// equivalent sequence of assembly language instrs (HLA fmt).

program RPNtoASM;
#include("stdlib.hhf");

static
 s: string;
 operand: string;
 StartOperand: dword;

#macro mark;

 mov(esi, StartOperand);

#endmacro

#macro delete;

 mov(StartOperand, eax);
 sub(eax, esi);
 inc(esi);
 sub(s, eax);
 str.delete(s, eax, esi);

#endmacro

procedure length(s:string); @returns("eax"); @nodisplay;
begin length;

 push(ebx);
 mov(s, ebx);
 mov((type str.strRec [ebx]).length, eax);
 pop(ebx);

end length;

begin RPNtoASM;

 stdout.put("-- RPN to assembly --" nl);
 forever
Public Domain Created by Randy Hyde Page 21

HLA Reference Manual 5/24/10 Chapter 1
 stdout.put(nl nl "Enter RPN sequence (empty line to quit): ");
 stdin.a_gets();
 mov(eax, s);
 breakif(length(s) = 0);
 while(length(s) <> 0) do

 pat.match(s);

 // Match identifiers and numeric constants

 mark;
 pat.zeroOrMoreWS();
 pat.oneOrMoreCset({'a'..'z', 'A'..'Z', '0'..'9', '_'});
 pat.a_extract(operand);
 stdout.put(" pushd(", operand, ");" nl);
 strfree(operand);
 delete;

 pat.alternate;

 // Handle the "+" operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('+');
 stdout.put
 (
 " pop(eax);" nl
 " add(eax, [esp]);" nl
);
 delete;

 pat.alternate;

 // Handle the '-' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('-');
 stdout.put
 (
 " pop(eax);" nl
 " pop(ebx);" nl
 " sub(eax, ebx);" nl
 " push(ebx);" nl
);
 delete;

 pat.alternate;

 // Handle the '*' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('*');
 stdout.put
 (
Public Domain Created by Randy Hyde Page 22

HLA Reference Manual 5/24/10 Chapter 1
 " pop(eax);" nl
 " imul(eax, [esp]);" nl
);
 delete;

 pat.alternate;

 // handle the '/' operator.

 mark;
 pat.zeroOrMoreWS();
 pat.oneChar('/');
 stdout.put
 (
 " pop(ebx);" nl
 " pop(eax);" nl
 " cdq(); " nl
 " idiv(ebx, edx:eax);" nl
 " push(ebx);" nl
);
 delete;

 pat.if_failure

 // If none of the above, it must be an error.

 stdout.put(nl "Illegal RPN Expression" nl);
 mov(s, ebx);
 mov(0, (type str.strRec [ebx]).length);

 pat.endmatch;

 endwhile;

 endfor;

end RPNtoASM;

Consider for a moment the code that matches an identifier or an integer constant:

 mark;
 pat.zeroOrMoreWS();
 pat.oneOrMoreCset({'a'..'z', 'A'..'Z', '0'..'9', '_'});
 pat.a_extract(operand);
 stdout.put(" pushd(", operand, ");" nl);
 strfree(operand);
 delete;

The "mark;" invocation saves a pointer into the "s" string where the current identifier starts.
The pat.ZeroOrMoreWS pattern matching function skips over zero or more whitespace characters.
Public Domain Created by Randy Hyde Page 23

HLA Reference Manual 5/24/10 Chapter 1
The pat.OneOrMoreCset pattern match function matches one or more alphanumeric and underscore
characters (a crude approximation for identifiers and integer constants). The pat.a_extract function
makes a copy of the string between the "mark" and the "a_extract" calls (this corresponds to the
whitespace and identifier/constant). The stdout.put statement emits the HLA machine instruction
that will push this operand on to the x86 stack for later computations. The remaining statements
clean up allocated string storage space and delete the matched string from "s".

Although the "pat.xxxxx" statements look like simple function calls, there's actually a whole
lot more going on here. HLA's pattern matching facilities, like SNOBOL4 and Icon, support
success, failure, and backtracking. For example, if the pat.oneOrMoreChar function fails to match
at least one character from the set, control does not flow down to the pat.a_extract function.
Instead, control flows to the next "pat.alternate" or "pat.if_failure" clause. Some calls to HLA
pattern matching routines may even cause the program to back up in the code and reexecute
previously called functions in an attempt to match a difficult pattern (i.e., the backtracking
component). This article is not the place to get into the theory of pattern matching; however, these
few examples should be sufficient to show you that something really special is going on here. And
all these facilities were developed using the HLA compile-time language. This should give you a
small indication of what is possible when using the HLA compile-time language facilities.
Public Domain Created by Randy Hyde Page 24

HLA Reference Manual 5/24/10 Chapter 2
2 The Quick Guide to HLA

2.1 Overview
This guide is designed to help those who are already familiar with x86 assembly language

programming to get up to speed with HLA as rapidly as possible. HLA was designed as a tool for
teaching assembly language programming to University/College students who have no prior
experience with assembly language but have some high level language programming experience
(C/C++, Pascal, Java, etc.). The documentation that exists for HLA comes in two forms: the HLA
reference manuals and the "Art of Assembly Language Programming/32-bit Edition." The "Art of
Assembly" text is suitable for students and beginners to assembly language programming; it starts
from square one and teaches assembly language programming using HLA. Unfortunately, this text
is not particularly suitable for those programmers who already know assembly language. The HLA
reference manuals are great when you need to look up some particular feature. They do fully
explain the HLA language, however, the HLA language is rather large so the assembly programmer
who is new to HLA is faced with reading a tremendous amount of material just to get started with
HLA. Most individuals won’t bother. The purpose of this guide is to present a very small subset of
HLA to the advanced x86 assembly language programmer in as few pages as possible. This guide
does not attempt to teach any of HLA’s special features; it assumes the reader is using an
assembler such as MASM, TASM, NASM, Gas, etc., and is interested in learning how to write
assembly code using HLA in a fashion comparable to those assemblers. Of course, the whole
reason for such a person to learn HLA is to be able to take advantage of HLA’s advanced features.
However, one has to learn to walk before they run, this is the guide that will get that person
walking. Once the reader is comfortable using HLA in a "traditional assembly" sense, then that
reader can refer to the HLA reference manuals in order to learn the more advanced features of the
language.

2.2 Running HLA
HLA is a command line tool that you run from the Win32, Mac OSX, Linux, or FreeBSD

Command Prompt. This document assumes that you are familiar with basic command prompt
syntax and you’re familiar with various commands like "DIR" and "RENAME" (under Windows)
or "ls" and "mv" (under *NIX). To run HLA from the command line prompt, you use a command
like the following:

hla optional_command_line_parameters Filename_list

The filename list consists of one or more unambiguous filenames having the extension: HLA,
ASM, or OBJ. HLA will first run the HLAPARSE program on all files with the HLA extension
(producing files with the same base name and an .obj/.o extension). Finally, HLA runs the linker to
combine all the object files together. The ultimate result, assuming there were no errors along the
way, is an executable file .

HLA supports the following command line parameters:

 options:
 -@ Do not generate linker response file.
 -@@ Always generate a linker response file.
 -thread Enable thread-safe code generation and linkage.
 -axxxxx Pass xxxxx as command line parameter to assembler.
 -dxx Define VAL symbol xx to have type BOOLEAN and value TRUE.
 -dxx=yy Define VAL symbol xx to have type STRING and value "yy".
 -e:name Executable output filename (appends ".exe" under Windows).
 -x:name Executable output filename (does not append ".exe").
 -b:name Binary object file output name (only when using HLABE).
 -i:path Specifies path to HLA include file directory.
 -lib:path Specifies path to the HLALIB.LIB file.
Public Domain Created by Randy Hyde Page 25

HLA Reference Manual 5/24/10 Chapter 2
 -license Displays copyright and license info for the HLA system.
 -lxxxxx Pass xxxxx as command line parameter to linker.
 -m Create a map file during link
 -p:path Specifies path to hold temporary working files.
 -r:name <name> is a text file containing cmd line options.
 -obj:path Specifies path to place object files.
 -main:name Use ‘name’ as the name of the HLA main program.
 -source Compile to human readable source file format.
 -s Compile to .ASM files only.
 -c Compile and assemble to object files only.
 -fasm Use FASM as back-end assembler (applies to -s and -c)
 -gas Use GAS as back-end (Linux/BSD, applies to -s and -c)
 -gasx Use Gas as back-end (Mac OSX, --s and -c only)
 -hla Produce a pseudo-HLA source file as output (implies -s).
 -hlabe (Default) Produce object code using the HLA Back Engine.
 -masm Use MASM as back-end assembler (applies to -s and -c)
 -nasm Use NASM as back-end assembler (applies to -s and -c)
 -tasm Use TASM as back-end assembler (applies to -s and -c)
 -sym Dump symbol table after compile.
 -win32 Generate code for Win32 OS.
 -linux Generate code for Linux OS.
 -freebsd Generate code for FreeBSD OS.
 -macos Generate code for Mac OSX.
 -test Send diagnostic info to stdout rather than stderr (This
 option is intended for HLA test/debug purposes).
 -v Verbose compile.
 -level=h High-level assembly language
 -level=m Medium-level assembly language
 -level=l Low-level assembly language
 -level=v Machine-level assembly language (very low level).
 -w Compile as windows app (default is console app).
 -? Display this help message.

Please see the appropriate chapter in the HLA Reference Manual chapter Using the HLA
Command-Line Compiler for an explanation of each of these options. Most of the time, you will
not use any of these options when compiling typical HLA programs. The "-c" and "-s" options are
the ones you will use most commonly (and this document assumes that you understand their
purpose).

2.3 HLA Language Elements
Starting with this section we being discussing the HLA source language. HLA source files

must contain only seven-bit ASCII characters. These are Windows text files with each source line
record containing a carriage return/line feed termination sequence or *NIX (Mac OSX, Linux, and
FreeBSD) source files with a line feed terminating each line. White space consists of spaces, tabs,
and newline sequences. Generally, HLA does not appreciate other control characters in the file and
may generate an error if they appear in the source file.

2.3.1 Comments
HLA uses "//" to lead off single line comments. It uses "/*" to begin an indefinite length

comments and it uses "*/" to end an indefinite length comment. C/C++, Java, and Delphi users will
be quite comfortable with this notation.

2.3.2 Special Symbols
The following characters are HLA lexical elements and have special meaning to HLA:
Public Domain Created by Randy Hyde Page 26

HLA Reference Manual 5/24/10 Chapter 2
* / + - () [] { } < > : ; , . = ? & | ^ ! @
&& || <= >= <> != == := .. << >>
#()# #{ }#

This document will not explain the meaning of all these symbols, only the minimum necessary to
write simple HLA programs. See the HLA Reference Manual for more details.

2.3.3 Reserved Words
HLA supports a large number of reserved words (mostly, they are machine instructions). For

brevity, that list does not appear here; please see the HLA reference manual chapter HLA Language
Elements for a complete and up-to-date list. Note that HLA does not allow you to use a reserved
word as a program identifier, so you should scan over the list at least once to familiarize yourself
with reserved words that you might be used to using as identifiers in your assembly language
programs. HLA reserved words are case insensitive. That is, "MOV" and "mov" (as well as any
permutation with respect to case) both represent the HLA "mov" reserved word.

2.3.4 External Symbols and Assembler Reserved Words
HLA v2.0 produces an option to produce an assembly language file during compilation and

can invoke an assembler such as MASM, FASM, NASM, or Gas to complete the compilation
process. HLA automatically translates normal identifiers you declare in your program to benign
identifiers in the assembly language program. However, HLA does not translate EXTERNAL
symbols, but preserves these names in the assembly language file it produces. Therefore, you must
take care not to use external names that conflict with the underlying assembler’s set of reserved
words or that assembler will generate an error when it attempts to process HLA’s output.

For a list of the back-end assembler's reserved words, please see the documentation for the
assembler you are using to process HLA’s output (i.e., MASM, NASM, FASM, or Gas).

2.3.5 HLA Identifiers
HLA identifiers must begin with an alphabetic character or an underscore. After the first character, the
identifier may contain alphanumeric and underscore symbols. There is no technical limit on identifier
length in HLA, but you should avoid external symbols greater than about 32 characters in length since the
assemblers and linkers that process HLA output may not be able to handle such symbols.
HLA identifiers are always case neutral. This means that identifiers are case sensitive insofar as you must
always spell an identifier exactly the same (with respect to alphabetic case). However, you are not allowed
to declare two identifiers whose only difference is alphabetic case.

2.3.6 External Identifiers
HLA lets you explicitly provide a string for external identifiers. External identifiers are not

limited to the format for HLA identifiers. HLA allows any string constant to be used for an
external identifier. It is your responsibility to use only those characters that are legal in the back-
end assembler (if you are using one). Note that this feature lets you use symbols that are not legal
in HLA but are legal in external code (e.g., Win32 APIs use the ’@’ character in identifiers). See
the discussion of the external option for more details.

2.4 Data Types in HLA

2.4.1 Native (Primitive) Data Types in HLA
HLA provides the following basic primitive types:

One-byte types: byte, boolean, enum, uns8, int8, and char.
Two-byte types: word, uns16, int16.
Four-byte types: dword, uns32, int32, real32, string, pointer
Eight-byte types: uns64, int64, qword, thunk, and real64.
Ten-Byte types: tbyte, and real80.
Sixteen-byte types: uns128, int128, lword, and cset
Public Domain Created by Randy Hyde Page 27

HLA Reference Manual 5/24/10 Chapter 2
For details on these particular types, please consult the HLA Reference Manual chapter HLA
Data Types. This document will make use of the following types:
byte, word, dword, string, real32, qword, real64, and real80

These are the typical types assembly language programmers use.

BYTE variables and objects may hold integer numeric values in the range -128..+255, any
ASCII character constant, and the two predefined boolean values true (1) and false (0). Normally,
HLA does a small amount of type checking; however, you can associate any value that can fit into
eight bits with a byte-sized variable (or other object).

WORD variables and object may hold integer numeric values in the range -32768..+65535.
Generally, HLA does not allow the association of other values with a WORD object.

DWORD variables and objects may hold integer numeric values in the range -
2147483647..+4294967295, or the address of an object (using the "&" address-of operator).

STRING variables are also DWORD objects. STRING objects hold the address of a sequence
of zero or more ASCII characters that end with a zero byte. In the four bytes immediately
preceding the location contained in the string pointer is the current length of the string. In the four
bytes preceding the current length is the maximum allowable length of the string. Note that HLA
strings are "read-only" compatible with ASCIIZ strings used by Windows and C/C++ (read-only
meaning that you can pass an HLA string to a Windows API or C/C++ function but that function
should not modify the string).

QWORD, UNS64, and INT64 objects consume eight bytes of memory. TBYTE objects
consume ten bytes (80 bits). LWORD, UNS128, and INT128 values are also legal and support
128-bit hexadecimal, unsigned, or signed constants.

REAL32, REAL64, and REAL80 types in HLA support the three different IEEE floating-point
formats.

2.4.2 Composite Data Types
In addition to the primitive types above, HLA supports arrays, records (structures), unions,

classes, and pointers of the above types (except for text objects).

2.4.3 Array Data Types
HLA allows you to create an array data type by specifying the number of array elements after a

type name. Consider the following HLA type declaration that defines intArray to be an array of
dword objects:

type intArray : dword[16];

The "[16]" component tells HLA that this type has 16 four-byte double words. HLA arrays
use a zero-based index, so the first element is always element zero. The index of the last element,
in this example, is 15 (total of 16 elements with indices 0..15).

HLA also supports multidimensional arrays. You can specify multidimensional arrays by
providing a list of indices inside the square brackets, e.g.,

type intArray4x4 : dword[4, 4];
type intArray2x2x4 : dword[2,2,4];

2.4.4 Record Data Types1

HLA’s records allow programmers to create data types whose fields can be different types.
The following HLA static variable declaration defines a simple record with four fields:

static Planet:

1. For C/C++ programmers: an HLA record is similar to a C struct. In language design terminology,
a record is often referred to as a "cartesian product."
Public Domain Created by Randy Hyde Page 28

HLA Reference Manual 5/24/10 Chapter 2
record

x: dword;
y: dword;
z: dword;
density:real64;

endrecord;

Objects of type Planet will consume 20 bytes of storage at run-time.
The fields of a record may be of any legal HLA data type including other composite data types.

You use dot-notation to access fields of a record object, e.g.,
mov(Planet.x, eax);

2.5 Literal Constants
Literal constants are those language elements that we normally think of as non-symbolic

constant objects. HLA supports a wide variety of literal constants. The following sections describe
those constants.

2.5.1 Numeric Constants
HLA lets you specify several different types of numeric constants.

2.5.1.1 Decimal Constants
The first and last characters of a decimal integer constant must be decimal digits (0..9).

Interior positions may contain decimal digits and underscores. The purpose of the underscore is to
provide a better presentation for large decimal values (i.e., use the underscore in place of a comma
in large values). Example: 1_234_265.

2.5.1.2 Hexadecimal Constants
Hexadecimal literal constants must begin with a dollar sign ("$") followed by a hexadecimal

digit and must end with a hexadecimal digit (0..9, A..F, or a..f). Interior positions may contain
hexadecimal digits or underscores. Hexadecimal constants are easiest to read if each group of four
digits (starting from the least significant digit) is separated from the others by an underscore. E.g.,
$1A_2F34_5438.

2.5.1.3 Binary Constants
Binary literal constants begin with a percent sign ("%") followed by at least one binary digit (0/

1) and they must end with a binary digit. Interior positions may contain binary digits or underscore
characters. Binary constants are easiest to read if each group of four digits (starting from the least
significant digit) is separated from the others by an underscore. E.g., %10_1111_1010.

2.5.1.4 Real (Floating Point) Constants
Floating point (real) literal constants always begin with a decimal digit (never just a decimal

point). A string of one or more decimal digits may be optionally followed by a decimal point and
zero or more decimal digits (the fractional part). After the optional fractional part, a floating point
number may be followed by "e" or "E", a sign ("+" or "-"), and a string of one or more decimal
digits (the exponent part). Underscores may appear between two adjacent digits in the floating
point number; their presence is intended to substitute for commas found in real-world decimal
numbers.

2.5.1.5 Boolean Constants
Boolean constants consist of the two predefined identifiers true and false. Note that your

program may redefine these identifiers, but doing so is incredibly bad programming style.

2.5.1.6 Character Constants
Character literals generally consist of a single (graphic) character surrounded by apostrophes.

To represent the apostrophe character, you use four apostrophes, e.g., ‘’’’.
Public Domain Created by Randy Hyde Page 29

HLA Reference Manual 5/24/10 Chapter 2
Another way to specify a character constant is by typing the "#" symbol followed by a numeric
literal constant (decimal, hexadecimal, or binary). Examples: #13, #$D, #%1101.

2.5.1.7 String Constants
String literal constants consist of a sequence of (graphic) characters surrounded by quotes. To

embed a quote within a string, insert a pair of quotes into the string, e.g., "He said ""This"" to me."
If two string literal constants are adjacent in a source file (with nothing but whitespace between

them), then HLA will concatenate the two strings and present them to the parser as a single string.
Furthermore, if a character constant is adjacent to a string, HLA will concatenate the character and
string to form a single string object. This is useful, for example, when you need to embed control
characters into a string, e.g.,

"This is the first line" #$d #$a "This is the second line" #$d #$a

HLA treats the above as a single string with a newline sequence (CR/LF) at the end of each of the
two lines of text.

2.5.1.8 Pointer Constants
HLA allows a very limited form of a pointer constant. If you place an ampersand in front of a static
object’s name (i.e., the name of a static variable, readonly variable, uninitialized (storage)
variable, procedure, method, or iterator), HLA will compute the run-time offset of that variable.
Pointer constants may not be used in arbitrary constant expressions. You may only use pointer
constants in expressions used to initialize static or readonly variables or as constant expressions in
80x86 instructions.

2.5.1.9 Structured Constants
HLA also supports certain structured constants including character set constants, array

constants, union constants and record constants. Please see the HLA Reference Manual chapter
HLA Constants for more details.

2.6 Constant Expressions in HLA
HLA provides a rich expression evaluator to process assembly-time expressions. HLA

supports the following operators (sorting by decreasing precedence):

! (unary not),- (unary negation)
*, div, mod, /, <<, >>
+, -
=, = =, <>, !=, <=, >=, <, >
&, |, &, in

!expr

 The expression must be either boolean or a number. For boolean values, not ("!") computes
the standard logical not operation. For numbers, not ("!") computes the bitwise not operation on
the bits of the number.

- expr (unary negation operator)
expr1 * expr2 (multiplication operator)
expr1 div expr2 (integer division operator)
expr1 mod expr2 (integer remainder operator)
expr1 / expr2 (real division operator)
expr1 << expr2 (integer shift left operator)
expr1 >> expr2 (integer shift right operator)
expr1 + expr2 (addition operator)
expr1 - expr2 (subtraction operator)
expr1 = expr2 (equality comparison operator)
expr1 <> expr2 (inequality comparison operator)
Public Domain Created by Randy Hyde Page 30

HLA Reference Manual 5/24/10 Chapter 2
expr1 < expr2 (less than comparison operator)
expr1 <= expr2 (less than or equal comparison operator)
expr1 > expr2 (greater than comparison operator)
expr1 >= expr2 (greater or equal comparison operator)
expr1 & expr2 (logical/boolean AND operator)
expr1 | expr2 (logical/boolean OR operator)
expr1 ^ expr2 (logical/boolean XOR operator)
(expr) (override operator precedence)

HLA supports several other constant operators. Furthermore, many of the above operators are
overloaded depending on the operand types. Note that for numeric (integer) operands, HLA fully
support 128-bit arithmetic. Please see the HLA Reference Manual chapter HLA Constants for more
details.

2.7 Program Structure

An HLA program uses the following general syntax:

program identifier ;
declarations

begin identifier;
statements

end identifier;

The three identifiers above must all match. The declaration section (declarations) consists of
type, const, val, var, static, storage, readonly, procedure, iterator, and method definitions.
Any number of these sections may appear and they may appear in any order; more than one of each
section may appear in the declaration section.

If you wish to write a library module that contains only procedures and no main program, you
would use an HLA unit. Units have a syntax that is nearly identical to programs, there isn’t a begin
associated with the unit, e.g.,

unit TestPgm;

procedure LibraryRoutine;
begin LibraryRoutine;

<< etc. >>
end LibraryRoutine;

end TestPgm;

2.8 Procedure Declarations
Procedure declarations are nearly identical to program declarations.

procedure identifier; @noframe;
begin identifier;

statements
end identifier;

Note that HLA procedures provide a very rich set of syntactical options. The template above
corresponds to the syntax that creates procedures most closely resembling those that other
assemblers use. HLA’s procedures allow parameters, local variable declarations, and many other
features this document won’t describe. For more details, please see the HLA Reference Manual
chapter on HLA Procedures.
Public Domain Created by Randy Hyde Page 31

HLA Reference Manual 5/24/10 Chapter 2
Note, and this is very important, that the procedure option @noframe must appear in the
procedure declaration. Without this declaration, HLA inserts some additional code into your
procedure and it will probably fail to work as you intend (indeed, it’s likely the inserted code will
crash when it runs).

Example of a procedure:
procedure ProcDemo; @noframe;
begin ProcDemo;

add(5, eax);
ret();

end ProcDemo;

2.8.1 Declarations
Programs, units, procedures, methods, and iterators all have a declaration section. Classes and

namespaces also have a declaration section, though it is somewhat limited. A declaration section
can contain one or more of the following components (among other things this document doesn’t
cover):

• A type section.
• A const section.
• A static section.
• A procedure.

The order of these sections is irrelevant as long as you ensure that all identifiers used in a
program are defined before their first use. Furthermore, as noted above, you may have multiple
sections within the same set of declarations. For example, the two const sections in the following
procedure declaration are legal:

 program TwoConsts;
 const MaxVal := 5;
 type Limits: dword[MaxVal];
 const MinVal := 0;
 begin TwoConsts;

 //...

 end TwoConsts;

2.8.2 Type Section
You can declare user-defined data types in the type section. The type section appears in a

declaration section and begins with the reserved word type. It continues until encountering another
declaration reserved word (e.g., const, var, or val) or the reserved word begin. A typical type
definition begins with an identifier followed by a colon and a type definition. The following
paragraphs demonstrate some of the legal forms of type definitions. See the HLA Reference
Manual chapter on HLA Program Structure for more examples.

id1 : id2; // Defines id1 to be the same as type id2.
id1 : id2 [dim_list]; // Defines id1 to be an array of type id2.
id1 : record // Defines id1 as a record type.

field_declarations
endrecord;
Public Domain Created by Randy Hyde Page 32

HLA Reference Manual 5/24/10 Chapter 2
2.8.3 Const Section
You may declare manifest constants in the const section of an HLA program. It is illegal to

attempt to change the value of a constant at some later point during assembly. Of course, at run-
time the constant always has a fixed value.

The constant declaration section begins with the reserved word const and is followed by a
sequence of constant definitions. The constant declaration section ends when HLA encounters a
keyword such as const, type, var, val, etc. Actual constant definitions take the forms specified in
the following paragraphs.

id := expr; // Assigns the value and type of expr to id
id1 : id2 := expr; // Creates constant id1 of type id2 of value expr.

Note that HLA supports several types of constants this section doesn’t discuss (e.g., array and
record constants and well as compile-time variables). See the HLA Reference Manual chapter on
HLA Program Structure for more details.

2.8.4 Static Section
The static section lets you declare static variables you can reference at run-time by your code.

The following paragraphs list some of the forms that are legal in the static section. As usual, see
the HLA Reference Manual chapter on HLA Program Structure for lots of additional features that
HLA supports in the static section.
static

id1 : id2; // Declares variable id1 of type id2
id1 : id2 := expr; // Declares variable id1 of type id2, init’d with

expr
id1 : id2[expr]; // Declares array id1 of type id2 with expr

elements

2.8.4.1 The @NOSTORAGE Option
The @nostorage option tells HLA to associate the current offset in the segment with the

specified variable, but don’t actually allocate any storage for the object. This option effectively
creates an alias of the current variable with the next object you declare in one of the static sections.
Consider the following example:
static

b: byte; @nostorage;
w: word; @nostorage;
d: dword;

Because the b and w variables both have the @nostorage option associated with them, HLA
does not reserve any storage for these variables. The d variable does not have the @nostorage
option, so HLA does reserve four bytes for this variable. The b and w variables, since they don’t
have storage associated with them, share the same address in memory with the d variable.

2.8.4.2 The EXTERNAL Option
The external option gives you the ability to reference variables that you declare in other files.

Like the external clause for procedures, there are two different syntaxes for the external clause
appearing after a variable declaration:

varName: varType; external;
varName: varType; external("external_Name");

The first form above uses the variable’s name for both the internal and external names. The second
form uses varName as the internal name that HLA uses and it associates this variable with
external_Name in the external modules. The external option is always the last option associated with
a variable declaration.

If the actual variable definition for an external object appears in a source file after an external
declaration, this tells HLA that the definition is a public variable that other modules may access
Public Domain Created by Randy Hyde Page 33

HLA Reference Manual 5/24/10 Chapter 2
(the default is local to the current source file). This is the only way to declare a variable public so
that other modules can use it. Usually, you would put the external declaration in a header file that
all modules (wanting to access the variable) include; you also include this header file in the source
file containing the actual variable declaration.

2.8.5 Macros
HLA has one of the most powerful macro expansion facilities of any programming language.

HLA’s macros are the key to extending the HLA language. If you’re a big user of macros then you
will want to read the HLA Reference Manual chapter The HLA Compile-Time Language to learn all
about HLA’s powerful macro facilities. This section will describe HLA’s limited "Standard
Macro" facility that is comparable to the macro facilities other assemblers provide.

You can declare macros in the declaration section of a program using the following syntax:

#macro identifier (optional_parameter_list) ;
statements

#endmacro;

Example:

#macro MyMacro;
?i = i + 1;

#endmacro;

The optional parameter list must be a list of one or more identifiers separated by commas.
HLA automatically associates the type "text" with all macro parameters (except for one special
case noted below). Example:

#macro MacroWParms(a, b, c);
?a = b + c;

#endmacro;

If the macro does not allow any parameters, then you follow the identifier with a semicolon
(i.e., no parentheses or parameter identifiers). See the first example in this section for a macro
without any parameters.

 Occasionally you may need to define some symbols that are local to a particular macro
invocation (that is, each invocation of the macro generates a unique symbol for a given identifier).
The local identifier list allows you to do this. To declare a list of local identifiers, simply following
the parameter list (after the parenthesis but before the semicolon) with a colon (":") and a comma
separated list of identifiers, e.g.,

#macro ThisMacro(parm1):id1,id2;
...

HLA automatically renames each symbol appearing in the local identifier list so that the new
name is unique throughout the program. HLA creates unique symbols of the form "_XXXX_"
where XXXX is some hexadecimal numeric value. To guarantee that HLA can generate unique
symbols, you should avoid defining symbols of this form in your own programs (in general,
symbols that begin and end with an underscore are reserved for use by the compiler and the HLA
standard library). Example:

#macro LocalSym : i,j;

j: cmp(ax, 0)
jne(i)
dec(ax)
jmp(j)

i:
Public Domain Created by Randy Hyde Page 34

HLA Reference Manual 5/24/10 Chapter 2
#endmacro;

To invoke a macro, you simply supply its name and an appropriate set of parameters. Unless
you specify a variable number of parameters (using the array syntax) then the number of actual
parameters must exactly match the number of formal parameters. If you specify a variable number
of parameters, then the number of actual parameters must be greater than or equal to the number of
formal parameters (not counting the array parameter).

Actual macro parameters consist of a string of characters up to, but not including a separate
comma or the closing parentheses, e.g.,

example(v1, x+2*y)

"v1" is the text for parameter #1, "x+2*y" is the text for parameter #2. Note that HLA strips all
leading whitespace and control characters before and after the actual parameter when expanding
the code in-line. The example immediately above would expand do the following:

?v1 := x+2*y;

 If (balanced) parentheses appear in some macro’s actual parameter list, HLA does not count
the closing parenthesis as the end of the macro parameter. That is, the following is legal:

example(v1, ((x+2)*y))

This expands to:

?v1 := ((x+2)*y);

2.9 The #Include Directive
 Like most languages, HLA provides a source inclusion directive that inserts some other file

into the middle of a source file during compilation. HLA’s #INCLUDE directive is very similar to
the pragma of the same name in C/C++ and you primarily use them both for the same purpose:
including library header files into your programs.

HLA’s include directive has the following syntax:

#include(string_expression);

2.10 The Conditional Compilation Statements (#if)
The conditional compilation statements in HLA use the following syntax:

#if(constant_boolean_expression)

<< Statements to compile if the >>
<< expression above is true. >>

#elseif(constant_boolean_expression)

<< Statements to compile if the >>
<< expression immediately above >>
<< is true and the first expres->>
<< sion above is false. >>
Public Domain Created by Randy Hyde Page 35

HLA Reference Manual 5/24/10 Chapter 2
#else

<< Statements to compile if both >>
<< the expressions above are false. >>

#endif

 The #elseif and #else clauses are optional. As you would expect, there may be more than one
#elseif clause in the same conditional if sequence.

Unlike some other assemblers and high-level languages, HLA’s conditional compilation
directives are legal anywhere whitespace is legal. You could even embed them in the middle of an
instruction! While directly embedding these directives in an instruction isn’t recommended
(because it would make your code very hard to read), it’s nice to know that you can place these
directives in a macro and then replace an instruction operand with a macro invocation.

An important thing to note about this directive is that the constant expression in the #if and
#elseif clauses must be of type boolean or HLA will emit an error. Any legal constant expression
that produces a boolean result is legal here.

Keep in mind that conditional compilation directives are executed at compile-time, not at run-
time. You would not use these directives to (attempt to) make decisions while your program is
actually running.

2.11 The 80x86 Instruction Set in HLA
One of the most obvious differences between HLA and standard 80x86 assembly language is

the syntax for the machine instructions. The two primary differences are the fact that HLA uses a
functional notation for machine instructions and HLA arranges the operands in a (source, dest)
format rather than the (dest, source) format used by Intel.

2.11.1 Zero Operand Instructions (Null Operand Instructions)
The following instructions do not require any operands. There are two sytactically allowable

forms for each instruction:
instr;
instr();

The zero-operand instruction mnemonics are

aaa, aad, aam, aas, cbw, cdq, clc, cld, cli, cmc, cmpsb, cmpsd, cmpsw, cpuid, cwd, cwde, daa,
das,

insb, insd, insw, into, iret, iretd, lahf, leave, lodsb, lodsd, lodsw, movsb, movsd, movsw, nop,
outsb,

outsd, outsw, popad, popa, popf, popfd, pusha, pushad, pushf, pushfd, rdtsc, rep.insb, rep.insd,
rep.insw, rep.movsb, rep.movsd, rep.movsw, rep.outsb, rep.outsd, rep.outsw, rep.stosb,

rep.stosd,
rep.stosw, repe.cmpsb, repe.cmpsd, repe.cmpsw, repe.scasb, repe.scasd, repe.scasw,

repne.cmpsb,
repne.cmpsd, repne.cmpsw, repne.scasb, repne.scasd, repne.scasw, sahf, scasb, scasd, scasw,
stc, std, sti, stosb, stosd, stosw, wait, xlat

2.11.2 General Arithmetic and Logical Instructions
These instructions include adc, add, and, mov, or, sbb, sub, test, and xor. They all take the

same basic form:

Generic Form:

adc(source, dest);
add(source, dest);
and(source, dest);
Public Domain Created by Randy Hyde Page 36

HLA Reference Manual 5/24/10 Chapter 2
mov(source, dest);
sbb(source, dest);
sub(source, dest);
test(source, dest);
xor(source, dest);

2.11.3 The XCHG Instruction
 The xchg instruction allows the following syntactical forms:

Generic Form:

xchg(source, dest);

2.11.4 The CMP Instruction
The "cmp" instruction uses the following general forms:
Generic:

cmp(LeftOperand, RightOperand);

Note that the CMP instruction’s operands are ordered "dest, source" rather than the usual
"source,dest" format (that is, the operands are in the same order as MASM expects them). This is
to allow an intuitive use of the instruction mnemonic (that is, CMP normally reads as "compare
dest to source."). We will avoid this confusion by simply referring to the operands as the "left
operand" and the "right operand". Left vs. right signifies the placement of the operands around a
comparison operator like "<=" (e.g., "left <= right").

2.11.5 The Multiply Instructions
HLA supports several variations on the 80x86 "MUL" and IMUL instructions. Some of the

supported forms are:

Standard Syntax:
mul(src)
imul(src)

intmul(const, Reg)
intmul(const, Reg, Reg)
intmul(Reg, Reg)
intmul(mem, Reg)

The first, and probably most important, thing to note about HLA’s multiply instructions is that
HLA uses a different mnemonic for the extended-precision integer multiply versus the single-
precision integer multiply (i.e., imul vs. intmul).

Note that the forms listed above correspond to the standard mul and imul instructions most
assemblers provide. HLA actually provides several additional forms, please see the HLA
documentation on "The 80x86 Instruction Set in HLA" for more details.
Public Domain Created by Randy Hyde Page 37

HLA Reference Manual 5/24/10 Chapter 2
2.11.6 The Divide Instructions
HLA support several variations on the 80x86 DIV and IDIV instructions. The supported forms

are:

Generic Forms:

div(source);
idiv(source);

Note that the forms listed above correspond to the standard div and idiv instructions most
assemblers provide. HLA actually provides several additional forms; please see the HLA Reference
manual chapter on The 80x86 Instruction Set in HLA for more details.

2.11.7 Single Operand Arithmetic and Logical Instructions
These instructions include dec, inc, neg, and not. They take the following general forms

(substituting the specific mnemonic as appropriate):

Generic Form:

dec(dest);
inc(dest);
neg(dest);
not(dest);

2.11.8 Shift and Rotate Instructions
These instructions include rcl, rcr, rol, ror, sal, sar, shl, and shr. These instructions support

the following generic syntax, making the appropriate mnemonic substitution.

Generic Form:

shl(count, dest);
shr(count, dest);
sar(count, dest);
sal(count, dest);
rcl(count, dest);
rcr(count, dest);
rol(count, dest);
ror(count, dest);

2.11.9 The Double Precision Shift Instructions
These instruction use the following general form:

Generic Form:

shld(count, source, dest)
Public Domain Created by Randy Hyde Page 38

HLA Reference Manual 5/24/10 Chapter 2
shrd(count, source, dest)

2.11.10 The Lea Instruction
These instructions use the following syntax:

lea(Reg32, memory)
lea(Reg32, ProcID)

lea(Reg32, LabelID)

Note: HLA does not support an lea instruction that loads a 16-bit address into a 16-bit register.
That form of the lea instruction is not useful in 32-bit programs running on 32-bit operating
systems.

2.11.11 The Sign and Zero Extension Instructions
The HLA movsx and movzx instructions use the following syntax:

Generic Forms:

movsx(source, dest);
movzx(source, dest);

2.11.12 The Push and Pop Instructions
These instructions take the following general forms:
pop(reg);
pop(mem);
pushw(Reg16)
pushw(memory)
pushw(Const)

pushd(Reg32)
pushd(memory)
pushd(Const)

These instructions push or pop their specified operand.

2.11.13 Procedure Calls
Given a procedure or a DWORD variable (containing the address of a procedure) named

"MyProc" you can call this procedure as follows:

call(MyProc);

HLA actually supports several other syntaxes for calling procedures, including a syntax that
will automatically push parameters on the stack for you. See the HLA Reference Manual chapter
on HLA Procedures for more details.
Public Domain Created by Randy Hyde Page 39

HLA Reference Manual 5/24/10 Chapter 2
2.11.14 The Ret Instruction
The ret statement allows two syntactical forms:

ret();
ret(integer_constant_expression);

2.11.15 The Jmp Instructions
The HLA jmp instruction supports the following syntax:

jmp Label;
jmp ProcedureName;
jmp(dwordMemPtr);
jmp(anonMemPtr);
jmp(reg32);

2.11.16 The Conditional Jump Instructions
 These instructions include ja, jae, jb, jbe, jc, je, jg, jge, jl, jle, jo, jp, jpe, jpo, js, jz, jna,

jnae, jnb, jnbe, jnc, jne, jng, jnge, jnl, jnle, jno, jnp, jns, jnz, jcxz, jecxz, loop, loope, loopz,
loopne, and loopnz. They all take the following generic form (substituting the appropriate
instruction for ja).

ja LocalLabel;

2.11.17 The Conditional Set Instructions
These instructions include: seta, setae, setb, setbe, setc, sete, setg, setge, setl, setle, seto, setp,

setpe, setpo, sets, setz, setna, setnae, setnb, setnbe, setnc, setne, setng, setnge, setnl, setnle,
setno, setnp, setns, and setnz. They take the following generic forms (substituting the appropriate
mnemonic for seta):

seta(Reg8);
seta(mem);

5.18^: The Conditional Move Instructions

These instructions include cmova, cmovae, cmovb, cmovbe, cmovc, cmove, cmovg, cmovge,
cmovl, cmovle, cmovo, cmovp, cmovpe, cmovpo, cmovs, cmovz, cmovna, cmovnae, cmovnb,
cmovnbe, cmovnc, cmovne, cmovng, cmovnge, cmovnl, cmovnle, cmovno, cmovnp, cmovns,
and cmovnz. They use the following general syntax:

CMOVcc(src, dest);

Allowable operands:

CMOVcc(reg16, reg16);

CMOVcc(reg32, reg32);

CMOVcc(mem16, reg16);

CMOVcc(mem32, reg32);
Public Domain Created by Randy Hyde Page 40

HLA Reference Manual 5/24/10 Chapter 2
These instructions move the data if the specified condition is true (specified by the cc
condition). If the condition is false, these instructions behave like a no-operation.

2.11.18 The Input and Output Instructions
The in and out instructions use the following syntax:

in(port, al)
in(port, ax)
in(port, eax)

in(dx, al)
in(dx, ax)
in(dx, eax)

out(al, port)
out(ax, port)
out(eax, port)

out(al, dx)
out(ax, dx)
out(eax, dx)

The "port" parameter must be an unsigned integer constant in the range 0..255. Note that these
instructions may be privileged instructions when running under 32-bit operating systems. Their use
may generate a fault in certain instances or when accessing certain ports.

2.11.19 The Interrupt Instruction
This instruction uses the syntax int(constant); where the constant operand is an unsigned

integer value in the range 0..255.

2.11.20 Bound Instruction
 This instruction takes the following form:

bound(Reg16/32, mem)

2.11.21 The Enter Instruction
The enter instruction uses the syntax:

enter(const, const);

The first constant operand is the number of bytes of local variables in a procedure; the second
constant operand is the lex level of the procedure. As a rule, you should not use this instruction and
the corresponding leave instruction. HLA procedures automatically construct the display and
activation record for you (more efficiently than when using enter). See the HLA Reference
Manual chapter on HLA Procedures for more details on building procedure activation records.

2.11.22 CMPXCHG Instruction
This instruction uses the following syntax:

 cmpxchg(reg/mem, reg)

Public Domain Created by Randy Hyde Page 41

HLA Reference Manual 5/24/10 Chapter 2
2.11.23 The XADD Instruction
The XADD instruction uses the following syntax:

 xadd(source, dest);

2.11.24 BSF and BSR Instructions
The bit scan instructions use the following syntax:

 bsr(source, dest);
 bsf(source, dest);

2.11.25 The BSWAP Instruction
This instruction takes the form:

 bswap(reg32);

It converts between little endian and big endian data formats in the specified 32-bit register.

2.11.26 Bit Test Instructions
This group of instructions includes BT, BTC, BTR, and BTS. They allow the following

generic forms:

 bt(BitNumber, Dest);

2.11.27 Floating Point Instructions

See the HLA Reference Manual chapter The 80x86 Instruction Set in HLA for a complete list
of the floating-point instructions and their syntax.

2.11.28 MMX and SSE Instructions
See the HLA Reference Manual chapter The 80x86 Instruction Set in HLA for a complete list

of the MMX and SSE instructions and their syntax.

2.12 Memory Addressing Modes in HLA
HLA supports all the 32-bit addressing modes of the Intel 80x86 instruction set2. A memory

address on the 80x86 may consist of one to three different components: a displacement (also called
an offset), a base pointer, and a scaled index value. The following are the legal combinations of
these components:

2. It does not support the 16-bit addressing modes since these are not very useful under Win32.
Public Domain Created by Randy Hyde Page 42

HLA Reference Manual 5/24/10 Chapter 2
displacement
basePointer
displacement + basePointer
displacement + scaledIndex
basePointer + scaledIndex
displacement + basePointer + scaledIndex

Note that a scaled index value cannot exist by itself.

HLA’s syntax for memory addressing modes takes the following forms:

staticVarName

staticVarName [constant]

staticVarName[breg32]

staticVarName[ireg32]

staticVarName[ireg32*index]

staticVarName[breg32 + ireg32]

staticVarName[breg32 + ireg32*index]

staticVarName[breg32 + constant]

staticVarName[ireg32 + constant]

staticVarName[ireg32*index + constant]

staticVarName[breg32 + ireg32 + constant]

staticVarName[breg32 + ireg32*index + constant]

staticVarName[breg32 - constant]

staticVarName[ireg32 - constant]

staticVarName[ireg32*index - constant]

staticVarName[breg32 + ireg32 - constant]

staticVarName[breg32 + ireg32*index - constant]

[breg32]

[breg32 + ireg32]

[breg32 + ireg32*index]

[breg32 + constant]

[breg32 + ireg32 + constant]

[breg32 + ireg32*index + constant]

[breg32 - constant]

[breg32 + ireg32 - constant]
Public Domain Created by Randy Hyde Page 43

HLA Reference Manual 5/24/10 Chapter 2
[breg32 + ireg32*index - constant]

"staticVarName" denotes any static variable currently in scope (local or global).
"basereg" denotes any general purpose 32-bit register.
"breg32" denotes a base register and can be any general purpose 32-bit register.

"ireg32" denotes an index register and may also be any general purpose register, even the same
register as the base register in the address expression.

"index" denotes one of the four constants "1", "2", "4", or "8". In those address expression that
have an index register without an index constant, "*1" is the default index.

Those memory addressing modes that do not have a variable name preceding them are known
as "anonymous memory locations." Anonymous memory locations do not have a data type
associated with them and in many instances you must use the type coercion operator in order to
keep HLA happy.

Those memory addressing modes that do have a variable name attached to them inherit the
base type of the variable. Read the next section for more details on data typing in HLA.

HLA allows another way to specify addition of the various addressing mode components in an
address expression - by putting the components in separate brackets and concatenating them
together. The following examples demonstrate the standard syntax and the alternate syntax:
[ebx+2] [ebx][2]
[ebx+ecx*4+8] [ebx][ecx][8]
lbl[ebp-2] lbl[ebp][-2]

The reason for allowing the extended syntax is because you might want to construct these
addressing modes inside a macro from the individual pieces and it’s much easier to concatenate two
operands already surrounded by brackets than it is to pick the expressions apart and construct the
standard addressing mode.

2.13 Type Coercion in HLA
While an assembly language can never really be a strongly typed language, HLA is much more

strongly typed than most other assembly languages.
Strong typing in an assembly language can be very frustrating. Therefore, HLA makes certain

concessions to prevent the type system from interfering with the typical assembly language
programmer. Within an 80x86 machine instruction, the only checking that takes place is a
verification that the sizes of the operands are compatible.

Despite HLA playing fast and loose with machine instructions, there are many times when you
will need to coerce the type of some operand. HLA uses the following syntax to coerce the type of
a memory location or register operand:

(type typeID memOrRegOperand)

There are two instances where type coercion is especially important: (1) when you need to
assign a type other than byte, word, or dword to a register3; (2) when you need to assign an
anonymous memory location a type.

3. Probably the most common case is treating a register as a signed integer in one of HLA’s high level
language statements. See the section on HLA High Level Language statements for more details.
Public Domain Created by Randy Hyde Page 44

HLA Reference Manual 5/24/10 Chapter 3
3 Installing HLA

3.1 Installing HLA Under Windows

3.1.1 New Easy Installation:
You can find a program titled "hlasetup.exe" on Webster. Running this application
automatically installs HLA on your system. That’s all there is to it. Those who wish to
exercise complete control over the placement of the HLA executables can still choose to
manually install HLA, but this is not recommended for first-time users.

3.1.2 Manual Installation under Windows
HLA can operate in one of several modes. In the standard mode, it converts an HLA source file

directly into an object file like most assemblers. In other modes, it has the ability to translate HLA
source code into another source form that is compatible with several other assemblers, such as
MASM, TASM, FASM, NASM, and Gas. A separate assembler, such as MASM, can compile that
low-level intermediate source code to produce an object code file. Strictly speaking, this step
(converting to a low-level assembler format and assembling via MASM/FASM/GASM/Gas is not
necessary, but there are some times when it’s advantageous to work in this manner. Finally, you
must link the object code output from the assembler using a linker program. Typically, you will
link the object code produced by one or more HLA source files with the HLA Standard Library
(hlalib.lib or hlalib_safe.lib) and, possibly, several operating system specific library files (e.g.,
kernel32.lib under Win32). Most of this activity takes place transparently whenever you ask HLA
to compile your HLA source file(s). However, for the whole process to run smoothly, you must
have installed HLA and all the support files correctly. This section will discuss how to set up HLA
on your system.

First, you will need an HLA distribution for your particular Operating System. These
instructions describe installation under Windows; see the next section if you’re using Linux,
FreeBSD, or Mac OSX. The latest version of HLA is always available on Webster at http://
webster.cs.ucr.edu. You should go there and download the latest version if you do not already
possess it.

The HLA package contains the HLA compiler, the HLA Standard Library, and a set of include
files for the HLA Standard Library. It also includes copies of the Pelles C librarian and linker, and
some other tools. These tools will let you produce executable files under Windows. However, it’s
still a good idea for Windows’ users to grab a copy of the Microsoft linker. The easiest way to get
all the Microsoft files you need is to download the Visual C++ Express Edition package from
Microsoft's web site. As I was writing this, this package could be found at http://
www.microsoft.com/Express/vc/.

• Here are the steps I when through to install HLA on my system:

• If you haven’t already done so, download the HLA executables file from Webster at http:/
/webster.cs.ucr.edu. On Webster, you can download several different ZIP files associated
with HLA from the HLA download page. The "Executables" is the only one you’ll
absolutely need; however, you’ll probably want to grab the documentation and examples
files as well. If you’re curious, or you want some more example code, you can download
the source listings to the HLA Standard Library. If you’re really curious (or masochistic),
you can download the HLA compiler source listings to (this is not for casual browsing!).

• I downloaded the HLA v2.2 "hla.zip" file while writing this. Most likely, there is a much
later version available as you’re reading this. Be sure to get the latest version. I chose to
download this file to my "C:\" root directory.

• After downloading hla.zip to my C: drive, I double-clicked on the icon to run WinZip. I
selected "Extract" and told WinZip to extract all the files to my C:\ directory. This created
an "HLA" subdirectory in my root on C: with two subdirectories (include and lib) and two
EXE files (HLA.EXE and HLAPARSE.EXE. The HLA program is a "shell" program that
runs the HLA compiler (HLAPARSE.EXE), MASM (ML.EXE), the linker (LINK.EXE),
and other programs. You can think of HLA.EXE as the "HLA Compiler".
Public Domain Created by Randy Hyde Page 45

HLA Reference Manual 5/24/10 Chapter 3
• Next, I set some environment variables:

path=c:\hla;%path%
set hlalib=c:\hla\hlalib
set hlainc=c:\hla\include

• HLA is a Win32 Console Window program. To run HLA you must open up a console
Window. If you've downloaded the Visual C++ Expression Edition package, you should
run the command prompt program from Visual C++ (generally found at
StartProgramsMicrosoft Visual C++ Express EditionVisual Studio Tools. If you've
not installed the Visual C++ Expression Edition tools, you can usually find the command
prompt program in places like StartProgramsAccessoriesCommand Prompt (under
Windows 2000) You might find it in another location. You can also start the command
prompt processor by selecting Start->Run and entering "cmd".

• At this point, HLA should be properly installed and ready to run. Try typing "HLA -?" at
the command line prompt and verify that you get the HLA help message. If not, go back
and figure out what you’ve done wrong up to this point (it doesn’t hurt to start over from
the beginning if you’re lost).

• Next, let’s verify the correct operation of the linker. Type "link /?" (if you've installed the
Microsoft linker as part of the Visual C++ Express Edition) or "polink /?" and verify that
the linker program runs. Again, you can ignore the help screen that appears. You don’t
need to know about this stuff.

3.1.2.1 What You’ve Just Done

Before describing how to write, compile, and run your very first HLA program, it's probably
worthwhile to take a quick step back and carefully consider what we've accomplished in the
previous section so it's easier to troubleshoot problems that may come up. This section describes
how the steps you went through in the previous section affect the execution of HLA.

Note: This section is of interest to all HLA users; whether you've installed HLA via the
HLASETUP.EXE program, or you've manually installed HLA.

In order to execute HLA.EXE, HLAPARSE.EXE, and various other programs needed to
compile and run an HLA program, the operating system needs to be able to find all of the
executable files that HLA needs. In theory, the executable files that HLA needs could be spread out
all over your system as long as you tell the OS where to find every file. In practice, however, this
makes troubleshooting the setup a lot more difficult if something goes wrong. Therefore, it's best to
put all the necessary executables in the same directory.

Note that Windows doesn't know anything at all about the "C:\HLA" subdirectory; it's not
going to automatically look for the HLA executables in this subdirectory, you have to tell Windows
about this directory. This is done using the "PATH" environment variable. Whenever you tell
Windows to run a program from a command prompt window, the OS first looks for a program with
the given name in the current directory. If it finds the program (with a ".EXE", ".COM", or ".BAT"
suffix), it will run that program from the current directory. If it does not find a program with an
allowable suffix in the current directory, then the OS will use the PATH environment variable to
determine which subdirectories to search through in order to find the executable program. The
PATH environment variable is a (possibly empty) string that takes the following form:

pathToDirectory; pathToDirectory; pathToDirectory;...
Each pathToDirectory item in the list above generally represents a full path to some directory

in the system. Examples include "c:\hla", "c:\windows", and "c:\bin"; these are always paths to
directories, not to individual files. A PATH environment string may contain zero or more such
paths; if there are two or more paths, each subdirectory path is separated from the others by a
semicolon (the ellipses ["..."] above signify that you may have additional paths in the string, you
don't actually place three periods at the end of the list).

When Windows fails to find an executable program you specify on the command line in the
current directory, it tries searching for the executable file in each of the directory paths found in the
PATH environment variable. Windows searches for the executable file in the subdirectories in the
order that they appear in the environment string. That is, it searches for the executable in the first
directory path first; if it doesn't find the executable in that directory, it tries the second path in the
Public Domain Created by Randy Hyde Page 46

file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047290

HLA Reference Manual 5/24/10 Chapter 3
environment string; then the third, then the fourth, etc. If Windows exhausts the list of directory
paths without finding the executable file, it displays an error message. For example, suppose your
PATH environment variable contains the following:

c:\hla; c:\windows; c:\bin

If you type the command "xyz file1" at the command line prompt, Windows will first search
for program "xyz.exe", "xyz.com", or "xyz.bat" in the current directory. Failing to find the program
there, Windows will search for "xyz" in the "C:\HLA" subdirectory. If it's not there, then Windows
tries the "C:\WINDOWS" subdirectory. If this still fails, Windows tries the "C:\BIN" subdirectory.
If that fails, then Windows prints an error message and returns control to the command line prompt.
If Windows finds the "xyz" program somewhere along the way, then Windows runs the program
and the process stops at the first subdirectory containing the "xyz" program.

The search order through the PATH environment string is very important. Windows will
execute the first program whose name matches the command you supply on the command line
prompt. This is why the previous section had you put "c:\hla;" at the beginning of the environment
string; this causes Windows to run programs like HLA.EXE, HLAPARSE.EXE, and LINK.EXE
from the "C:\HLA" subdirectory rather than some other directory. This is very important! For
example, there are many versions of the "LINK.EXE" program and not all of them work with HLA
(and chances are pretty good that you might find an incompatible version of LINK.EXE on your
system). Were you to place the "C:\HLA" directory path at the end of the PATH environment
string, the system might execute an incompatible version of the linker when attempting to compile
and link and HLA program. This generally causes the HLA compilation process to abort with an
error. Placing the "C:\HLA" directory path first in the PATH environment variable helps avoid this
problem1.

By specifying the PATH environment variable, you tell Windows where it can find the
executable files that HLA needs in order to compile your HLA programs. However, HLA and
LINK also need to be able to find certain files. You may specify the location of these files explicitly
when you compile a program, but this is a lot of work. Fortunately, both HLA.EXE and LINK.EXE
also look at some environment variable strings in order to find their files, so you can specify these
paths just once and not have to reenter them every time you run HLA.

Most HLA programs are not stand-alone projects. Generally, an HLA program will make use
of routines found in the HLA Standard Library. The HLA Standard Library contains many
conversion routines, input/output routines, string functions, and so on. Calling HLA Standard
Library routines saves a considerable amount of effort when writing assembly language code.
However, the HLA compiler isn't automatically aware of all the routines you can call in the HLA
Standard Library. You have to explicitly tell the compiler to make these routines available to your
programs by including one or more header files during the compilation process. This is
accomplished using the HLA #include and #includeonce directives. For example, the following
statement tells the HLA compiler to include all the definitions found in the "stdlib.hhf" header file
(and all the header files that "stdlib.hhf" includes):

#include("stdlib.hhf")

When HLA encounters a #include or #includeonce directive in the source file, it substitutes the
content of the specified file in place of the #include or #includeonce . The question is "where does
this file come from?" If the string you specify is a full pathname, HLA will attempt to include the
file from the location you specify; if it cannot find the file in the specified directory, the HLA will
report an error. E.g.,

#include("c:\myproject\myheader.hhf")

In this example, HLA will look for the file "myheader.hhf" in the "c:\myproject" directory. If
HLA fails to find the file, it will generate an error during compilation.

If you specify a plain filename as the #include or #includeonce argument, then HLA will first
attempt to find the file in the current directory (the one you're in when you issued the HLA
command at the command line prompt). If HLA finds the file, it substitutes the file's contents for
the include directive and compilation continues. If HLA does not find the file, then it checks out the
"HLAINC" environment variable, whose definition takes the following form:
Public Domain Created by Randy Hyde Page 47

HLA Reference Manual 5/24/10 Chapter 3
hlainc=c:\hla\include

Unlike the PATH environment variable, the HLAINC environment variable allows only a
single directory path as an operand. This is the path to the HLA include files directory which is
"c:\hla\include" (assuming you've followed the directions in the previous section). Since HLA
header files usually come in two varieties: headers associated with library routines and header files
associated with the current project, the fact that HLA only provides one include path is not much of
a limitation. You should keep all project-related header files in the same directory as your other
source files for the project; the HLA library header files (and header files for any generic library
modules you write) belong in the "C:\HLA\INCLUDE" directory. Note that if you want to place
header files in some directory other than the current directory or the directory that the HLAINC
environment variable specifies, you will have to specify the path to the include file in the #include
or #includeonce statement.

If HLA cannot find the specified header file in the current directory or in the directory
specified by the HLAINC environment variable, then you'll get an error to the effect that HLA
cannot find the specified include file. Needless to say, most assemblies will fail if HLA cannot find
the appropriate header files.

Since most HLA programs will use one or more of the HLA Standard Library header files,
chances are good that the assembly won't be successful if the HLAINC environment string is not
set up properly. Conversely, if HLAINC does contain the appropriate string, then HLA will be able
to successfully compile your code to assembly and produce an object file. The last step, converting
the object file to an executable, introduces another possible source of problems. The LINK program
combines the object file associated with your code with HLA Standard Library and Windows
library modules. Even the most trivial HLA program will need to link with (at least) one or more
Windows module. (The most trivial HLA program is probably the one that immediately returns to
the OS; such a program needs to call the Windows ExitProcess API in order to return to the OS, so
at the very least you'll need to link with the Windows' kernel32.lib module to be able to call
ExitProcess.) Once again, however, the library modules that your program needs could be
anywhere on the disk. You'll have to use some environment variables to tell HLA and the linker
where it can find the library modules. You accomplish this using two environment variables: one
for HLA and one for the linker. We'll discuss the HLALIB environment variable first, since it's the
easiest to understand.

The HLA Standard Library contains thousands of small little routines that have been combined
into a single file: either "hlalib.lib" or "hlalib_safe.lib" ("hlalib_safe.lib" is a thread-safe version of
the library). Whenever you call a particular standard library routine, the linker extracts the specific
routine you call from the "hlalib.lib" library module and links combines this code with your
program. Once again, the linker program and HLA don't know where to find these files, you have
to tell them where to find it. This is done using the HLALIB environment variable; this
environment variable contains a single pathname to the directory containing the HLALIB.LIB and
HLALIB_SAFE.LIB files. I.e.,

set hlalib=c:\hla\hlalib

The important thing to note in this example is that the path is the directory containing the
HLALIB.LIB and HLALIB_SAFE.LIB files. This is in direct contrast to the PATH and HLAINC
environment objects where you specify only the subdirectory containing the desired files.

In addition to the "hlalib.lib" or "hlalib_safe.lib" library file, you'll also need to link your HLA
programs against various Windows library modules. Basic HLA programs will need to link against
the Windows' kernel32.lib, user32.lib, and gdi32.lib library modules. These library modules (plus
several other Windows related library modules) are found in the Visual C++ Express Edition
package; though in the previous section you should have copied these three library modules to the
"c:\hla\hlalib" subdirectory. You'll need to tell the LINK.EXE program where it can find these
files; this is done with the LIB environment variable. The LIB environment variable's syntax is
very similar to that for the PATH environment variable. You get to specify a list of directories in
the LIB environment string and LINK.EXE will automatically search for missing library files in
each of the paths you specify, in the order you specify, until it finds a matching filename. By
prepending "c:\hla\hlalib;" to this environment string, you tell LINK.EXE to search for library
modules like KERNEL32.LIB, USER32.LIB, and GDI32.LIB in the "C:\hla\hlalib" subdirectory if
it doesn't find them in the current subdirectory.
Public Domain Created by Randy Hyde Page 48

HLA Reference Manual 5/24/10 Chapter 3
Note: in the future, if you make other Win32 API calls you may need to copy additional .LIB
files from the Visual C++ Express Edition package to the "c:\hla\hlalib" directory. However, for
most basic HLA programs (and certainly, all console mode programs) you won't need to do this.
Another alternative would be to add the path to the Visual C++ Express Edition's libraries directory
to the LIB environment string (generally, installing the Visual C++ Express Edition package does
this for you).

Okay, with this explanation out of the way, it's time to write, compile, and run, our first HLA
program!

3.1.2.2 Running HLA

Now it’s time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. A long running convention is to write a "Hello World" programs as
the very first program in any language. This document will continue that cherished convention.

When writing HLA programs, the best approach is to create a single directory for each project
you write. I'd suggest creating a subdirectory "c:\hla\projects" and then create a new subdirectory
inside "c:\hla\projects" for each HLA project you write. For the example in this section, you might
create the directory "c:\hla\projects\hw" (for "Hello World").

There are many different ways to create project directories. The most common way to do this
under Windows is in the Windows Explorer (right click on a window and select "NewFolder").
However, since HLA is a command-line based tool, it's probably best to describe how to do this
from the command line just to introduce some (possibly) new command line commands.

The first step is to bring up a command prompt window. Generally, this is done by selecting
"StartProgramsAccessoriesCommand Prompt" from the Windows Start menu. You may
also select "StartRun" and type "cmd" to bring up a command prompt shell. If you wind up
writing a lot of HLA code, you'll want a faster and easier way to run the command prompt, so I
recommend creating a shortcut to the command prompt program on your desktop. To do this, click
on Start (and release the mouse button) and then move the mouse cursor to select
"ProgramsAccessoriesCommand Prompt". Now right-click on the "Command Prompt" menu
item and drag it onto your desktop. Select "Create Shortcut(s) Here" from the resulting pop-up
menu.

If you're using Visual C++ Express Edition, then select StartProgramsMicrosoft Visual
C++ Express EditionVisual Studio Tools and right-click on that menu item. You should now
have a shortcut to the command prompt shell program on your desktop and you can easily run the
shell by double-clicking on its icon.

After creating a shortcut, there are some things you can do to make HLA development a little
easier. Right click on the shortcut you've just created and select properties. In the window that pops
up, you'll probably want to change the "Start In:" string to "c:\hla\projects". This tells the command
prompt program to make the specified path the current directory whenever you run the command
prompt program by double clicking on this icon. By starting off inside the c:\hla\projects"
subdirectory, you'll find that you save some typing (assuming, of course, you wind up putting most
of your projects in the "c:\hla\projects" directory; use a different path here if this is not the case).
Next, select the "layout" tab in the Command Prompt Properties window. Under "Screen Buffer
Size" you'll probably want to make the value larger (the default is 300 on my system). I've found
that 3000 is a good number here. This number specifies the number of lines of text that the system
will save when data scrolls off the top of the screen. This lets you view up to 3,000 lines of text
from program execution (including your program's output, HLA error messages, etc.). If you have a
large monitor, you might also want to change the Window Size values as well. The default of 80
columns is probably fine, though you may want to expand the height to 50 lines (or whatever your
monitor allows). Once you've set up the command window properties, double-click on the
command prompt icon to start it running.

The first step, before doing anything else, is to verify that you've properly set up the
environment variables. To check out their values, simply type "set" followed by ENTER. The "set"
command without any parameters tells the command shell to dump the current values of all the
environment variables active in the command prompt window. Scan through this list (scrolling
back using the scroll bar if there are too many definitions to all fit in the window at one time) and
search for the PATH, LIB, HLAINC, and HLALIB environment variables. Verify that they are
present and have the correct values (that you've entered in the previous sections). If they're not
present or the values are incorrect, HLA will not execute properly and you need to fix this problem
first (Win95/98 users, did you remember to reboot after changing the autoexec.bat file?). If the
environment variables are present and correct, then you're ready to try writing and running your
first HLA program.
Public Domain Created by Randy Hyde Page 49

file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047356
file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047356
file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047356
file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047365
file:///private/tmp/411/G/hla/Doc/HTML/Install.html#pgfId-1047365

HLA Reference Manual 5/24/10 Chapter 3
Switch to the "C:\HLA" subdirectory by using the following DOS (command line prompt)
command5:

cd c:\hla

"cd" stands for "Change Directory". This command expects a single command line parameter
that is the path of the directory that you want to make the "current directory." If you ever want to
know what the current directory is, simply type "cd" without any parameters and the Command
Shell will display the current directory6

If you haven't done so already, it's time to create the "projects" directory where you will place
the HLA projects you create. Do this with the following command:

mkdir projects

"mkdir" stands for "make directory" and this command requires a single argument - the name
of the directory you want to create. If you do no specify a full pathname (as is the case in this
example), the command shell creates the directory within the current directory. Verify that you've
properly created the "projects" subdirectory by issuing the following DOS command:

dir

"dir" stands for "directory" and tells the command shell to display all the files in the current
directory. This should list the projects directory you just created (plus all the other files and
directories in the "c:\hla" directory). Note that you can also use the Windows Explorer to create
directories and view the contents of directories. However, since HLA is a command prompt based
application, it's useful to learn a few commands that will prove useful.

Now, switch to the projects subdirectory by using the following command:

cd projects

At this point, it's a good idea to create a new subdirectory for the "Hello World" project. Do
this by using the following command:

mkdir hw

CD into this directory once you've created it. Now you're ready to begin work on the "Hello
World" program.

Leaving the command prompt Window open for the time being, run the editor of your choice
(e.g., NOTEPAD.EXE, if you don't have any other preferences). Enter the following HLA program
into the editor:

program HelloWorld;
#include("stdlib.hhf")
begin HelloWorld;

 stdout.put("Hello, World of Assembly Language", nl);

end HelloWorld;

Scan over the program you've entered and verify that you've entered it exactly as written
above. Save the file from your editor as hw.hla in the c:\hla\projects\hw subdirectory (generally
using the File>Save or File>Save As menu item in the editor). Switch over to the command prompt
window and verify that the file is present by issuing a "DIR" command; this should list the hw.hla
file. If it's not present, try saving the file again and be sure to browse to the "c:\hla\projects\hw"
before actually saving the file.
Public Domain Created by Randy Hyde Page 50

HLA Reference Manual 5/24/10 Chapter 3
WARNING: NOTEPAD.EXE has a habit of tacking a ".txt" to the end of filenames you save
to disk. Default installations of Windows do not display file suffixes of known file types (and ".txt"
is a known type). Therefore, a directory window may show a program name like "hw.hla" when, in
fact, the filename is "hw.hla.txt". Probably the number one problem people have when testing out
their HLA installation is that the compiler claims it cannot find the file "hw.hla" when the user first
attempts to compile the file. This is because it's really named "hla.hw.txt". You must change the
filename to "hw.hla" before HLA will accept it. This is the number one HLA installation problem.
Watch out for this!

Make sure you’re in the same directory containing the HW.HLA file and type the following
command at the "C:>" prompt: "HLA -v HW". The "-v" option tells HLA to produce VERBOSE
output during compilation. This is helpful for determining what went wrong if the system fails
somewhere along the line. This command should output similar to the following (this changes all
the time, so don’t expect it to be exact):

HLA (High Level Assembler)
Use '-license' to see licensing information.
Version 2.0 build 407 (prototype)
Win32 COFF output
OBJ output using HLA Back Engine
-test active

HLA Lib Path: g:\hla\hlalib\hlalib.lib
HLA include path: g:\hla\hlalibsrc\trunk\hlainc
HLA temp path:
Linker Lib Path: C:\Program Files\Microsoft Visual Studio
9.0\VC\LIB;C:\Program Files\Microsoft SDK
s\Windows\v6.0A\lib;g:\hla\hlalib;g:\hla\hlalib

Files:
1: hw.hla

Compiling 'hw.hla' to 'hw.obj'
using command line:
[hlaparse -WIN32 -level=high -v -ccoff -test "hw.hla"]

HLA (High Level Assembler) Parser
use '-license' to view license information
Version 2.0 build 406 (prototype)
-t active
File: hw.hla
Output Path: ""
hlainc Path: "g:\hla\hlalibsrc\trunk\hlainc"
hlaauxinc Path: "(null)"
Compiler running under Windows OS
Back-end assembler: HLABE
Language Level: high

Compiling "hw.hla" to "hw.obj"
Compilation complete, 18758 lines, 0.454 seconds, 41317 lines/second

HLA Back Engine Object code formatter

HLABE compiling 'hw.hla' to 'hw.obj'
Optimization passes: 3+2

Linking via [link @"hw.link._.link"]
Public Domain Created by Randy Hyde Page 51

HLA Reference Manual 5/24/10 Chapter 3
Microsoft (R) Incremental Linker Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.

-heap:0x1000000,0x1000000
-stack:0x1000000,0x1000000
-base:0x4000000
-entry:HLAMain
-section:.text,ER
-section:.data,RW
-section:.bss,RW
kernel32.lib
user32.lib
gdi32.lib
-subsystem:console
-out:hw.exe
g:\hla\hlalib\hlalib.lib
hw.obj
ctl32.dll

If you get output that is similar to the above, you’re in business.
Manually installing HLA is a complex and slightly involved process. Fortunately, the

hlasetup.exe program automates almost everything so that you don’t have to worry about changing
registry settings and things like that. If you’re a first-time HLA user, you definitely want to use this
method to install HLA. Manual installation is really intended for upgrades as new versions of HLA
appear. You do not have to change the environment variables to install a new version of HLA,
simply extract the executable files over the top of your existing installation and everything will
work fine.

The most common problems people have running HLA involve the location of the Win32
library files, the choice of linker, and appropriately setting the hlalib, halib_safe, and hlainc
environment variables. During the linking phase, HLA (well, link.exe actually) requires the
kernel32.lib, user32.lib, and gdi32.lib library files. These must be present in the pathname(s)
specified by the LIB environment variable. If, during the linker phase, HLA complains about
missing object modules, make sure that the LIB path specifies the directory containing these files.
If you’re a Microsoft Visual C++ user, installation of VC++ should have set up the LIB path for
you. If not, then locate these files and copy them to the HLA\HLALIB directory. If these files are
not present on your system, you should download the Microsoft Visual C++ Express edition to
obtain them.

Another common problem with running HLA is the use of the wrong link.exe program.
Microsoft has distributed several different versions of link.exe; in particular, there are 16-bit linkers
and 32-bit linkers. You must use a 32-bit segmented linker with HLA. If you get complaints about
"stack size exceeded" or other errors during the linker phase, this is a good indication that you’re
using a 16-bit version of the linker. Obtain and use a 32-bit version and things will work. Don’t
forget that the 32-bit linker must appear in the execution path (specified by the PATH environment
variable) before the 16-bit linker. HLA ships with a copy of the Pelles linker (polink.exe) that you
can use if you've not downloaded Microsoft's Visual C++ Express edition.

3.1.3 Standard Configurations Under Windows
The "standard" HLA configuration under Windows consists of HLA.EXE, HLAPARSE.EXE,

PORC.EXE, and POLINK.EXE. This standard configuration generates object files directly,
compiles any resource files using the Pelles C PORC.EXE resource compiler, and links the object
modules together using the Pelles C linker (POLINK). The Pelles C tools were chosen for the
standard configuration under Windows because they are freely distributable (unlike the Microsoft
tools). For those who care about such things, HLAPARSE.EXE produces object modules directly.
HLA's object code generator produces slightly more optimal output code than FASM, MASM, or
TASM.

HLA also provides the ability to produce assembly language source files, in a MASM, TASM,
FASM, NASM, or Gas format that can be assembled to object code using one of these assemblers.
So why would anyone want to have HLA produce assembly language output to be run through a
different assembler (much like GCC does)? For common applications, there is no need to do this.
Public Domain Created by Randy Hyde Page 52

HLA Reference Manual 5/24/10 Chapter 3
However, in some specialized situations having this facility is quite useful. For example, rather
than using the HLA back-engine native code generator, you may elect to have HLA generate
FASM source code to be processed by the FASM assembler. There are three reasons for doing this:

• You want to see how HLA would translate the HLA program (in HLA syntax) to a lower-
level assembly language (in FASM syntax); this is great, for example, for seeing how
macros expand or how HLA processes high-level control constructs.

• If there is a defect in the internal HLA back engine that prevents HLA from directly
generating an object code file, you can probably produce a source file and successfully
compile your program using the external version of FASM.

Another configuration is to have HLA produce a MASM compatible output file and use
Microsoft’s MASM to translate that output source file into an object file. There are several reasons
why you might want to use MASM:

• MASM can inject additional symbolic debugging information (usable by Visual Studio’s
debugger) into the object file, making it easier to debug HLA applications using Visual
Studio.

• FASM and HLABE may have some code generation defect that you can’t work around.

• The HLA back engine’s output might not be completely compatible with some other
object module tool you’re using.

• You want to take HLA output and merge it with some MASM projects you have.
Although MASM is not a freely distributable program (and, therefore, is not included in the HLA
download), you may download a free copy from the Microsoft Web site or obtain a copy as part of
the Visual C++ Express Edition package.

Another configuration is to have HLA produce a NASM compatible output file and use the
Netwide Assembler (NASM) to translate that output source file into an object file. There are a
couple of reasons why you might want to use NASM:

• HLA's back engine may have some code generation defect that you can’t work around.

• HLA's back engine output might not be completely compatible with some other object
module tool you’re using and NASM's output is compatible.

• You want to take HLA output and merge it with some NASM projects you have.

• You want to compile the code on an operating system that supports NASM but doesn't
directly support HLA.

One last assembler choice under Windows is Borland’s Turbo Assembler (TASM). There is
one main reason why you would want to use TASM to process HLA output - you want to link HLA
output with a Borland Delphi project. Delphi is very particular about the object files it will link
against. Effectively, you can only use TASM-generated output files when linking with Delphi code.
Therefore, if you want to link your HLA modules into a Delphi application, you’ll need to use the
TASM output mode. Like MASM, TASM is not a freely distributable product and cannot be
included as part of the HLA download. However, Borland will provide a free copy as part of their
free C++ download on their website (registration required). Note that TASM support in HLA has
been deprecated and stop functioning as time passes.

Under Windows, you may use either the freely distributable Pelle’s C linker (Polink) or the
Microsoft linker to process the object code output from the HLA system. Polink is provided with
the HLA download (subject, of course, to the Pelles C license agreement). Microsoft’s linker is a
commercial product (and as such, it is not included as part of the HLA download), but it is available
as a free download from Microsoft’s web site and as part of the Visual C++ express edition
package. HLA will use either linker as the final stage in producing an executable. The Microsoft
linker has been around longer and has, arguably, fewer bugs than Polink, but the choice is yours.
Another possible linker option is the Borland Turbo linker (TLINK). Just note that HLA.EXE will
not automatically run TLINK; you will have to run it manually after producing an OMF object file
with HLA. Note that only MASM and TASM are capable of producing OMF files. FASM and
HLA’s internal code generator do not generate OMF object code files, so you cannot use TLINK
with their output.
Public Domain Created by Randy Hyde Page 53

HLA Reference Manual 5/24/10 Chapter 3
To produce libraries, you may optionally employ a librarian such as Microsoft’s LIB.EXE, the
Pelle’s C POLIB.EXE, or Borland’s Turbo Librarian (TLIB.EXE). The HLA.EXE program does
not automatically run these programs; you will have to run them manually to create a .LIB file from
your object files. Please see the documentation for these products for details on their use. The HLA
download includes the POLIB.EXE program and the HLA standard library source code includes a
make file option that will use any of these three librarians to produce the HLA hlalib.lib library file.

Note that it is possible to mix and match modules in the HLA system, within certain reasonable
limitations. For example, you could use the FASM assembler and the Microsoft linker, the TASM
assembler and the POLINK linker, or even the MASM assembler the TLINK linker. In general,
FASM output works fine with the Microsoft linker and librarian or the Pelle’s C linker and
librarian, MASM output works best with Microsoft’s linker and librarian, and Turbo assembler
works best with the Borland tools or the Microsoft tools.

Under Windows, the default configuration is to generate an MSCOFF object file directly and
use the POLINK linker to process the resulting object file(s). See the section on "Customizing
HLA" for details on changing the default configuration.

3.2 Installing HLA Under Linux, Mac OSX, or FreeBSD
(*NIX)

HLA is a compiler that translates source code into either object code or a lower-level assembly
language that Gas (GNU’s as assembler) must process. After compilation, you must link the object
code output using a linker program such as the GNU ld linker. Typically, you will link the object
code produced by one or more HLA source files with the HLA Standard Library (hlalib.a). Most of
this activity takes place transparently whenever you ask HLA to compile your HLA source file(s).
However, for the whole process to run smoothly, you must have installed HLA and all the support
files correctly. This section will discuss how to set up HLA on your system.

These instructions assume that you are using the BASH command-line shell program. If you
are using a different command-line shell interpreter, you may need to adjust some of the following
instructions accordingly. Note that you can run the BASH interpreter from just about any
command-line shell by typing "bash" at the command line.

Mac OSX users note: the terminal window, by default, does not run the BASH shell command
interpreter. You should explicitly run BASH by typing "bash" at the command-line prompt when
you open up a terminal window.

First, you will need an HLA distribution for Linux, Mac OSX, or FreeBSD. Please see
Webster or the previous section if you’re attempting to install HLA on a different OS such as
Windows. The latest version of HLA is always available on Webster at http://webster.cs.ucr.edu.
You should go there and download the latest version if you do not already possess it.

Under Linux, Mac OSX, and FreeBSD, HLA will produce a low-level assembly language
output file that you can assemble using the Free Software Foundation’s Gas assembler. The HLA
package contains the HLA compiler, the HLA Standard Library, and a set of include files for the
HLA Standard Library. If you write an HLA program want Gas to process it, you’ll need to make
sure you have a reasonable version of Gas available (Gas is available on most *NIX distributions,
so this shouldn’t be a problem). Note that the HLA Gas output can only be assembled by Gas v2.10
or later (so you will need the 2.10 or later binutils distribution).

Here’s the steps I went through to install HLA on my Linux, Mac OSX, and FreeBSD systems:

• First, if you haven’t already done so, download the HLA executables file (for Linux, Mac
OSX, or FreeBSD) from Webster at http://webster.cs.ucr.edu. On Webster you can
download several different tar.gz files associated with HLA from the HLA download
page. The "Linux Executables", "Mac Executables", or "FreeBSD executables" is the
only one you’ll absolutely need; however, you’ll probably want to grab the documentation
and examples files as well. If you’re curious, or you want some more example code, you
can download the source listings to the HLA Standard Library. If you’re really curious (or
masochistic), you can download the HLA compiler source listings to (this is not for casual
browsing!).

• I downloaded the linux.hla.tar.gz (for Linux), mac.hla.tar.gz (for Mac OSX), or
bsd.hla.tar.gz (for FreeBSD) file for HLA v2.2 while writing this. Most likely, there is a
much later version available as you’re reading this. Be sure to get the latest version. I
chose to download this file to my "/usr/hla" directory; you can put the file wherever you
like, though this documentation assumes that all HLA files wind up in the "/usr/hla/..."
Public Domain Created by Randy Hyde Page 54

HLA Reference Manual 5/24/10 Chapter 3
directory tree. Note: the .tar.gz file downloads into /usr/hla. If you want the files placed
somewhere else, unpack them to this directory and then move them.

• After downloading linux.hla.tar.gz, mac.hla.tar.gz, or bsd.hla.tar.gz to my root directory, I
executed the following shell command: "gzip -d linux.hla.tar.gz" ("gzip -d bsd.hla.tar.gz"
under FreeBSD; "gzip -d mac.hla.tar.gz" for Mac OSX). Once decompression was
complete, I extracted the individual files using the command "tar xvf linux.hla.tar" ("tar
xvf bsd.hla.tar" under FreeBSD, "tar xvf mac.hla.tar" under Mac OSX). This extracted
several executable files (e.g., "hla" and "hlaparse") along with three subdirectories
(include, hlalib, and hlalibsrc). The HLA program is a "shell" program that runs the HLA
compiler (hlaparse), gas (as), the linker (ld), and other programs. You can think of hla as
the "HLA Compiler". It would be a real good idea, at this point, to set the permissions on
"hla" and "hlaparse" so that everyone can read and execute them. You should also set read
and execute permissions on the two subdirectories and read permissions on all the files
within the directories (if this isn’t the default state). Do a "man chmod" from the Linux/
Mac OSX/FreeBSD command-line if you don’t know how to change permissions.

• If you prefer a more "Unix-like" environment, you could copy the hla and hlaparse (and
other executable) files to the "/usr/bin" or "/usr/local/bin" subdirectory. This step,
however, is optional

• Next, (logged in as a plain user rather than root or the super-user), I edited the ".bashrc"
file in my home directory ("/home/rhyde" in my particular case, this will probably be
different for you). I found the line that defined the "path" variable, it originally looked
like this on my system:

PATH=$DBROOT/bin:$DBROOT/pgm:$PATH

I edited this line to add the path to the HLA directory, producing the following:

 PATH=$DBROOT/bin:$DBROOT/pgm:/usr/hla:$PATH

Without this modification, *NIX will probably not find HLA when you attempt to execute it
unless you type a full path (e.g., "/usr/hla/hla") when running the program. Since this is a pain,
you’ll definitely want to add "/usr/hla" to your path. Of course, if you’ve chosen to copy hla and
hlaparse to the "/usr/bin" or "/usr/local/bin" directory, chances are good you won’t have to change
the path as it already contains these directories.

• Next, I added the following four lines to ".bashrc" (note that *NIX filenames beginning
with a period don’t normally show up in directory listings unless you supply the "-a"
option to ls):

hlalib=/usr/hla/hlalib
export hlalib
hlainc=/usr/hla/include
export hlainc

These four lines define (and export) environment variables that HLA needs during
compilation. Without these environment variables, HLA will probably complain about not
being able to find include files, or the linker (ld) will complain about strange undefined
symbols when you attempt to compile your programs. Note that this step is optional if you
leave the library and include files installed in the /usr/hla directory subtree.

• Optionally, you can add the following two lines to the .bashrc file (but make sure you’ve
created the /tmp directory if you do this):

hlatemp=/tmp
Public Domain Created by Randy Hyde Page 55

HLA Reference Manual 5/24/10 Chapter 3
export hlatemp

After saving the ".bashrc" shell, you can tell *NIX to make the changes to the system by using
the command:

source .bashrc

Note: this discussion only applies to users who run the BASH shell. If you are using a
different shell (like the C-Shell or the Korn Shell), then the directions for setting the path and
environment variables differs slightly. Please see the documentation for your particular shell if
you don’t know how to do this.

• At this point, HLA should be properly installed and ready to run. Try typing "HLA -?" at
the command line prompt and verify that you get the HLA help message. If not, go back
and figure out what you’ve done wrong up to this point (it doesn’t hurt to start over from
the beginning if you’re lost).

• Now it’s time to try your hand at writing an honest to goodness HLA program and verify
that the whole system is working. Here’s the canonical "Hello World" program written in
HLA. Enter it into a text editor and save it using the filename "hw.hla":

program HelloWorld;
#include("stdlib.hhf")
begin HelloWorld;

stdout.put("Hello, World of Assembly Language", nl);

end HelloWorld;

• Make sure you’re in the same directory containing the "hw.hla" file and type the following
command at the prompt: "hla -v hw". The "-v" option tells HLA to produce VERBOSE
output during compilation. This is helpful for determining what went wrong if the system
fails somewhere along the line. This command should produce output like the following:

HLA (High Level Assembler)
Use '-license' to see licensing information.
Version 2.0 build 411 (prototype)
ELF output
GAS output
-test active

HLA Lib Path: /usr/hla/hlalib/hlalib.a
HLA include path: /usr/hla/include
HLA temp path:
Files:
1: hw.hla

Compiling 'hw.hla' to 'hw.asm'
using command line:
[hlaparse -LINUX -level=high -v -sg -test "hw.hla"]

HLA (High Level Assembler) Parser
use '-license' to view license information
Version 2.0 build 411 (prototype)
-t active
File: hw.hla
Output Path: ""
Public Domain Created by Randy Hyde Page 56

HLA Reference Manual 5/24/10 Chapter 3
hlainc Path: "/usr/hla/include"
hlaauxinc Path: "(null)"
Compiler running under Linux OS
Back-end assembler: GAS
Language Level: high

Compiling "hw.hla" to "hw.asm"
Compilation complete, 25444 lines, 0.122 seconds, 208557 lines/second

Assembling "hw.asm" to "hw.o" via [as --32 -o hw.o "hw.asm"]
Linking via [ld -o "hw" "hw.o" "/usr/hla/hlalib/hlalib.a"]

Versions of HLA may appear for other Operating Systems (beyond Windows, Linux,
FreeBSD, and Mac OSX) as well. Check out Webster to see if any progress has been made in this
direction. Note a unique thing about HLA: Carefully written (console) applications will compile
and run on all supported operating systems without change. This is unheard of for assembly
language! Therefore, if you are using multiple operating systems supported by HLA, you’ll
probably want to download files for all supported OSes.

3.2.1 Standard Configurations under Linux/FreeBSD/Mac OSX
HLA supports fewer configurations under Linux, FreeBSD, and Mac OSX than under

Windows but this is primarily because the main tools available for *NIX (Linux/FreeBSD/
MacOSX) are all freely distributable and there is no need to support commercial tools. There are
three different ways to generate object code files and only one linker and one librarian option
available under Linux. There is no resource compiler (that HLA would automatically use).

HLA can generate object files in one of two different ways under *NIX:

• The hlaparse program can generate an ELF object file directly.

• The hlaparse program can generate a Gas-compatible source file that the FSF Gas
assembler can convert to an ELF file.
As this was being written, HLA under Mac OS X only generates Gas-compatible source files

that the Gas assembler converta to Mach-o object files. Direct output of mach-o object files should
appear in HLA v2.3.

Under *NIX you don’t get a choice of linkers. Everyone uses the FSF/GNU ld (load) program
as the standard system linker. The HLA package also uses ld. In a similar vein, your only librarian
choice is the FSF/GNU ar (archive) program. These tools work great and they’re freely
distributable, so they’re the perfect back ends to the HLA system.

3.3 Non-Standard Configurations under Windows and Linux
It is possible, though uncommon, to use HLA in ways that aren’t 100% compatible with the

underlying operating system. For example, under Windows you can use HLA to produce a Gas-
compatible assembly language source file. Likewise, you can use HLA under Linux to produce a
MASM or TASM compatible assembly language source file. However, note that when HLA
produces a Gas file, it includes certain start-up code that is only appropriate for Linux; this is true
even if you do this under Windows. Similarly, producing a MASM or TASM source file includes
start-up code that is only appropriate for Windows, even if the file is produced under Linux. So
even if it were possible to run these products under the "wrong" operating system (e.g., MASM
under Linux), the resulting object files would not be in a format acceptable to the OS and the code
emitted by the HLA compiler wouldn’t run properly. Nevertheless, if you just want to view the
assembly language file that HLA produces, it doesn’t really matter what operating system you’re
running under, so you may as well pick an output format with which you are most comfortable.

3.4 Customizing HLA
With environment variables you can create a customized version of HLA that suits your

particular needs. The following subsections describe different ways you can optimize HLA for your
personal use.
Public Domain Created by Randy Hyde Page 57

HLA Reference Manual 5/24/10 Chapter 3
3.4.1 Changing the Location of HLA
To simplify installation and reduce installation problems, this manual suggests that you install

HLA under Windows in the C:\hla subdirectory and install HLA under *NIX in the /usr/hla
subdirectory. If you would prefer to put the HLA system somewhere else, it’s easy to do as long as
you tell the system what you’re doing. This is typically accomplished by setting up a couple of
environment variables.

First, to be able to run the HLA compiler and associated tools, the hla.exe/hla, hlaparse.exe/
hlaparse, back-end assembler (if applicable), and linker all have to be in directories in the execution
path. You may either move the HLA executables to some existing directory in the OS’ execution
path, or you can tell the OS to include the directory containing these files in the execution path. The
standard HLA installation instructions, for example, opt for this latter case.

Under *NIX, for example, it’s not uncommon for someone to put executables in the /usr/bin or
/usr/local/bin directories. These directories are always in the execution path, so placing all the HLA
executables in one of these directories under *NIX would spare you having to add the /usr/hla
subdirectory to your execution path.

Under Windows, there is no special directory where everyone dumps their little executable
files (like /usr/local/bin under *NIX). You could find an existing directory that’s in the execution
path and dump the HLA executables in there, however it’s almost always a better idea to simply
change the path environment variable so that it includes the HLA directory that contains the
executables. If you’ve installed HLA via the HLA installation program, the install program
automatically sets this up for you. However, if you want to move HLA to a different directory in
the future, you will need to remove the old path to HLA from your PATH environment variable and
add the path to the new HLA executables to the PATH.

Changing the execution path isn’t your only concern if you decide to move HLA around. The
HLA compiler will also need to know where it can find the HLA include files and the hlalib.lib
standard library files. Under Windows, the linker might also want to know where the hlalib.lib file
can be found. If you haven’t told it otherwise, HLA under *NIX assumes that the include
subdirectory and the hlalib subdirectory can be found in the /usr/hla subdirectory. Under Windows,
HLA will first look in the same directory containing the HLA executables and, failing to find the
include and hlalib directories there, it will then look in the C:\HLA subdirectory. If you’ve moved
the HLA include and hlalib directories somewhere else, then you will need to set up environment
variables to tell HLA where it can find these directories (technically, you could specify the paths to
these directories on the HLA command-line, but that’s so painful that you would never consider it
for anything other than a temporary solution). The "hlainc" and "hlalib" environment variables
serve this purpose.

Windows:
set hlainc=path_to_include_directory

Linux/FreeBSD/Mac OS (using BASH shell interpreter):
set hlainc=path_to_include_directory
export hlainc

Under Windows or *NIX you can use the set command to set the hlainc environment variable
to the path where HLA can find the HLA include subdirectory. For example, if you’re using
Windows and you’ve moved the HLA include files to the C:\tools\hla\hlainc subdirectory, you
could use the following command to tell HLA where it can find the include file:
set hlainc=c:\tools\hla\hlainc

The hlalib and hlalib_safe environment variables specifie the complete path to the hlalib.lib/
hlalib.a and hlalib_safe.lib/hlalib_safe.a files. Unlike the hlainc environment variable, this is not
the path to the directory containing the library file, but the full path to the file itself. The reason this
is a path to the library file rather than a path to the subdirectory containing the file is very simple:
it’s possible to have two or more library modules (in the same directory) and you might want to
choose the most appropriate one for the job at hand. For example, you might have a debugging
version of the library, an OMF version of the library, and a standard version of the library all in one
directory. In any case, suppose the hlalib.a and hlalib_safe.a files (archive files) under *NIX are
located at /usr/home/rhyde/hla/hlalib/hlalib.a and /usr/home/rhyde/hla/hlalib/hlalib_safe.a; you
could tell Linux/FreeBSD/Mac OSX about this using BASH commands like the following:
Public Domain Created by Randy Hyde Page 58

HLA Reference Manual 5/24/10 Chapter 3
set hlalib=/usr/home/rhyde/hla/hlalib/hlalib.a
export hlalib
set hlalib_safe=/usr/home/rhyde/hla/hlalib/hlalib_safe.a
export hlalib_safe

(export is a bash command that tells it to make the environment variable available to the invoking
shell.)

3.4.2 Setting Auxiliary Paths
When assembling HLA source files using a back-end assembler such as MASM, FASM, Gas,

or NASM, it emits a couple intermediate files for use by these back-end assemblers and the linkers.
Specifically, the compilation process produces a ".asm" file for the assembler and a ".link" file for
the linker. Some HLA users feel that these auxiliary files clutter up their project directory and
would prefer not to see them. Fortunately, there are a couple of different ways to tell HLA to put
these files in some other location besides the current project directory.

The first way to do this (which isn’t really the subject of this section) is to use the "-p:<path>"
command-line option to provide a temporary path for HLA to use. The advantage to using this
command-line parameter is that you can set a different temporary path for each compilation. The
disadvantage to this approach is that it can be a real pain to constantly set the path (if you’re typing
command lines manually).

A more comprehensive solution is to define the hlatmp environment variable. When HLA
runs, it checks this environment variable and, if defined, uses its value to determine the path to the
directory where HLA will store all temporary files. This spares you from having to place an explicit
path on each command line. For example, the following command line will tell HLA to use the
C:\temp (under Windows) subdirectory to hold all temporary files:

set hlatmp=c:\temp

Do take care when using the hlatmp environment variable. If you compile multiple source files
with the same name (presumably from different directories), then the intermediate files they
produce may create conflicts. In other words, don’t use the hlatmp environment variable to specify
a temporary path when doing several compilations in a batch operation. Use an explicit "-p:<path>"
command-line option in those cases.

3.4.3 Setting the Default Back-End Assembler
By default, the "HLA.EXE" (Windows) or "hla" (*NIX) programs use the HLA back engine to

directly produce an object file from the translation of the input HLA source file. For reasons
explained earlier, you might want to override this default selection and use one of the back-end
assemblers that HLA supports (MASM, TASM, NASM, or FASM under Windows, or GAS under
*NIX). There are two ways to do this: via command-line parameters or by the "hlaopt"
environment variable.

As described earlier, the -hlabe, -masm, -fasm, -nasm, -tasm, -gas, and -gasx command-line
options let you specify which assembly language syntax and back-end assembler HLA will use to
produce an object code file. The default is "-hlabe" which uses the internal HLA back engine to
directly produce an object code file without using an intermediate assembly language file. The
other options all produce an intermediate assembly language source file and use the associated
assembler (if possible under the current operating system) to translate that assembly language
source file into an object code file.

If you would like to change the default so you don’t have to specify a command-line option all
the time, you can use the "hlaopt" environment variable to automatically supply that command-line
parameter for you. For example:

set hlaopt=-masm

or

set hlaopt=-gas
export hlaopt
Public Domain Created by Randy Hyde Page 59

HLA Reference Manual 5/24/10 Chapter 3

Public Domain Created by Randy Hyde Page 60

HLA Reference Manual 5/24/10 Chapter 4
4 Using HLA with the HIDE Integrated Development
Environment

This chapter describes two IDEs (Integrated Development Environments) for HLA: HIDE and
RadASM.

4.1 The HLA Integrated Development Environment (HIDE)
Sevag has written a nice HLA-specified integrated development environment for HLA called

HIDE (HLA IDE). This one is a bit easier to install, set up, and use than RadASM (at the cost of
being a little less flexible). HIDE is great for beginners who want to get up and running with a
minimal amount of fuss. You can find HIDE at the HIDE home page:

http://sites.google.com/site/highlevelassembly/downloads/hide
Contact: sevag.krikorian@gmail.com
Note: the following documentation was provided by Sevag. Thanks Sevag!

4.1.1 Description

HIDE is an integrated development environment for use with Randall Hyde's HLA (High
Level Assembler). The HIDE package contains various 3rd party programs and tools to provide for
a complete environment that requires no files external to the package. Designed for a system-
friendly interface, HIDE makes no changes to your system registry and requires no global
environment variables to function. The only exception is ResEd (a 3rd party Resource Editor
written by Ketil.O) which saves its window position into the registry.

4.1.2 Operation

HIDE is an integrated development environment for use with Randall Hyde's HLA (High
Level Assembler). The HIDE package contains various 3rd party programs and tools to provide for
a complete environment that requires no files external to the package. Designed for a system-
friendly interface, HIDE makes no changes to your system registry and requires no global
environment variables to function. The only exception is ResEd (a 3rd party Resource Editor
written by Ketil.O) which saves its window position into the registry.

4.1.3 First Execution
The first time you run HIDE you may see 1 to 4 windows open, depending on the initial setup

of your current version. At the very least, the main window (the one with the menu-bar) will be
open. The visibility of other windows may be altered by selections in the View menu. The
windows may be in either floating or docked mode. Floating windows reside outside the main
window, while docked windows will be within the main window itself.

Whatever changes you make to the window positions and status will be saved and restored the
next time you start HIDE.

4.1.4 The Windows
HIDE is subdevided into several Windows. A collapsable side panel contains several tool

windows and an output window below displays execution details.
Public Domain Created by Randy Hyde Page 1

http://sites.google.com/site/highlevelassembly/downloads/hide

HLA Reference Manual 5/24/10 Chapter 4
4.1.4.1 Editor
The HIDE editor uses KetilO's powerful RAEDIT.dll This window contains 3 buttons along

the horizontal scroll bar: From left to right, Show/Hide Line Numbers, Expand All, Collapse All.
Expand and Collapse work on folding text which makes navigating large documents easier. HIDE
is setup to fold procedures and declaration sections.

There will be a '+' and '-' buttons in the margin to indicate text blocks that can be folded/
expanded.

Near the bottom scrollbar, there may be up to three extra buttons, one expands the margin to
show line numbers, the other two expand/collapse all blocks in the current window.

When a bookmark is set, you will see a blue square in the margin. Clicking on the square
removes the bookmark.

The editor window also has a Splitting Bar along the top of the vertical scroll bar. This allows
you to split the view into 2 windows.

4.1.4.2 Output
This window has two modes selectable by two buttons on the title bar; Notes and Output
While in Output mode, the window displays information on programs that are launched from

HIDE. This includes error reports from HLA.
If the Output window is hidden when information needs to be displayed, it is opened

temporarily and then closed. To cancel the automatic closing timer, click anywhere in the Output
window.

While in Note mode, the window displays an edit control used for saving project notes. These
notes are saved directly in the project file (.hpr)

4.1.4.3 Tool Bar
Contains various buttons for quick access. All of these also have menu-bar counterparts.

4.1.4.4 Tab Bar
When more than 1 file is open, The Tab Bar contains the filenames of all the open files

allowing quick navigation.

4.1.4.5 Status Bar
Status bar contains various information on HIDE modes and files.
From the left:
Line number, number of lines
INS/OVR, insert/overwrite mode
No Project/Project, indicates if a project is currently active
Release/Debug, inidcates if "Debug" or "Release" is selected in Compiler Settings
Info, if the pointer/cursor hovers over a recognized property, the property information is

displayed here.

4.1.4.6 Panel
The collapsable panel on the right side hosts several windows.
Each window has a Pin button and a Close button.
To undock a window from the Panel, simply click on the title bar and drag the window out.
To dock a window back into the Panel, click its tab on the Panel.
If you wish to anchor an undocked window so that it does not dock when the its Panel tab is

clicked, click on the Pin button. The icon will change to indicate window is pinned.
Click the Pin button againt to deactivate anchor.
The close button hides the window and docks it back to the Panel.
Public Domain Created by Randy Hyde Page 2

HLA Reference Manual 5/24/10 Chapter 4
4.1.4.7 Project Panel
If a project is open, this window will contain a treeview display of all the Jobs and files in the

project. Double-click on a file to open it in the editor or Hex editor (depending on the file-type).
There are also other options available if you right-click the name. A menu will open offering

different options are available depending on the file-type.
Also, when a file has been altered by an external program, an asterisc '*' will appear before the

name.

Different file/job types have special icons for easy recognition.

A target/ghosted target indicate a target job type.
A hammer/ghosted hammer indicates a build-type job.
Ghosted indicates a held job.
A circle with a 'P' indicates a Program (or entry) source.
A square with an 'U' indicates a unit source.
A bule square with an 'RC' indicates a resource-type file.
A square with line-dashes indicates a misc or include type file.
A green circle with a 'B' indicates a binary-type file.

Items that may appear in the Right-click menu:

-Project Manager
Opens the Project Manager. This option is available with all types.

-Dedicate to wscan
Selecting this file will reserve it for being used with "Consolidate Windows Header" Project

menu.
This option is available with all include file-types.

-Set Auto Open
Selects this file to open automatically when the project is loaded. This option is available with

all text file-types.

-Reopen File
Reloads the file from disc. Especially useful it the file has been altered externally. This option

is available with all text file-types.

-Open With Resed
Opens the file with ResEd. This option is available with resource file-types.

-Rebuild File
Forces a rebuild of the selected file. This option is available with Source and Resource file-

types

-Rebuild Job
Forces a rebuild of the selected job. This option is available with Build Job-types.

-Run, Run With Debug
Public Domain Created by Randy Hyde Page 3

HLA Reference Manual 5/24/10 Chapter 4
Runs any output for the selected job. These options are available with Program Job-types.

-Execute Script
Executes the selected kMake script. This option available with Target job-types.

-Open With kHelp
Opens the selected file with kHelp. This option available with kHelp file-types.

-View Dependents
Only available if Autodependencies is selected in HIDE Setting and the current source has

dependents. This item lists all the dependents in the Output window.

4.1.4.8 Properties
If a project is open, this window will contain information on the sections of a project, including

procedures, and variables. A tool bar allows selection of display mode: all project files or current
open file.

4.1.5 Compiling Simple Programs
When no projects are loaded, HIDE will operate on No-Project mode, this mode is displayed

on the status bar. In this mode, you may compile simple programs. This mode does not allow use
of units, linking additional libraries or resources.

To use Non-Project mode, simply load an HLA sample program or write one. Use menu item
File -> Open to open a new editor window. When the program is typed, you may save it then
compile. By default, HIDE allows you to compile and run a sample program without saving it first,
HIDE will automatically save it in the HIDE/TEMP folder as “temp.hla” The executable will also
end up in the temp folder.

This default mode may be removed from the HIDE Settings dialog (in Options
menu). To compile, use menu item Make -> Build, Build & Run or Rebuild.

4.1.6 Menus
When no projects are loaded, HIDE will operate on No-Project mode, this mode is displayed

on the status bar. In this mode, you may compile simple programs. This mode does not allow use
of units, linking additional libraries or resources.

To use Non-Project mode, simply load an HLA sample program or write one. Use menu item
File -> Open to open a new editor window. When the program is typed, you may save it then
compile. By default, HIDE allows you to compile and run a sample program without saving it first,
HIDE will automatically save it in the HIDE/TEMP folder as “temp.hla” The executable will also
end up in the temp folder.

This default mode may be removed from the HIDE Settings dialog (in Options menu). To
compile, use menu item Make -> Build, Build & Run or Rebuild.

4.1.6.1 Edit

Standard: Standard cut, copy, paste options available.

Indentation:
Indent adds the tab character at the beginning of each selected line, while Outdent works the

inverse.
Public Domain Created by Randy Hyde Page 4

HLA Reference Manual 5/24/10 Chapter 4
Commentation:
Comment and Uncomment have 2 modes. With HLA files (sources ending with .hla or .hhf),

the comment adds a double slash at the beginning of each selected line. Uncomment works the
inverse.

Bookmarks:
Toggle bookmark adds a bookmark at the current line. The margin displays a filled circle at

the location. Next/Previous Bookmarks cycle between saved bookmarks. Clear All Bookmarks
removes all saved bookmarks.

These bookmarks are only good for the current session, they will not be remembered if you
exit HIDE.

Source Bookmarks:
Regular bookmarks only last one session, to have persistant bookmarks, use a source

bookmark. These will add a commented bookmark into the source which the HIDE properties
scanner will pick up and display in the "bookmarks" view of the Properties panel. Remove a
bookmark by deleting the comment.

"Insert Source Bookmark" will open a dialog asking for a label. Enter a single word to
describe this bookmark. HIDE will add a comment at the current cursor position that looks like:

//bm=label
This can be entered manually as well. Next property update, the bookmark will be displayed in

the "bookmarks" view and the bookmark will be saved in the source.

Block Selection:
Mark Set/End sets begin and end points for block selection. This is an alternative to shift-

scrolling to select large blocks of text.

Quick Navigation to Labels:
Find/Return Declare tries to find the location in the sources where the current label under the

carot is declared. The middle mouse button does the same thing except for the word currently
under the carot position. There are up to 5 saved position, 4 through menus and 1 with middle
mouse button. Selecting a menu again returns to the original spot.

Note: When the cursor hovers over a declared label, the property information of the label (if
any) is displayed on the status bar.

Goto Program Begin jumps to the main program begin location of the Entry file.

4.1.6.2 View

Shows or hides, docks or undocks various HIDE windows:

Treeview: contains a file-list of the current project.
Toolbar: some of the commonly used menuitems are on the toolbar
Statusbar: contains some useful at-a-glance information about mode.
Output: compiling output is displayed here.

Toggle Windows: closes open Panels, opens closed Panels
HIDE Windows: hides all open Panels
Panel: Hides/shows side panel
Output: Hides/shows output panel
Public Domain Created by Randy Hyde Page 5

HLA Reference Manual 5/24/10 Chapter 4
Dock Output: docks/undocks Output panel from main window
Cycle Panel: changes views in side panel

4.1.6.3 Project

New Project:
Opens a dialog to get a file name for creating a new project.
Enter a project name, options include using a template or starting with the Project Manager.
There are some quick templates included for convinience.
Projects will be saved in their own folder located at HIDE(default), or at the current user-

specified projects folder (Options -> Set Paths). The current projects folder is displayed in the
dialog.

Once a project is created, any currently open project is closed. If no templates are used, the
Project Manager opens. Otherwise the template project is created and opened.

See the description of Project Manager on how to add new jobs and files to the project.

Open Project:
Opens a previously created project. If there is an active project, it is closed.

Close Project:
Closes current project.

Project Manager:
Opens the Project Manager dialog. See the Project Manager topic for more information.

Consolidate Windows Header
Selecting this option activates wscan.exe which scans your project sources for any Window

header labels (namespace w). It then scans the main w.hhf header files and creates a smaller sub-
set of this file using only the labels (direct and indirect) declared in your sources. This
automatically creates a "win_inc.hhf" header file and adds it to your project. To use this file, you
must #include ("win_inc.hhf") with any unit that needs them (see the wscan documents for more
information).

Empty Temp Folder
This will delete the contents of the current temp folder. The location of the temp folder will

vary depending on project settings. See Help->Show Envrionment menu for current temp folder.

4.1.6.4 Make

Build Active Job:
If the current file belongs to a job, that job is built. If it's a
non-project file, the file is built.

Build Project:
This option builds all the jobs in the project, in the order displayed
Public Domain Created by Randy Hyde Page 6

HLA Reference Manual 5/24/10 Chapter 4
in the Project Panel.

ReBuild Project:
Forces a rebuild of all the jobs without checking file-dates.

Rebuild Active File:
Forces a rebuild of the current file without checking file-dates.

Rebuild Active Job:
Forces a rebuild of the current active job without checking file-dates.

Run: Runs the executable of the current active job, if any.

Build Project & Run:
First Builds the project then runs the produced executable of the active job

Run With Debug:
Runs a previously built program of the active job with a specified Debugger.
See Options menu Set Paths for more info.

Clean:
Deletes compiled object and resource files

Test Build -Commands only:
Shows the commandlines HIDE will execute under normal execution of Make->Build Project
No actual execution will take place.

Source HLABE:
Converts the file in the active window into hla's internal HLABE format, opens a new
window to display the contents.
This format is useful for seeing the high level functionally of hla unrolled into low level and

debugging macros.

Source -> MASM, FASM, NASM, GAS
Converts the file in the active window into hla's translation of the various supported languages.
This format is useful for seeing how hla code appears in other assembly languages.

Some of these options are also available in the right-click menu of the
Project Panel.

4.1.6.5 Tools
These tool selections are hard coded into HIDE, included in the bin folder or operating system

and always available
Public Domain Created by Randy Hyde Page 7

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.5.1 Debug Window
A simple window that can display run-time output sent by your programs. Operatation of

Debug Window requires several steps.

1. Include the dbgwin header file (located in the hlaincfolder).
#includeonce ("hide.hhf")

2. Link with debug.lib This is done automatically by setting the Output Version (in Compiler
Settings dialog, see Options) to Debug (debug mode).

3. Add a global compile time variable called debug to your source. This is done automatically
by setting the Output Version to Debug (debug mode).

Displaying text to the debug window is done by a series of macros all of which use the "dbg"
namespace.

Current functions:

dbg.put(arg1,[arg2],[arg...]);
Used somewhat like stdout.put, but less powerful.
Eg: dbg.put("The variable MyVar contains the value: ",MyVar);

dbg.cls:
Clears the debug window display of any text.
Eg: dbg.cls;

dbg.putz (addr);
Displays a zero-terminated string.

dbg.separator;
Draws a separating dashed line.
Eg: dbg.separator;

dbg.dumpmem(address,length);
Displays an arbitrary memory location at address passed in address parameter and of length

passed in length parameter.

dbg.dumpregs;
Displays the contents of the registers.

dbg.trace;
Starts HLA trace, displayse current file/linenumber for most instructions.

dbg.endtrace;
Ends the trace

dbg.timer;
Starts a timer for measuring performance of code.

dbg.endtimer;
Ends the timer and displays the time.
Public Domain Created by Randy Hyde Page 8

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.5.2 Resource Editor
Launches Ketil.O's ResEd.
If there is a project open, it checks the current job and tries to find
a resource file. It will open that file in ResEd.
To make sure ResEd opens a particular file, right-click the resource
in the Project Panel and select "Open With ResEd"

Note: HIDE loads all files into memory. ResEd modifies external files. Although HIDE
reopens the current resource file after exiting from ResEd, at times a user will have ResEd produce
an additional file (such as rsrc.hhf) which will need to be manually reopened. An asterisk beside
the file name in the Project view indicates a file has been modified externally and needs to be
reopened, do so by right-clicking on the filename and selecting "Reopen File".

4.1.6.5.3 ASCII Table
Runs asciitbl.exe which outputs a basic text Ascii Table to the output window.

4.1.6.5.4 Calculator
Launches system calculator, calc.exe

4.1.6.5.5 Color Picker
Opens a color selection dialog. Clicking OK on the dialgo will send the current color to the

main edit window at the carot postion as an HLA hex number.

4.1.6.5.6 Open Console
Runs the program attached to the "ComSpec" environment variable.

4.1.6.5.7 Run Program
Opens a dialog for input. Attempts to execute the input. You may use HIDE macros.
The dialog shows the last text entered.

4.1.6.6 Options
Control all cutsomizable aspects of HIDE, from font/color settings to output types.

4.1.6.6.1 Code Editor Font

Customize the font used in the editor and output windows.
Public Domain Created by Randy Hyde Page 9

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.6.2 Line Number Font

Customize the font used in the margin.

4.1.6.6.3 Colors & Keywords
Allows customization of highlite colors and highlite key-words. It contains 10

user key-lists which come predefined with HLA directive and assembler opcodes. There are also 4
HIDE specific lists, two of which contain keywords for HLA standard library routines and two
contain keywords for Windows API structures, constants and functions.

Here you will also be able to use and save Themes. Several themes are included and your own
themes may be saved. Saved themes are stored in data.ini. Only themes you save may be deleted.

4.1.6.7 HIDE Settings

This dialog allows you to change the editor behavior settings.

4.1.6.7.1 Tabs:
Tab Size: If a project is open, the new tab settings will only apply to the project. Otherwise, it

will apply to default and all new projects.
Expand tabs: change tabs to spaces.
Auto indent: pressing enter will automatically tab to the previous indent.

4.1.6.7.2 Backups:
 Instructs HIDE to make backups of every project file modified, up to the number specified.

Once the limit is reached, the backups cycle back through the lower numbers. The files are saved
either in the BAK folder of your project (if one was created during project creation), or in the
HIDEfolder.

The backup naming convention is thus:

[n]<filename>where n is the backup number
If Backups is set to 0, no backups will be created.

4.1.6.7.3 Options

Hilite lines: Hilites the current cursor line

Hilite Comments: hilites commented code

Hide Divider Lines: does not show divider lines

Show Line #s: Automatically opens the line number panel for every open file

Auto HLA Structures: automatically completes or assists when HLA keywords are used

Auto Parenthesis:
Public Domain Created by Randy Hyde Page 10

HLA Reference Manual 5/24/10 Chapter 4
Automatically completes parenthesis or '[', ''
and '('. Also if the closing parenthesis is used
at the end of a word, the opening parenthesis is
automatically inserted at the beginning of the word

Keep Temp Files:
Saves temporary files in either project/temp folder
or HIDE/temp folder

Use Debug Lib: links in debug.lib and sends -ddebug ctl variable

Verbose Output: more verbose information during compiling

PE GUI: links output as Windows PE GUI

Send Console output to Output Window:
Redirects standard out of console programs executed to the output window.

Note: this does not allow input.

Auto Dependencies:
This activates the dependency checking feature of HIDE. Dependencies are considered only if

the file is included and exists as a project file. To determine which dependencies HIDE will
consider, you may right click on a file name in the Project View. If there are dependents, a menu
item "View Dependents" will be visible. Clicking this will list dependents in Output window.

4.1.6.7.4 HIDE Global Settings

Open Last Project: Attempts to open the last project worked on

Autosave [Untitled]:
Automatically save [Untitled] as HIDE.hla *
When on No Project mode, this allows you to compile
a program without saving it first. The program is
saved in the HIDEfolder with the name temp.hla,
the executable after a build will be in that folder
as well.

*Note, if there is a project open and it has 'Use Temp Folder'
active, the file will be saved in the projects's temp folder.

Use Standard Templates:
Everytime a new file is opened, depending on what kind
of file, HIDE will fill in code according to the files
located at HIDE. If you do
not like these, feel free to update them to your taste,
but create backups before upgrading HIDE, as the files
may be overwritten.

Scan for Properties:
Public Domain Created by Randy Hyde Page 11

HLA Reference Manual 5/24/10 Chapter 4
Properties scanning is optional. Turn this off on low end systems that
exhibit slowdowns during symbol scanning.

Top Window: Makes HIDE a top level window.

4.1.6.7.5 HLA Level:
This determines the level at which HLA will attempt to compile sources.
4 options available from left to right:
high, medium, low, machine

4.1.6.7.6 Global Link Settings
Allows you to edit link settings for non-project files.
There must not be a project open for this to edit global
settings.

4.1.6.8 SetPaths
Opens a dialog where certain HIDE and HLA paths can be set.
The fields can accept legal physical or relative paths. All HIDE macros are available for use in

the fields and it is suggested that HIDE-relative macros be used for changing environment paths.

4.1.6.8.1 User Paths
Use this to extend the system search path used by HIDE

4.1.6.8.2 Project Folder
The default project folder is located at HIDE. Use this field to change the

location to another folder.

4.1.6.8.3 Debugger
In this field, enter the path and executable of the debugger that will be launched

when the user selects "Run With Debug"

4.1.6.8.4 Help (F1)
In this field, enter the path and name of a help file that will be used for Windows

API documentation

4.1.6.8.5 hlalib
Use this field to change the "hlalib" environment path. This path must always

point to a valid hlalib library.

4.1.6.8.6 hlainc
Use this field to change the "hlainc" environment path.

4.1.6.8.7 hlaopt
Use this field to change the default compiling options set by HIDE. Possible uses

could be to use an external assembler.
Public Domain Created by Randy Hyde Page 12

HLA Reference Manual 5/24/10 Chapter 4
Beware, changing this could make HIDE inoperable so only change it if you
know what you're doing! You can revert to the default by deleting the "hlaopt" line in data.ini

4.1.6.9 User
The user menu is not shown unless there are user menus defined in the Data.ini file.
To define a user menu, add a [User Menu] section to HIDE.ini
Each line under "[User Menu]" has the format:
menu id, command to execute w/arguments
the command execution line may also contain HIDE macros (see below).
 Eg:

 [User Menu]
 calc, calc.exe
 Alpha, alpha.exe %s

See HIDE Macros section for more details on macros.

HIDE will also use appropriate programs to launch for opening documents from the user
menu. It will determine this based on the document extension provided.

One can use this feature to open files using HIDE.

eg:

[User Menu]
My Help, "c:documents.pdf"

The above will attempt to open mypdf.pdf with
default pdf viewer, if one is found.

To open files using the text/hex editor in HIDE,
place the '<' (less than) char right before
the filename

eg:

[User Menu]
HIDE.ini,<%h.ini

This will open "hide.ini" located in the HIDE
folder using the current instance of HIDE.

Use the '>' (greater than) char right before
the filename to open as HEX.

The '<' and '>' chars must appear before quotes, if
quotes are used.
Public Domain Created by Randy Hyde Page 13

HLA Reference Manual 5/24/10 Chapter 4
4.1.6.10 Help

Win32 API
Before this feature can be used, it has to be configured with the location of your

Windows help file.
To do so, use Option -> Set Paths menu and add the location of your win32.hlp (or other) file

to the "Help F1" field.

Once configured, selecting this menu will open win32.hlp (or other selected program).
Selecting it while cursor is on a word will try to locate the keyword in win32.hlp and open that
topic.

The Tutorials and manuals may need to be downloaded separately. These files are the kHelp
versions of the documents. When downloaded, the tutorials go in HIDEfolder, the rest go in HIDE

When selected, kHelp is launched to display the document.

Show Environment:
Displays the current HIDE environment and macros associated with the paths.

Show Files List:
Dumps a list of all the project files, their Job segment and their locations in the

Output window.

About
Opens a dialog with credits, info and other...

4.1.7 HIDE Macros

Here is a list of HIDE Macros that may be used in HIDE control boxes for paths and output
redirection and in Target scripts.

 %$ current directory, usually folder of current open project
 %h HIDE homepath
 %p projects folder path (not current open project)
 %c folder for current open project
 %i hlainc folder path
 %l lib folder path
 %t temp folder path
 %s active edit source filename
 %x template folder path

 See Help-> Show Environment for the actual paths that will be substituted
 for some of these macros.

4.1.8 Project Manager

The Project Manager is a new feature added in HIDE 1.23.00+
Public Domain Created by Randy Hyde Page 14

HLA Reference Manual 5/24/10 Chapter 4
From here, the details of the project are handled; adding/removing/moving/renaming jobs,
files, folders, linked libraries; selecting compiling options; selecting linker options; selecting auto-
maintained folder operation...

The main operation of the Project Manager is broken down into 4 panels from left to right:

1. Jobs Build/Held Queue + combobox (refered to as Jobs Combo)
2. Folders
3. Files + combobox (refered to as Files Combo)
4. Linked Objects

Most of the buttons are only active when the are useful.
On the extereme left, the up/down buttons are only active if there are two or more jobs in the

project. You may select a Job and move them up or down the build Queue using these arrows.

1. Jobs List. This first listbox has two modes, Build Queue and Held. Select modes from the
two buttons on top of the list.

To begin adding jobs to the project, select a job type from the Jobs Combo. There are several
to choose from.

HLA Program
For small, mono-source HLA programs.

Modular Program
For large unit-based programs.

A Build Target
For kMake scripts

DLL
For modular Dynamic Linked Libraries

Library
For modular Libraries

Misc
Special type. This does not build anything.

Buttons:
Add Job - activated when a Job type is selected in the Jobs Combo.

Opens a dialog for getting the Job name.
Delete Job - deletes selected job. Only works if there are no files in the job.
Rename Job - renames selected job.
Hold Job - sends selected job into the Held list.

2. Folders List
When a project is created, this will already have the project folder listed here.
Add Folder - adds a new folder to the project
Delete Folder - deletes selected folder. Only works if the folder is empty. Does not delete the

project folder.
Rename Folder - renames selected folder.
Public Domain Created by Randy Hyde Page 15

HLA Reference Manual 5/24/10 Chapter 4
Move File - only active if there is also a file selected in the Files List. Moves the file to the
folder.

3. Files List
Files Combo - only active when a job is selected. Allows you to add file-types to the job.
Note: some file-types are only available in certain jobs.
Select a file type to activate add button.

Entry File - only available in Program and DLL type jobs. Only one entry file may be created
per job. The entry file is usually the one that contains the "Program.." heading.

Include File - for includes/headers
RC File - for resources
kHelp File - for kHelp documents/manuals
Binary File - for opening with Hex editor
Misc File - for general non-source text files
Unit File - only available in modular type jobs. For separately linked units.
Definition File - only available in DLLs, only one may be created.
kMake Script - only available in Target type jobs. Adds a kMake script. Only one per target.

Buttons:
Add File - opens a dialog to get name. Creates a new file. If "Use Standard Templates" is

selected, the file is pre-filled with code found in the Datafolder based on type of file created.
To create a file in a folder different from the Project root, select a folder before clicking "Add

File"
Delete File - removes a file from project and deletes it from disc. File is gone forever.
Rename File - give a file a new name.
Import File - Import an existing file into the project.

To move a file, select the file in the Files list, select a new folder in the Folders list and the
"Move File" button will activate. Click to move.

4. Linked Objects List
This will contain a list of files linked in with the final executable/library. You may fine some

default libraries already listed. These are added when a new Job is created. To see the list of
default libraries, or to make changes to the default list, see Data.ini

Buttons:
Add Library - add a library for linking.
Remove Library - remove a library from linking - does not delete library.

Project Options
Several buttons available:

Rename Project - renames the folder and project file.
Use Standard Templates - if selected, new files created will contain initial code taken from

Data, depending on the type of file.
Use Temp Folder - creates a "temp" folder and uses that to store all temporary files.
Use Units Folder - creates a "units" folder and stores all the object files there.
Use Bak Folder - creates a "bak" folder and stores all backup files there.
Use Debug Lib - linkes debug.lib with all compiled jobs.
Keep Temp Files - does not delete temporary files. These files will be saved either in the

current project temp folder or in the HIDE/temp folder, depending on the use of temp folder.
Public Domain Created by Randy Hyde Page 16

HLA Reference Manual 5/24/10 Chapter 4
Verbose Compile - shows more compiling data.

Job Options:
Only available when significant jobs types are selected.

Link As GUI - links with -w option.
Link Options - opens a dialog allowing the editing of finder linker details. For advanced users

only.

Output:
Shows how the final output file (if any) will be named and in which directory it will be created.

You may use standard HIDE macros here for output redirection.

Done:
Closes the dialog and saves changes to project file.

4.1.9 Auto Completion

Bernd Kastenholz has written an autocompletion module for HIDE.
Autocompletion listbox is opened by pressing ctrl-space

Activation in HIDE-editor: Key Ctrl-Space
Opens a dialog beneath the cursor. The listbox contains all
strings of file 'HideHomepath.txt'.

Settings: Key F1 (does only work when autocompletion dialog is visible)
Opens the settings dialog. Only the sort property of
the listbox can be changed.
The settings are stored in file 'HIDE.ini'

Controlling the listbox:
Arrow up: Scroll up in the listbox
Arrow down: Scroll down
Arrow left: Increase the selection to the left
Arrow right: Decrease the selection to the right
Backspace: Increase the selection to the left
Return: Inserts the selected word and closes the dialog
DblClk with left MB in listbox: Inserts the selected word and closes the dialog
Scrolling with mousewheel.
ESC: Just closing the dialog and deletes the selection
HOME: Scroll to first item
END: Scroll to last item
PGDN: Scroll down one page
PGUP: Scroll up one page

Updates:
8/2/2006
Public Domain Created by Randy Hyde Page 17

HLA Reference Manual 5/24/10 Chapter 4
-fixed a bug (while inserting chars)
-now the word list will be destroyed when changing the sort property

8/1/2006
v1.0.1

-added controlling the listbox with HOME, END, PGDN and PGUP
-fixed deleting of text
-fixed decreasing/increasing bug
-fixed backspace bug. Deletes now the selection
-cleaning the source code

7/31/2006
v1.0.0

first release of autocompletion

4.1.10 CommandLine Tools

For more in-depth documentation of these tools, see the HIDE Tools manual.

4.1.10.1 kMake
kMake is used to build target jobs. To edit a target job write in the optional [BUILD] section

to avoid warnings from kMake.

eg:
[BUILD]
; commands to run

For those unfamiliary with kMake, the manual is included in Help -> HIDE Tools

For a quick summary, a script may launch any program or MS-DOS command that are
available on your path. If you need to add more paths to HIDE, use Option -> Set Paths menu and
add as many paths as you like to "User Paths"

The script may also contain HIDE macros (see Help -> Show Environment for an available list
of macros and what they expand to).

4.1.11 Project File Format

Note: this format has changed significantly in HIDE 1.23.00 +
The original format is no longer supported and an automatic converter
is provided to help in converting older projects to the newer format.

Here is a sample HPR file. I'll walk through the sections one at a time.
Public Domain Created by Randy Hyde Page 18

HLA Reference Manual 5/24/10 Chapter 4
[HPR Settings]
mainfile=Src.hla
tab=6
backups=0
options=199
Project Version=10
usetemp=false
useunits=true
useback=false
findscope=1
findflags=0

[HPR Jobs]
cCalc

[HPR Folders]
units
res
src

[cCalc]
console=false
output=cCalc.exe
type=modular
main=cCalc.hla

[cCalc.link]
-heap:0xF4240,0xF4240
-stack:0xF4240,0xF4240
-base:0x4000000
-entry:HLAMain
-section:.data,RW
-section:.text,ER
-machine:ix86

[cCalc.files]
kernel32.lib,,extlinked
user32.lib,,extlinked
hlalib.lib,,extlinked
hidelib.lib,,extlinked
cCalc.hla,src,hlaprogram
cCalc.rc,res,resource
cCalc.hhf,src,include
cCalc.txt,,misc

==
Public Domain Created by Randy Hyde Page 19

HLA Reference Manual 5/24/10 Chapter 4
[HPR Settings]
mainfile=Src.hla
tab=6
backups=0
options=199
Project Version=10
usetemp=false
useunits=true
useback=false
findscope=1
findflags=0

This section gives HIDE some detailes on how to treat this project

mainfile
HIDE opens ths file when the project is first loaded. Any file
can be set as mainfile by right-clickig the name in the Project
Panel and selecting "Set Auto Open"

tab
Number of spaces in a tab

backups
Maximum number of backups reserved for this project

options
Maintains a bit-map of options

Project Version
Used for automatically updating changes to the project file format.
A version of <10 is the older project format which is no longer supported.

usetemp
useunits
useback
Some folders are auto-maintained. These show true or false wether this project makes use of

these facilities.
usetemp = temp folder"temp"
useunits= units folder "units"
useback = backups folder"bak"

findscope
findflags
These maintain the find options for this project.

[HPR Jobs]
cCalc

This section lists the jobs queue. Every item here is executed in
Public Domain Created by Randy Hyde Page 20

HLA Reference Manual 5/24/10 Chapter 4
order from first to last. There may also be a [Held Jobs] section
which are jobs removed from the build queue.

[HPR Folders]
units
res
src

This section lists all the folders recognized by the project.

[cCalc]
console=false
output=cCalc.exe
type=modular
main=cCalc.hla

Each job listed in [HPR Jobs] and [Held Jobs] will have its own
corresponding section which describes what the job is all about.

console
Indicates if this job will build as a console or PE GUI

output
Indicates the path/name of the output produced by this job

type
Corresponds to the type of job as selected when job was created

main
If this job has an entry (ie: it's an executable or DLL) then
this will indicate which file is the entry.

[cCalc.link]
-heap:0xF4240,0xF4240
-stack:0xF4240,0xF4240
-base:0x4000000
-entry:HLAMain
-section:.data,RW
-section:.text,ER
-machine:ix86

Each job will have its own link section. This passes information to
the linker. These options may be edited from the Project Manager

[cCalc.files]
kernel32.lib,,extlinked
Public Domain Created by Randy Hyde Page 21

HLA Reference Manual 5/24/10 Chapter 4
user32.lib,,extlinked
hlalib.lib,,extlinked
hidelib.lib,,extlinked
cCalc.hla,src,hlaprogram
cCalc.rc,res,resource
cCalc.hhf,src,include
cCalc.txt,,misc

Each job will have its own files section. Every file is listed,
along with its folder and type.

4.1.12 Licences
HIDE package contains tools released in various licences.

4.1.12.1 HIDE
HIDE
Copyright (c)2006 Sevag Krikorian

This licence applies to all versions of HIDE including any
future released version, unless a new licence is applied.

HIDE consists of HIDE.exe as well as the package "HIDE." The
package consists of other 3rd party tools and any licences
associated with these tools are provided separately.

This program is free for commercial or private use as long as
the following conditions are respected.

1. Redistribution
Redistribution in source or binary form is permitted.
The copyright notice, disclaimer and this licence
(as well as the lincences of all 3rd party software that is
redistributed) must be retained.

2. Modification
The source may be modified and redistributed.
Redistribution of modified code also falls under the conditions
of redistribution (see #1).

Modified source cannot be copied and placed under a
different licence, including the GNU Public Licence.

3. Disclaimer
This software is provided "as is" and any express or
implied warranties, including merchantability and fitness for
a particular purpose are disclaimed.
Public Domain Created by Randy Hyde Page 22

HLA Reference Manual 5/24/10 Chapter 4
The author and contributors will in no case be liable
for the use or misuse of this software, including, but not
limited to direct, indirect, incidental, special, exemplary or
consequential damages.

4.1.12.2 PellesC
This software is provided 'as-is', without any expressed or implied warranty. In no event
will the author be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to redistribute it freely, subject to the following restrictions:

1.The origin of this software must not be misrepresented; you must not claim that you wrote
the original software.

2.Including Pelles C in a CDROM or in other products sold for profit needs explicit agreement
from the author.

3.This notice may not be removed or altered from any distribution.

Pelle Orinius
Stockholm, Sweden

4.1.12.3 HLA
Use the -license command-line parameter to see the current license for the HLA system.
Public Domain Created by Randy Hyde Page 23

HLA Reference Manual 5/24/10 Chapter 4
4.2 The RadASM/HLA Integrated Development
Environment

Note: the HIDE integrated development environment is standard IDE for HLA. However,
RadAsm, an older system that is compatible with several different assemblers, also supports HLA.
I wrote this documentation for an older version of RadAsm (before HIDE appeared). As many
HLA users prefer RadAsm (because they grew up with it or because they use several different
assemblers and prefer using a single IDE) I’ve included this documentation. You may need to make
appropriate mental adjustments if you’re using a newer version of RadAsm than this document
describes.

Last I checked, the official RadAsm development site was dead, but if you Google RadAsm
you can find mirror sites to download it from. Last time I did this, found found the following sites:

http://www.oby.ro/rad_asm/
http://radasm.cherrytree.at/radasm/

4.2.1 Integrated Development Environments
An integrated development environment (IDE) traditionally incorporates a text editor, a

compiler/assembler, a linker, a debugger, a project manager, and other development tools under the
control of a single main application. Integrated doesn’t necessarily mean that a single program
provides all these functions. However, the IDE does automatically run each of these applications as
needed. An application developer sees a single “user interface” to all these tools and doesn’t have
to learn different sets of commands for each of the components needed to build an application.

The central component of most IDEs is the editor and project manager. A project in a typical
IDE is a related collection of files that contain information needed to build a complete application.
This could, for example, include assembly language source files, header files, object files, libraries,
resource files, and binary data files. The point of an IDE project is to collect and manage these files
to make it easy to keep track of them.

Most IDEs manage the files specific to a given project by placing those files in a single
subdirectory. Shared files (such as library and shared object code files) may appear elsewhere but
the files that are only used for the project generally appear within the project directory. This makes
manipulation of the project as a whole a bit easier.

RadASM, created by Ketil Olsen, is a relatively generic integrated development environment.
Many IDEs only work with a single language or a single compiler. RadASM, though designed
specifically for assembly language development, works with a fair number of different assemblers.
The nice thing about this approach is that you may continue to use RadASM when you switch from
one assembler to another. This spares you the effort of having to learn a completely new IDE
should you want to switch from one assembler to another (e.g., switching between FASM, MASM,
NASM, TASM, and HLA is relatively painless because RadASM supports all of these assemblers.
RadASM is extremely customizable, allowing you to easily set it up with different assemblers/
compilers or even modify it according to your own personal tastes. Although the version of
RadASM that ships with HLA has been specifically set up to work seamlessly with RadAsm, it’s
nice to know that you can customize RadASM however you choose..

4.2.2 HLA Project Organization
A RadASM/HLA project is a collection of all the files specific to a given executable program.

This includes project-specific source files, resource files, object files, header files, makefiles, and
so on. Share library, object, and header files are logically a part of an HLA project, though they
generally are not physically present in the set of files that comprise a project (i.e., you don’t make
copies of these files for each project you produce). Whether a given file is physically a part of the
project or just logically a part of a project, a RadASM/HLA project cannot compile correctly
without all the files that make up the project.

This document will adopt the (reasonable) convention of placing each HLA project in its own
subdirectory. A given project directory will contain the following files and directories:

• All source files specific to the project (this includes make files, .hla, .hhf, .rc, .rap
[RadASM project] and other files created specifically for this project, but does not include
any standard library header or generic library files that all projects use).
Public Domain Created by Randy Hyde Page 24

HLA Reference Manual 5/24/10 Chapter 4
• A “makefile” file to be processed by a “make” program or a batch file to compile and
combine all the files in a project.

• A “Tmp” subdirectory where HLA can place temporary files it creates during compilation
(normally these files wind up in the same directory as the HLA source files; placing them
in the “Tmp” directory prevents clutter of the main project directory).

• A “Bak” subdirectory where backup files can be kept.
The RadASM IDE provides the ability to maintain projects directly. However, the combination

of RadASM/HLA and a “make” program provides a superior solution to the standard RadASM
project paradigm. Therefore, this document will assume that you’re using makefiles in your
RadASM projects (the next section describes the “make” program, so if you’re not familiar with it,
keep on reading...).

The drawback to using makefiles to maintain the project is that you’ve got to manually create
the makefile; RadASM won’t do this for you automatically (as it does with its own projects).
Fortunately, 90% of your makefile creations will simply be copying an existing makefile to your
project’s directory, editing the file, and changing the filenames from the previous project to the
current project (indeed, this operation is so common that you’ll find a generic makefile in the
“sniplets” RadASM directory accompanying the HLA download. You can easily create a copy of
this generic makefile from RadASM’s “Tools > Sniplets” menu, as you’ll see soon enough).

4.2.3 Using Makefiles
Although RadASM provides a true IDE for HLA that supports projects, browsing, and other

nice features, the best way to manage your Win32 assembly projects (even within RadASM) is via
a makefile. Since the use of make is going to be a fundamental assumption in this book (e.g., most
examples will include a makefile), it’s probably wise to discuss the use of make here for those who
may be unfamiliar with this program.

The main purpose of a program like make (or nmake, if you’re using Microsoft’s version of the
program) is to automatically manage the compilation and linking of a multi-module project.
Although it is theoretically possible to write a single, self-contained, assembly language source file
that assembles directly to an executable file, in practice this is rarely done. Instead, programs are
usually broken up into separate source files by logical function. In order to save time during
development, you don’t always have to recompile every source file that makes up the application.
Instead, you need only recompile those source files that have been changed (or depend upon
changes in other source files). This can save a considerable amount of time during development if
your project consists of many different source files that you’re compiling and linking together and
you make a single change to one of these source files (because you will only have to recompile the
file you’ve changed rather than all files in the system).

Note that you will have to obtain a make utility program in order to use make files. If you’ve
got any Microsoft development tools, then you’ve probably got a copy of Microsoft’s nmake.exe
program lying around. Ditto for Borland tools. The Free Software Foundation (FSF - the GNU
folks) have their own version of make as well. If you don’t have a copy of a make utility, you can
download Borland’s version as part of their C++ command line compiler package that they
distribute free on their website (though you do have to register with Borland to receive this). Check
out the C++Builder Downloads page at

http://www.borland.com/products/downloads/download_cbuilder.html
Click on the “compiler” link in order to download Borland’s command line C++ compiler (that

includes the make.exe utility). If this link is broken, just visit http://www.borland.com and follow
the downloads link.

Although separate compilation reduces assembly time and promotes code reuse and
modularity, it is not without its own drawbacks. Suppose you have a program that consists of two
modules: pgma.hla and pgmb.hla. Also suppose that you’ve already compiled both modules so that
the files pgma.obj and pgmb.obj exist. Finally, you make changes to pgma.hla and pgmb.hla and
compile the pgma.hla file but forget to compile the pgmb.hla file. Therefore, the pgmb.obj file will
be out of date since this object file does not reflect the changes made to the pgmb.hla file. If you
link the program’s modules together, the resulting executable file will only contain the changes to
the pgma.hla file, it will not have the updated object code associated with pgmb.hla. As projects get
larger they tend to have more modules associated with them, and as more programmers begin
working on the project, it gets very difficult to keep track of which object modules are up to date.

This complexity would normally cause someone to recompile all modules in a project, even if
many of the object files are up to date, simply because it might seem too difficult to keep track of
which modules are up to date and which are not. Doing so, of course, would eliminate many of the
Public Domain Created by Randy Hyde Page 25

HLA Reference Manual 5/24/10 Chapter 4
benefits that separate compilation offers. Fortunately, the make program can solve this problem for
you. The make program, with a little help, can figure out which files need to be reassemble and
which files have up to date .OBJ files. With a properly defined make file, you can easily assemble
only those modules that absolutely must be assembled to generate a consistent program.

A make file is a text file that lists compile-time dependencies between files. An .EXE file, for
example, is dependent on the source code whose assembly produce the executable. If you make any
changes to the source code you will (probably) need to reassemble or recompile the source code to
produce a new executable file1.

Typical dependencies include the following:

• An executable file generally depends only on the set of object files that the linker
combines to form the executable.

• A given object code file depends on the assembly language source files that were
assembled to produce that object file. This includes the assembly language source files
(.HLA) and any files included during that assembly (generally .HHF files).

• The source files and include files generally don’t depend on anything.
A make file generally consists of a dependency statement followed by a set of commands to

handle that dependency. A dependency statement takes the following form:
dependent-file : list of files

Example :
pgm.exe: pgma.obj pgmb.obj --Windows make/nmake example

This statement says that pgm.exe is dependent upon pgma.obj and pgmb.obj. Any changes that
occur to pgma.obj or pgmb.obj will require the generation of a new pgm.exe file.

The make program uses a time/date stamp to determine if a dependent file is out of date with
respect to the files it depends upon. Any time you make a change to a file, the operating system will
update a modification time and date associated with the file. The make program compares the
modification date/time stamp of the dependent file against the modification date/time stamp of the
files it depends upon. If the dependent file’s modification date/time is earlier than one or more of
the files it depends upon, or one of the files it depends upon is not present, then make assumes that
some operation must be necessary to update the dependent file.

When an update is necessary, make executes the set of commands following the dependency
statement. Presumably, these commands would do whatever is necessary to produce the updated
file.

The dependency statement must begin in column one. Any commands that must execute to
resolve the dependency must start on the line immediately following the dependency statement and
each command must be indented one tabstop. The pgm.exe statement above would probably look
something like the following:

pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

(The “-e:pgm.exe” option tells HLA to name the executable file pgm.exe.)
If you need to execute more than one command to resolve the dependencies, you can place

several commands after the dependency statement in the appropriate order. Note that you must
indent all commands one tab stop. The make program ignores any blank lines in a make file.
Therefore, you can add blank lines, as appropriate, to make the file easier to read and understand.

There can be more than a single dependency statement in a make file. In the example above,
for example, executable (pgm.exe) depends upon the object files (pgma.obj and pgmb.obj).
Obviously, the object files depend upon the source files that generated them. Therefore, before
attempting to resolve the dependencies for the executable, make will first check out the rest of the
make file to see if the object files depend on anything. If they do, make will resolve those
dependencies first. Consider the following make file:

1. Obviously, if you only change comments or other statements in the source file that do not affect the executable
file, a recompile or reassembly will not be necessary. To be safe, though, we will assume any change to the source
file will require a reassembly.
Public Domain Created by Randy Hyde Page 26

HLA Reference Manual 5/24/10 Chapter 4
pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla
hla -c pgma.hla

pgmb.obj: pgmb.hla
hla -c pgmb.hla

The make.exe program will process the first dependency line it finds in the file. However, the
files that pgm.exe depends upon themselves have dependency lines. Therefore, make will first
ensure that pgma.obj and pgmb.obj are up to date before attempting to execute HLA to link these
files together. Therefore, if the only change you’ve made has been to pgmb.hla, make takes the
following steps (assuming pgma.obj exists and is up to date).

• The make program processes the first dependency statement. It notices that dependency
lines for pgma.obj and pgmb.obj (the files on which pgm.exe depends) exist. So it
processes those statements first.

• The make program processes the pgma.obj dependency line. It notices that the pgma.obj
file is newer than the pgma.hla file, so it does not execute the command following this
dependency statement.

• The make program processes the pgmb.obj dependency line. It notes that pgmb.obj is
older than pgmb.hla (since we just changed the pgmb.hla source file). Therefore, make
executes the command following on the next line. This generates a new pgmb.obj file that
is now up to date.

• Having processed the pgma.obj and pgmb.obj dependencies, make now returns its
attention to the first dependency line. Since make just created a new pgmb.obj file, its
date/time stamp will be newer than pgm.exe’s. Therefore, make will execute the HLA
command that links pgma.obj and pgmb.obj together to form the new pgm.exe file.
Note that a properly written make file will instruct the make program to assemble only those

modules absolutely necessary to produce a consistent executable file. In the example above, make
did not bother to assemble pgma.hla since its object file was already up to date.

There is one final thing to emphasize with respect to dependencies. Often, object files are
dependent not only on the source file that produces the object file, but any files that the source file
includes as well. In the previous example, there (apparently) were no such include files. Often, this
is not the case. A more typical make file might look like the following:

pgm.exe: pgma.obj pgmb.obj
hla -e:pgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla pgm.hhf
hla -c pgma.hla

pgmb.obj: pgmb.hla pgm.hhf
hla -c pgmb.hla

Note that any changes to the pgm.hhf file will force the make program to recompile both
pgma.hla and pgmb.hla since the pgma.obj and pgmb.obj files both depend upon the pgm.hhf
include file. Leaving include files out of a dependency list is a common mistake programmers make
that can produce inconsistent executable files.

Note that you would not normally need to specify the HLA Standard Library include files. the
Standard Library “.lib” files, or any Windows library files (e.g., kernel32.lib) in the dependency
list. True, your resulting executable file does depend on this code, but this code rarely changes, so
you can safely leave it out of your dependency list. Should you make a modification to the Standard
Library, simply delete any old executable and object files to force a reassembly of the entire
system.

The make program, by default, assumes that it will be processing a make file named makefile.
When you run the make program, it looks for makefile in the current directory. If it doesn’t find this
Public Domain Created by Randy Hyde Page 27

HLA Reference Manual 5/24/10 Chapter 4
file, it complains and terminates1. Therefore, it is a good idea to collect the files for each project
you work on into their own subdirectory and give each project its own makefile. Then to create an
executable, you need only change into the appropriate subdirectory and run the make program.

The make program will only execute a single dependency in a make file, plus any other
dependencies referenced by that one item (e.g., the pgm.exe dependency line in the previous
example depends upon pgma.obj and pgmb.obj, both of which have their own dependencies). By
default, the make program executes the first dependency it finds in the makefile plus any
dependencies that are subservient to this first item. In particular, if a dependency line exists in the
makefile that is not referenced (directly or indirectly) from the main dependency item, then make
will ignore that dependency item unless you explicitly request it’s execution.

If you want to execute some dependency other than the first dependency in the make file, you
can specify the dependency on the make command line when running make from the Windows’
command prompt. For example, a common convention in make files is to create a “clean”
dependency that cleans up all the files the compile creates. A typical “clean” dependency line for an
HLA compilation might look like the following:

clean:
del *.obj
del *.inc
del *.bak

The first thing you’ll notice is that the “clean” item doesn’t have a dependency list. When an
item like “clean” appears without a dependency list, make will always execute the commands that
follow. Another peculiarity to the “clean” dependency is that there (usually) isn’t a file named
clean in the current directory whose date/time stamp the make program can check. If a file doesn’t
exist, then make will assume that the file is always out of date. A common convention is to specify
non-existent filenames (like clean) in a makefile as commands that someone would explicitly
execute from within make. Of course, such usage (generally) assumes that you don’t actually build
a file named “clean” (or whatever name you choose to use).

Since, by default, you typically don’t want to execute a command line “clean” when running
make, you wouldn’t usually place the clean dependency first in the make file (nor would you
typically refer to clean within some other dependency list). Since make doesn’t normally execute
any dependency items that aren’t “reachable” from the first dependency item in the make file, you
might wonder how you’d tell make to execute the clean command. To specify the execution of
some dependency other than the first (default) item in the make file, all you need to is specify the
target you want to create (e.g., “clean”) on the make command line. For example, to execute the
clean command, you’d using a Windows command prompt statement like the following:

make clean

This command does not tell make to use a different make file. It will still open and use the file
named makefile in the current directory2; however, instead of executing the first dependency it
finds in makefile, it will search for the target “clean” and execute that dependency.

By convention, most programmers use the first dependency in a make file to build the
executable based on the current build state of the program (that is, it will compile and link only
those files necessary to create an up-to-date executable). Most programmers, by convention, will
also include a “clean” target in their make file. The clean command deletes all object and
intermediate files that the compiler generates; this ensures that the next build of the program will
recompile every source file in the project, even if the original objects (and other targets) were up-
to-date already. Doing a clean before building the application is useful when you’ve changed
something that is not listed in the dependency lists but on which the final executable still depends
(like the HLA Standard Library). Doing a clean is also a good way to do a sanity check when
you’re running into problems and you suspect that the dependency lists aren’t completely correct.

1. The “-ffilename”command line option that lets you specify the name of the makefile. See the manual for your
version of make for details.
2. You can tell make to use a different file by specifying the “-f” command line option. Check out make’s
documentation for more details.
Public Domain Created by Randy Hyde Page 28

HLA Reference Manual 5/24/10 Chapter 4
Beyond clean there aren’t too many “standard” target definitions you’ll see programmers using
in their make files, though it’s common for different make files to have some additional commands
beyond building the default target and cleaning up temporary compiler files. When using make
with the RadASM/HLA package, however, there is an assumption that you’ve created the
following dependencies in your make file:
build: This will be the default command (i.e., the first command appearing in the make

file). It will build an executable by building any out-of-date files and linking
everything together. A typical build dependency will look like this:

build: pgm.exe

This tells make to go execute the dependency for pgm.exe (which would
normally be the default dependency in the file).

buildall: This command will rebuild the entire application. It begins by doing a clean, and
then it does a build. This command generally takes the following form:

buildall: clean pgm.exe

compileRC: This command will compile any resource files into .RES files. Though the
current example does not have any resource files, a typical entry in the make file
might look like the following:

compileRC: pgm.rc
rc pgm.rc

syntax: This command will compile any HLA files into .ASM files just to check their
syntax. Using the pgma.hla/pgmb.hla example given earlier, a typical compile
dependency line might look like the following:

syntax:
hla -s pgma.hla pgmb.hla

run: This command will build the executable (if necessary) and then run it. The
dependency line typically looks like the following:

run: pgm.exe

pgm <<any necessary command line parameters>>

clean: This is the command that deletes any compiler/assembler/linker produced
temporary files, backup files, and the executable file. A typical clean command is

clean:
del *.obj
del *.inc
del *.bak
del tmp*.asm
del tmp*.inc
del pgm.exe

One nice feature that a standard make program provides is variables. The make program
allows you to create textual variables in a make file using the following syntax:

identifier=<<text>>
Public Domain Created by Randy Hyde Page 29

HLA Reference Manual 5/24/10 Chapter 4
All text beyond the equals sign (“=”) to the end of the physical line1 is associated with the
identifier and the make program will substitute that text whenever it encounters “$(identifier)” in
your text file. This behavior is quite similar to TEXT constants in the HLA language. As an
example, consider the following make file fragment:

sources= pgma.hla pgmb.hla
executable= pgm.exe

$(executable): $(sources)
hla -e:$(executable) $(sources)

Because of the textual substitution that takes place, this is equivalent to the following make file
fragment:

pgm.exe: pgma.hla pgmb.hla
hla -e:pgm.exe pgma.hla pgmb.hla

You can even assign variable names from the make command line using syntax like the
following:
make executable=pgm.exe sources="pgma.hla pgmb.hla"

This is an important fact we’ll use because it allows us to create a generic makefile that
RadASM can use to compile a given project by simply supplying the file names on the command
line.

Although this section discusses the make program in sufficient detail to handle most RadASM
projects you will be working on, keep in mind that the make program provides considerable
functionality that this document does not discuss. For more details, consult the vendor’s
documentation accompanying the version of make that you’re using. This document will assume
that you’re using Borland’s make (version 4.0 or later) or some version of Microsoft’s nmake.
Every make file in this book has been tested with both of these versions of make. These make files
may work with other versions of make as well. If you don’t already have a copy of make, note that
you can download Borland’s make as part of the Borland C++ 5.5 compiler (see the directions for
downloading this file earlier in this section).

Because of the variations in the way different make programs work, the makefiles appearing in
this document will be relatively simple, not taking advantage of too many special make features.
The generic makefile we’ll usually start with looks like this:

build: $(hlafile).exe

buildall: clean $(hlafile).exe

compilerc:
echo No Resource Files to Process!

syntax:
hla -s $(hlafile).hla

run: $(hlafile).exe
$(hlafile)
pause

clean:
delete tmp

1. If you need more text than will physically fit on a single line, place a backslash at the end of the line to tell
make that the line continues on the next physical line in the make file. The make program removes the new line
characters between the two lines and continues processing.
Public Domain Created by Randy Hyde Page 30

HLA Reference Manual 5/24/10 Chapter 4
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map

$(hlafile).exe: $(hlafile).hla
hla $(DEBUG) $(WINAPP) -p:tmp $(hlafile)

RadASM will fill in the $(hlafile) make variable with the project’s (source file’s) name. The
“$(DEBUG)” variable will be filled in by RadASM (you’ll see how later in this document) and will
expand to an empty string if $(DEBUG) is not defined. The $(WINAPP) variable is another
variable set by RadASM; it will contain the text “-w” if compiling a Windows GUI app, it will be
the empty string if compiling a console application.

4.2.4 Installing RadASM
The easiest way to install RadASM/HLA is to run the hlasetup.exe program found on Webster

(HLA v1.58 or later). This program automatically installs HLA and RadASM, sets up appropriate
environment variables, and modifies various RadASM ini files for proper use on your system. Just
run hlasetup.exe, answer a few questions about where you want the files placed, and you’re in
business.

For those who’ve already installed HLA and don’t want to bother reinstalling everything, you
can download the RadASM/HLA package from Webster, unzip that file, and install the code
manually. The main thing you have to do is copy the RadASM directory into your x:\hla
subdirectory and then execute the “PatchRadASM” application from within the “x:\hla”
subdirectory. This goes in and patches all the *hla.ini files in the “x:\hla\radasm” subdirectory so
that the know where the “x:\hla” subdirectory can be found. You may also edit these files manually
and modify the line that says “$A=C:\HLA” so that it refers to the directory containing your HLA
files and directories.

Note: Unless you’re willing to learn how to customize RadASM and modify several files
yourself, you must install the RadASM directory in the HLA subdirectory (wherever it is on the
disk). If you’re using RadASM with other assemblers and need to keep RadASM in some spot
other than in the HLA subdirectory, please see the “RadASM customization” information at the end
of this document and take a look at the *hla.ini files on Webster.

If you’re an expert RadASM user and you only want to add HLA support to an existing
RadASM setup, you can download the HLA-specific RadASM files directly from Webster and
make the appropriate modifications yourself. This document will not describe how to do this; this is
a task intended for advanced RadASM users only (for support, check out the RadASM forum at
www.masmforum.com).

4.2.5 Running RadASM
Like most Windows applications, you can run RadASM by double-clicking on its icon or by

double clicking on a “RadASM Project” file (“.rap” suffix). Simply double-clicking on the
RadASM icon brings up a window similar to the one appearing in Figure .
Public Domain Created by Randy Hyde Page 31

HLA Reference Manual 5/24/10 Chapter 4
RadASM Opening Screen

The main portion of the RadASM window is broken down into three panes. The larger of the
three panes is where text editing takes place. The upper right hand pane is the “project
management” window. The pane in the lower right hand corner lists the properties of the currently
opened project.

4.2.6 The RadASM Project Management Window
The project management window initially lists the project folders you’ve created; you can

select an existing project by double-clicking on the project’s folder in this window. For example,
RadASM ships with two sample projects, Dialog (that creates a small dialog box application) and
hw (that creates a small “Hello World” console application). Assuming you’re running RadASM
prior to creating any new projects beyond these two default projects, the Project pane will look
something like Figure .
Public Domain Created by Randy Hyde Page 32

HLA Reference Manual 5/24/10 Chapter 4
Default RadASM Project Pane

Double-clicking on the hw folder opens the folder containing that project. This changes the
pane to look something like that appearing in Figure .

RadASM Project Pane With hw Folder Opened

By default, RadASM does not show all the files present in the folder you’ve opened. Instead,
RadASM filters out files that don’t have a certain file suffix. By default, RadASM only displays
files with the following suffixes:

• .asm

• .inc

• .rc

• .txt
Public Domain Created by Randy Hyde Page 33

HLA Reference Manual 5/24/10 Chapter 4
• .doc

• .rtf

• .dlg

• .mnu

• .rap

• .bmp

• .ico

• .cur

• .hla

• .hhf
This list is actually designed to generically handle all file types for every assembler that

RadASM works with. HLA users might actually want to drop “.asm” and “.inc” from this list as
files with these suffixes are temporary files that HLA produces (much like “.obj” files, which don’t
normally appear in this list). You can change the filter suffixes in one of two places. The first place
is in the radasm.ini file. Search for the “[FileBrowser]” section and edit the line that begins
with “Filter=...”. You can delete or add suffixes to your heart’s content on this line. The
second way to change the default filters, arguably the easiest way, is within RadASM itself. From
the application’s menu, select “Option>File Browser” (that is, select the “File Browser” menu item
from the “Option” menu). This brings up the dialog box appearing in Figure . The text edit box at
the bottom of this dialog window (labelled “Filter:”) lets you edit the suffixes that RadASM uses
for filtering files in the Project window pane.

RadASM File Browser Options Dialog Box

By default, RadASM only displays those files whose file suffixes appears in the filter list. If,
for some reason, you need to see all files that appear in a project subdirectory, you can turn the file
filtering off. There is a toolbar button at the top of the Project window pane that lets you activate or
deactivate file filtering (this is the button in the middle of the project pane, if you let the mouse
cursor hover over it for a few seconds the tool-tip help displays “file filter”). Clicking on this button
toggles the display mode. So clicking on this button once will deactivate file filtering, to display all
the files in the directory, clicking on this button a second time reactivates file filtering. Figure
shows the effects of clicking on this button.
Public Domain Created by Randy Hyde Page 34

HLA Reference Manual 5/24/10 Chapter 4
File Filtering in RadASM’s Project Pane

If you’ve descended into a subdirectory by double-clicking on it’s folder icon and you decide
to return to an upper level directory, you can move to that upper level directory by clicking on the
“Up One Level” button in the RadASM Project pane

The left and right arrow buttons allow you to quickly scan through several different directories
in the system. By default, RadASM displays a couple of interesting (HLA-related) subdirectories in
the Project pane when you scan through the list using the left and right arrows in the Project pane.
In general, however, you’ll want to customize the directories RadASM visits when you press these
two arrow buttons. You can add (or change) directory paths in the “[FileBrowser]” section of
the radasm.ini file, though it’s probably easier to select the “Option>File Browser” menu item to
open up the File Browser Option dialog box and make your changes there (see Figure). The
“Folders:” list in the File Browser Option dialog box lists all the directories that RadASM will
rotate through when you press the left and right buttons in the Project window pane. You can add,
delete, edit, and rearrange the items in this list.

To edit an existing entry, click on that entry with the mouse and then edit the directory path
appearing in the text edit box immediately below the “Folders:” list. You may either type in the
path directly, or browse for the path by pressing the “browse” button immediately to the right of the
text entry box.

To delete an entry from the File Browser Option list, select that item with the mouse and then
press the “Delete” button appearing in the File Browser Option Window. To add a new entry to the
list, press the “Add” button and then type the path into the text edit box (or use the browse button to
locate the subdirectory you want to add). Note: do not type the new entry in and then press “Add”.
This sequence will change the currently selected item and then add a new, blank, entry. The correct
sequence is to first press the “Add” button, and then edit the blank entry that RadASM creates.

The remaining buttons in the Project window are only applicable to open projects. Note that
opening a project folder is not the same thing as opening a RadASM project. To open a RadASM
project you must either create a new project or open an existing “.rap” file. For example, you can
open the “Hello World” project in the hw directory by double-clicking on the hw.rap file that
appears in the project window. Opening the hw.rap file does two things to the RadASM windows:
first, it displays the hw.hla source file in the editor window and, second, it switches the Project
window pane from “File Browser mode” to “Project Browser mode.” In project browser mode
RadASM displays only the files you’ve explicitly added to the project. Any incidental or generated
files will not appear here (unless you explicitly add them). For example, whereas the “File
Browser” mode displays several “.inc” and “.asm” files (assuming you’ve not removed these
suffixes from the file filter), the “Project Browser mode” only displays the hw.hla file because this
is the only file that was originally added to the project. Another difference between the file browser
Public Domain Created by Randy Hyde Page 35

HLA Reference Manual 5/24/10 Chapter 4
and project browser modes is the fact that RadASM displays the files in “pseudo-directories”
according to the file’s type. For example, it displays the hw.hla file under the sub-heading
“Assembly” (see Figure). The hw.rap project is a relatively simple project, only having a single
assembly file. The Dialog.rap project (that appears in the “Dialog” project folder) is a slightly more
complex application, having a couple of resource files in addition to an assembly file (see Figure).
Note that you can “flatten” RadASM’s view of these files by pressing the “Project Groups” button
in the Project window pane (see Figure). Pressing this button a second time restores the project
groups display (remember, you can always determine which button is which by letting the mouse
cursor float above each button for a few seconds).

Project Window “Project Browser Mode”
Public Domain Created by Randy Hyde Page 36

HLA Reference Manual 5/24/10 Chapter 4
Dialog.rap Project Browser Display

Effect of Pressing the “Project Groups” Button
Public Domain Created by Randy Hyde Page 37

HLA Reference Manual 5/24/10 Chapter 4
When you’ve got a project loaded, RadASM displays the project view by default. By pressing
the “File Browser” and “Project Browser” buttons in the Project window pane, you can switch
between these two views of your files (see Figure).

The Project Browser and File Browser Buttons

4.2.7 Compiling and Executing an Existing RadASM Project
To see how to use RadASM to compile and run a simple HLA program, begin by double-

clicking on the hw.rap file. This is found in the ...Radasm\hla\projects\hw folder. When RadAsm
opens up, you should see a display similar to Figure ; if not, then press the project browser and
project groups buttons.
Public Domain Created by Randy Hyde Page 38

HLA Reference Manual 5/24/10 Chapter 4
Selecting the HW.HLA Project

Just for fun, bring up the hw.hla program into the main editor by double-clicking on the hw.hla
file icon in the project manager window. Here’s what that file looks like:

program HelloWorld;
#include("stdlib.hhf")

begin HelloWorld;

 stdout.put("Hello, World of Assembly Language", nl, nl);

end HelloWorld;

To run the Hello World program from RadASM, simply select the “Run” entry from the Make
menu (see Figure). This produces the program output found in Figure . When you press the enter
key, the console window will close and control returns to RadASM.
Public Domain Created by Randy Hyde Page 39

HLA Reference Manual 5/24/10 Chapter 4
Running the Hello World Program From RadASM
Public Domain Created by Randy Hyde Page 40

HLA Reference Manual 5/24/10 Chapter 4
HW.HLA Program Output

The other options in the RadASM “Make” menu have the following effect:

• Build- compiles the project; if you’re using makefiles in your RadASM projects, this
option will only compile those files absolutely necessary to create the executable.

• Build All- cleans out all the old object and executable files and rebuilds the executable
from scratch.

• Compile Resource- Used to compile any resource files associated with this project (note
that Build and Build All will also compile the resource files, if necessary).

• Syntax Check - does a syntax compile on the HLA files, without actually building the
whole application. Faster than building the whole project if you simply want to check for
typos in your source code.

• Run - Runs the executable (if you’re using makefiles, this will also build the application if
the executable is not current; if you’re not using makefiles, you must manually build the
application before running it).

4.2.8 Creating a New Project in RadASM
While the two default projects that RadASM supplies are useful for demonstrating the

RadASM Project window pane, you’re probably far more interested in creating your own
RadASM/HLA projects. Creating your own project is a relatively straight-forward process using
RadASM’s project creation wizard. To begin this process, select the “File>New Project” menu
item. This opens the project wizard dialog box (see Figure).
Public Domain Created by Randy Hyde Page 41

HLA Reference Manual 5/24/10 Chapter 4
RadASM Project Wizard Dialog Box

The “Assembler” pop-up menu list lets you select the assembler that you want to use for this
project. Remember, RadASM supports a variety of different assemblers and the “rules” are
different for each one. Because you’re probably using HLA (if you’re reading this document),
you’ll want to select the HLA assembler from this list. HLA should be the default (in fact, only)
assembler in this list. If you’re not using the radasm.ini file supplied on Webster, then you should
make sure that HLA appears first in this list in the radasm.ini file.

The “Project Type” group is a set of radio buttons that let you select the type of project you’re
creating. RadASM populates this list of radio buttons from the “[Project]” section of the hla.ini
file. The “Type=...” statement in this section specifies the valid projects that RadASM will
create. RadASM creates the radio button items in the order the project type names appear in the
“Type=...” list; the first item in the list is the one that will have the default selection. If you’re
going to be developing Windows’ GUI applications most of the time, you’ll probably want to
change this list so that “Windows App” appears first in the list. This will slightly streamline the use
of the Project Wizard because you won’t have to explicitly select “Windows App” every time you
create a new Windows application. The standard default is a Console App because that’s the type of
program most beginning HLA programmers create. You can actually add new project types to this
list by modifying the hla.ini file. However, most HLA programmers will be creating either Win32
GUI apps or Win32 console apps, hence the standard release of RadASM/HLA supports these two
application types. If you want to creat your own project types, see the discussion on customizing
RadASM later in this manual.

The “Project Name:” text entry box is where you specify the name of the project you’re
creating. RadASM will create a folder by this name and any other default files it creates (within the
project folder) will also have this name as their filename prefix. The text you enter at this point
must be a valid Windows filename. Note that this should be a simple file name, not a path. You’ll
supply the path to this file/directory in a moment. This name should be a base filename (that is, no
extension). RadASM will create other filenames by attaching appropriate extensions to the name
you supply here (e.g., “.hla” and “.exe”). So if you specify a name like “myProject” here, RadASM
will create a directory named “myProject” to hold your files and it will also create a
“myProject.hla” file (among other files). When you actually build your program, RadASM (by
default) will create an exectuable named “myProject.exe”.
Public Domain Created by Randy Hyde Page 42

HLA Reference Manual 5/24/10 Chapter 4
The “Project Description:” text entry box allows you to place a descriptive comment that
describes the project. This is any arbitrary text you choose. It should be a brief (one-line)
description of the project.

The “Projects Folder:” text entry box is where you select the path to the spot in the file system
where RadASM will create the project folder. You can type the path in directly, or you can press
the browse button to the right of this text entry box and use a Windows’ dialog box to select the
subdirectory that will hold the project’s folder.

The “Template:” text entry box and browse button lets you select a template for your project. If
you don’t select a template, then RadASM will create an empty project for you (i.e., the main “.hla”
file will be empty). If you select one of the templates (e.g., the “.tpl” files found in the
RadASM\Hla\Templates directory) then RadASM will create a “skeletal” project based on the
project template you’ve chosen. Table lists some of the typical templates you will find.

RadASM/HLA Templates

Table 1:

Template Selection Available if this
project type is

selected

Result

consApp.tpl Console App RadASM will create a simple console application.
Builds are handled strictly by RadASM. Good for
simple (one-file) HLA projects.

consAppBatch.tpl Console App RadASM will create a simple console application.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
source-file) project, but you can edit the batch files
to handle more complex projects.

consAppMake.tpl Console App RadASM will create a simple console application.
Builds are handled by running make.exe on a
makefile that this template creates.

consAppNMake.tpl Console App Builds a project just like consAppMake.tpl except
that it invokes Microsoft’s nmake.exe program
rather than a generic make.exe program.

win32App.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

win32AppBatch.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

win32AppMake.tpl Windows App RadASM will create a generic Win32 GUI project.
Builds are handled by running make.exe on a
makefile that this template creates.
Public Domain Created by Randy Hyde Page 43

HLA Reference Manual 5/24/10 Chapter 4
win32AppNMake.tpl Windows App Builds a project just like win32AppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

WPAApp.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

WPAAppBatch.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

WPAAppMake.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

RadASM will create a Win32 GUI project based
on the structure of the code described in “Windows
Programming in Assembly”. These projects use
the “wpa.hhf” header file and the “winmain.lib”
library module described in Randy Hyde’s book
“Windows Programming in Assembly Language”
(found on Webster at http://webster.cs.ucr.edu).
Builds are handled by running make.exe on a
makefile that this template creates.

WPAAppNMAKE.tpl Windows App
compatible with
code from
“Windows
Programming in
Assembly”

Builds a project just like win32AppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

emptyWinApp.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled strictly by RadASM. Good for
simple (one-HLA-file) HLA projects.

Table 1:

Template Selection Available if this
project type is

selected

Result
Public Domain Created by Randy Hyde Page 44

HLA Reference Manual 5/24/10 Chapter 4
Generally, it’s a good idea to select one of these templates when creating a new project. These
templates automatically create any extraneous files a project needs (such as batch files and make
files) and inserts these files into your new project. This spares you the effort of manually creating
these files and inserting them into the project.

The RadASM/HLA package provides (at least) 16 different templates1. There are four
different template categories, each category containing four templates. Not all of these template
files will be visible when you press the “template browse” button. The cons*.tpl files are only
visible if you’ve selected the “Console App” radio button. The win32*.tpl, WPA*.tpl, and
empty*.tpl files will only be visible if you’ve selected the “Windows App” radio button in the
“Project Type” box.

Within a given template category (cons*, win32*, WPA*, empty*) there are four choices
available to you. For example when selecting one of the console templates you could choose
consApp.tpl, consAppBatch.tpl, consAppMake.tpl, or consNMake.tpl. The difference between
these project types is how RadASM will build (compile/assemble) the project.

The *App.tpl template files tell RadASM to directly build your application (using commands
found in the .tpl file). You can think of this as the “native” RadASM build mode. The only problem
with this approach is that it is not very flexible (in terms of handling multi-filecompilations) and it
always rebuilds the entire project. As a result, projects that use the native RadASM build scheme
are really suitable only for small (usually single-file) projects.

The *AppBatch.tpl template files tell RadASM to invoke various batch files when building the
application. The template will actually create simple versions of these batch files for you: build.bat,
compilerc.bat, syntax.bat, and run.bat. These batch files correspond to the items in the RadASM
Make menu (note that the “Build” and “Build All” menu items both run the build.bat file). By
default, these batch files only support a the creation of an application built around a single HLA
source file (just like a native RadASM build). However, you can always edit these batch files to do
a more sophisticated compilation. A later section will describe how to edit these batch files.

The *AppMake.tpl and *AppNMake.tpl template files tell RadASM to invoke a make utility (a
generic make.exe program or Microsoft’s nmake.exe utility, based on which template you select).
The template creates a generic makefile for you (automatically) that handles all the menu items in
the RadASM Make menu. Using make is, without question, the best way to use RadASM. Make is
far more efficient for larger projects than using batch files or RadASM’s built-in compilation
capabilities. However, there are two drawbacks to using make: first, you have to have a copy of the
make.exe (or nmake.exe) program (though this utility is available for free, see how to get a copy of

emptyWinAppBatch.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled by running one of several batch
files (also created by this template) including
build.bat, compilerc.bat, syntax.bat, and run.bat.
By default, these batch files process a simple (one-
HLA-source-file) project, but you can edit the
batch files to handle more complex projects.

emptyWinAppMake.tpl Windows App RadASM will create an empty Win32 GUI project.
Builds are handled by running make.exe on a
makefile that this template creates.

emptyWinAppNMake.tpl Windows App Builds a project just like emptyWinAppMake.tpl
except that it invokes Microsoft’s nmake.exe
program rather than a generic make.exe program.

1. Actually, there may be more by the time you read this. The first 12 templates were operational when this
manual was written. However, it’s easy enough to add new templates to RadASM so there may be more by the time
you read this.

Table 1:

Template Selection Available if this
project type is

selected

Result
Public Domain Created by Randy Hyde Page 45

HLA Reference Manual 5/24/10 Chapter 4
this program in the section on make, earlier in this document); the second drawback is that you will
have to edit the makefile that these templates create before you can build anything complex with
them, i.e., if you want to create a sophisticated multi-file project, you’ll need to make other changes
to the makefile that the template creates. See the section on make earlier in this document for the
details associated with the make language.

Once you’ve selected the assembler type, project type, entered the project name and
description, and optionally selected the folder and a template, press the “Next>” button to move on
to the next window of the Project Wizard dialog. This dialog box appears in Figure . In this dialog
box you select the initial set of files and folders that RadASM will create in the project’s folder for
you. At the very least, you’re going to want a “.hla” file and a “Tmp” subdirectory. It’s probably a
good idea to create a “BAK” subdirectory as well (RadASM will maintain backup files in that
subdirectory, if it is present). More complex Windows applications will probably need a header file
(“.HHF”) and if you’re creating fancy GUI applications, you may need a resource file (“.RC”) as
well. If you’re creating a dynamically linked library (DLL), you’ll probably want a definition file
(“.DEF”) as well. If you plan on writing documentation, you might want to create a DOC
subdirectory - the choice is yours. Check the files and folders you want to create and press the
“Next >” button in the dialog box. Note that simple console applications (the type of applications
most beginning HLA users create) require only a “.hla” file and a “Tmp” directory.

Project Wizard Dialog Box #2

The last dialog box of the Project Wizard lets you specify the options present in the Make
menu and the commands each of these options executes (see Figure). You should ignore all these
options and just press the finish button. Generally, you will not customize this output; you will
normally just hit the “finish” button to complete the construction of your project. If you do want to
change these options, do it from the “Project>Project Options” menu item once you’ve created the
project Figure shows what the RadASM window looks like after create a sample “Windows App”
application based on the win32app.tpl template (this project was given the name “MyApp”).
Public Domain Created by Randy Hyde Page 46

HLA Reference Manual 5/24/10 Chapter 4
Project Wizard Dialog Box #3
Public Domain Created by Randy Hyde Page 47

HLA Reference Manual 5/24/10 Chapter 4
Typical RadASM Window After Project Creation

4.2.9 Working With RadASM Projects
Of course, once you’ve created a RadASM project, you can open up that project and continue

work on it at some later point. RadASM saves all the project information in a “.rap” (RadAsm
Project) file. This “.rap” file keeps track of all the files associated with the project, project-specific
options, and so on. These project files are actually text files, you can load them into a text editor
(e.g., RadASM’s editor) if you want to see their format. As a general rule, however, you should not
modify this file directly. Instead, let RadASM take care of this file’s maintenance.

There are several ways to open an existing RadASM project file - you can double-click on the
.rap file’s icon within Windows and RadASM will begin running and automatically load that
project. Another way to open a RadASM project is to select the “File>Open Project” menu item
and open some “.rap” file via this open command. A third way to open a RadASM project is to use
the File Browser to find a “.rap” file in one of your project directories and double-click on the
project file’s icon (the “.rap” file) that appears in the project browser. Any one of these schemes
will open the project file you’ve specified.

RadASM only allows one open project at a time. If you have a currently open project and you
open a second project, RadASM will first close the original project. You can also explicitly close a
project, without concurrently opening another project, by selecting the “File>Close Project” menu
item.

Once you’ve opened a RadASM project, RadASM’s “Project” menu becomes a lot more
interesting. When you create a project, RadASM gives you the option of adding certain “stock”
files to the project (either empty files, or files with data if you select a template when creating the
project). All of the files that RadASM creates bear the project’s name (with differing suffixes). As
a result, you can only create one “.hla” file (and likewise, only one “.hhf” file, only one “.rc” file,
etc.). For smaller assembly projects, this is all you’ll probably need. However, as you begin writing
more complex applications, you’ll probably want additional assembly source files (“.hla” files),
Public Domain Created by Randy Hyde Page 48

HLA Reference Manual 5/24/10 Chapter 4
additional header files (“.hhf”), and so on. RadASM’s Project menu is where you’ll handle these
tasks (and many others). Figure shows the entries that are present in the Project menu.

The RadASM Project Menu

To add new, empty, files to a RadASM project, you use the “Project > Add New” menu item.
This opens up a new submenu that lets you select an assembly file (“.hla” file), an include file
(“.hhf”), a resource compiler file (“.rc”), a text file, and so on. Selecting one of these submenu
items opens up an “Add New File” dialog box that lets you specify the filename for the file. Enter
the filename and RadASM will create an empty text file with the name you’ve specified. Later on,
you can edit this source file with RadASM and add whatever text is necessary to that file. Note that
RadASM will automatically add that file to the appropriate group based on the file’s type (i.e., it’s
suffix).

The “Project > Add Existing” sub-menu lets you add a pre-existing file to a project. This is a
useful option for creating a RadASM project out of an existing HLA (non-RadASM) project or
adding files from some other project (e.g., library routines) into the current project. Note that this
option does not create a copy of the files you specify, it simply notes (in the “.rad” file) that the
current project includes that file. To avoid problems, you should make a copy of the actual source
file to the current project’s folder before adding it to the project; then add the version you’ve just
copied to your project. It’s generally unwise to add the same source file to several different
projects. If you change that source file in one project, the changes are automatically reflected in
every other project that links this file in. Sometimes this is desirable, but most of the time
programmers expect changes to a source file to be localized to the current project. That’s why it’s
always best to make a copy of a source file when adding that file to a new project. In those cases
where you do want the changes reflect to every application that includes the file, it’s better to build
a library module project and link the resulting “.lib” file with your project rather than recompile the
source file in.

The “Project > Project options” menu item opens up a “Project Options” dialog box that lets
you modify certain project options (see Figure). This dialog box lets you change certain options
that were set up when you first created the project using the “File > New Project” Project Wizard
Public Domain Created by Randy Hyde Page 49

HLA Reference Manual 5/24/10 Chapter 4
dialogs. Most of the items in this dialog box should have been described earlier, but a few of the
items do need a short explanation.

“Project > Project Options” Dialog Box

The Project Options dialog box provides two radio buttons that let you select whether
RadASM will do a “debug build” or a “release build.” Be sure that the “Release” radio button is
selected. The Debug option instructs HLA to insert certain debugging information into your
executable file (e.g., for use by OllyDbg). We will not consider that option in this document.

4.2.10 Build Options with RadASM/HLA
Before discussing how to actually edit and compile programs using RadASM, we need to stop

for a moment and discuss the internal operation of RadASM and how it controls programs like
HLA. RadASM was created to be a very flexible system supporting multiple assemblers and
different ways of building applications. In one respect, this flexibility is very good - it is exactly
this flexibility that allows RadASM to work with HLA (rather than just with Microsoft’s assembler,
for which RadASM was initially created). On the other hand, there is a down side to this flexibility
- creating HLA projects is a little bit more involved than it has to be had RadASM been written
specifically for HLA. In this section we’ll discuss the extra work involved with creating and
maintaining RadASM projects.

Take another look at Figure . Beside the labels “Compile RC”, “Assemble”, “Link”, etc.,
you’ll find some editable strings. These strings are special RadASM commands that tell RadASM
what to do whenever you select an item from RadASM’s “Make” menu. Originally, the labels next
to each of these text edit boxes corresponded to menu items in the RadASM “Make” menu; HLA,
however, has renamed the menu items in the “Make” menu, so they no longer correspond to the
labels appearing in the “Project Options” dialog box (Figure). Figure shows the relationship
between the labels in the Project Options dialog box and the Make menu.
Public Domain Created by Randy Hyde Page 50

HLA Reference Manual 5/24/10 Chapter 4
Correspondence Between Project Options and Make Menu

The text appearing in the corresponding text edit box in the Project Options dialog box is a
command that RadASM executes whenever you select the corresponding item from the Make
menu. Here’s the syntax for each of these entries:

DEL, OUT, CMD, FILE {,FILE,...}

DEL is a numeric entry that specfies which files to delete prior to executing the command.
Normally, this should be zero (which means “don’t delete any files.”).

OUT is either “O”, “OT”, or “C” meaning that the command’s output goes to the RadASM
output windows (“OT”), the command produces no output (and any output is ignored, “O”), or
RadASM opens up a console (command-line) window and sends all output to that window (“C”).
For most commands except “RUN”, you’ll probably want the command’s output to go to the
RadASM output window; when running the program you’ll probably want the output to go to a
console window (at least, if you’re writing a console application).

CMD is the command (command-line prompt command) to execute in response to this Make
menu selection. This includes the program’s name and any command line parameters (though you
don’t usually specify the filenames to process here).
Public Domain Created by Randy Hyde Page 51

HLA Reference Manual 5/24/10 Chapter 4
FILE is a special numeric designation (internal to RadASM) that specifies the file that the
CMD is to process. We’ll normally leave this blank, see the discussion on RadASM customization
later in this document for more details on this entry.

There are three common ways people use to have RadASM run HLA to compile an HLA
project: direct command execution, batch file execution, and make file execution. Each of these
execution modes have their own set of advantages and disadvantages.

Direction command execution is the default mode for RadASM/HLA “out of the box.” This
mode has the advantage of being the easiest to use. For the most part, it doesn’t require the creation
of any special files in order to build a given project (though the “run” command works best if you
create a batch file for it). There are several disadvantages to this approach. First, it doesn’t work
with HLA on all versions of Windows. Another disadvantage to this approach is that it’s mainly
useful for single-file projects (unless you’re willing to delve deep into RadASM and learn all about
customizing it for your own purposes). Yet another disadvantage is that you have to manually build
eachcomponent of the project when using the direct command execution. In general, the
disadvantages would outweigh the advantages of this execution mode were it not for the fact that
the direct command approach works best for simple projects as it doesn’t require the creation of
any batch or makefiles. However, once you’ve created a few HLA projects and get comfortable
with RadASM, you’ll probably want to shift to one of the other RadASM operation modes. Note
that running in this mode is equivalent to creating a project with one of the *App.tpl templates (also
note that template settings always override the default settings).

Batch file execution is the second mode of operation that RadASM/HLA supports. In this
mode of operation each of the RadASM commands in the Project Options dialog box executes a
batch file and that batch file handles whatever set of tasks is necessary for the specified Make menu
option. Figure shows the Project Options dialog box with the commands to execute when
operating in batch mode. Note that each of the commands simply execute a batch file (build.bat,
compilerc.bat, syntax.bat, and run.bat).

RadASM in Batch Execution Mode (Project Options)
Public Domain Created by Randy Hyde Page 52

HLA Reference Manual 5/24/10 Chapter 4
The batch files specified in the Project Options dialog box must appear in the same directory as
the other files for project (e.g., along with the source files). These batch files contain a list of
command-prompt commands to execute whenever you select one of the menu items from the Make
menu. Here are the contents for each of the generic batch files supplied with RadASM/HLA:

build.bat:

hla -p:tmp %1

compilerc.bat:

echo “No Resource Files to Compile!”
pause

syntax.bat:

hla -p:tmp -s %1

run.bat:

%1
pause

The advantage of the batch file execution scheme over the direct execution scheme is that you
can execute several commands within a batch file (unlike the direct command execution scheme).
This lets you compile multi-file projects and execute other command-line actions within the batch
file. Also, the batch file scheme works with all versions of Windows. Furthermore, the batch file
scheme doesn’t require any additional utility programs to achieve this flexibility. Batch files have
two main disadvantages. First, you have to write a set of batch files for every project you create
(though for single-file projects, the generic batch files work fine; editing the batch files is only
necessary for more sophisticated projects). The second problem with batch files is they force a
rebuild of every file in a multi-file project, even if such work is unnecessary.

The makefile execution scheme is the most flexible of the three. Like the batch file scheme,
you can execute multiple commands and this scheme works with all versions of Windows. A big
advantage of makefiles over batch files is that you can easily handle large multi-file projects using
makefiles and you can build the projects only recompiling the files that are necessary. Like batch
files, one disadvantage to using makefiles is that you have to maintain a separate “makefile” the
directs the compilation. Another disadvantage to the makefile scheme is that you have to have a
separate “make” utility installed on your system (if you don’t already have a copy of make, you can
obtain one for free from Borland; see the section on “Make” for more details). Figure show the
command set for RadASM when using the makefile execution scheme with Borland’s “make.exe”
program (note: to use Microsoft’s “nmake.exe” program, simply change each occurrence of
“make” to “nmake” in the dialog box).
Public Domain Created by Randy Hyde Page 53

HLA Reference Manual 5/24/10 Chapter 4
Makefile Execution Scheme (Project Options)

The version of RadASM that ships with HLA includes several versions of the “hla.ini”
initialization file that RadASM uses. These files are the following:

• hla.ini - this is the actual file that RadASM uses. As shipped, this is the same as
hla_2000.ini (the direct execution mode file).

• hla_2000.ini - this is the version of the hla.ini file that supports direct command execution.
If you ever change hla.ini and you want to restore the direct execution form, simply make
a copy of this file and rename it to hla.ini.

• hla_bat.ini - this is the version of the hla.ini file that supports batch mode execution. If you
want to use batch mode execution, make a copy of this file and rename the copy to
“hla.ini”.

• hla_make.ini - this is the version of the hla.ini file that supports Borland’s make.exe
application for the makefile execution mode (actually, this .ini file supports makefile
execution using any make program named “make.exe”). If you want to use makefile mode
execution, make a copy of this file and rename the copy to “hla.ini”.

• hla_nmake.ini - this is the version of the hla.ini file that supports Microsoft’s nmake.exe
application for the makefile execution mode. If you want to use makefile mode execution,
make a copy of this file and rename the copy to “hla.ini”.
Note that the execution mode specified by the “hla.ini” files is only available when you create

a new project without using a template (template files override the settings in the hla.ini file). Each
RadASM project file you create (the “.rap” file) maintains the execution mode as part of that
project. Should you change the execution mode by copying some new file over the top of hla.ini,
you do not change the execution modes for any pre-existing projects. If you want to change the
execution mode of an existing project, you will have to select the “Project>Project Options” menu
item and edit the entries in the project option dialog box.

The remainder of this document will assume that you’re using the flexible “makefile”
execution mode and that you’re creating makefiles for each of your projects. Therefore, to follow
along with the examples that appear in the remainder of this document, you should make a copy of
Public Domain Created by Randy Hyde Page 54

HLA Reference Manual 5/24/10 Chapter 4
the hla_make.ini (or hla_nmake.ini) file and rename it to hla.ini. Another alternative is to always
use one of the *AppMake.tpl or *AppNMake.tpl templates when creating new projects.

4.2.11 Editing HLA Source Files Within RadASM
The RadASM text editor is quite similar to most Windows based text editors you’ve used in

the past (i.e., RadASM generally adheres to the Microsoft Common User Access (CUA)
conventions. So the cursor keys, the mouse, and various control-key combinations (e.g., ctrl-Z, ctrl-
X, and ctrl-C) behave exactly as you would expect in a Windows application. Because this is an
advanced programming book, this chapter will assume that you’ve used a CUA-compliant editor
(e.g., Visual Studio) in the past and we’ll not waste time discussing mundane things like how to
select text, cutting and pasting, and other stuff like that. Instead, this section will concentrate on the
novel features you’ll find in the RadASM editor.

Of course, the first file navigation aid to consider is the Project Browser pane. We’ve already
discussed this RadASM feature in earlier sections of this document, but it’s worth repeating that the
Project Browser pane lets you quickly switch between the files you’re editing in a RadASM
project. Just double-click on the icon of the file you want to edit and that file will appear in the
RadASM editor window pane.

Immediately below the Project Browser pane is the “Properties” pane (if this pane is not
present, you can bring it up by selecting “View > Properties” from the RadASM View menu). This
pane contains two main components: a pull down-down menu item that lets you select the
information that RadASM displays in the lower half of this window. If not already selected, you
should select the “.code” item from this list. The “.code” item tells RadASM to list all the sections
of code that it recognizes as procedures (or the main program) in an HLA source file (see Figure).

The HLA Properties Window Pane

One very useful RadASM feature is that you can quickly jump to the start of a procedure’s
body (at the begin statement) by simply double-clicking on that procedure’s name in the
Properties Window pane. In the example appearing in Figure (this is the “Dialog” project supplied
with RadASM for HLA), double-clicking on the “Dialog;” and “DialogProc;” lines in this list box
automatically navigates to the start of the code for the selected procedure.

The pull-down menu in the Properties window lets you select the type of objects the assembler
provides. For example, by selecting “.const” you can take a look at constant declarations in HLA.
The “macro” selection lets you view the macro definitions that appear in the source file. As this
chapter was first being written, the other property items weren’t 100% functional; hopefully by the
time you read this RadASM will have additional support for other types of HLA declarations.

Another neat feature that RadASM provides is an “outline” view of the source file. Looking
back at Figure you’ll notice that “begin DialogProc;” statement has a rectangle with a
Public Domain Created by Randy Hyde Page 55

HLA Reference Manual 5/24/10 Chapter 4
minus sign in it just to the left of the source code line. Clicking on this box closes up all the code
between the begin and the corresponding end in the source file. Figure shows what the source
file looks like when the Dialog and DialogProc procedures are collapsed in outline mode. The
neat thing about outline mode is that it lets you view the “big picture” without out the mind-
numbing details of the source code for each procedure in the program. In outline view, you can
quickly skim through the source file looking for important code and “drill down” to a greater level
of detail by opening up the code for a procedure you’re interested in looking at. You can also
rapidly collapse or expand all procedure levels by pressing the “expand” or “collapse” buttons
appearing on the lower left hand corner of the text editor window (see Figure).

RadASM Outline View (with Collapsed Procedures)

Another useful feature RadASM provides is the ability to display line numbers with each line
of source code. Pressing on the line number icon in the lower-left hand corner of the text editor
window (the icon with the “123” in it) toggles the display of line numbers in the editor’s window.
See Figure to see what the source file looks like with line numbers displayed. The line number
display mode is quite useful when searching for a line containing a syntax error (as reported by
Public Domain Created by Randy Hyde Page 56

HLA Reference Manual 5/24/10 Chapter 4
HLA). Note that you can also navigate to a given line number by pressing ctrl-G and entering the
line number (you can also select “Edit > Goto line” from the “Edit” menu).

Displaying Line Numbers in RadASM’s Editor

Another useful navigation feature in RadASM is support for bookmarks. A bookmark is just a
point in the source file that you can mark. You can create a bookmark by selecting a line of text (by
clicking the mouse on the gray bar next to the line) and selecting “Edit > Toggle BookMark” or by
pressing shift-F8. You can navigate between the bookmarks by pressing F8 or ctrl-F8 (these move
to the next or previous bookmarks in the source file). RadASM (by default) provides several icons
on it’s toolbar to toggle bookmarks, navigate to the previous or next bookmark, or clear all the
bookmarks. Which method (edit menu, function keys, or toolbar) is most convenient simply
depends on where your hands and the mouse cursor currently sits.

The RadASM “Format” menu also provides some useful features for editing HLA programs.
The “Format > Indent” and “Format > Outdent” items (also accessible by pressing F9 and ctrl-F9)
move a selected block of text in or out four spaces (so you can indent text between an if and
endif, for example). You can also convert tabs in a document to spaces (or vice versa) from the
“Format > Convert > Spaces To Tab” and “Format > Convert > Tab To Spaces” menu selections.

You’ll notice that RadASM provides syntax coloring in the editor window (that is, it sets the
text color for various classes of reserved words and symbols to different colors, making them easy
Public Domain Created by Randy Hyde Page 57

HLA Reference Manual 5/24/10 Chapter 4
to identify with a quick glance in the editor window). The hla.ini file accompanying the RadASM/
HLA release contains a set of reasonable color definitions for HLA’s different reserved word types.
However, if you don’t particularly agree with this color scheme, it’s really easy to change the
colors that RadASM uses for syntax highlighting. Just select the “Options > Colors & Keywords”
menu item and select an item from the Syntax/Group list box (Figure shows what this dialog box
looks like with the Group #00 item selected). By double-clicking on an item within the Group list
box, you can change the color for all the items in that particular group (e.g., see Figure). RadASM
automatically updates the hla.ini file to remember your choice of colors the next time you run
RadASM.

Option>Colors & Keywords Dialog Box with Group#00 Selected
Public Domain Created by Randy Hyde Page 58

HLA Reference Manual 5/24/10 Chapter 4
Color Selection Dialog Box

You can also set the display fonts to something you’re happier with if the default font (Courier
New, typically) isn’t to your liking. This is also achievable from the RadASM “Option” menu.

4.2.12 Managing Complex Projects with RadASM
One of the main reasons for using a project-oriented integrated development environment like

RadASM is to streamline the development of complex projects. For the sake of argument, we’ll
define a “simple” project as any HLA project consisting of a single “.hla” source file and, possibly,
a header file. A complex project will be any application that requires multiple source files, object
modules, library modules, and resource files that must be separately compiled and linked together
to form a single exectuable file. Though an IDE such as RadASM is helpful when working on
simple projects, a development environment is most effective when working on larger, complex
projects.

Although it is possible to maintain certain complex projects using RadASM’s native
capabilities, by far the best solution for complex projects is to use a make utility or (if you don’t
have access to a make utility) batch files to control the compilation process. Though it requires a
little additional labor to set up a set of batch files or a make file, the flexibility you gain by using
this approach is well worth the small amount of additional effort (effort that will be repaid many
times over during the project’s development).

Before describing how to write batch files and makefiles to take over control of the
compilation process from RadASM, perhaps it would be wise to offer a small justification for this
approach. After all, RadASM has some very sophisiticated schemes for building projects, why not
stick with RadASM’s native approach? Well, there are several reasons. First, although RadASM’s
general nature is a wonderful attribute of the system (e.g., it allows HLA to work with RadASM
even though it was originally designed for MASM), sometimes a specific solution is more efficient
or more powerful than a general solution. Second, although RadASM is a great development
environment, sometimes it’s just easier or more convenient to compile a project from the command
line prompt; by using batch or make files in your RadASM projects, you can easily work from the
command line or from within RadASM and know that you’re building your project exactly the
same way in both cases. Also, tools like the make utility have been around for quite some time and
contain lots of features that you won’t find in a less mature system like RadASM. Fortunately,
RadASM is flexible enough to allow the use of batch and make files when working on a project, so
you get the best of both worlds - the convenience of an integrated development environment, and
the power and flexibility of make files.
Public Domain Created by Randy Hyde Page 59

HLA Reference Manual 5/24/10 Chapter 4
4.2.13 Project Maintenance with Batch Files
The batch file approach is usable by those who do not have access to a make utility (or those

who want to distribute RadASM projects to others who might not have a make utility available).
Although batch files are more flexible than native RadASM builds, you should really attempt to use
the make file approach unless there are some extenuating reasons why you would rather go with the
batch file approach (e.g., the need to distribute RadASM/HLA projects to people who might not
have a make utility).

A batch file is simple an ASCII text file that contains a sequence of command-line commands.
The Windows command-line interpreter executes each line of text in a batch file just as though
you’d typed those commands directly into a command window. By placing multiple commands in a
batch file, you can execute as many commands as necessary to build your project. For example,
suppose you have a little utility that increments a version number embedded in an HLA header file.
You could execute a batch file that bumps up the version number and builds the HLA application
using the following sequence of commands:

BumpVersion version.hhf
hla FileThatIncludesVersionFile.hla

Batch files also let you specify command-line parameters, e.g.,

someCmd parm1 parm2 parm3 ...

You may refer to these command-line parameters within the batch file using %1, %2, %3, etc.
For example, the default build.bat file that RadASM will create for you if you specify the use of
one of the *AppBatch.tpl template files is

hla -p:tmp %1

RadASM (by default) invokes this build.bat file using a command line like the following:

build filename.hla

The batch file processor substitutes “filename.hla” for the “%1” within the batch file.

The big problem with RadASM’s native compilation facilities is that it doesn’t particularly
know what files you want to compile. It will supply the main project name (or, with appropriate
customization, all the files in a given project), but it won’t let you easily pick and choose which
files you want to process. That’s where batch files (and makefiles) are useful. In a project-specific
batch file, you can easily specify any or all files that you want to compile and link together into a
single executable. For example, if you have a project that combines two HLA files, a resource (.rc)
file, and a specialized library, you could handle this compilation with the following command in a
batch file:

hla myProj.hla subroutines.hla resources.rc speciallib.lib

Such a command line could not be built (automatically) from within RadASM. This is particularly
true if some of the files are not present in the project’s directory (e.g., common object and library
files present in a separate subdirectory).

If you create a project with one of the *AppBatch.tpl templates, or create a generic project
using the hla_batch.ini file as your hla.ini file, then RadASM will, by default, connect the
following Make menu items to the following batch files.
Public Domain Created by Randy Hyde Page 60

HLA Reference Manual 5/24/10 Chapter 4
RadASM/HLA Make Menu/Batch File Correspondence

Note that the Build and Build All menu items both invoke the same batch file. The Build menu
item’s intent is to build the application by compiling only those files that absolutely need to be
compiled. This feature is generally available only if you’re using make files. Therefore, if you
choose the Build menu item when using batch files, it will generally recompile all files in the
application. The Compile Resource and Syntax Check menu items in the Make menu will invoke
their corresponding batch files that will contain commands to compile a resource file (if any) or run
the HLA compiler in a “compile to assembly” mode (no object or executable output, i.e., a syntax
check of the file).

The run.bat file is somewhat special. The default run.bat file takes the following form:

%1
pause

RadASM will pass a command line parameter of the form “projectname.exe” to the run.bat
file. Assuming that your project has compiled the files to produce the executable
“projectname.exe”, this batch file will execute your application and then wait until you hit the enter
key before it closes up the console window that executes the batch file (this gives you the
opportunity to review any output produced by console applications).

If you would prefer to execute different batch commands when selecting items from
RadASM’s Make menu, you can specify the commands to execute by selecting the
“Project>Project Options” menu item. This opens up a dialog box that let’s you specify the
command line parameters for each of the menu items. See the discussion elsewhere in this
document for more details.

In general, batch files are not the most appropriate way to deal with complex projects. Make
files are a much better solution. Therefore, unless you absolutely have to, you should avoid using
the RadASM/HLA batch file compilation scheme.

4.2.14 Project Maintenance with Make Files
Makefiles provide the best way to build complex projects when using RadASM/HLA. They

are more efficient, they are safer, and they give you more control over the compilation process than
you will get with RadASM’s native mode or when using batch files. For most projects, the make
file build scheme is, by far, the best. There are, of course, a couple of disadvantages to using make
files. Specifically, you need to have a make utility in order to use makefiles and you need to learn
the “make language” in order to use make files. Fortunately, a decent version of make is available
for free from Borland and learning make is not that difficult (see the discussion of make earlier in
this document). However, the advantages of make files far outweigh the disadvantages, so you
should give make files serious consideration if you’re not sure which RadASM/HLA compilation
scheme to use.

Here are the commands that RadASM executes whenever you select an item from RadASM’s
make menu when using make files to build your application:

Build menu item: make build

Table 2:

Make Menu Item Corresponding Batch File

Build build.bat

Build All build.bat

Compile Resource compilerc.bat

Syntax Check syntax.bat

Run run.bat
Public Domain Created by Randy Hyde Page 61

HLA Reference Manual 5/24/10 Chapter 4
Build All menu item: make buildall
Syntax Check menu item: make syntax
Compile Resource menu item: make compilerc
Run menu item: make run

These commands all assume that there is a single file, “makefile” present in the project
directory. These commands will execute the build, buildall, syntax, compilerc, or run dependencies
in the makefile, respectively. Here’s what the default makefile (supplied with RadASM/HLA)
looks like:

build: $(hlafile).exe

buildall: clean $(hlafile).exe

compilerc:
echo No Resource Files to Process!

syntax:
hla -s $(hlafile).hla

run: $(hlafile).exe
$(hlafile)
pause

clean:
delete tmp
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map

$(hlafile).exe: $(hlafile).hla
hla $(DEBUG) -p:tmp $(hlafile)

For simple projects (i.e., projects consisting of a single HLA source file), you’ll be able to use
the makefile as-is. RadASM automatically supplies the project’s name as the “hlafile” variable to
build your project whenever you select an item from the RadASM “Make” menu. For more
complex projects, you’re going to want to edit this makefile extensively to add additional
dependencies and commands.

The build dependency in this make file executes whenever someone selects the “Make>Build”
menu item in RadASM. The intent of this command is to build the application with as little
processing as possible. That is, if several of the files needed to build the final executable have
already been compiled into object files, this command should not recompile those files, it should
use the up-to-date objects as-is and only recompile those files whose source files are newer than the
object files.

The buildall dependency in the makefile executes whenever someone selects the “Make>Build
All” menu item in RadASM. The intent of this command is to do a complete build of the system,
ignoring any object files that are already up to date. The typical execution of this command
involves deleting all temporary files (e.g., object files) by executing the “clean” operation, and then
doing a build.

The compilerc dependency executes whenever you select the RadASM “Make>Compile
Resource” menu item. In the default make file provided with RadASM/HLA, this command simply
displays a brief diagnostic message. If your project has some resource files that you need to
compile with Microsoft’s resource compiler, then you would normally specify the dependencies
Public Domain Created by Randy Hyde Page 62

HLA Reference Manual 5/24/10 Chapter 4
and commands needed to process those resource files after the compilerc dependency. For
example, if your project includes a resource file named “myProject.rc”, you’d typically edit the
makefile to add/modify the following:

build: $(hlafile).exe $(hlafile).res

buildall: clean $(hlafile).exe $(hlafile).res

compilerc: $(hlafile).res

syntax: compilerc
hla -s $(hlafile).hla

$(hlafile).res: $(hlafile).rc
rc -v $(hlafile).rc

Of course, once you start making major modifications to the makefile, you can probably drop
the use of the $(hlafile) variable and use the direct filenames (variables are great for generic
makefiles; however, they tend to obscure makefiles created for a specific project). That is, for a
project like “myProject” with a “myProject.hla” file and a “myProject.rc” file you’d probably just
create a makefile like the following:

build: myProject.exe

buildall: clean myProject.exe

compilerc: myProject.res

syntax:
hla -s myProject.hla

run: myProject.exe
myProject
pause

clean:
delete tmp
delete *.exe
delete *.obj
delete *.link
delete *.inc
delete *.asm
delete *.map
delete *.res

myProject.exe: myProject.hla myProject.res
hla $(DEBUG) -p:tmp myProject myProject.res

myProject.res: myProject.rc
rc -v myProject.rc
Public Domain Created by Randy Hyde Page 63

HLA Reference Manual 5/24/10 Chapter 4
4.2.15 RadASM Menus
The following sections describe many of the RadASM menu items and their applicability to

HLA software development. For a full discussion of each menu item, please see the on-line
RadASM help file.

4.2.15.1 The RadASM File Menu
The RadASM file menu provides all the common file operations you’d expect in a Windows

application, plus a few RadASM specific entries (see Figure).

RadASM File Menu

4.2.15.1.1 File>New Project
This menu option lets you create a new project using RadASM (this process was explained in

detail earlier in this document). When using RadASM/HLA, you’re best bet is to always create a
new RadASM project using one of the RadASM templates supplied with the RadASM/HLA
package. The end result of the “File>New Project” selection is a new project directory with
Public Domain Created by Randy Hyde Page 64

HLA Reference Manual 5/24/10 Chapter 4
associated files (including a RadASM “.rap” file that describes the project plus any source files
you’ve created for the project).

4.2.15.1.2 File>Open Project
This menu option opens a dialog box that lets you open an existing RadASM project (.rap file).

See Figure for details. From this dialog box you can locate the .rap file for your particular project
and selecting that file will open up the project and its associated files.

RadASM Open Project Dialog Box

4.2.15.1.3 File>Close Project
Selecting this menu item closes any open project (you may only have one project open at a

time). If any modifications have been made to any files in the project, you will be asked whether
you want to save them before closing the project. Note that this menu item is only active if you
have a currently open project.

4.2.15.1.4 File>Delete Project
This menu item deletes the currently open project. Use this option with care. Once you delete a

project it is gone. This menu item is only active if you have an open project and it deletes that
project.

4.2.15.1.5 File>New File
The options creates a new text file and opens up a window for that text file in the editor. Note

that this file does not automatically become a part of any project (including the currently open
project, if there is one). See the discussion of the Project menu earlier in this document if you want
to insert a file into the currently opened project.

4.2.15.1.6 File>Open
This command opens a text file found on the disk. This file does not have to belong to a

currently opened project, and once opened it does not become part of the current project.

4.2.15.1.7 File>Open as Hex
This command opens an arbtrarily typed file (not necessarily a text file) in a hex-editor

window (see Figure for an example of the display of the “hw.exe” file in hex format). Note that
Public Domain Created by Randy Hyde Page 65

HLA Reference Manual 5/24/10 Chapter 4
you can edit this file (using hex values) and save the result back to disk. This is for advanced
programmers only! You can do some serious damage to an executable file if you go poking around
in it.

Hex Editor Window

4.2.15.1.8 File>Close File
This command closes the topmost open window. If there are any outstanding modifications,

you will be asked if you want to save the file before closing it.

4.2.15.1.9 File>Save File
This saves the top-most open file to disk, without closing the file. Any old data in the file on

the disk is replaced.

4.2.15.1.10 File>Save File As
This saves the data in the top-most open file under a different name. The old data in the

original file is unchanged. Note that the default name for the top-most file changes to whatever
name you supply, so future saves of this file will save their data to the new file rather than the old
file.

4.2.15.1.11 File>Save All Files
This quickly saves all modifies files that are open in the editor.
Public Domain Created by Randy Hyde Page 66

HLA Reference Manual 5/24/10 Chapter 4
4.2.15.1.12 File>Recent Files
This is a hierarchical menu item. Selecting this menu item opens up a secondary menu listing

files you’ve recently edited with RadASM. You may open one of these files by selecting the
specified file from the list.

4.2.15.1.13 File>Page Setup
Opens a generic Windows’ Printer Set-up dialog.

4.2.15.1.14 File>Print
Opens the generic Window’s printer dialog box.

4.2.15.1.15 File>Exit
Quits RadASM.

4.2.15.2 Edit Menu Items

4.2.15.2.1 Edit>Undo, Redo, Cut, Copy, Paste, Delete, Select All
Generic editing options available in most Windows applications

4.2.15.2.2 Edit>Find, Find Next, Find Previous, Replace, Find Word
Opens up a very typical find (or replace) dialog box. (see Figure). Note that by checking the

“project” box, you can instruct RadASM to search for a string throughout a project. All the other
options are standard Windows’ User Interface items that you’ve seen before.

Find Dialog Box

4.2.15.2.3 Edit>Goto Line
This menu item opens up a small dialog box that lets you enter a line number. RadASM

displays that line in the top-most open window.

4.2.15.2.4 Edit>Expand Block
This menu item expands or compresses a begin..end block in an HLA source file (outline

mode).

4.2.15.2.5 Edit> Next/Previous/Got/Toggle/Clear Bookmark
RadASM provides a bookmark facility that lets you place markers (bookmarks) on lines of

code in your source file. You can quickly navigate between bookmarks by selecting the Next/
Previous Bookmark menu items (or by pressing F8 or Ctrl-F8). You can also jump to a specific
bookmark (Goto Bookmark) or clear all the set bookmarks in your source file. Bookmarks are
especially useful for quickly switching between two sections of code in a source file.

4.2.15.3 The View Menu
The View menu lets you hide or make visible certain components of the RadASM user

interface. This menu allows you to enable or disable the following components:

• Toolbar

• Toolbox

• Output Window
Public Domain Created by Randy Hyde Page 67

HLA Reference Manual 5/24/10 Chapter 4
• Project Browser

• Properties

• Tab Select

• Info Tool

• Status Bar

4.2.15.4 Format Menu
The format menu contains several useful items that operate on the text within your source file.

4.2.15.4.1 Format>Indent
Indents the selected lines of text by one tab stop (the indentation is to the right).

4.2.15.4.2 Format>Outdent
Outdents the selected lines of text by one tab stop (the outdention is to the left).

4.2.15.4.3 Format>Comment
This command places the HLA line comment delimeter (“//”) at the beginning of each line.

4.2.15.4.4 Format>Uncomment
This command deletes the comment delimiters appearing at the beginning of a block of

selected lines.

4.2.15.5 The Project Menu
The project menu contains several items that let you manage your RadASM projects.

4.2.15.5.1 Project>Add New
This menu item lets you add a new file to a project. This is a hierarchical menu item that lets

you add source (.hla) files, header (.hhf) files, resource (.rc) files, text (.txt) files, dialog (.dlg) files,
menu (.mnu) files, module (.hla) files, or other arbitrary files to your project.

With a bit of project customization, you can have RadASM build a multi-module project by
adding module files to your project. However, if you’re interested in creating complex multi-
module projects, you’re probably better off using makefiles to control your project builds. For more
information about modules in RadASM, please consult the RadASM on-line documentation.

As its name suggests, this menu option creates a new (empty) file to add to a project. You will
have to edit the file this option creates in order to place data in the file.

4.2.15.5.2 Project>Add Existing
This is another hierarchical menu item that lets you select some file on your hard drive and add

it to the current project. If you’ve got some existing files you’d like to convert to a RadASM
project, this is the option you use to add those files to a project. Note that this option does not copy
the file into your project; it simply creates a link to the file whereever it is on the disk. If you want a
copy of the file in your project’s directory you should copy the file to your project directory before
adding the file to your project.

4.2.15.5.3 Project>Resource
This menu item lets you edit your resource file in a structured fashion. This includes AVI data,

Bitmaps, cursors, icons, images, midi data, and so on. This option opens a dialog box that lets you
select the resource type, the internal program identifier and value, and the file containing the
resource data. By pressing the “export” button in the dialog box that comes up, you can get the text
to cut and paste to a resource (.rc) file. See Figure for an example.
Public Domain Created by Randy Hyde Page 68

HLA Reference Manual 5/24/10 Chapter 4
Project>Resource Dialog Box (and Export Output)

4.2.15.5.4 Project>Stringtable
This menu item opens up a dialog box that lets you create string resources. You type in strings,

identifiers, and values, and then press the export button (see Figure). The dialog box writes to the
output window a data set that you can cut and paste into a resource (.rc) file.
Public Domain Created by Randy Hyde Page 69

HLA Reference Manual 5/24/10 Chapter 4
Project>Stringtable Dialog Box

4.2.15.5.5 Project>Versioninfo
This menu item creates a version information resource. You enter all the appropriate

information in the dialog box that comes up (see Figure), press the export button, and RadASM
writes a resource (.rc) file compatible block of text to the output window that you can cut and paste
to an appropriate resource file.
Public Domain Created by Randy Hyde Page 70

HLA Reference Manual 5/24/10 Chapter 4
Project>Versioninfo Menu Item

4.2.15.5.6 Project>Set Assembler
This option is only available if you’ve set up RadASM to work with other assemblers in

addition to HLA. The RadASM/HLA package leaves this option disabled, by default.

4.2.15.5.7 Project>Remove From Project
This menu item removes the selected file (selected in the project browser) from the project.

4.2.15.5.8 Project>Create Template
This menu item lets you create your own custom templates for RadASM projects. See the on-

line help for more details concerning the creation of templates.

4.2.15.5.9 Project>Project Options
This is one of the more important options under the Project menu. This option (which has been

discussed earlier) lets you set various options for the currently opened project. This includes the
Public Domain Created by Randy Hyde Page 71

HLA Reference Manual 5/24/10 Chapter 4
selection of debug/release mode, which items appear in the make menu, and the specification of
commands to execute for each of the items in the make menu. See the discussion earlier in this
document or the on-line help for more details.

4.2.15.5.10 Project>Main Project Files
This lets you specify the file types that a project can use. Note that it is *very* dangerous to

modify this file list for an existing project. You can easily break RadASM/HLA’s build facility by
changing these names. Only expert RadASM users should play with this dialog box/menu item See
the on-line help and the RadASM customization guid for more details.

4.2.15.6 Make Menu
The make menu has been fully discussed elsewhere in this document. Note that RadASM/HLA

uses a special layout for the Make menu that is not typical of RadASM when used with other
assemblers. Therefore, when reading the on-line help, you’ll notice that the items don’t correspond
to the items present in the RadASM/HLA make menu. As it turns out, the items in this menu are
customizable on a project by project basis (which is how they got changed for RadASM/HLA). See
the section on Customizing RadASM for more details.

4.2.15.7 The Tools Menu
This menu runs various little applications (“applets”) including the “sniplets” manager, the

notepad editor, the Windows calculator, the command line prompt (command window), ASCII
table, and a toolbar generator application. Of these, the “sniplets manager” is probably of greatest
interest to HLA programmers. The sniplets manager lets you save short pieces of code (“sniplets”)
that you can cut and paste into your current project. You can expand the available sniplets by
saving files in the ..RadASM\HLA\Sniplets subdirectory.

4.2.15.8 The Window Menu
This menu lets you organize the window display in RadASM. The principle items you use in

this menu are the file listings at the bottom of the Window Menu. From here, you can quickly select
(and bring to the front) any given editor window that is currently open.

4.2.15.9 The Option Menu
This menu lets you open up dialog boxes that control how RadASM operates. Most of the

items in this menu are for advanced RadASM users only, so we’ll not spend a whole lot of time
discussing them, but a few of the menu items are quite useful and deserve a quick mention.

4.2.15.9.1 Option>Code Editor Options
This menu item opens the Code Editor Options dialog box (see Figure) that lets you set

various editor-wide options that are useful while editing projects.
Public Domain Created by Randy Hyde Page 72

HLA Reference Manual 5/24/10 Chapter 4
Code Editor Option Dialog Box

4.2.15.9.2 Options>Colors & Keywords
This menu item lets you select the colors that RadASM will use for syntax high-lighting and

other purposes within the editor. You can also choose the keywords that RadASM will recognize
(for coloring purpose) within this dialog box (see Figure).

Colors & Keyword Dialog Box
Public Domain Created by Randy Hyde Page 73

HLA Reference Manual 5/24/10 Chapter 4
4.2.15.9.3 Options>Code Editor Font
This menu item brings up a font selection dialog. RadASM uses this font whenever displaying

source code. Note that you should always choose a fixed pitch font (e.g., courier or fixedsys) when
editing source code. Mainly, you’ll use this option to change the size of the font in your display
windows.

4.2.15.9.4 Options>Line Number Font
This brings up a font dialog box that lets you choose the font RadASM uses when displaying

line numbers. This is usually a smaller font than used for code or text.

4.2.15.9.5 Options>Text Editor Font
This brings up a font selection dialog box that lets you choosethe font used when editing text

files. Typically, this would be the same font as the code.

4.2.15.9.6 Options>Printer Options, Printer Font
Th Printer Options dialog lets you specify page headings and output color capabilities for

print-outs from RadASM.
The Printer Font menu item opens up a font selection dialog that lets you choose the output

font when printing text from RadASM.

4.2.15.9.7 Options>File Browser
This menu item opens up a small dialog box that lets you select the directories that RadASM

will cycle through when pressing the arrow buttons in the project browser pane. This dialog also
lets you select the file filters the project browser window will use when displaying files.

4.2.15.9.8 Options>External File Types
This menu lets you specify various non-RadASM recognized file types and the applications

that RadASM will open in order to process such files.

4.2.15.9.9 Options>Sniplets
This menu item opens a dialog box that lets you tell RadASM how you want to cut and paste

sniplets into your code.

4.2.15.9.10 Options>Set Paths
This option brings up a dialog box that lets you specify where RadASM can find certain

folders in the system. Generally, it’s dangerous to mess with these paths as the RadASM/HLA
installation should set these paths up properly for you. Be sure to consult the RadASMini.rtf
document (shipped with RadASM) if you want to change these items.

4.2.16 Customizing RadASM
RadASM is a relatively generic integrated development environment for assembly language

development. This single programs supports the HLA, MASM, TASM, NASM, and FASM
assemblers. Each of these different assemblers feature different tool sets (executable programs),
command line parameters, and ancillary tools. In order to control the execution of these different
programs, the RadASM system uses “.INI” files to let you specifically configure RadASM for the
assembler(s) you’re using. HLA users will probably want to make modifications to two different
“.INI” files that RadASM reads: radasm.ini and hla.ini. You’ll find these two files in the
subdirectory containing the radasm.exe executable file. Both files are plain ASCII text files that
you can edit with any regular text editor (including the editor that is built into RadASM).

The RadASM package includes an “.RTF” (Word/Wordpad) documentation file that explains
the basic format of these “.INI” files that RadASM uses. Readers interested in making major
changes to these “.INI” files, or those attempting to adopt RadASM to a different assembler, will
want to read that document. In this chapter, we’ll explore the modifications to a basic set of “.INI”
files that a typical HLA user might want to make. The assumption is that you’re starting with the
stock radasm.ini and hla.ini files that come with RadASM and you’re wanting to customize them
to support the development paradigm that this document proposes.

4.2.16.1 The RADASM.INI Initialization File
The radasm.ini file specifies all the generic parameters that RadASM uses. In particular, this

“.INI” file specifies initial window settings, file histories, OS and language information, and menu
entries for certain user modifiable menus. RadASM, itself, actually modifies most of the
Public Domain Created by Randy Hyde Page 74

HLA Reference Manual 5/24/10 Chapter 4
information in this “.ini” file. However, there are a few entries an HLA user will need to change
and a couple of entries an HLA user may want to change. We’ll discuss those sections here.

Note: there is a preconfigured radasm.ini file found in the WPA samples subdirectory. This
initialization file is compatible with all the sample programs found in this book and is a good
starting point should you decide to make your own customizations to RadASM.

The first item of interest in the radasm.ini file is the “[Assembler]” section. This section in the
“.INI” file specifies which assemblers RadASM supports and which assembler is the default
assembler it will use when creating new projects. By default, the “[Assembler]” section takes the
following form:

[Assembler]
Assembler=masm,fasm,tasm,nasm,hla

The first assembler in this list is the default assembler RadASM will use when creating a new
project. The standard radasm.ini file is set up to assume that MASM is the default assembler (the
first assembler in the list is the default assembler). HLA users will probably want to tell RadASM
to use HLA as the default assembler, this is easily achieved by changing the “Assembler=”
statement to the following:

[Assembler]
Assembler=hla,masm,fasm,tasm,nasm

Changing the default assembler is the only “necessary” change that you’ll need to make.
However, there are a few additional changes you’ll probably want that will make using RadASM a
little nicer. Again, by default, RadASM assumes that you’re developing MASM32 programs.
Therefore, the help menu contains several entries that bring up help information for MASM32
users. While some of this information is, arguably, of interest to HLA users, a good part of the
default help information doesn’t apply at all to HLA. Fortunately, RadASM’s radasm.ini file lets
you specify the entries in RadASM’s help menu and where to locate the help files for those menu
entries. The “[MenuHelp]” and “[F1-Help]” sections specify where RadASM will look when the
user requests help information (by selecting an item from the “Help” menu or by pressing the F1
key, respectively). The default radasm.ini file specifies these two sections as follows:

[MenuHelp]
1=&Win32 Api,0,H,$H\Win32.hlp
2=&X86 Op Codes,0,H,$H\x86eas.hlp
3=&Masm32,0,H,$H\Masm32.hlp
4=$Resource,0,H,$H\Rc.hlp
5=A&gner,0,H,$H\Agner.hlp

[F1-Help]
F1=$H\Win32.hlp
CF1=$H\x86eas.hlp
SH1=$H\Masm32.hlp
CSF1=$H\Rc.hlp

Each numbered line in the “[MenuHelp]” section corresponds to an entry in RadASM’s “Help”
menu. These entries must be have sequential numbers starting from one and these numbers specify
the order of the item in the “Help” menu (the order in the radasm.ini file does not specify the order
of the entries in the “Help” menu, you do not have to specify the “[MenuHelp]” entries in numeric
order, RadASM will rearrange them according to the numbers you specify). Entry entry in the
“[MenuHelp]” section takes the following form:

menu# = Menu Text, accelerator, H, helpfile

where “menu#” is a numeric value (these values must start from one and there can be no gaps
in the set), “Menu Text” is the text that RadASM will display in the menu for that particular item,
accelerator is a Windows’ accelerator key value (generally, this is zero, meaning no accelerator
Public Domain Created by Randy Hyde Page 75

HLA Reference Manual 5/24/10 Chapter 4

 this to

nge this to

is to $B\hlalib.
value), “H” is required by RadASM to identify this as a “Help” entry, and “helpfile” is the path to
the help file to display (or a program that will bring up a help file).

You may have noticed the ampersand character (“&”) in the menu text. The ampersand
precedes the character you can press on the keyboard to select a menu item when the menu is
opened. For example, pressing “X” when the menu is open (with the “[HelpMenu]” items in this
example) selects the “X86 Op Codes” menu entry.

You will note that the paths in the “[MenuHelp]” section all begin with “$H”. This is a
RadASM shorthand for “the path where RadASM can find all the help files.” There is no
requirement that you use this shortcut or even place all your help files in the same directory. You
could just also specify the path to a particular help file using a fully qualified pathname like
c:\hla\doc\Win32.hlp. However, it’s often convenient to specify paths using the various shortcuts
that RadASM provides. RadASM supplies the shortcuts found in Table .

Path Shortcuts for Use in RadASM “.INI” Files

You can define several of these variables in the hla.ini file. See the next section for details.
As noted earlier, the default help entries are really intended for MASM32 users and do not

particularly apply to HLA users. Therefore, it’s a good idea to change the “[MenuHelp]” entries to
reflect the location of some HLA-related help files. Here are the “[MenuHelp]” entries that might
be more appropriate for an HLA installation (assuming, of course, you’ve placed all these help files
in a common directory on your system):

[MenuHelp]
1=&Win32 Api,0,H,$H\Win32.hlp
2=&Resource,0,H,$H\Rc.hlp
3=A&gner,0,H,$H\Agner.hlp
4=&HLA Reference,0,H,$H\PDF\HLARef.pdf
5=HLA Standard &Library,0,H,$H\pdf\HLAStdlib.pdf
6=&Kernel32 API,0,H,$H\pdf\kernelref.pdf
7=&User32 API,0,H,$H\pdf\userRef.pdf
8=&GDI32 API,0,H,$H\pdf\GDIRef.pdf

Table 3:

Shortcut Meaning

$A= Path to where RadASM is installed

$B= Where RadASM finds binaries and executables (e.g., c:\hla)

$D= Where RadASM finds “Addin” modules. Usually $A\AddIns.

$H= Where RadASM finds “Help” files. Default is $A\Help, but you’ll probably want to change
$B\Doc.

$I= Where RadASM finds include files. Default is $A\Include, but you’ll probably want to cha
$B\include.

$L= Where RadASM finds library files. Default is $A\Lib but you’ll probably want to change th

$R= Path where RadASM is started (e.g., c:\RadASM).

$P= Where RadASM finds projects. This is usually $R\Projects.

$S= Where RadASM find snippets. This is usually $R\Snippets.

$T= Where RadASM finds templates. This is usually $R\Templates

$M= Where RadASM finds keyboard macros. This is usually $R\Macro
Public Domain Created by Randy Hyde Page 76

HLA Reference Manual 5/24/10 Chapter 4
Here’s a suggestion for the F1, Ctrl-F1, Shift-F1, and Ctrl-Shift-F1 help
items:

[F1-Help]
F1=$H\Win32.hlp
CF1=$H\PDF\HLARef.pdf
SF1=$H\pdf\HLAStdlib.pdf
CSF1=$H\Rc.hlp

These are probably the extent of the changes you’ll want to make to the radasm.ini file for
HLA use; there are, however, several other options you can change in this file, please see the
radASMini.rtf file that accompanies the RadASM package for more details on the contents of this
file.

4.2.16.2 The HLA.INI Initialization File
The hla.ini file is actually where most of the customization for HLA takes place inside

RadASM. This file lets you customize RadASM’s operation specifically for HLA1. The hla.ini
file appearing in the WPA subdirectory (on the accompanying CD-ROM or in the Webster HLA/
Examples download file) contains a set of default values that provide a good starting point for your
own customizations.

Note: although hla.ini provides a good starting point for a system, you will probably need to
make changes to this file in order for it to work on your specific system. Without these changes,
RadASM may not work on your system.

Without question, the first section to look at in the hla.ini file is the section that begins with
“[Paths]”. This is where you tell RadASM the paths to various directories where it expects to
find various files it needs (see Table for the meaning of these various path values). A typical
“[Paths]” section might look like the following:

[Paths]
$A=C:\Hla
$B=$A
$D=$R\AddIns
$H=$A\Doc
$I=$A\Include
$L=$A\hlalib
$P=$R\Hla\Projects
$S=$R\Hla\Sniplets
$T=$R\Hla\Templates
$M=$R\Hla\Macro

Note that the $A prefix specifies the path where RadASM can find the executables for HLA. In
fact, RadASM does not run HLA directly (remember, we’re going to have the make program run
HLA for us), but the application path ($A) becomes a prefix directory we’ll use for defining other
directory prefixes. Be sure to check this path in your copy of the hla.ini file and verify that it
points at your main HLA subdirectory (usually “C:\HLA” though this may be different if you’ve
installed HLA elsewhere).

The $R prefix specifies the path to the subdirectory containing RadASM. RadASM
automatically sets up this prefix, you don’t have to explicitly set its value. The remaining
subdirectory paths are based off either the $A prefix or the $R prefix.

The “[Project]” section of the hla.ini file is where the fun really begins. This section takes the
following form in the default file provided in the WPA subdirectory:

[Project]

1. There are comparable initialization files for MASM, TASM, NASM, FASM, and other assemblers that
RadASM supports.
Public Domain Created by Randy Hyde Page 77

HLA Reference Manual 5/24/10 Chapter 4
Type=Console App,Dialog App,Windows App,DLL
Files=hla,hhf,rc,def
Folders=Bak,Res,Tmp,Doc
MenuMake=Build,Build All,Compile RC,Check Syntax,Run
Group=1
GroupExpand=1

The line beginning with “Type=” specifies the type of projects RadASM supports for HLA.
The default configuration supports console applications (“Console App”), dialog applications
(“Dialog App”), Windows applications (“Windows App”), and dynamic linked library (“DLL”).
The names are arbitrary, though other sections of the hla.ini file will use these names. Whenever
you create a new project in HLA, it will create a list of “Project Type” names based on the list of
names appearing after “Type=” in the “[Project]” section. Adding a string to this comma-
separated list will add a new name to the project types that the RadASM user can select from (note,
however, that to actually support these project types requires some extra work later on in the hla.ini
file). Figure shows what the New Project dialog box in RadASM displays in response to the entries
on the “Type=...” line.

RadASM Project Types

The line beginning with “Files=” in the “[Project]” section specifies the suffixes for the files
that RadASM will associate with this project. The “hla” and “hhf” entries, of course, are the
standard file types that HLA uses. The “.rc” file type is for resource compiler files (we’ll talk about
the resource compiler in a later chapter). If you want to be able to create additional file types and
include them in a RadASM project, you would add their suffix here.

The “Folders=...” statement tells RadASM what subdirectories it should allow the user to
create when they start a new project. The make file system we’re going to use will assume the
presence of a “Tmp” directory, hence that option needs to be present in the list. the “bak”, “res”,
and “doc” directories let the user create those subdirectories.

Figure shows the dialog box that displays the information found on the “Files=” and
“Folders=” lines. By checking the appropriate boxes in the File Creation group, the RadASM user
Public Domain Created by Randy Hyde Page 78

HLA Reference Manual 5/24/10 Chapter 4
can tell RadASM to create a file with the project’s name and the appropriate suffix as part of the
project. Similarly, by checking the appropriate boxes in the Folder Creation group, the RadASM
user can tell RadASM to create the appropriate directories.

File and Folder Creation Dialog Box in RadASM

The “MenuMake=...” line specifies the IDE options that will be available for processing the
files in this project. Unlike the other options, you cannot specify an arbitrary list of commands here.
RadASM provides five items in the Make menu that you can modify, you don’t have the option of
adding additional items here (you can disable options if you want fewer, though). Originally, these
five slots were intended for the following commands:

• Compile RC (compile a resource file)

• Assemble (assemble the currently open file)

• Link (create an EXE from the object files)

• Run (execute the EXE file, building it if necessary)

• Res To Obj (convert a resource file to an object file)
Because these options aren’t as applicable to HLA projects as they are to MASM projects (on

which the original list was built), the default hla.ini file co-opts these make items for operations
that make more sense for the way we’re going to be building HLA applications in this book. You
can actually turn these make items on or off on a project by project basis (for certain types of
projects, certain make objects may not make sense). Figure shows the dialog box that RadASM
displays and presents this information. Note that in the version used here, RadASM only displays
the correct labels for the check boxes in the Make Menu group. The labels on the text entry boxes
should also be “Build”, “Build All”, “Compile RC”, “Check Syntax”, and “Run” (in that order), but
these labels turn out to be hard-coded to the original MASM specifications. Fortunately, you won’t
normally use these text entry boxes (the default text appearing in them appears in the hla.ini file),
so you can ignore the fact that they are mis-labelled here.
Public Domain Created by Randy Hyde Page 79

HLA Reference Manual 5/24/10 Chapter 4
RadASM Make Menu Selection Dialog Box

For each of the project types you specify on the “Type=...” line in the “[Project]”
section, you must add a section to the hla.ini file, using that project type’s name, that tells RadASM
how to deal with projects of that type. In the hla.ini file we’re discussing here, the project types are
“Console App”, “Dialog App”, “Windows App”, and “DLL” so we will need to have sections
names “[Console App]”, “[Dialog App]”, “[Windows App]”, and “[DLL]”. It also
turns out that RadASM requires one additional section named “[MakeDefNoProject]” that
RadASM uses to process files in the IDE that are not associated with a specific project.

When running RadASM, you can have exactly one project open (or no project at all open, just
some arbitrary files) at a time. This project will be one of the types specified on the “Type=...”
line in the “[Project]” section. Based on the open project, RadASM may execute a different set
of commands for each of the items in the Make menu; the actual commands selected are specified
in the project-specific sections of the hla.ini file. Here’s what the “[MakeDefNoProject]”
section looks like:

[MakeDefNoProject]
MenuMake=1,1,1,1,1
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,O,make run,
11=0,O,make dbg_build,
12=0,O,make dbg_buildall,
13=0,O,make dbg_compilerc,
14=0,O,make dbg_syntax,
15=0,C,make dbg_run,
Public Domain Created by Randy Hyde Page 80

HLA Reference Manual 5/24/10 Chapter 4
The “MenuMake=...” line specifies which items in the RadASM Make menu will be active
when a project of this type is active in RadASM (or, in the case of MakeDefNoProject, when
no project is loaded). This is a list of boolean values (true=1, false=0) that specify whether the
menu items in the Make menu will be active or deactivated. Each of these values correspond to the
items on the MenuMake line in the “[Project]” section (in our case, this corresponds to “Build”,
“Build All”, “Compile RC”, “Syntax Check”, and “Run”, in that order). A “1” activates the
corresponding menu item, a zero deactivates it. For most HLA project types, we’ll generally leave
all of these options enabled. The exception is DLL; normally you don’t “run” DLLs so we’ll
disable the run option when building DLL projects.

The remaining lines specify the actions RadASM will take whenever you select one of the
items from the Make menu. To understand how these items work, let’s first take a look at another
section in the hla.ini file, the “[MenuMake]” section:

[MenuMake]
1=&Build,55,M,1
2=Build &All,31,M,2
3=&Compile RC,91,M,3
4=&Syntax,103,M,4
5=-,0,M,
6=&Run,67,M,5

Each item in the “[MenuMake]” section corresponds to a menu entry in the Make menu. The
numbers specify the index to the menu entry (e.g., “1=” specifies the first menu item, “2=”
specifies the second menu item, etc.). The first item after the “n=” prefix specifies the actual text
that will appear in the Make menu. If this text is just the character “-” then RadASM displays a
menu separator for that particular entry. As you can see, the default menu entries are “Build”,
“Build All”, “Compile RC”, “Syntax”, and “Run”.

The next item, following the menu item text, is the accelerator value. These are “magic” values
that specify keystrokes that do the same job as selecting items from the menu. For example, 55 (in
the “Build” item) corresponds to Shift+F5, 31 (in “Build All”) corresponds to F5. We’ll discuss
accelerators in a later chapter. So just ignore (and copy verbatim) these files for right now.

The third item on each line is always the letter “M”. This tells RadASM that this is a make
menu item.

The fourth entry on each line is probably the most important. This is the command to execute
when someone selects this particular menu item. This is either some text containing the command
line to execute or a numeric index into the current project type. As you can see in this example,
each of the commands use an index value (one through five in this example). These numbers
correspond to the lines in each of the project sections. For example, if you select the “Build” option
from the Make menu, RadASM notes that it is to execute command #1. It goes to the current
project type section and locates the line that begins with “1=...” and executes that operation, e.g.,

1=0,O,make build,

In a similar vein, selecting “Build All” from the Make menu instructs RadASM to execute the
command that begins with “2=...” in the current project type’s section (i.e., “2=0,O,make
buildall,”). And so on.

The lines in the project type section are divided into two groups, those that begin with 1, 2, 3,
4, or 5 and those that begin with 11, 12, 13, 14, or 15. The “[MenuMake]” command index selects
one of the commands from these two groups based on whether RadASM is producing a “release
build” or a “debug build”. Release builds always execute the command specified by the
“[MenuMake]” command index (i.e. 1-5). If you’re building a debug version, then RadASM
executes the commands in the range 11-15 in response to command indexes 1-5. We’ll ignore
debug builds for the time being (we’ll discuss them in a later chapter on debugging). So for right
now, we’ll always assume that we’re building a release image.

The fields of each of the indexed commands in the project type section have the following
meanings:

index = delete_option, output_option, command, files
Public Domain Created by Randy Hyde Page 81

HLA Reference Manual 5/24/10 Chapter 4
The delete_option item specifies which files to delete before doing the build. If this entry is
zero, then RadASM will not delete any files before the build. Because we’re having a make file do
the actual build for us, and it can take care of cleaning up any files that need to be deleted first,
we’ll always put a zero here when using RadASM with HLA.

The output_option item is either “C”, “O” (that’s an “oh” not a “zero”), or zero. This specifies
whether the output of the command will go to a Windows console window (“C”), the RadASM
output window (“O”, which is “oh”), or the output will simply be thrown away (zero). We’ll
usually want the output sent to RadASM’s output window, so most of the time you’ll see the letter
“O” (“oh”) here.

The command entry is the command line text that RadASM will pass on to windows whenever
you execute this command. This can be any valid command prompt operation. For our purposes,
we’ll always use a make command with a single parameter to specify the type of make operation to
perform. Here are the commands we’re going to support in RadASM:

• Build - “make build”

• Build All - “make buildall”

• Compile RC - “make compilerc”

• Syntax - “make syntax”

• Run - “make run”
Now it’s up to the makefile to handle each of these various commands properly (using the

standard makefile scheme we defined in the first chapter).
This may seem like a considerable amount of indirection -- why not just place the commands

directly in the “[MenuMake]” section? However, this scheme is quite flexible and makes it easy
to adjust the options on a project type by project type basis (in fact, it’s even possible to set these
options on a project by project basis).

With this discussion out of the way, it’s time to look at the various project type sections.
Without further ado, here they are:

[Console App]
Files=1,1,1,1,0,0
Folders=1,0,1,0
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

Console applications, by default, want to create an .HLA file and a .HHF file, a BAK folder
and a TMP folder. All menu items are active for building and running console apps (that is, there
are five ones after “MenuMake”). Finally, the commands (“1=...” “2=...”, etc.) are all the standard
build commands.

[Dialog App]
Files=1,1,1,0,0
Folders=1,1,1
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
Public Domain Created by Randy Hyde Page 82

HLA Reference Manual 5/24/10 Chapter 4
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

By default, dialog applications will create HLA, HHF, RC, and DEF files and they will create
a BAK and a TMP subdirectory. All five menu items will be active and dialog apps use the
standard command set.

[Windows App]
Files=1,1,1,1,0
Folders=1,1,1,1
MenuMake=1,1,1,1,1,0,0,0
1=0,O,make build,
2=0,O,make buildall,
3=0,O,make compilerc,
4=0,O,make syntax,
5=0,C,make run,
11=0,O,make build,
12=0,O,make buildall,
13=0,O,make compilerc,
14=0,O,make syntax,
15=0,C,make run,

By default, window applications will create HLA, HHF, RC, and DEF files and they will
create a BAK, RES, DOC, and a TMP subdirectory. All five menu items will be active and dialog
apps use the standard command set.

The hla.ini file allows you to control several other features in RadASM. The options we’ve
discussed in this chapter are the crucial ones you must set up, most of the remaining options are of
an aesthetic or non-crucial nature, so we won’t bother discussing them here. Please see the
RadASM documentation (the RTF file mentioned earlier) for details on these other options.

Once you’ve made the appropriate changes to the hla.ini file (and, of course, you’ve made a
backup of your original file, right?), then you can copy the file to the RadASM subdirectory and
replace the existing hla.ini file with your new one. After doing this, RadASM should operate with
the new options when you run RadASM..
Public Domain Created by Randy Hyde Page 83

HLA Reference Manual 5/24/10 Chapter 5
5 HLA Internal Operation

To effectively use HLA, it helps to understand how HLA translates HLA source files into
executable machine code. This information is particularly useful if you install HLA incorrectly and
you cannot successfully compile a simple demo program. Beyond that, this information can also
help you take advantage of more advanced HLA and OS features.

As noted earlier in the HLA documentation, HLA is not a single application; the HLA system
is a collection of programs that work together to translate your HLA source files into executable
files. This is not unusual, most compilers and assemblers provide only part of the conversion from
source to executable (e.g., you still have to run a linker with most compilers and assemblers to
produce an executable).

The HLA system offers a rich set of different configurations that allow you to mix and match
components to efficiently process your assembly language applications. First of all, HLA is
relatively portable. The compiler itself is written with Flex, Bison, C/C++, along with some
platform-independent assembly language code (written in HLA, of course). This makes it easy to
move the compiler from one operating system to another. Currently, HLA is supported under
Windows, Linux, FreeBSD, and Mac OSX. Plans include porting HLA to NetBSD, OpenBSD,
QNX and, perhaps, Solaris at some point in the future. Even within a single operating system, HLA
offers multiple configurations that you can employ, based on your needs and desires. This section
will describe some of the possible configurations you might create.

The compilation of a typical HLA source file using a command line such as "hla hw" goes
through three or four major phases:

• The hla.exe (Windows) or hla (other OSes) program processes command-line parameters
and acts as a "traffic cop" directing the execution of the remaining components of the
HLA system.

• The hlaparse.exe (Windows) or hlaparse (other OSes) program is responsible for
translating the HLA source file either into an object file or into the syntax of some other
assembler. Usually, the hlaparse program is run automatically by some other program
such as hla.exe/hla or HIDE (the HLA Integrated Development Environment). You would
not normally run hlaparse directly from a command-line (though it is certainly possible to
do this if you are so inclined).

• If you elect to have HLA produce an assembly language output file rather than an object
module, then the next step towards producing an executable file is to run the associated
back-end assembler on the source output that HLA produced. This step isn’t strictly
necessary because HLA can produce an object file directly without using some external
assembler, but there are some (rather esoteric) reasons why you might want to go through
some other assembler rather than having HLA directly produce the object file. Generally,
the hla.exe (hla) program will automatically run the assembler for you.

• The last step is to run a linker to combine the object module the previous steps created
with the HLA Standard Library and any other necessary object modules for the project.
The output of the linkage step is an executable file (assuming, of course, there were no
errors in the compilation of your program). Generally, the hla.exe (hla) program will
automatically run the linker for you.
There is a fifth, optional, step that can also take place under Windows. If you are creating an

application that makes use of compiled resources, as the fourth step (before the linking stage) the
hla.exe (Windows only) program can run a resource compiler to translate those resources into an
object module (.res) that the linker can link into your final executable.

As it turns out, the HLA system can employ a wide variety of linkers, librarians, assemblers,
and other tools based on the underlying operating system. Here is the list of tools that HLA has
been qualified with:
Under Windows:

• Microsoft’s MASM v9 assembler

• Microsoft’s linker (v9)

• Microsoft’s resource compiler

• Microsofts LIB library manager

• The Flat Assembler (FASM)
Public Domain Created by Randy Hyde Page 84

HLA Reference Manual 5/24/10 Chapter 5
• The Netwide Assembler (NASM)

• Pelles C POLINK linker

• Pelles C POLIB library manager

• Pelles C PORC resource compiler

• Borland’s Turbo Assembler
Note: you can use Borland’s TLINK and TLIB utilities with HLA, but you will have to manually
run these applications; the HLA system will not automatically execute them. Note that HLA v2.0
and later have deprecated support for the Borland tools and future versions may not support them at
all.

Under Linux, Mac OSX, and FreeBSD:

• The Free Software Foundation’s (FSF) Gas assembler (as)

• FSF’s linker (ld)

A couple of obvious questions that might come up: "Why provide all these options? Why not
simply pick a single configuration and go with that?" Well, as it turns out, there are advantages and
disadvantages to each configuration and allowing multiple configurations affords you the most
flexibility when writing code.

The first point to consider is object code file versus assembly language output. The obvious
choice is to have HLA produce an object code file. After all, the job of an assembler is to produce
an object code file; why make the detour of producing an intermediate assembly language file that
some other assembler must convert to an object file?

Historically, HLA provides this option because this was the only option available under HLA
v1.x (direct object code output became available in HLA v2.0). Persons with old makefiles and
other build systems may be excepting to run HLA output through some other assembler. The fact
that HLA v2.x maintains the ability to produce object code in this manner preserves those existing
make files and build systems.

Another reason for producing an intermediate assembly language file is because you want to
see the output from the HLA compiler (for example, to see how it translates HLL-like statements
into pure assembly language). The HLA compiler has an HLA output mode specifically for this
purpose. It may seem silly, at first, to assemble an HLA source file into a (lower-level) HLA source
file, but being able to look at the code that HLA generates is sometimes a very nice feature.

One last reason for producing an assembly language output file from an HLA source file is to
allow you to translate HLA source code into the syntax for some other assembler (MASM, FASM,
NASM, or Gas). This is useful when you want to combine HLA code with a project written with a
different assembler.

Most of the time, of course, you’ll use the default setting and directly produce an object file
from an HLA assembly. HLA produces standard PE/COFF, ELF, and Mach-o object-code files, so
HLA’s output will properly link with other object files (perhaps written in different languages).
Public Domain Created by Randy Hyde Page 85

HLA Reference Manual 5/24/10 Chapter 6
6 Using the HLA Command-Line Compiler

Once you’ve installed HLA and verified that it is operational, you can run the HLA compiler.
The HLA compiler consists of two executables: hla(.exe)1, which is a shell that processes
command line arguments, compiles ".hla" files to ".asm" files, assembles the ".asm" files by calling
an assembler, and links the resulting files together using a linker program; the second executable is
hlaparse(.exe) which compiles a single ".hla" file to an assembly language file. Generally, you
would only run hla(.exe). The hla(.exe) program automatically runs the hlaparse(.exe) and
assembler/linker programs. The hla(.exe) command uses the following syntax:

hla optional_command_line_parameters Filename_list

The filenames list consists of one or more unambiguous filenames having the extension: ".hla",
".asm" or ".obj"/".o"2. HLA will first run the hlaparse(.exe) program on all files with the HLA
extension (producing files with the same basename and an ASM extension). Then HLA runs the
assembler on all files with the ".asm" extension (including the files produced by hlaparse). Finally,
HLA runs the linker to combine all the object files together (including the ".obj"/".o" files the
assembler produces). The ultimate result, assuming there were no errors along the way, is an
executable file (with an EXE extension under Windows, with no extension under Linux/FreeBSD/
Mac OSX).

HLA supports the following command line parameters:

 options:
 -@ Do not generate linker response file.
 -@@ Always generate a linker response file.
 -thread Enable thread-safe code generation and linkage.
 -axxxxx Pass xxxxx as command line parameter to assembler.
 -dxx Define VAL symbol xx to have type BOOLEAN and value TRUE.
 -dxx=yy Define VAL symbol xx to have type STRING and value "yy".
 -e:name Executable output filename (appends ".exe" under Windows).
 -x:name Executable output filename (does not append ".exe").
 -b:name Binary object file output name (only when using HLABE).
 -i:path Specifies path to HLA include file directory.
 -lib:path Specifies path to the HLALIB.LIB file.
 -license Displays copyright and license info for the HLA system.
 -lxxxxx Pass xxxxx as command line parameter to linker.
 -m Create a map file during link
 -p:path Specifies path to hold temporary working files.
 -r:name <name> is a text file containing cmd line options.
 -obj:path Specifies path to place object files.
 -main:name Use ‘name’ as the name of the HLA main program.
 -source Compile to human readable source file format.
 -s Compile to .ASM files only.
 -c Compile and assemble to object files only.
 -fasm Use FASM as back-end (applies to -s and -c)
 -gas Use Gas as back-end (Linux/BSD, applies to -s and -c)
 -gasx Use Gas as back-end (Mac OSX, applies to -s and -c)

1. The ".exe" suffix appears only in the Windows’ version.
2. Windows object files use the ".obj" suffix while Linux object files have the ".o" suffix. Although Linux users
who write assembly code with Gas typically use a ".s" or ".S" suffix, HLA still uses ".asm" since Gas happily
accepts this.
Public Domain Created by Randy Hyde Page 86

HLA Reference Manual 5/24/10 Chapter 6
 -hla Produce a pseudo-HLA source file as output (implies -s).
 -hlabe (Default) Produce obj file using the HLA Back Engine.
 -masm Use MASM as back-end assembler (applies to -s and -c)
 -nasm Use NASM as back-end assembler (applies to -s and -c)
 -tasm Use TASM as back-end assembler (applies to -s and -c)
 -sym Dump symbol table after compile.
 -win32 Generate code for Win32 OS.
 -linux Generate code for Linux OS.
 -freebsd Generate code for FreeBSD OS.
 -macos Generate code for Mac OSX.
 -test Send diagnostic info to stdout rather than stderr (This
 option is intended for HLA test/debug purposes).
 -v Verbose compile.
 -level=h High-level assembly language
 -level=m Medium-level assembly language
 -level=l Low-level assembly language
 -level=v Machine-level assembly language (very low level).
 -w Compile as windows app (default is console app).
 -? Display this help message.

Note that HLA ignores case when processing command line parameters (unlike typical Linux/
FreeBSD/Mac OSX programs). For example, "-s" is equivalent to "-S" when specifying a
command line parameter.
-@
-@@

HLA will produce a "linker response file" that it supplies to the linker program during the link
phase. This linker response file contains necessary segment declarations and other vital linker
information. By default, HLA uses any existing "basename.link" file (where basename is the base
name of the file you are compiling) whenever you run the compiler; it will create a new
"basename.link" file only if one does not already exist. The "-@" option tells HLA not to create a
new ".link" file, even if one does not already exist. The "-@@" option tells HLA to always create a
".link" file, even if one already exists.

If you specify multiple "basename.hla" filenames on the command line, HLA only generates a
single "basename.link" file using the name of the first "basename.HLA" file it encounters.

-r:filename

The "-r:filename" option lets you specify a response file containing a sequence of HLA
command-line parameters. The file specified after this option must contain a sequence of HLA
command-line parameters, one per line, which HLA executes exactly as though they were specified
on the command line. E.g.,

sampleFile.resp:

-fasm
sampleFile.hla

The following command treats each of the above lines as separate HLA
command-line parameters:

hla -r:sampleFile.resp

-aXXXXX

The -aXXXXX option lets you pass assembler-specific command line options to the assembler
during the assembler phase. This option is ignored if you use the -s option or you're compiling
directly to object code using the HLA back engine. One common form of this command often used
Public Domain Created by Randy Hyde Page 87

HLA Reference Manual 5/24/10 Chapter 6
with the MASM assembler is "-aZi -aZf" that tells MASM to generate debugging information in
the object file (for use with the Visual Studio debugger program).

-c

The -c option tells HLA to run the hlaparse compiler and the (default) assembler, producing
"basename.obj"/"basename.o" files. HLA will process all filenames on the command line that
have ".hla" or ".asm" extension, but it will ignore any filenames with ".obj" or ".o" extensions. If
you compile an HLA unit without compiling an HLA program at the same time, you will need to
use this option or the linker will complain about not finding the main program.

One common use of this option is to compile HLA units to object files. Since HLA units do
not contain a main program, you cannot compile an HLA unit directly to an executable. To
compile an HLA unit separately (i.e., without compiling an HLA main program during the same
HLA.EXE invocation) you must specify the "-c" option or the compilation will generate an error
when it attempts to link the program.

A second reason for using the "-c" option is that you want to explicitly run the linker yourself
and supply linker command line options that are different from those that HLA automatically
provides.

-fasm

Tells HLA to use FASM as the back-end assembler. This command-line overrides any back-
end assembler specification previously on the command-line. Object code and executable file
output with this command are available only under Windows. Source output is available under any
operating system.

-gas

Tells HLA to use GAS as the back-end assembler. This command-line overrides any back-end
assembler specification previously on the command-line. Object code and executable file output
with this command are available only under Linux and FreeBSD. Source output is available under
any operating system.

-gasx

Tells HLA to use GAS as the back-end assembler. This command-line overrides any back-end
assembler specification previously on the command-line. Object code and executable file output
with this command are available only under Mac OS X. Source output is available under any
operating system.

-hla

Tells HLA to produce a human-readable pseudo-HLA-syntax assembly language output file.
This command-line option implies "-source" and "-s". The main use for this option is to see how
HLA expands macros, high-level-language-like statements, and other code.

-hlabe

Tells HLA to use the HLA Back Engine as the back-end assembler. This command-line
overrides any back-end assembler specification previously on the command-line. This command
causes HLA to directly produce an object code file without using an external back-end assembler.
If you specify both of the "-source" and "-s" command-line options along with "-hlabe", then HLA
will produce a human-readable ".asm" file rather than an object file; this option is useful for
debugging HLA or for those curious about how HLABE operates.

-masm

Tells HLA to use MASM as the back-end assembler. This command-line overrides any back-
end assembler specification previously on the command-line. Object code and executable file
Public Domain Created by Randy Hyde Page 88

HLA Reference Manual 5/24/10 Chapter 6
output with this command are available only under Windows. Source output is available under any
operating system.

-nasm

Tells HLA to use NASM as the back-end assembler. This command-line overrides any back-
end assembler specification previously on the command-line. Object code and executable file
output with this command are available only under Windows. Source output is available under any
operating system.

-tasm

Tells HLA to use TASM as the back-end assembler. This command-line overrides any back-
end assembler specification previously on the command-line. Object code and executable file
output with this command are available only under Windows. Source output is available under any
operating system. Note that TASM support in HLA is deprecated, so it's not a good idea to depend
on this option.

-d:XXXXX{=YYYYY}

The -dXXXXX option tells HLA to define the symbol XXXXX as a boolean val constant and
initialize it with the value true. Generally you use such symbols to control the emission of code
during assembly using statements like "#if(@defined(XXXXX)) ..."

The -dXXXX=YYYY option tells HLA to define the symbol XXXX as a string val constant and
give it the initial value "YYYY".

-b:name

When compiling to an object file using the HLA back-engine (rather than a back-end
assembler), this option specifies the name of the binary object file. By default, HLA uses the base
name (before the ".hla" suffix) with a ".obj" (windows) or ".o" (*NIX) suffix. With the "-b:name"
option you may specify a different name. Note that if you do not supply an ".obj" or ".o" suffix at
the end of "-b:name" because HLA will automatically attach the suffix.

-e:name

By default, HLA creates an executable filename using the extension ".exe" (Windows) or
without an extension (*NIX) and the basename of the first filename on the command line. You can
use the -e name option to specify a different executable file name.

-x:name

Similar to the -e:name option, except there is no automatic ".exe" suffix applied under
Windows. This lets you explicitly supply the suffix (e.g., ".dll" under Windows, or to force a ".exe"
under *NIX).

-lXXXXX

The -lXXXXX option passes the text XXXXX on to the linker as a command line option. One
common command to pass to the Microsoft linker is "-lDEBUG" that tells the linker to generate
debugging information in the object file.

-m

The -m option tells the Microsoft linker or POLINK to produce a map file during the link
phase. This is equivalent to the "-lmap" option. The *NIX version of HLA ignores this option.

-s
Public Domain Created by Randy Hyde Page 89

HLA Reference Manual 5/24/10 Chapter 6
The -s option tells the HLA program to run only the hlaparse compiler to produce an assembly
language source file; HLA will not run a back-end assembler or linker. As a result, HLA ignores
any ".asm" or ".obj" filenames you supply on the command line. This option is useful if you wish
to view the output of an HLA compilation in some other assembler's source format without
producing any actual object code. This option must be used with the "-source" command-line
option if you are using the HLA back engine and you wish to produce a human-readable source file
of the HLABE output.

-sym

The -sym option dumps the symbol table after compiling each file with an HLA extension. This option is
primarily intended for testing and debugging the HLA compiler; however, this information can be useful to
the HLA programmer on occasion.

-thread

The -thread option tells HLA to generate thread-safe code (for the code it emits) and link in the
thread-safe version of the HLA standard library. Specifying this command-line option sets the
HLA @thread object to true, which you can test during the compilation of an HLA source file (that
must behave differently for thread-safe versus non-thread-safe code).

-test

The -test option is intended for hlaparse testing and debugging purposes only. It causes the
compiler to send all error messages to the standard output device rather than the standard error
device. This allows the test code to redirect all errors to a text file for comparison against other
files. This command also causes HLAPARSE to emit some extra comment information to the
assembly language output file when producing output files for one of the back-end assemblers
(other than the HLA back engine).

-v

The -v option (verbose) causes HLA to print additional information during compile to show
the progress of the compilation. This option also prints certain statistics, such as the number of
lines per second that HLA compiles.

-w

The -w option informs HLA that you are compiling a standard Windows (GUI) application rather than a
console application. By default, HLA assumes that you are compiling a executable that will run from the
command window. If you want to write a full Windows application, you will need to supply this option to
tell HLA not to link the code for console operation. Obviously, this option doesn’t apply to *NIX systems.
The "-w" option tells HLA to invoke the linker using the command line option

-subsystem:windows
rather than the default
-subsystem:console

This provides a convenient mechanism for those who wish to create win32 GUI applications.
Most likely, however, if you wish to create GUI applications, you will run the linker explicitly
yourself (as this document will explain), so you’ll probably not use the "-w" option very frequently.
It’s great for some short GUI demos, but larger GUI programs will probably not use this option.
This option is only active if HLA compiles the program to an executable. If you compile the
program to an OBJ or ASM file, HLA ignores this option.

If you want to develop Win32 GUI apps, look at Randy Hyde’s book "Windows Programming
in Assembly". This book provides the linker commands and makefiles for generation such
applications (as well as describing how you actually write such code).
Public Domain Created by Randy Hyde Page 90

HLA Reference Manual 5/24/10 Chapter 6
-p:path

During compilation, HLA produces several temporary files (that it doesn’t delete, because they
may be of interest to the HLA user). These files have a habit of cluttering up the current working
directory. If you prefer, you can tell HLA to place these files in a temporary directory so they don’t
clutter up your working directory. One way to accomplish this is by using the "-p:dirpath"
command line option. For example, the option "-p:c:\hla\tmp" tells HLA to put all temporary files
(for the current assembly) into the "c:\hla\tmp" subdirectory (which must exist). Note that you can
set also set the temporary directory using the hla "hlatemp" environment variable. The "-p:dirpath"
option will override the environment variable (if it exists). See the description of the hlatemp
environment variable for more details.

-obj:path

During compilation, HLA normally writes all object files to the current working directory.
Some programmers have requested a way to specify a different directory for the .OBJ (.o under
*NIX) files that HLA produces. You can accomplish this using the "-obj:dirpath" command line
option. The dirpath item has to be the path to a valid directory. HLA places all object files
produced by the compiler and/or resource editor in this directory. Note that, unlike the -p option,
there is no environment variable that lets you permanently set this path. You must specify the path
on a compilation-by-compilation basis (use a makefile if you get tired of typing the path in on each
compilation).

-level=h

-level=m

-level=l

-level=v

The -level options enable or disable certain HLA language features. These command-line
options are intended for use in programming courses where the instructor needs to batch compile
dozens or even hundreds of student projects at one time. This allows the instructor to ensure that
the students aren’t using high-level control constructs that are inappropriate for that point in the
course. For example, towards the end of a course, most instructors don’t allow the use of various
high-level control constructs; some instructors may never allow them. The "-level" command-line
options will "turn off" various statements in the HLA language so that the HLA compiler will
report an error if the student attempts to use them in a source file.

The default, "-level=h" (high) enables the entire HLA language.
The "-level=m" (medium level) disables high-level language control constructs, such as "if",

"while", and "for" but still allows the use of high-level-like procedure calls in the HLA language.
Medium-level assembly language also allows the use of exceptions using HLA’s try..except..endtry
and raise statements.

The "-level=l" (low-level assembly) disables all high-level control constructs other than the
exception-handling statements and disables high-level-like procedure calls in HLA. This option
also disables automatic stack frame generation and clean up in HLA procedures (that is, the
programmer will be responsible for writing that code themselves).

The "-level=v" (very low-level assembly) option disables all high-level control constructs
including exception handling. Only machine instructions (and user written macros) are legal in the
source file. No high-level control constructs or high-level procedure calls are allowed.

-?

The -? option cause HLA to dump the list of command line options and immediately quit
without further work.
Public Domain Created by Randy Hyde Page 91

HLA Reference Manual 5/24/10 Chapter 6
Note that the command line options this document describes are for HLA v2.2 and later only.
Earlier versions of HLA used a different command line set. See the documentation for the specific
version you’re using if you have questions.

-license

This command displays license information for the entire HLA system. Although the HLA
source code written by Randall Hyde is all public domain, certain components of the HLA system,
including the back-end assemblers, the linker, and the resource editor, may come from other
sources. The "-license" command-line parameter lists license information about these other
products.
Public Domain Created by Randy Hyde Page 92

HLA Reference Manual 5/24/10 Chapter 7
7 HLA v2.x Language Reference Manual

7.1 HLA Language Elements
Starting with this chapter we begin discussing the HLA source language. HLA source files

must contain only seven-bit ASCII characters. These are text files with each source line record
containing a carriage return/line feed (Windows) or a just a line feed (*NIX) termination sequence
(HLA is actually happy with either sequence, so text files are portable between OSes without
change). White space consists of spaces, tabs, and newline sequences. Generally, HLA does not
appreciate other control characters in the file and may generate an error if they appear in the source
file.

7.2 Comments
HLA uses "//" to lead off single line comments. It uses "/*" to begin an indefinite length

comment and it uses "*/" to end an indefinite length comment. C/C++, Java, and Delphi users will
be quite comfortable with this notation.

7.3 Special Symbols
The following characters are HLA lexical elements and have special meaning to HLA:

* / + - () [] { } < > : ; , . = ? & | ^ ! @ !

The following character pairs are HLA lexical elements and also have special meaning to
HLA:
&& || <= >= <> != == := .. << >> ## #()# #{ }#

7.4 Reserved Words
Here are the HLA reserved words. You may not use any of these reserved words as HLA

identifiers except as noted below (with respect to the #id and #rw operators). HLA reserved words
are case insensitive. That is, "MOV" and "mov" (as well as any permutation with respect to case)
both represent the HLA "mov" reserved word.

#append #asm #closeread #closewrite
#else #elseif #emit #endasm
#endfor #endif #endmacro #endmatch
#endregex #endstring #endtext #endwhile
#error #for #id #if
#include #includeonce #keyword #linker
#macro #match #openread #openwrite
#print #regex #return #rw
#string #system #terminator #text
#while #write @a @abs
@abstract @ae @align @alignstack
@arb @arity @at @b
@baseptype @basereg @basetype @be
@boolean @bound @byte @c
Public Domain Created by Randy Hyde Page 93

HLA Reference Manual 5/24/10 Chapter 7
@cdecl @ceil @char @class
@cos @cset @curdir @curlex
@curobject @curoffset @date @debughla
@defined @delete @dim @display
@dword @e @elements @elementsize
@enter @enumsize @env @eos
@eval @exactlynchar @exactlyncset @exactlynichar
@exactlyntomchar @exactlyntomcset @exactlyntomichar @exceptions
@exp @external @extract @fast
@filename @firstnchar @firstncset @firstnichar
@floor @forward @fpureg @frame
@g @ge @global @here
@index @insert @int128 @int16
@int32 @int64 @int8 @into
@isalpha @isalphanum @isclass @isconst
@isdigit @IsExternal @isfreg @islower
@ismem @isreg @isreg16 @isreg32
@isreg8 @isspace @istype @isupper

@isxdigit @l
@label
@lastobject @le

@leave @length @lex @linenumber
@localoffset @localsyms @log @log10
@lowercase @lword @match @match2
@matchchar @matchcset @matchichar @matchid
@matchintconst @matchistr @matchiword @matchnumericconst
@matchrealconst @matchstr @matchstrconst @matchtoistr
@matchtostr @matchword @max @min
@mmxreg @na @nae @name
@nb @nbe @nc @ne
@ng @nge @nl @nle
@no @noalignstack @nodisplay @noenter
@noframe @noleave @norlesschar @norlesscset
@norlessichar @normorechar @normorecset @normoreichar
@nostackalign @nostorage @np @ns
@ntomchar @ntomcset @ntomichar @nz
@o @odd @offset @onechar
@onecset @oneichar @oneormorechar @oneormorecset
@oneormoreichar @oneormorews @optstrings @p
@parmoffset @parms @pascal @pclass
@pe @peekchar @peekcset @peekichar
@peekistr @peekstr @peekws @po
@pointer @pos @ptype @qword
@random @randomize @read @real128
@real32 @real64 @real80 @reg
@reg16 @reg32 @reg8 @regex
@returns @rindex @s @section
@sin @size @sort @sqrt
@stackalign @staticname @stdcall @strbrk
@string @strset @strspan @substr
Public Domain Created by Randy Hyde Page 94

HLA Reference Manual 5/24/10 Chapter 7
@system @tab @tan @tbyte
@text @thread @time @tokenize
@tostring @trace @trim @type
@typename @uns128 @uns16 @uns32
@uns64 @uns8 @uppercase @uptochar
@uptocset @uptoichar @uptoistr @uptostr
@use @volatile @wchar @word
@ws @wsoreos @wstheneos @wstring
@xmmreg @z @zeroormorechar @zeroormorecset
@zeroormoreichar @zeroormorews @zerooronechar @zerooronecset
@zerooroneichar @zstring aaa aad
aam aas abstract adc
add addpd addps addsd
addss addsubpd addsubps ah
al align and andnpd
andnps andpd andps anyexception
arpl ax begin bh
bl boolean bound bp
break breakif bsf bsr
bswap bt btc btr
bts bx byte call
case cbw cdq ch
char cl class clc
cld clflush cli clts
cmc cmova cmovae cmovb
cmovbe cmovc cmove cmovg
cmovge cmovl cmovle cmovna
cmovnae cmovnb cmovnbe cmovnc
cmovne cmovng cmovnge cmovnl
cmovnle cmovno cmovnp cmovns
cmovnz cmovo cmovp cmovpe
cmovpo cmovs cmovz cmp
cmpeqpd cmpeqps cmpeqsd cmpeqss
cmplepd cmpleps cmplesd cmpless
cmpltpd cmpltps cmpltsd cmpltss
cmpneqpd cmpneqps cmpneqsd cmpneqss
cmpnlepd cmpnleps cmpnlesd cmpnless
cmpnltpd cmpnltps cmpnltsd cmpnltss
cmpordpd cmpordps cmpordsd cmpordss
cmppd cmpps cmpsb cmpsd
cmpss cmpsw cmpunordpd cmpunordps
cmpunordsd cmpunordss cmpxchg cmpxchg8b
comisd comiss const continue
continueif cpuid cr0 cr1
cr2 cr3 cr4 cr5
cr6 cr7 cseg cset
cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi
cvtpd2ps cvtpi2pd cvtpi2ps cvtps2dq
cvtps2pd cvtps2pi cvtsd2si cvtsd2ss
Public Domain Created by Randy Hyde Page 95

HLA Reference Manual 5/24/10 Chapter 7
cvtsi2sd cvtsi2ss cvtss2sd cvtss2si
cvttpd2dq cvttpd2pi cvttps2dq cvttps2pi
cvttsd2si cvttss2si cwd cwde
cx daa das dec
default dh di div
divpd divps divsd divss
dl do downto dr0
dr1 dr2 dr3 dr4
dr5 dr6 dr7 dseg
dup dword dx dx:ax
eax ebp ebx ecx
edi edx edx:eax else
elseif emms end endclass

endconst endfor endif
endlabel
endproc

endreadonly endrecord endstatic endstorage
endswitch endtry endtype endunion
endval endvar endwhile enter
enum eseg esi esp
exception exit exitif external
f2xm1 fabs fadd faddp
fbld fbstp fchs fclex
fcmova fcmovae fcmovb fcmovbe
fcmove fcmovna fcmovnae fcmovnb
fcmovnbe fcmovne fcmovnu fcmovu
fcom fcomi fcomip fcomp
fcompp fcos fdecstp fdiv
fdivp fdivr fdivrp felse
ffree fiadd ficom ficomp
fidiv fidivr fild fimul
fincstp finit fist fistp
fisttp fisub fisubr fld
fld1 fldcw fldenv fldl2e
fldl2t fldlg2 fldln2 fldpi
fldz fmul fmulp fnclex
fninit fnop fnsave fnstcw
fnstenv fnstsw for foreach
forever forward fpatan fprem
fprem1 fptan frndint frstor
fsave fscale fseg fsin
fsincos fsqrt fst fstcw
fstenv fstp fstsw fsub
fsubp fsubr fsubrp ftst
fucom fucomi fucomip fucomp
fucompp fwait fxam fxch
fxrstor fxsave fxtract fyl2x
fyl2xp1 gseg haddpd haddps
hlt hsubpd hsubps idiv
if imod imul in
Public Domain Created by Randy Hyde Page 96

HLA Reference Manual 5/24/10 Chapter 7
inc inherits insb insd
insw int int128 int16
int32 int64 int8 intmul
into invd invlpg iret
iretd iterator ja jae
jb jbe jc jcxz
je jecxz jf jg
jge jl jle jmp
jna jnae jnb jnbe
jnc jne jng jnge
jnl jnle jno jnp
jns jnz jo jp
jpe jpo js jt
jz label lahf lar
lazy lddqu ldmxcsr lds
lea leave les lfence
lfs lgdt lgs lidt
lldt lmsw lock.adc lock.add
lock.and lock.btc lock.btr lock.bts
lock.cmpxchg lock.dec lock.inc lock.neg
lock.not lock.or lock.sbb lock.sub
lock.xadd lock.xchg lock.xor lodsb
lodsd lodsw loop loope
loopne loopnz loopz lsl
lss ltreg lword maskmovdqu
maskmovq maxpd maxps maxsd
maxss method mfence minpd
minps minsd minss mm0
mm1 mm2 mm3 mm4
mm5 mm6 mm7 mod
monitor mov movapd movaps
movd movddup movdq2q movdqa
movdqu movhlps movhpd movhps
movlhps movlpd movlps movmskpd
movmskps movntdq movnti movntpd
movntps movntq movq movq2dq
movsb movsd movshdup movsldup
movss movsw movsx movupd
movups movzx mul mulpd
mulps mulsd mulss mwait
name namespace neg nop
not null or orpd
orps out outsb outsd

outsw
overloads
override overrides packssdw

packsswb packuswb paddb paddd
paddq paddsb paddsw paddusb
paddusw paddw pand pandn
pause pavgb pavgw pcmpeqb
Public Domain Created by Randy Hyde Page 97

HLA Reference Manual 5/24/10 Chapter 7
pcmpeqd pcmpeqw pcmpgtb pcmpgtd
pcmpgtw pextrw pinsrw pmaddwd
pmaxsw pmaxub pminsw pminub
pmovmskb pmulhuw pmulhw pmullw
pmuludq pointer pop popa
popad popf popfd por
prefetchnta prefetcht0 prefetcht1 prefetcht2
proc procedure program psadbw
pshufd pshufhw pshuflw pshufw
pslld pslldq psllq psllw
psrad psraw psrld psrldq
psrlq psrlw psubb psubd
psubq psubsb psubsw psubusb
psubusw psubw punpckhbw punpckhdq
punpckhqdq punpckhwd punpcklbw punpckldq
punpcklqdq punpcklwd push pusha
pushad pushd pushf pushfd
pushw pxor qword raise
rcl rcpps rcpss rcr
rdmsr rdpmc rdtsc readonly
real128 real32 real64 real80
record regex rep.insb rep.insd
rep.insw rep.movsb rep.movsd rep.movsw
rep.outsb rep.outsd rep.outsw rep.stosb
rep.stosd rep.stosw repe.cmpsb repe.cmpsd
repe.cmpsw repe.scasb repe.scasd repe.scasw
repeat repne.cmpsb repne.cmpsd repne.cmpsw
repne.scasb repne.scasd repne.scasw repnz.cmpsb
repnz.cmpsd repnz.cmpsw repnz.scasb repnz.scasd
repnz.scasw repz.cmpsb repz.cmpsd repz.cmpsw
repz.scasb repz.scasd repz.scasw result
ret returns rol ror
rsm rsqrtps rsqrtss sahf
sal sar sbb scasb
scasd scasw segment seta
setae setb setbe setc
sete setg setge setl
setle setna setnae setnb
setnbe setnc setne setng
setnge setnl setnle setno
setnp setns setnz seto
setp setpe setpo sets
setz sfence sgdt shl
shld shr shrd shufpd
shufps si sidt sldt
smsw sp sqrtpd sqrtps
sqrtsd sqrtss sseg st0
st1 st2 st3 st4
st5 st6 st7 static
Public Domain Created by Randy Hyde Page 98

HLA Reference Manual 5/24/10 Chapter 7
Note that @debughla is also a reserved compiler symbol. However, this is intended for
internal (HLA) debugging purposes only. When the compiler encounters this symbol, it
immediately stops the compiler with an assertion failure. Obviously, you should never put this
statement in your source code unless you’re debugging HLA and you want to stop the compiler
immediately after the compilation of some statement.

Because the set of HLA reserved words is changing frequently, a special feature was added to
HLA to allow a programmer to "disable" HLA reserved words. This may allow an older program
that uses new HLA reserved words as identifiers to continue working with only minor
modifications to the HLA source code. The ability to disable certain HLA reserved words also
allows you to create macros that override certain machine instructions.

All HLA reserved words take two forms: the standard, mutable, form (appearing in the table
above) and a special immutable form that consists of a tilde character (’~’) followed by the
reserved word. For example, ’mov’ is the mutable form of the move instruction while ’~mov’ is the
immutable form. By default, the immutable and mutable forms are equivalent when you begin an
assembly. However, you can use the #id compile-time statement to convert the mutable form to an
identifier and you can use the #rw compile-time statement to turn it back into a reserved word.
Regardless of the state of the mutable form, the immutable form always behaves like the reserved
word as far as HLA is concerned. Here’s an example of the #id and #rw statements:

#id(mov) //From this point forward, mov is an identifier, not a
reserved word
mov:

~mov(i, eax); // Must use ~mov while mov is a reserved word!
cmp(eax, 0);
jne mov;

#rw(mov) // Okay, now mov is a reserved word again.
mov(0, eax);

Note that use can use the #id facility to disable certain instructions. For example, by default
HLA handles almost all (32-bit flat model) instructions up through the latest Intel processors. If you
want to write code for an earlier processor, you may want to disable instructions available only on
later processors to help avoid their use. You can do this by placing the offending instructions in #id
statements.

stc std sti stmxcsr
storage stosb stosd stosw
streg string sub subpd
subps subsd subss switch
sysenter sysexit tbyte test
text then this thunk
to try type ucomisd
ucomiss ud2 union unit
unpckhpd unpckhps unpcklpd unpcklps
unprotected uns128 uns16 uns32
uns64 uns8 until val
valres var verr verw
vmt wait wbinvd wchar
welse while word wrmsr
wstring xadd xchg xlat
xmm0 xmm1 xmm2 xmm3
xmm4 xmm5 xmm6 xmm7
xor xorpd xorps zstring
Public Domain Created by Randy Hyde Page 99

HLA Reference Manual 5/24/10 Chapter 7
The #rw statement will not turn an arbitrary identifier into a reserved word. It will only revert
a reserved word that was previously converted to an identifier back into a reserved word.

One use of the #id statement is to change the syntax of existing HLA instructions. For
example, some x86 programmers are completely incapable of handling HLA's (and Gas') "source,
dest" syntax and insist on using the original Intel "dest, source" syntax. This isn't a good reason for
giving up on HLA because you can easily override HLA's syntax by using the #id statement and a
set of macros. Consider the following example for the mov instruction:

#id(mov)
#macro mov(dest, source);

~mov(source, dest)
#endmacro

By creating an include file (let's calling "intel.hhf") with all the appropriate macros and #id
statements, you can easily change HLA's syntax to take on a more "Intel" feel.

7.5 External Symbols and Assembler Reserved Words
HLA v2.x, in addition to directly producing object code, offers the option of producing an

assembly language file during compilation and invoking an assembler such as MASM, FASM,
NASM, or Gas to complete the compilation process. HLA automatically translates normal
identifiers you declare in your program to benign identifiers in the assembly language program (in
HLA v2.2 these identifiers typically took the form original_name__hla_xxxx where original_name
is the original symbol and xxxx is a unique four-digit hexadecimal value). However, HLA does not
translate external symbols, but preserves these names in the assembly language file it produces.
Therefore, you must take care not to use external names that conflict with the underlying
assembler’s set of reserved words or that assembler will generate an error when it attempts to
process HLA’s output. Obviously, this is not an issue when directly producing object code with
HLA (rather than producing an assembly language source file to be assembled by some other
assembler).

For a list of assembler reserved words, please see the documentation for the back-end
assembler you are using.

7.6 HLA Identifiers
HLA identifiers must begin with an alphabetic character or an underscore. After the first

character, the identifier may contain alphanumeric and underscore symbols. There is no technical
limit on identifier length in HLA, but you should avoid external symbols greater than about 32
characters in length since the assembler and linkers that process HLA identifiers may not be able to
handle such symbols. Also note that if you are generating assembly language source output files,
HLA may add some additional characters to the identifiers you use (typically something like
"__HLA_xxxx" where "xxxx" is a 4-digit hexadecimal number) in order to prevent conflicts with
the assembler's own reserved word set. As such, you may want to limit yourself to about 20-22
characters if you're using a back-end assembler that has limited identifier lengths.

HLA identifiers are always case neutral. This means that identifiers are case sensitive insofar
as you must always spell an identifier exactly the same way (with respect to alphabetic case).
However, you are not allowed to declare two identifiers whose only difference is alphabetic case.

Although technically legal in your program, do not use identifiers that begin and end with a
single underscore. HLA reserves such identifiers for use by the compiler and the HLA standard
library. If you declare such identifiers in your program, the possibility exists that you may interfere
with HLA’s or the HLA Standard Library’s use of such a symbol.

By convention, HLA programmers use symbols beginning with two underscores to represent
private fields in a class. Therefore, you should avoid such identifiers except when defining such
private fields in your own classes.

7.7 External Identifiers
HLA lets you explicitly provide a string for external identifiers. External identifiers are not

limited to the format for HLA identifiers. HLA allows any string constant to be used for an external
Public Domain Created by Randy Hyde Page 100

HLA Reference Manual 5/24/10 Chapter 7
identifier. If you're using a back-end assembler, it is your responsibility to use only those characters
that are legal in that assembler. Note that this feature lets you use symbols that are not legal in HLA
but are legal in external code (e.g., Win32 APIs use the ’@’ character in identifiers and some non-
HLA code may use HLA reserved words as identifiers). See the discussion of the external option
in the chapters on HLA Program Structure and HLA Procedures for more details.

7.8 HLA Literal Constants
HLA supports literal numeric, string, character, character set, Boolean, array, record, and

union constants. For more details on these HLA language elements, please see the chapters on HLA
Constants and Constant Expressions and HLA Data Types.
Public Domain Created by Randy Hyde Page 101

HLA Reference Manual 5/24/10 Chapter 8
8 HLA Data Types

8.1 Data Types in HLA
Unlike traditional x86 assemblers that tend to work only with bytes, words, double-words,

quad-words, and long- (oct-) words, HLA provides a rich set of basic primitive types. This chapter
discusses all the built-in and user-definable types that HLA supports.

8.2 Native (Primitive) Data Types in HLA
HLA provides the following basic primitive types:

 boolean One byte; zero represents false, one represents true (any non-zero value also
represents true).

 Enum One, two, or four bytes (program selectable, default is one byte); user defined
IDs with unique values.

 Uns8 Unsigned values in the range 0..255.

 Uns16 Unsigned integer values in the range 0..65535.

 Uns32 Unsigned integer values in the range 0..4,204,967,295.

 Uns64 Unsigned 64-bit integer.

 Uns128 Unsigned 128-bit integer.

 Byte Generic eight-bit value.

 Word Generic 16-bit value.

 DWord Generic 32-bit value.

 QWord Generic 64-bit value.

 TByte Generic 80-bit value.

 LWord Generic 128-bit value.

 Int8 Signed integer values in the range -128..+127.

 Int16 Signed integer values in the range -32768..+32767.

 Int32 Signed integer values in the range -2,147,483,648..+2,147,483,647.

 Int64 Signed 64-bit integer values.

 Int128 Signed 128-bit integer values.

 Char Character values.

 WChar Unicode character values.

 Real32 32-bit floating-point values.

 Real64 64-bit floating-point values.

 Real80 80-bit floating-point values.

 Real128 128-bit floating-point values (for SSE/2 instructions).

 String Dynamic length string constants. (Run-time implementation: four-byte pointer.)

ZString Zero-terminated dynamic length strings (run-time implementation: four-byte
pointer).

 Unicode Unicode strings.

 CSet A set of up to 128 different ASCII characters (16-byte bitmap).
Public Domain Created by Randy Hyde Page 102

HLA Reference Manual 5/24/10 Chapter 8
 Text Similar to string, but text constants expand in-place (like #define in C/C++).

 Thunk A set of machine instructions to execute.

Often, it is convenient to discuss the types above in various groups. The HLA language
reference manual will often use the following terms:

 Ordinal: boolean, enum, uns8, uns16, uns32, byte, word, dword, int8, int16, int32, char.

 Unsigned: uns8, uns16, uns32, byte, word, dword.

 Signed: int8, int16, int32, byte, word, dword.

 Number: uns8, uns16, uns32, int8, int16, int32, byte, word, dword

 Numeric: uns8, uns16, uns32, int8, int16, int32, byte, word, dword, real32, real64, real80

8.2.1 Enumerated Data Types
HLA provides the ability to associate a list of identifiers with a user-defined type. Such types

are known as enumerated data types (because HLA enumerates, or numbers, each of the identifiers
in the list to give them a unique value). The syntax for an enumerated type declaration (in an HLA
type section, see the description a little later) takes the following form:

typename : enum{ list_of_identifiers };

Here is a typical example:

type
color_t :enum{ red, green, blue, magenta, yellow, cyan, black, white };

Internally, HLA treats enumerated types as though they were unsigned integer values (though
enum types are not directly compatible with the unsigned types). HLA associates the value zero
with the first identifier in the enum list and then attaches sequentially increasing values to the
following identifiers in the list. For example, HLA will associate the following values with the
color_t symbolic constants:

red 0
green 1
blue 2
magenta3
yellow 4
cyan 5
black 6
white 7

Because each enumerated constant in a given enum list is unique, you may compare these
values, use them in computations, etc. Also note that, because of the way HLA assigns internal
values to these constant names, you may compare objects in an enumerated list for less than and
greater than in addition to equal or not equal.

Note that HLA uses zero as the internal representation for the first symbol of every enum list.
HLA only guarantees that the values it associates with enum types are unique for a single type; it
does not make this guarantee across different enumerated types (in fact, you’re guaranteed that
different enum types do not use unique values for their symbol sets). In the following example,
HLA uses the value zero for both the internal representation of const0 and c0. Likewise, HLA
uses the value one for both const1 and c1. And so on...
type

enumType1 :enum{ const0, const1, const2 };
enumType2 :enum(c0, c1, c2 };

Note that the enumerated constants you specify are not "private" to that particular type. That is,
the constant names you supply in an enumerated data type list must be unique within the current
scope (see the definition of identifier scope elsewhere in the HLA documentation). Therefore, the
following is not legal:
Public Domain Created by Randy Hyde Page 103

HLA Reference Manual 5/24/10 Chapter 8
type
enumType1 :enum{ et1, et2, et3, et4 };
enumType2 :enum{ et2, et2a, et2b, et2c }; //et2 is a duplicate symbol!

The problem here is that both type lists attempt to define the same symbol: et2. HLA reports an
error when you attempt this.

One way to view the enumerated constant list is to think of it as a list of constants in an HLA
const section (see the description of declaration sections a little later in this document), e.g.,
const

red : color_t := 0;
green : color_t := 1;
blue : color_t := 2;
magenta: color_t := 3;
yellow : color_t := 4;
cyan : color_t := 5;
black : color_t := 6;
white : color_t := 7;

By default, HLA uses 8-bit values to represent enumerated data types. This means that you can
represent up to 256 different symbols using an enumerated data type. This should prove sufficient
for most applications. HLA provides a special "compile-time variable" that lets you change the size
of an enumerated type from one to two or four bytes. All you have to do is assign the value two or
four to this variable and HLA will automatically resize the storage for enumerated types to handle
longer lists of objects. Example:
?@enumSize := 4;// Use dword size for enum types

type
enumDword:enum{ d0, d1, d2, d3};

var
ed :enumDword;// Reserves four bytes of storage

8.2.2 HLA Type Compatibility
HLA is unusual among assembly language insofar as it does some serious type checking on its

operands. While the type checking isn’t quite as "strong" as some high-level languages, HLA
clearly does a lot more type checking than other assemblers, even those that purport to do type
checking on operands (e.g., MASM). The use of strong type checking can help you locate logical
errors in your code that would otherwise go unnoticed (except via a laborious and time consuming
testing/debug session).

The downside to strong type checking is that experienced assembly programmers may become
somewhat annoyed with HLA’s reports that they are doing something wrong when, in fact, the
programmer knows exactly what they are doing. There are two solutions to this problem: use type
coercion (described a little bit later) or use the "untyped" types that reduce type checking to simply
ensuring that the sizes of the operands match. However, before discussing how to override HLA’s
type checking system, it’s probably a good idea to first describe how HLA uses data types.

Fundamentally, HLA divides the data types into classes based on the size of their underlying
representation. Unless you explicitly override a type with a type coercion operation, attempting to
mix object sizes in a memory or register operand will produce an error (in constant expressions,
HLA is a bit more forgiving; it will automatically promote between certain types and adjust the
type of the result accordingly). With most of HLA’s data types, it’s obvious what the size of the
underlying representation is, because most HLA type names incorporate the size (in bits) in the
type’s name. For example, the uns16 data type is a 16-bit (two-byte) type. Nevertheless, this rule
isn’t true for all data types, so it’s a good idea to begin this discussion by looking at the underlying
sizes of each of the HLA types.
8 bits: boolean, byte, char, enum, int8, uns8

16 bits: int16, uns16, wchar, word
Public Domain Created by Randy Hyde Page 104

HLA Reference Manual 5/24/10 Chapter 8
32 bits: dword, int32, pointer types, real32, string, zstring, unicode, uns32

64 bits: int64, qword, real64, uns64

80 bits: real80, tbyte

128 bits: cset, int128, lword, uns128, real128

The byte, word, dword, qword, tbyte, and lword types are somewhat special. These are
known as untyped data types. They are directly compatible with any scalar, ordinal, data type that is
the same size as the type in question. For example, a byte object is directly compatible with any
object of type boolean, byte, char, enum (assuming @enumSize is 1), int8, or
uns8. No special coercion is necessary when assigning a byte value to an object that has one of
these other types; likewise, no special coercion operation is necessary when assigning a value of
one of these other types to a byte object.

Note that cset, real32, real64, real80, and real128 objects are not ordinal
types. Therefore, you cannot directly mix these types with lword, dword, qword, tbyte,
or lword objects without an explicit type coercion operation. Also, keep in mind that composite
data types (see the next section) are not directly compatible with bytes, words, dwords, qwords,
tbytes, and lwords, even if the composite data type has the same number of bytes (the only
exception is the pointer data type, which is compatible with the dword type).

8.3 Composite Data Types
In addition to the primitive types above, HLA supports pointers, arrays, records (structures),

unions, and classes of the primitive types (except for text objects).

8.4 Array Data Types
HLA allows you to create an array data type by specifying the number of array elements after a

type name. Consider the following HLA type declaration that defines intArray to be an array of int32
objects:

type intArray : int32[16];

The "[16]" component tells HLA that this type has 16 four-byte integers. HLA arrays use a
zero-based index, so the first element is always element zero. The index of the last element, in this
example, is 15 (total of 16 elements with indices 0..15).

HLA also supports multidimensional arrays. You can specify multidimensional arrays by
providing a list of indices inside the square brackets, e.g.,

type intArray4x4 : int32[4, 4];
type intArray2x2x4 : int32[2,2,4];

The mechanism for accessing array elements differs depending upon whether you are
accessing compile-time array constants or run-time array variables. A complete discussion of this
will appear in later sections.

8.5 Union Data Types
HLA implements the discriminate union type using the union..endunion reserved words. The

following HLA type declaration demonstrates a union declaration:

type
allInts:

union
i8: int8;
i16: int16;
i32: int32;

endunion;
Public Domain Created by Randy Hyde Page 105

HLA Reference Manual 5/24/10 Chapter 8
All fields in a union have the same starting address in memory. The size of a union object is the
size of the largest field in the union. The fields of a union may have any type that is legal in a
variable declaration section (see the discussion of the var section in the chapter on HLA Program
Structure for more details).

Given a union object, say i of type allInts, you access the fields of the union using the familiar
dot-notation. The following 80x86 mov instructions demonstrate how to access each of the fields of
the i variable:

mov(i.i8, al);
mov(i.i16, ax);
mov(i.i32, eax);

Unions also support a special field type known as an anonymous record (see the next section
for a description of records). The syntax for an anonymous record in a union is the following:
type

unionWrecord:
union

u1Field: byte;
u2Field: word;
u3Field: dword;
record

u4Field: byte[2];
u5Field: word[3];

endrecord;
u6Field: byte;

endunion;

Fields appearing within the anonymous record do not necessarily start at offset zero in the data
structure. In the example above, u4Field starts at offset zero while u5Field immediately follows it
two bytes later. The fields in the union outside the anonymous record all start at offset zero. If the
size of the anonymous record is larger than any other field in the union, then the record’s size
determines the size of the union. This is true for the example above, so the union’s size is 16 bytes
since the anonymous record consumes 16 bytes.

8.6 Record Data Type1s
HLA’s records allow programmers to create data types whose fields can be different types.

The following HLA type declaration defines a simple record with four fields:

type
Planet:

record

x: int32;
y: int32;
z: int32;
density: real64;

endrecord;

Objects of type Planet will consume 20 bytes of storage at run-time.

1. For C/C++ programmers: an HLA record is similar to a C struct. In language design terminology, a record is
often referred to as a "cartesian product."
Public Domain Created by Randy Hyde Page 106

HLA Reference Manual 5/24/10 Chapter 8
The fields of a record may be of any legal HLA data type including other composite data types.
Like unions, anything that is legal in a var section is a legal field of a record. As for unions, you
use the dot-notation to access fields of a record object.

In addition to the var-like declarations, you may also declare anonymous unions within a
record. An anonymous union is a union declaration without a fieldname associated with the union,
e.g.,

type
DemoAU:

record
x:real32;
union

u1:int32;
r1:real32;

endunion;
y:real32;

endrecord;

In this example, x, u1, r1, and y are all fields of DemoAU. To access the fields of a variable D
of type DemoAU, you would use the following names: D.x, D.u1, D.r1, and D.y. Note that D.u1 and
D.r1 share the same memory locations at run-time, while D.x and D.y have unique addresses
associated with them.

Record types may inherit fields from other record types. Consider the following two HLA type
declarations:

type
Pt2D:

record

x: int32;
y: int32;

endrecord;

Pt3D:

record inherits(Pt2D)

z: int32;

endrecord;

In this example, Pt3D inherits all the fields from the Pt2D type. The inherits keyword tells
HLA to copy all the fields from the specified record (Pt2D in this example) to the beginning of the
current record declaration (Pt3D in this example). Therefore, the declaration of Pt3D above is
equivalent to:

Pt3D:
record

x: int32;
y: int32;
z: int32;

endrecord;
Public Domain Created by Randy Hyde Page 107

HLA Reference Manual 5/24/10 Chapter 8
In some special situations, you may want to override a field from a previous field declaration.
For example, consider the following record declarations:

BaseRecord:
record

a: uns32;
b: uns32;

endrecord;

DerivedRecord:
record inherits(BaseRecord)

b: boolean; // New definition for b!
c: char;

endrecord;

Normally, HLA will report a "duplicate" symbol error when attempting to compile the
declaration for DerivedRecord since the b field is already defined via the "inherits(BaseRecord)"
option. However, in certain cases it’s quite possible that the programmer wishes to make the
original field inaccessible in the derived class by using the same name. That is, perhaps the
programmer intends to actually create the following record:

DerivedRecord:
record

a: uns32; // Derived from BaseRecord
b: uns32; // Derived from BaseRecord, but inaccessible here.
b: boolean; // New definition for b!
c: char;

endrecord;

HLA allows a programmer explicitly override the definition of a particular field by using the
overrides keyword before the field they wish to override. While the previous declarations for
DerivedRecord produce errors, the following is acceptable to HLA:

BaseRecord:
record

a: uns32;
b: uns32;

endrecord;

DerivedRecord:
record inherits(BaseRecord)

overrides b: boolean; // New definition for b!
c: char;

endrecord;

Normally, HLA aligns each field on the next available byte offset in a record. If you wish to
align fields within a record on some other boundary, you may use the align directive to achieve
this. Consider the following record declaration as an example:
type

AlignedRecord:
record

b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
Public Domain Created by Randy Hyde Page 108

HLA Reference Manual 5/24/10 Chapter 8
w :word; // Offset 9
f :byte; // Offset 11

endrecord;

Note that field d is aligned at a four-byte offset while w is not aligned. We can correct this problem
by sticking another align directive in this record:

type
AlignedRecord2:

record
b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
align(2);
w :word; // Offset 10
f :byte; // Offset 12

endrecord;

Be aware of the fact that the align directive in a record only aligns fields in memory if the
record object itself is aligned on an appropriate boundary. For example, if an object of type
AlignedRecord2 appears in memory at an odd address, then the d and w fields will also be
misaligned (that is, they will appear at odd addresses in memory). Therefore, you must ensure
appropriate alignment of any record variable whose fields you’re assuming are aligned.

Note that the AlignedRecord2 type consumes 13 bytes. This means that if you create an array
of AlignedRecord2 objects, every other element will be aligned on an odd address and three out of
four elements will not be double-word aligned (so the d field will not be aligned on a four-byte
boundary in memory). If you are expecting fields in a record to be aligned on a certain byte
boundary, then the size of the record must be an even multiple of that alignment factor if you have
arrays of the record. This means that you must pad the record with extra bytes at the end to ensure
proper alignment. For the AlignedRecord2 example, we need to pad the record with three bytes so
that the size is an even multiple of four bytes. This is easily achieved by using an align directive as
the last declaration in the record:
type

AlignedRecord2:
record

b :boolean; // Offset 0
c :char; // Offset 1
align(4);
d :dword; // Offset 4
e :byte; // Offset 8
align(2);
w :word; // Offset 10
f :byte; // Offset 12
align(4) // Ensures we’re padded to a multiple of four

bytes.
endrecord;

Note that you can only use values that are integral powers of two in the align directive and the
value must be 16 or less.

If you want to ensure that all fields are appropriately aligned on some boundary within the
record, but you don’t want to have to manually insert align directives throughout the record, HLA
provides a second alignment option to solve your problem. Consider the following syntax:
type

alignedRecord3 : record[4]
<< Set of fields >>

endrecord;
Public Domain Created by Randy Hyde Page 109

HLA Reference Manual 5/24/10 Chapter 8
The "[4]" immediately following the record reserved word tells HLA to start all fields in the record
at offsets that are multiples of four, regardless of the object’s size (and the size of the objects
preceding the field). HLA allows any integer expression that produces a value that is a power of
two in the range 1..16 inside these parentheses. If you specify the value 1 (which is the default),
then all fields are packed (aligned on a byte boundary). For values greater than 1, HLA will align
each field of the record on the specified boundary. For arrays, HLA will align the field on a
boundary that is a multiple of the array element’s size.

Note that if you set the record alignment using this syntactical form, any align directive you supply
in the record may not produce the desired results. When HLA sees an align directive in a record
that is using field alignment, HLA will first align the current offset to the value specified by align
and then align the next field’s offset to the global record align value.

Nested record declarations may specify a different alignment value than the enclosing record,
e.g.,
type

alignedRecord4 : record[4]
a :byte;
b :byte;
c :record[8]

 d :byte;
 e :byte;

 endrecord;
f :byte;
g :byte;

endrecord;

In this example, HLA aligns fields a, b, f, and g on double-word boundaries, it aligns d and e (within
c) on 8-byte boundaries. Note that the alignment of the fields in the nested record is true only within
that nested record. That is, if c turns out to be aligned on some boundary other than an 8-byte
boundary, then d and e will not actually be on 8-byte boundaries; they will, however be on 8-byte
boundaries relative to the start of c.

In addition to letting you specify a fixed alignment value, HLA also lets you specify a
minimum and maximum alignment value for a record. The syntax for this is the following:
type

recordname : record[maximum : minimum]
<< fields >>

endrecord;

Whenever you specify a maximum and minimum value as above, HLA will align all fields on
a boundary that is at least the minimum alignment value. However, if the object’s size is greater
than the minimum value but less than or equal to the maximum value, then HLA will align that
particular field on a boundary that is a multiple of the object’s size. If the object’s size is greater
than the maximum size, then HLA will align the object on a boundary that is a multiple of the
maximum size. As an example, consider the following record:
type

r: record[4:1];
a :byte; // offset 0
b :word; // offset 2
c :byte; // offset 4
d :dword;[2]// offset 8
e :byte; // offset 16
f :byte; // offset 17
g :qword; // offset 20

endrecord;

Note that HLA aligns g on a double-word boundary (not quad-word, which would be offset 24)
since the maximum alignment size is four. Note that since the minimum size is one, HLA allows
the f field to be aligned on an odd boundary (because it’s a byte).
Public Domain Created by Randy Hyde Page 110

HLA Reference Manual 5/24/10 Chapter 8
If an array, record, or union field appears within a record, then HLA uses the size of an array
element or the largest field of the record or union to determine the alignment size. That is, HLA
will align the field within the outermost record on a boundary that is compatible with the size of the
largest element of the nested array, union, or record.

HLA sophisticated record alignment facilities let you specify record field alignments that
match that used by most major high-level language compilers. This lets you easily access data types
used in those HLLs without resorting to inserting lots of ALIGN directives inside the record.

 When declaring record variables in a var, static, readonly, or storage declaration section, HLA
associates the offset zero with the first field of a record. Each additional field in the record is
assigned an offset corresponding to the sum of the sizes of all the prior fields. So in the following
example, x would have the offset zero, y would have the offset four, and z would have the offset
eight.

Pt3D:
record

x: int32;
y: int32;
z: int32;

endrecord;

If you would like to specify a different starting offset, you can use the following syntax for a
record declaration:

Pt3D:
record := 4;

x: int32;
y: int32;
z: int32;

endrecord;

The constant expression specified after the assignment operator (":=") specifies the starting offset
of the first field in the record. In this example x, y, and z will have the offsets 4, 8, and 12,
respectively.

Warning: setting the starting offset in this manner does not add padding bytes to the record. This
record is still a 12-byte object. If you declare variables using a record declared in this fashion, you
may run into problems because the field offsets do not match the actual offsets in memory. This
option is intended primarily for mapping records to pre-existing data structures in memory. Only
advanced assembly language programmers should use this option.

8.7 Pointer Types
HLA allows you to declare a pointer to some other type using syntax like the following:

pointer to base_type

The following example demonstrates how to create a pointer to a 32-bit integer within the type
declaration section:

type pi32: pointer to int32;

HLA pointers are always 32-bit (near32) pointers.
Public Domain Created by Randy Hyde Page 111

HLA Reference Manual 5/24/10 Chapter 8
HLA v1.x allowed you to define pointers to existing procedures using syntax like the
following:
procedure someProc(parameter_list);
<< procedure options, followed by @external, @forward, or procedure body>>

.

.

.
type

p : pointer to procedure someProc;

However, this pointer syntax has been deprecated as of HLA v2.0 and this syntax will
disappear sometime in HLA v2.x. The modern way to declare pointers that are compatible with a
particular procedure is to use the "new style" procedure declarations in the HLA proc section. This
is done as follows:

type
p : procedure(parameter_list);

.

.

.
proc

someProc:p {optional procedure options};

.

.

.

See the HLA reference manual chapter on HLA Procedures for more details about the proc
section.

Note that HLA provides the reserved word null (or NULL, reserved words are case
insensitive) to represent the nil pointer. HLA replaces NULL with the value zero. The NULL
pointer is compatible with any pointer type (including strings, which are pointers).

8.8 Thunks
A "thunk" is an 8-byte variable that contains a pointer to a piece of code to execute and an

execution environment pointer (i.e., a pointer to an activation record). The code associated with a
thunk is, essentially, a small procedure that uses the activation record of the surrounding code
rather than creating its own activation record. HLA uses thunks to implement the iterator "yield"
statement as well as pass by name and pass by lazy evaluation parameters. In addition to these two
uses of thunks, HLA allows you to declare your own thunk objects and use them for any purpose
you desire. To declare a thunk variable is easy, just use a declaration like the following in a var,
static, readonly, or storage section:

thunkVar: thunk;

This declaration reserves eight bytes of storage. The first double-word holds the address of the
code to execute, the second double-word holds a pointer to the activation record to load into EBP
when the thunk executes.

Of course, like almost any pointer variable, declaring a thunk variable is the easy part; the
hard part is making sure the thunk variable is initialized before attempting to call the thunk. While
you could manually load the address of some code and the frame pointer value into a thunk
variable, HLA provides a better syntax for initializing thunks with small code fragments: the thunk
statement. The thunk statement uses the following syntax:

thunk thunkVar := #{ sequence_of_statements }#;
Public Domain Created by Randy Hyde Page 112

HLA Reference Manual 5/24/10 Chapter 8
Consider the following example:

program ThunkDemo;
#include("stdio.hhf");

procedure proc1;
var

i: int32;
p1Thunk: thunk;

procedure proc2(t:thunk);
var

i:int32;
begin proc2;

mov(25, i);
t();
stdout.put("Inside proc2, i=", i, nl);

end proc2;

begin proc1;

thunk p1Thunk := #{ mov(0, i); }#;

mov(1, i);
proc2(p1Thunk);
stdout.put("i=", i, nl);

end proc1;

begin ThunkDemo;

proc1();

end ThunkDemo;

In this example, proc1 has two local variables, i and p1Thunk. The thunk statement initializes
the p1Thunk variable with the address of some code that moves a zero into the i variable. The thunk
statement also initializes p1Thunk with a pointer to the current activation record (that is, a pointer to
proc1’s activation record). Then proc1 calls proc2 passing p1Thunk as a parameter.

The proc2 routine has its own local variable named i. Of course, this is a different variable from
the i in proc1. Proc2 begins by setting its variable i to the value 25. Then proc2 invokes the thunk
(passed to it as a parameter). This thunk sets the variable i to zero. However, because the thunk uses
the current activation record when the thunk statement was executed, this statement sets proc1’s i
variable to zero rather than proc2’s i variable. This program produces the following output:

Inside proc2, i=25
i=0

Although you probably won’t use thunks that often, they are quite nice for deferred execution.
This is especially useful in AI (Artificial Intelligence) programs.

8.9 Class Types
Classes and object-oriented programming are the subject of a different HLA Reference Manual

Document. See the chapter on HLA Classes for more details.
Public Domain Created by Randy Hyde Page 113

HLA Reference Manual 5/24/10 Chapter 8
8.10 Regular Expression Types
The HLA compile-time language supports a special data type known as a "compiled regular

expression". Please see the section on regular expression macros in the chapter on the HLA
Compile-Time Language for more details on this data type.
Public Domain Created by Randy Hyde Page 114

HLA Reference Manual 5/24/10 Chapter 9
9 HLA Literal Constants and Constant Expressions

9.1 HLA Literal Constants
Literal constants are those language elements that we normally think of as non-symbolic

constant objects. HLA supports a wide variety of literal constants. The following sections describe
those constants.

9.1.1 Numeric Constants
HLA lets you specify several different types of numeric constants.

9.1.1.1 Decimal Constants
The first and last characters of a decimal integer constant must be decimal digits (0..9). Interior

positions may contain decimal digits and underscores. The purpose of the underscore is to provide
a better presentation for large decimal values (i.e., use the underscore in place of a comma in large
values). Example: 1_234_265.

Note: Technically, HLA does not allow negative literal integer constants. However, you can
use the unary "-" operator to negate a value, so you’d never notice this omission (e.g., -123 is legal,
it consists of the unary negation operator followed by a positive decimal literal constant).
Therefore, HLA always returns type unsXX for all literal decimal constants. Also, note that HLA
always uses a minimum size of uns32 for literal decimal constants. If you absolutely, positively,
want a literal constant to be treated as some other type, use one of the compile-time type coercion
functions to change the type (e.g., uns8(1), word(2), or int16(3)). Generally, the type that HLA
uses for the object is irrelevant since HLA will automatically promote a value to a larger or smaller
type as appropriate.

Here are the following ranges for the various HLA unsigned data types:
uns8: 0..255

uns16: 0..65,535

uns32: 0..4,294,967,295

uns64: 0..18,446,744,073,709,551,615

uns128: 0..340,282,366,920,938,463,463,374,607,431,768,211,455

9.1.1.2 Hexadecimal Constants
Hexadecimal literal constants must begin with a dollar sign ("$") followed by a hexadecimal

digit and must end with a hexadecimal digit (0..9, A..F, or a..f). Interior positions may contain
hexadecimal digits or underscores. Hexadecimal constants are easiest to read if each group of four
digits (starting from the least significant digit) is separated from the others by an underscore. E.g.,
$1A_2F34_5438.

If the constant fits into 32 bits or less, HLA always returns the dword type for a hexadecimal
constant. For larger values, HLA will automatically use the qword or lword type, as appropriate. If
you would like the hexadecimal value to have a different type, use one of the HLA compile-time
type coercion functions to change the type (e.g., byte($12) or qword($54)).

Here are the following ranges for the various HLA hexadecimal data types:
uns8: 0..$FF

uns16: 0..$FFFF

uns32: 0..$FFFF_FFFF

uns64: 0..$FFFF_FFFF_FFFF_FFFF

uns128: 0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

9.1.1.3 Binary Constants
Binary literal constants begin with a percent sign ("%") followed by at least one binary digit (0/

1) and they must end with a binary digit. Interior positions may contain binary digits or underscore
Public Domain Created by Randy Hyde Page 115

HLA Reference Manual 5/24/10 Chapter 9
characters. Binary constants are easiest to read if each group of four digits (starting from the least
significant digit) is separated from the others by an underscore. E.g., %10_1111_1010.

Like hexadecimal constants, HLA always associates the type dword with a "raw" binary
constant; it will use the qword or lword type if the value is greater than 32 bits or 64 bits
(respectively). If you want HLA to use a different type, use one of the compile-time type coercion
functions to achieve this.

Obviously, binary constants may have as many binary digits as there are bits in the underlying
type. This document will not attempt to write out the maximum binary literal constant!

9.1.1.4 Numeric Set Constants
HLA provides a special numeric constant form that lets you specify a numeric value by the bit

positions containing ones. This corresponds to a powerset of integer values in the range 0..31.
These constants take the following form:

@{ comma_separated_list_of_digits }

The comma_separate_list_of_digits can be empty (signifying no set bits, i.e., the value zero), a
single digit, or a set of digits separated by commas. Here are some examples:

@{}
@{8}
@{1,2,8,24}

The corresponding numeric constant is given the type dword and is assigned the value that has
ones in all the specified bit positions. For example, "@{8}" is equal to 256 since this value has a
single set bit in bit position eight. Note that "@{0}" equals one, not zero (because the value one has
a single set bit in position zero).

9.1.1.5 Real (Floating-Point) Constants
Floating-point (real) literal constants always begin with a decimal digit (never just a decimal

point). A string of one or more decimal digits may be optionally followed by a decimal point and
zero or more decimal digits (the fractional part). After the optional fractional part, a floating-point
number may be followed by "e" or "E", a sign ("+" or "-"), and a string of one or more decimal
digits (the exponent part). Underscores may appear between two adjacent digits in the floating-
point number; their presence is intended to substitute for commas found in real-world decimal
numbers.

Examples:
1.2
2.345e-2
0.5
1.2e4
2.3e+5
1_234_567.0

Literal real constants are always 80 bits and have the default type real80. If you wish to specify
real32 or real64 literal constants, then use the real32 or real64 compile-time coercion functions to
convert the values, e.g., real32(3.14159). During compile time, it’s rare that you’d want to use one
of the smaller types since they are less accurate at representing floating-point values (although this
might be precisely why you decide to use the smaller real type, so the accuracy matches the
computations you’re doing at run-time).

The range of real32 constants is approximately 10±38 with 6-1/2 digits of precision; the range of

real64 values is approximately 10±308 with approximately 14-1/2 digits of precision, and the range

of real80 constants is approximately 10±4096
 with about 18 digits of precision.

9.1.2 Boolean Constants
Boolean constants consist of the two predefined identifiers true and false. Note that your

program may redefine these identifiers, but doing so is incredibly bad programming style. Since
these are actual identifiers in the symbol table (and not reserved words), you must spell these
identifiers in all lower case or HLA will complain (unlike reserved words that are case insensitive).
Public Domain Created by Randy Hyde Page 116

HLA Reference Manual 5/24/10 Chapter 9
Internally, HLA represents true with one and false with zero. In fact, HLA’s compile-time
boolean operations only look at bit #0 of the boolean value (and always clear the other bits). HLA
compile-time statements that expect a boolean expression do not use zero/not zero like C/C++ and
a few other languages. Such expressions must have a boolean type with the values true/false; you
cannot supply an integer expression and rely on zero/not zero evaluation as in C/C++ or BASIC.

9.1.3 Character Constants
Character literals generally consist of a single (graphic) character surrounded by apostrophes.

To represent the apostrophe character use four apostrophes, e.g., ‘’’’.
Another way to specify a character constant is by typing the "#" symbol followed by a numeric

literal constant (decimal, hexadecimal, or binary). Examples: #13, #$D, #%1101.

9.1.4 Unicode Character Constants
Unicode character constants are 16-bit values. HLA provides limited support for Unicode

literal constants. HLA supports the UTF/7 code point (character set), which is just the standard
seven-bit ASCII character set and nine high-order zero bits. To specify a 16-bit literal Unicode
constant simply prefix a standard ASCII literal constant with a ’u’ or ’U’, e.g.,

u’A’ - UTF/7 character constant for ’A’

Note that UTF/7 constants are simply the ASCII character codes zero extended to 16 bits.

HLA provides a second syntax for Unicode character constants that lets you enter values
whose character codes are outside the range $20..$7E. You can specify a Unicode character
constant by its numeric value using the ’u#nnnn’ constant form. This form lets you specify a 16-bit
value following the ’#’ in either binary, decimal, or hexadecimal form, e.g.,

u#1233

u#$60F

u%100100101001

9.1.5 String Constants
String literal constants consist of a sequence of (graphic) characters surrounded by quotes. To

embed a quote within a string, insert a pair of quotes into the string, e.g., "He said ""This"" to me."
If two string literal constants are adjacent in a source file (with nothing but whitespace between

them), then HLA will concatenate the two strings and present them to the parser as a single string.
Furthermore, if a character constant is adjacent to a string, HLA will concatenate the character and
string to form a single string object. This is useful, for example, when you need to embed control
characters into a string, e.g.,

"This is the first line" #$d #$a "This is the second line" #$d #$a

HLA treats the above as a single string with a Windows newline sequence (CR/LF) at the end of
each of the two lines of text.

9.1.6 Unicode String Constants
HLA lets you specify Unicode string literals by prefixing a standard string constant with a ’u’

or a ’U’. Such string constants use the UTF/7 character set (that is, the standard ASCII character
set) but reserve 16 bits for each character in the string. Note that the high order nine bits of each
character in the string will contain zero.

As this was being written, there is no support for Unicode strings in the HLA Standard Library,
though support for Unicode string functions should appear shortly (note that Windows’
programmers can call the Unicode string functions that are part of the Windows’ API).

9.1.7 Character Set Constants
A character set literal constant consists of several comma delimited character set expressions

within a pair of braces. The character set expressions can either be individual character values or a
pair of character values separated by an ellipse (".."). If an individual character expression appears
Public Domain Created by Randy Hyde Page 117

HLA Reference Manual 5/24/10 Chapter 9
within the character set, then that character is a member of the set; if a pair of character expressions,
separated by an ellipse, appears within a character set literal, then all characters between the first
such expression and the second expression are members of the set. As a convenience, if a string
constant appears between the braces, HLA will take the union of all the characters in that string and
add those characters to the character set.

Examples:
{‘a’,’b’,’c’}// a, b, and c.
{‘a’..’c’} // a, b, and c.
{‘A’..’Z’,’a’..’z’}// Alphabetic characters.
{"cset"} // The character set ‘c’, ‘e’, ‘s’, and ‘t’.
{‘ ‘,#$d,#$a,#$9}// Whitespace (space, return, linefeed, tab).

HLA character sets are currently limited to holding characters from the 128-character ASCII
character set. In the future, HLA may support an xcset type (supporting 256 elements) or even
wcset (wide character sets), but that support does not currently exist.

9.2 Structured Constants
Structured constants are those whose data type is not a scalar. The structured constant types

include array constants, record constants, union constants, and pointer constants.

9.2.1 Array Constants
HLA lets you specify an array literal constant by enclosing a set of values within a pair of

square brackets. Since array elements must be homogenous, all elements in an array literal constant
must be the same type or conformable to the same type. Examples:

[1, 2, 3, 4, 9, 17]
[’a’, ’A’, ’b’, ’B’]
["hello", "world"]

Note that each item in the list of values can actually be a constant expression, not a simple literal
value.

HLA array constants are always one-dimensional. This, however, is not a limitation because if
you attempt to use array constants in a constant expression, the only thing that HLA checks is the
total number of elements. Therefore, an array constant with eight integers can be assigned to any of
the following arrays:

const
a8: int32[8] := [1,2,3,4,5,6,7,8];
a2x4: int32[2,4] := [1,2,3,4,5,6,7,8];
a2x2x2:int32[2,2,2]:= [1,2,3,4,5,6,7,8];

Although HLA doesn’t support the notation of a multi-dimensional array constant, HLA does
allow you to include an array constant as one of the elements in an array constant. If an array
constant appears as a list item within some other array constant, then HLA expands the interior
constant in place, lengthening the list of items in the enclosing list. E.g., the following three array
constants are equivalent:

[[1,2,3,4], [5,6,7,8]]
[[[1,2], [3,4]], [[5,6], [7,8]]]
[1,2,3,4,5,6,7,8]

Although the three array constants are identical, as far as HLA is concerned, you might want to
use these three different forms to suggest the shape of the array in an actual declaration, e.g.,
Public Domain Created by Randy Hyde Page 118

HLA Reference Manual 5/24/10 Chapter 9
const
a8: int32[8] := [1,2,3,4,5,6,7,8];
a2x4: int32[2,4] := [[1,2,3,4], [5,6,7,8]];
a2x2x2:int32[2,2,2]:= [[[1,2], [3,4]], [[5,6], [7,8]]];

Also note that symbol array constants, not just literal array constants, may appear in a literal
array constant. For example, the following literal array constant creates a nine-element array
holding the values one through nine at indexes zero through eight:

const Nine:int32[9]:= [a8, 9];

This assumes, of course, that a8 was previously declared as above. Since HLA "flattens" all
array constants, you could have substituted a2x4 or ax2x2x for a8 in the example above and
obtained identical results.

You may also create an array constant using the HLA dup operator. This operator uses the
following syntax:

expression DUP [expression_to_replicate]
Where expression is an integer expression and expression_to_replicate is some expression,

possibly an array constant. HLA generates an array constant by repeating the values in the
expression_to_replicate the number of times specified by the expression. (Note: this does not create
an array with expression elements unless the expression_to_replicate contains only a single value; it
creates an array whose element count is expression times the number of items in the
expression_to_replicate). Examples:

10 dup [1] -- equivalent to [1,1,1,1,1,1,1,1,1,1]
5 dup [1,2] -- equivalent to [1,2,1,2,1,2,1,2,1,2]

Please note that HLA does not allow class constants, so class objects may not appear in array
constants. In addition, HLA does not allow generic pointer constants; only certain types of pointer
constants are legal. See the discussion of pointer constants for more details.

9.2.2 Record Constants
HLA supports record constants using a syntax very similar to array constants. You enclose a

comma-separated list of values for each field in a pair of square brackets. To differentiate array and
record constants, the name of the record type and a colon must precede the opening square bracket,
e.g.,

type
Planet:

record
x :int32;
y :int32;
z :int32;
density:real64;

endrecord;

const
p :Planet := Planet:[1, 12, 34, 1.96]

HLA associates the items in the list with the fields as they appear in the original record
declaration. In this example, the values 1, 12, 34, and 1.96 are associated with fields x, y, z, and
density, respectively. Of course, the types of the individual constants must match (or be
conformable to) the types of the individual fields.

Note that you may not create a record constant for a particular record type if that record
includes data types that cannot have compile-time constants associated with them. For example, if a
field of a record is a class object, you cannot create a record constant for that type since you cannot
create class constants.
Public Domain Created by Randy Hyde Page 119

HLA Reference Manual 5/24/10 Chapter 9
9.2.3 Union Constants
Union constants allow you to initialize static union data structures in memory as well as

initialize union fields of other data structures (including anonymous union fields in records). There
are some important differences between HLA compile-time union constants and HLA run-time
unions (as well as between the HLA run-time union constants and unions in other languages).
Therefore, it’s a good idea to begin the discussion of HLA’s union constants with a description of
these differences.

There are a couple of different reasons people use unions in a program. The original reason
was to share a sequence of memory locations between various fields whose access is mutually
exclusive. When using a union in this manner, one never reads the data from a field unless they’ve
previous written data to that field and there are no intervening writes to other fields. The HLA
compile-time language fully (and only) supports this use of union objects.

A second reason people use unions (especially in high-level languages) is to provide aliases to
a given memory location; in particular, aliases whose data types are different. In this mode, a
programmer might write a value to one field and then read that data using a different field (in order
to access that data’s bit representation as a different type). HLA does not support this type of access
to union constants. The reason is quite simple: internally, HLA uses a special "variant" data type to
represent all possible constant types. Whenever you create a union constant, HLA lets you provide
a value for a single data field. From that point forward, HLA effectively treats the union constant as
a scalar object whose type is the same as the field you’ve initialized; access to the other fields
through the union constant is no longer possible. Therefore, you cannot use HLA compile-time
constants to do type coercion; nor is there any need to since HLA provides a set of type coercion
operators like @byte, @word, @dword, @int8, etc. As noted above, the main purpose for
providing HLA union constants is to allow you to initialize static union variables; since you can
only store one value into a memory location at a time, union constants only need to be able to
represent a single field of the union at one time. Of course, at run time, you may access any field of
the static union object you’ve created; but at compile-time you may only access the single field
associated with a union constant.

An HLA literal union constant takes the following form:

typename.fieldname:[constant_expression]

The typename component above must be the name of a previously declared HLA union data
type (i.e., a union type you’ve created in the type section). The fieldname component must be the
name of a field within that union type. The constant_expression component must be a constant
value (expression) whose type is the same as, or is automatically coercible to, the type of the
fieldname field. Here is a complete example:

type
u:union

b:byte;
w:word;
d:dword;
q:qword;

endunion;

static
uVar :u := u.w:[$1234];

The declaration for uVar initializes the first two bytes of this object in memory with the value
$1234. Note that uVar is actually eight bytes long; HLA automatically zeros any unused bytes when
initializing a static memory object with a union constant.

Note that you may place a literal union constant in records, arrays, and other composite data
structures. The following is a simple example of a record constant that has a union as one of its
fields:

type
r :record
Public Domain Created by Randy Hyde Page 120

HLA Reference Manual 5/24/10 Chapter 9
b:byte;
uf:u;
d:dword;

endrecord;

static
sr :r := r:[0, u.d:[$1234_5678], 12345];

In this example, HLA initializes the sr variable with the byte value zero, followed by a double-
word containing $1234_5678 and a double-word containing zero (to pad out the remainder of the
union field), followed by a double-word containing 12345.

You can also create records that have anonymous unions in them and then initialize a record
object with a literal constant. Consider the following type declaration with an anonymous union:

type
rau :record

b:byte;
union

c:char;
d:dword;

endunion;
w:word;

endrecord;

Because anonymous unions within a record do not have a type name associated with them, you
cannot use the standard literal union constant syntax to initialize the anonymous union field (that
syntax requires a type name). Instead, HLA offers you two choices when creating a literal record
constant with an anonymous union field. The first alternative is to use the reserved word union in
place of a typename when creating a literal union constant, e.g.,

static
srau :rau := rau:[1, union.d:[$12345], $5678];

The second alternative is a shortcut notation. HLA allows you to simply specify a value that is
compatible with the first field of the anonymous union and HLA will assign that value to the first
field and ignore any other fields in the union, e.g.,

static
srau2 :rau := rau:[1, ’c’, $5678];

This is slightly dangerous since HLA relaxes type checking a bit here, but when creating tables
of record constants, this is very convenient if you generally provide values for only a single field of
the anonymous union; just make sure that the commonly used field appears first and you’re in
business.

Although HLA allows anonymous records within a union, there was no syntactically
acceptable way to differentiate anonymous record fields from other fields in the union; therefore,
HLA does not allow you to create union constants if the union type contains an anonymous record.
The easy workaround is to create a named record field and specify the name of the record field
when creating a union constant, e.g.,

type
r :record

c:char;
d:dword;

endrecord;

u :union
Public Domain Created by Randy Hyde Page 121

HLA Reference Manual 5/24/10 Chapter 9
b:byte;
x:r;
w:word;

endunion;

static
y :u := u.x:[r:[’a’, 5]];

You may declare a union constant and then assign data to the specific fields as you would a
record constant. The following example provides some samples of this:

type
u_t :union

b:byte;
x:r;
w:word;

endunion;

val
u :u_t;

.

.

.
?u.b := 0;

.

.

.
?u.w := $1234;

The two assignments above are roughly equivalent to the following:

?u := u_t.b:[0];

and

?u := u_t.w:[$1234];

However, to use the straight assignment (the former example) you must first declare the value
u as a u_t union.

To access a value of a union constant, you use the familiar "dot notation" from records and
other languages, e.g.,

?x := u.b;
.
.
.

?y := u.w & $FF00;

Note, however, that you may only access the last field of the union into which you’ve stored
some value. If you store data into one field and attempt to read the data from some other field of the
union, HLA will report an error. Remember, you don’t use union constants as a sneaky way to
coerce one value’s type to another (use the coercion functions for that purpose).
Public Domain Created by Randy Hyde Page 122

HLA Reference Manual 5/24/10 Chapter 9
9.2.4 Pointer Constants
HLA allows a very limited form of a pointer constant. If you place an ampersand ("&") in front

of a static object’s name (i.e., the name of a static variable, readonly variable, storage variable,
procedure, or iterator), HLA will compute the run-time offset of that variable. Pointer constants
may not be used in arbitrary constant expressions. You may only use pointer constants in
expressions used to initialize static or readonly variables or as constant expressions in 80x86
instructions. The following example demonstrates how pointer constants can be used:

program pointerConstDemo;

static

t:int32;
pt: pointer to int32 := &t;

begin pointerConstDemo;

mov(&t, eax);

end pointerConstDemo;

Pointer constants also allow a fixed constant offset by appending "[
constant_expression]" to the pointer constant, for example:

program pointerConstDemo;

static

t:int32;
pt: pointer to int32 := &t[2];

begin pointerConstDemo;

mov(&t[-4], eax);

end pointerConstDemo;

These pointer constants are the address of the specified object plus an offset that is the number
of bytes specified by the constant integer expression.

Also note that HLA allows the use of the reserved word NULL anywhere a pointer constant is
legal. HLA substitutes the value zero for NULL. You can also use the HLA compile-time function
@pointer(n) with an integer constant to tell HLA to treat that number as a pointer constant.

Note that you may obtain the address of the current location counter as a pointer constant by
applying the "&" operator to the @here keyword, e.g.,

mov(&@here, eax);

This places the address of the start of the instruction into EAX.

9.2.5 Regular Expression Constants
HLA uses compile-time "regex"-typed variables to hold compiled versions of regular

expression. There is no literal form of a regular expression constant. The only way to generate a
regular expression constant is in a val, const, or "?" declaration by assigning the "value" of a
#regex macro declaration to a symbol, e.g.,
#regex someRegexMacro;
 <<regex macro body>>

#endregex
Public Domain Created by Randy Hyde Page 123

HLA Reference Manual 5/24/10 Chapter 9
const
 compiledRegex :regex := someRegexMacro;

See the section on regular expressions in the chapter on The HLA Compile-Time Language for
more details.

9.3 Constant Expressions in HLA
HLA provides a rich expression evaluator to process assembly-time expressions. HLA

supports the following operators (sorting by decreasing precedence):

! (unary not),- (unary negation)
*, div, mod, /, <<, >>
+, -
=, = =, <>, !=, <=, >=, <, >
&, |, &, in

The following subsections describe each of these operators in detail.

9.3.1 Type Checking and Type Promotion
Many dyadic (two-operand) operators expect the types of their operands to be the same. Prior

to actually performing such an operation, HLA evaluates the types of the operands and attempts to
make them compatible. HLA uses a type algebra to determine if two (different) types are
compatible; if they are not, HLA will report a type mismatch error during assembly. If the types are
compatible, HLA will attempt to make them identical via type promotion. The type algebra
describes how HLA promotes one type to another in order to make the two types compatible.

Usually, you can state a type algebra easily enough by providing "algebraic" type equations.
For example, in high-level languages one could use a statement like "r = r + i" to suggest that the
type of the resulting sum is real when the left operand is real and the right operand is integer
(around the "+" operator). Unfortunately, HLA supports so many different data types and operators
that any attempt to describe the type algebra in this fashion will produce so many equations that it
would be difficult for the reader to absorb it all. Therefore, this document will rely on an informal
English description of the type algebra to explain how HLA operates.

First, if two operands have the same basic type, but are different sizes, HLA promotes the
smaller object to the same size as the larger object. Basic types include the following sets: {uns8,
uns16, uns32, uns64, uns128}, {int8, int16, int32, int64, int128}, {byte, word, dword, qword,
lword}, and {real32, real64, real80}1. So, if any two operands appear from one of these sets, then
both operands are promoted to the larger of the two types.

If an unsigned and a signed operand appear around an operator, HLA produces a signed result.
If the unsigned operand is smaller than the signed operand, HLA assigns both operands the signed
type prior to the operation. If the unsigned and signed operands are the same size (or the unsigned
operand is larger), HLA will first check the H.O. bit of the unsigned operand. If it is set, then HLA
promotes the unsigned operand to the next larger signed type (e.g., uns16 becomes int32). If the
resulting signed type is larger than the other operand’s type, it will be promoted as well. This
scheme fails if you have an uns128 value whose H.O. bit is set. In that case, HLA promotes both
operands to int128 and will produce incorrect results (because the uns128 value just went negative
when it’s really positive). Therefore, you should attempt to limit unsigned values to 127 bits if
you’re going to be mixing signed and unsigned operations in the same expression.

Any mixture of hexadecimal types (byte, word, dword, qword, or lword) and an unsigned
type produces an unsigned type; the size of the resulting unsigned type will be the larger of the two
types. Likewise, any mixture of hexadecimal types and signed integer types will produce a signed
integer whose size is the larger of the two types. This "strengthening" of the type (hexadecimal
types are "weaker" than signed or unsigned types) may seem counter-intuitive to a die-hard

1. As this is being written, HLA doesn’t fully support wchar or wstring types; ultimately the support will appear
and you can add the sets {char, wchar} and {string, wstring} to the list.
Public Domain Created by Randy Hyde Page 124

HLA Reference Manual 5/24/10 Chapter 9
assembly programmer; however, making the result type hexadecimal rather than signed/unsigned
can create problems if the result has the H.O. bit set since information about whether the result is
signed or unsigned would be lost at that point.

Mixing unsigned values and a real32 value will produce a real32 result or an error. HLA
produces an error if the unsigned value requires more than 24 bits to represent exactly (which is the
largest unsigned value you may represent within the real32 format). Note that in addition to
promoting the unsigned type to real32, HLA will also convert the unsigned value to a real32 value.
Promoting the type is not the same thing as converting the value; e.g., promoting uns8 to uns16
simply involves changing the type designation of the uns8 object. HLA doesn’t have to deal with
the actual value because it keeps all values in an internal 128-bit format. However, the binary
representation for unsigned and real32 values is completely different, so HLA must do the value
conversion as well. Note that if you really want to convert a value that requires more than 24 bits of
precision to a real32 object (with truncation), just convert the unsigned operand to real64 or real80
and then convert the larger operand to real32 using the real32(expr) compile-time function. Since
unsigned values are, well, unsigned and real32 objects are signed, the conversion process always
produces a non-negative value.

Mixing signed and real32 values in an expression produces a real32 result. Like unsigned
operands, signed operands are limited to 24 bits of precision or HLA will report an error.
Technically, you should get one more bit of precision from signed operands (since the real32
format maintains its sign apart from the mantissa), but HLA still limits you to 24 bits during this
conversion. If the signed integer value is negative, so will be the real32 result.

If you mix hexadecimal and real32 types, HLA treats the hexadecimal type as an unsigned
value of the same size. See the discussion of unsigned and real32 values earlier for the details.

If you mix an unsigned, signed, or hexadecimal type with a real64 type, the result is an error (if
HLA cannot exactly represent the value in real64 format) or a real64 result. The conversion is very
similar to the real32 conversion discussed above except you get 52 bits of integer precision rather
than only 24 bits.

If you mix an unsigned, signed, or hexadecimal type with a real80 type, the result is an error (if
HLA cannot exactly represent the value in real80 format) or a real80 result. The conversion is very
similar to the real32 conversion discussed above except you get 64 bits of integer precision rather
than only 24 bits. Note that conversion of integer objects 64-bits or less will always proceed
without error; 128-bit values are the only ones that will get you into trouble.

If you mix a pair of different sized real values in the same expression, HLA will promote (and
convert) the smaller real value to the same size as the larger real value.

The only non-numeric promotions that take place in an expression are between characters and
strings. If a character and a string both appear in an expression, HLA will promote the character to
a string of length one.

9.3.2 Type Coercion in HLA
HLA will report a type mismatch error if objects of incompatible types appear within an

expression. Note that you may use the type-coercion compile-time functions to convert between
types that HLA does not automatically support in an expression (see the discussion later in this
document). You can also use the HLA type coercion operator to attach a specific type to a constant
expression. The type coercion operator takes the following form:

(type typename constexpr)

The typename component must be a valid, declared type identifier (including any of the built-
in types or appropriate user-defined types). The constexpr component can be any constant
expression that is reasonably compatible with the specified type. "Reasonably compatible" means
that the types are the same size or one of the primitive types. Examples:

(type int8 ‘a’)
(type real32 constExpression+2)
(type boolean int8Val)

One important thing to remember is that type coercion is a bitwise operation. No conversion is
done when coercing one type to another using this type coercion operation.
Public Domain Created by Randy Hyde Page 125

HLA Reference Manual 5/24/10 Chapter 9
HLA also achieves type coercion using several compile-time functions. See the chapter on The
HLA Compile-Time Language for more details on those type coercion functions.

9.3.3 !expr
 The expression must be either boolean or a number. For boolean values, ! computes the

standard logical not operation. Numerically, HLA inverts only the L.O. bit of boolean values and
clears the remaining bits of the boolean value. Therefore, the result is always zero or one when
NOTting a boolean value (even if the boolean object errantly contained other set bits prior to the "!"
operation). Remember, the "!" operator only looks at the L.O. bit; if the value was originally non-
zero but the L.O. bit was clear1, then "!" produces true. This is not a zero/not-zero operation.

For numbers, ! computes the bitwise not operation on the bits of the number, that is, it inverts
all the bits. The exact semantics of this operation depend upon the original data type of the value
you’re inverting. Therefore, the result of applying the "!" operator to an integer number may not
always be intuitive because HLA always maintains 128-bits of precision, regardless of the
underlying data type. Therefore, a full explanation of this operator’s semantics must be given on a
type-by-type basis.

uns8: Bits 8..127 of an Uns8 object are always zero. Therefore, when you apply the "!"
operator to an Uns8 value, the result can no longer be an Uns8 object since bits
8..127 will now contain ones. Zeroing out the H.O. bits is not wise, because you
could be assigning the result of this expression to a larger data type and you may
very well expect those bits to be set. Therefore, HLA converts the type of
"!u8expr" to type byte (which does allow the H.O. bits to contain non-zero
values). If you assign an object of type byte to a larger object (e.g., type word),
HLA will copy over the H.O. bits from the byte object to the larger object.
Example:

val
u8 :uns8 := 1;
b8 := !u8; // produces $FFF..FFFE but registers as byte $FE.
w16 :word := b8;// produces $FF..FFFE but registers as word $FFFE.

Note: If you really want to chop the value off at eight bits, you can use the
compile-time byte function to achieve this, e.g.,

val
u8 :uns8 := 1;
b8 := byte(!u8); // produces $FE.
w16 :word := b8; // produces $00FE.

uns16: The semantics are similar to uns8 except, of course, applying "!" to an uns16
value produces a word value rather than a byte value. Again, the "!" operator will
set bits 16..127 to one in the result. If you want to ensure that the result contains
no set bits beyond bit #15, use the compile-time word function to strip the value
down to 16 bits (just like the byte function in the example above).

uns32: The semantics are similar to uns8 except, of course, applying "!" to an uns32
value produces a dword value rather than a byte value. Again, the "!" operator
will set bits 32..127 to one in the result. If you want to ensure the result contains
no set bits beyond bit #31 use the compile-time dword function to strip the value
down to 32 bits (just like the byte function in the example above).

uns64: The semantics are similar to uns8 except, of course, applying "!" to an uns64
value produces a qword value rather than a byte value. Again, the "!" operator
will set bits 64..127 to one in the result. If you want to ensure the result contains
no set bits beyond bit #63 use the compile-time qword function to strip the value
down to 64 bits (just like the byte function in the example above).

1. In theory, this should never happen since HLA maintains boolean values as zero or one.
Public Domain Created by Randy Hyde Page 126

HLA Reference Manual 5/24/10 Chapter 9
uns128: Applying the "!" operator to an uns128 object simply inverts all the bits. There are
no funny semantics here. Resulting expression type is set to lword.

int8: Same semantics as byte (see explanation below).

int16: Same semantics as word (see explanation below).

int32: Same semantics as dword (see explanation below).

int64: Same semantics as qword (see explanation below).

int128: Applying the "!" operator to an int128 object simply inverts all the bits. There are
no funny semantics here. Resulting expression type is set to lword.

byte: Bits 8..127 of a byte (int8) value must all be zeros or all ones. The "!" operator
enforces this. If any of the H.O. bits are non-zero, the "!" operator sets them all to
zero in the result; if all of the H.O. bits are zero, the "!" operator sets the H.O. bits
to ones in the result. Of course, this operator inverts bits 0..7 in the original value
and returns this inverted result. Note that the type of the new value is always byte
(even if the original sub-expression was int8).

word: Bits 16..127 of a word (int16) value must all be zeros or all ones. The "!" operator
enforces this. If any of the H.O. bits are non-zero, the "!" operator sets them all to
zero in the result; if all of the H.O. bits are zero, the "!" operator sets the H.O. bits
to ones in the result. Of course, this operator inverts bits 0..15 in the original
value and returns this inverted result. Note that the type of the new value is
always word (even if the original sub-expression was int16).

dword: Bits 32..127 of a dword (int32) value must all be zeros or all ones. The "!"
operator enforces this. If any of the H.O. bits are non-zero, the "!" operator sets
them all to zero in the result; if all of the H.O. bits are zero, the "!" operator sets
the H.O. bits to ones in the result. Of course, this operator inverts bits 0..31 in the
original value and returns this inverted result. Note that the type of the new value
is always dword (even if the original sub-expression was int32).

qword: Bits 64..127 of a qword (int64) value must all be zeros or all ones. The "!"
operator enforces this. If any of the H.O. bits are non-zero, the "!" operator sets
them all to zero in the result; if all of the H.O. bits are zero, the "!" operator sets
the H.O. bits to ones in the result. Of course, this operator inverts bits 0..63 in the
original value and returns this inverted result. Note that the type of the new value
is always qword (even if the original sub-expression was int64).

lword: Applying the "!" operator to an lword object simply inverts all the bits. There are
no funny semantics here..

No other types are legal with the "!" operator. HLA will report a type conflict error if you
attempt to apply this operator to some other type.

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set
the type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that
can hold the result (not including sign extension bits for negative numbers or zero extension bits for
non-negative values).

9.3.4 - expr (unary negation operator)
 The expression must either be a numeric value or a character set. For numeric values, "-"

negates the value. For character sets, the "-" operator computes the complement of the character set
(that is, it returns all the characters not found in the set).

Again, the exact semantics depend upon the type of the expression you’re negating. The
following paragraphs explain exactly what this operator does to its expression. For all integer
values (unsXX, intXX, byte, word, dword, qword, and lword), the negation operator always does
a full 128-bit negation of the supplied operand. The difference between these different data types is
how HLA sets the resulting type of the expressions (as explained in the paragraphs below).

uns8: If the original value was in the range 128..255, then the resulting type is int16,
otherwise the resulting type is int8. Because uns8 values are always positive, the
negated result is always negative, hence the result type is always a signed integer
type.
Public Domain Created by Randy Hyde Page 127

HLA Reference Manual 5/24/10 Chapter 9
uns16: If the original value was in the range 32678..65535, then the resulting type is
int32, otherwise the resulting type is int16. Because uns16 values are always
positive, the negated result is always negative; hence, the result type is always a
signed integer type.

uns32: If the original value was in the range $8000_0000..$FFFF_FFFF, then the
resulting type is int64, otherwise the resulting type is int32. Because uns32 values
are always positive, the negated result is always negative; hence, the result type
is always a signed integer type.

uns64: If the original value was in the range
$8000_0000_0000_0000..$FFFF_FFFF_FFFF_FFFF, then the resulting type is
int128, otherwise the resulting type is int64. Because uns64 values are always
positive, the negated result is always negative; hence, the result type is always a
signed integer type.

uns128: The result type is always set to int128. Note that there is no check for overflow.
Effectively, HLA treats uns128 operands as though they were int128 operands
with respect to negation. So large positive (uns128) values become smaller
unsigned values after the negation. If you need to mix and match 128-bit values
in an expression, you should attempt to limit your unsigned values to 127 bits.

byte, int8,

word, int16,

dword, int32,

qword, int64,

lword,

int128: Negates the expression (full 128 bits) and assigns the original expression type to
the result.

real32: Negates the real32 value and returns a real32 result.

real64: Negates the real64 value and returns a real64 result.

real80: Negates the real80 value and returns a real80 result.

cset: Computes the set complement (returns cset type). The set complement is all the
items that were not previously in the set. Since HLA uses a bitmap representation
for character sets, the complement of a character set is the same thing as inverting
all the bits in the powerset.

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set the
type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that can
hold the result (not including sign extension bits for negative numbers or zero extension bits for
non-negative values).

9.3.5 expr1 * expr2
 For numeric operands, the "*" operator produces their product. For character set operands, the

"*"operator produces the intersection of the two sets. The exact result depends upon the types of the
two operands to the "*" operator. To begin with, HLA attempts to make the types of the two
operands identical if they are not already identical. HLA achieves this via type promotion (see the
discussion earlier).

If the operands are unsigned or hexadecimal operands, HLA will compute their unsigned
product. If the operands are signed, HLA computes their signed product. If the operands are real,
HLA computes their real product. If the operands are integer (signed or unsigned) and less than (or
equal to) 64 bits, HLA computes their exact result. If the operands are greater than 64 bits and their
product would require more than 128 bits, HLA quietly overflows without error. Note that HLA
always performs a 128-bit multiplication, regardless of the operands’ sizes; however, objects that
require 64 bits or less of precision will always produce a product that is 128 bits or less. HLA
automatically extends the size of the result to the next greater size if the product will not fit into an
integer that is the same size as the operands. HLA will actually choose the smallest possible size for
the product (e.g., if the result only requires 16 bits of precision, the resulting type will be uns16,
int16, or word). The resulting type is always unsigned if the operands were unsigned, signed if the
operands were signed, and hexadecimal if the operands were hexadecimal.
Public Domain Created by Randy Hyde Page 128

HLA Reference Manual 5/24/10 Chapter 9
If the operands are real operands, HLA computes their product and always produces a real80
result. If you want to produce a smaller result via the ’*’ operator, use the real32 or real64 compile-
time function to produce the smaller result, e.g., "real32(r32const * r32const2)". Note that all real
arithmetic inside HLA is always performed using the FPU, hence the results are always real80.
Other than trying to simulate the actual products a running program would produce, there is no real
reason to coerce the product to a smaller value.

If the operands are character set operands, the ’*’ operator computes the intersection of the two
sets. Since HLA uses a bitmap representation for character sets, this operator does a bitwise logical
AND of the two 16-byte operands (this operation is roughly equivalent to applying the "&"
operator to two lword operands).

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set
the type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that
can hold the result (not including sign extension bits for negative numbers or zero extension bits for
non-negative values).

9.3.6 expr1 div expr2
 The two expressions must be integer (signed, unsigned, or hexadecimal) numbers. Supplying

any other data type as an operand will produce an error. The div operator divides the first
expression by the second and produces the truncated quotient result.

If the operands are unsigned, HLA will do a full 128/128-bit division and the resulting type
will be unsigned (HLA sets the type to the smallest unsigned type that will completely hold the
result). If the operands are signed, HLA will do a full 128/128 bit signed division and the resulting
type will be the smallest intXX type that can hold the result. If the operands are hexadecimal values,
HLA will do a full 128/128 bit unsigned division and set the resulting type to the smallest hex type
that can hold the result.

Note that the div operator does not allow real operands. Use the "/" operator for real division.
HLA will set the type of the result to the smallest type within its class (signed, unsigned, or

hexadecimal) that can hold the result (not including sign extension bits for negative numbers or
zero extension bits for non-negative values).

9.3.7 expr1 mod expr2
 The two expressions must be integer (signed, unsigned, or hexadecimal) numbers. The mod

operator divides the first expression by the second and produces their remainder (this value is
always positive).

If the operands are unsigned, HLA will do a full 128/128-bit division and return the remainder.
The resulting type will be unsigned (HLA sets the type to the smallest unsigned type that will
completely hold the result).

If the operands are signed, HLA will do a full 128/128 bit signed division and return the
remainder. The resulting type will be the smallest intXX type that can hold the result.

If the operands are hexadecimal values, HLA will do a full 128/128 bit unsigned division and
set the resulting type to the smallest hex type that can hold the result.

Note that the mod operator does not allow real operands. You’ll have to define real modulus
and write the expression yourself if you need the remainder from a real division.

HLA will set the type of the result to the smallest type within its class (signed, unsigned, or
hexadecimal) that can hold the result (not including sign extension bits for negative numbers or
zero extension bits for non-negative values).

9.3.8 expr1 / expr2
 The two expressions must be numeric. The ’/’ operator divides the first expression by the

second and produces their (real80) quotient result.
If the operands are integers (unsigned, signed, or hexadecimal) or the operands are real32 or

real64, HLA first converts them to real80 before doing the division operation. The expression result
is always real80.

9.3.9 expr1 << expr2
 The two expressions must be integer (signed, unsigned, or hexadecimal) numbers. The second

operand must be a small (32-bit or less) non-negative value in the range 0..128. The << operator
shifts the first expression to the left the number of bits specified by the second expression. Note that
Public Domain Created by Randy Hyde Page 129

HLA Reference Manual 5/24/10 Chapter 9
the result may require more bits to hold than the original type of the left operand. Any bits shifted
out of bit position 127 are lost.

 HLA will set the type of the result to the smallest type within the left operand’s class (signed,
unsigned, or hexadecimal) that can hold the result (not including sign extension bits for negative
numbers or zero extension bits for non-negative values). Note that the ’<<’ operator can yield a
smaller type (specifically, an eight bit type) if it shifts all the bits off the H.O. end of the number;
generally, though, this operation produces larger result types than the left operand.

9.3.10 expr1 >> expr2
 The two expressions must be integer (signed, unsigned, or hexadecimal) numbers. The

second operand must be a small (32-bit or less) non-negative value in the range 0..128. The >>
operator shifts the first expression to the right the number of bits specified by the second
expression. Any bits shifted out of the L.O. bit are lost. Note that this shift is a logical shift right,
not an arithmetic shift right (this is true even if the left operand is an intXX value). Therefore, this
operation always shifts a zero into bit position 127.

Shift rights may produce a smaller type that the value of the left operand. HLA will always set
the type of the result value to the minimum type size that has the same base class as the left
operand.

9.3.11 expr1 + expr2
 If the two expressions are numeric, the "+" operator produces their sum.
 If the two expressions are strings or characters, the "+" operator produces a new string by

concatenating the right expression to the end of the left expression.
 If the two operands are character sets, the "+" operator produces their union.
If the operands are integer values (signed, unsigned, or hexadecimal), then HLA adds them

together. Any overflow out of bit #127 (unsigned or hexadecimal) or bit #126 (signed) is quietly
lost. HLA sets the type of the result to the smallest type size that will hold the sum; the type class
(signed, unsigned, hexadecimal) will be the same as the operands. Note that it is possible for the
type size to grow or shrink depending on the values of the operands (e.g., adding a positive and
negative number could reduce the type size, adding two positive or two negative numbers may
expand the result type’s size).

When adding two real values (or a real and an integer value), HLA always produces a real80
result.

Since HLA uses a bitmap to represent character sets, taking the union of two character sets is
the same as doing a bitwise logical OR of all 16 bytes in the character set.

9.3.12 expr1 - expr2
 If the two expressions are numeric, the "-" operator produces their difference.
If the two expressions are character sets, the "-" operator produces their set difference (that is,

all the characters in expr1 that are not also in expr2).
If the operands are integer values (signed, unsigned, or hexadecimal), then HLA subtracts the

right operand from the left operand. Any overflow out of bit #127 (unsigned or hexadecimal) or bit
#126 (signed) is quietly lost. HLA sets the type of the result to the smallest type size that will hold
their difference; the type class (signed, unsigned, hexadecimal) will be the same as the operands.
Note that it is possible for the type size to grow or shrink depending on the values of the operands
(e.g., subtracting two negative or non-negative numbers could reduce the type size, subtracting a
negative value from a non-negative value may expand the result type’s size).

When subtracting two real values (or a real and an integer value), HLA always produces a
real80 result.

Since HLA uses a bitmap to represent character sets, taking the set of two character sets is the
same as doing a bitwise logical AND of the left operand with the inverse of the right operand.

9.3.13 Comparisons (=, ==, <>, !=, <, <=, >, and >=)
expr1 = expr2
expr1 == expr2
expr1 <> expr2
expr1 != expr2
Public Domain Created by Randy Hyde Page 130

HLA Reference Manual 5/24/10 Chapter 9
expr1 < expr2
expr1 <= expr2
expr1 > expr2
expr1 >= expr2

 Note: "!=" and "<>" operators are identical. "=" and "==" operators are also identical.
The two expressions must be compatible (described earlier). These operators compare the two

operands and return true or false depending upon the result of the comparison.
You may use the "=" and "<>" operators to compare two pointer constants (e.g., "&abc" or

"&ptrVar[2]"). The other operators do not allow pointer constant operands.
All the above operators allow you to compare boolean values, enumerated values (types must

match), integer (signed, unsigned, hexadecimal) values, character values, string values, real values,
and character set values.

When comparing boolean values, note that false < true.
One character set is less than another is if it is a proper subset of the other. A character set is

less than or equal to another set if it is a subset of that second set. Likewise, one character set is
greater than, or greater than or equal to, another set if it is a proper superset, or a superset,
respectively.

As with any programming language, you should take care when comparing two real values
(especially for equality or inequality) as minor precision drifts can cause the comparison to fail.

9.3.14 expr1 & expr2
Note: "&&" and "&" mean different things to HLA. See the section on high-level language

control structures for details on the "&&" operator.
 The operands must both be boolean or they must both be numbers. With boolean operands the

AND operator produces the logical and of the two operands (boolean result). With numeric
operands, the AND operator produces the bitwise logical AND of the operands.

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set
the type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that
can hold the result.

9.3.15 expr1 in expr2
The first expression must be a character value. The second expression must be a character set.

The in operator returns true if the character is a member of the specified character set; it returns
false otherwise.

9.3.16 expr1 | expr2
 Note: "||" and "|" mean different things to HLA. See the section on high-level language control

structures for details on the "||" operator.
The operands must both be boolean or they must both be numbers. With boolean operands the

OR operator produces the logical OR of the two operands (boolean result). With numeric operands,
the OR operator produces the bitwise or of the operands.

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set
the type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that
can hold the result.

9.3.17 expr1 ^ expr2
 The operands must both be boolean or they must both be numbers. With boolean operands the

^ operator produces the logical exclusive-or of the two operands (boolean result). With number
operands, the ^ operator produces the bitwise exclusive-or of the operands.

If the operand is one of the integer types (signed, unsigned, hexadecimal), then HLA will set
the type of the result to the smallest type within that class (signed, unsigned, or hexadecimal) that
can hold the result.
Public Domain Created by Randy Hyde Page 131

HLA Reference Manual 5/24/10 Chapter 9
9.3.18 (expr)
You may override the precedence of any operator(s) using parentheses in HLA constant

expressions.

9.3.19 [comma_separated_list_of_expressions]
This produces an array expression. The type of the expression is an array type whose base

element is the type of one of the expressions in the list. If there are two or more constant types in
the array expression, HLA promotes the type of the array expression following the rules for mixed-
mode arithmetic (see the rules earlier in this document).

9.3.20 record_type_name : [comma separated list of field
expressions]

This produces a record expression. The expressions appearing within the brackets must match
the respective fields of the specified record type. See the discussion earlier in this document.

9.3.21 identifier
An identifier is a legal component of a constant expression if the identifier’s classification is

const or val (that is, the identifier was declared in a constant or value section of the program). The
expression evaluator substitutes the current declared value and type of the symbol within the
expression. Constant expressions allow the following types:

boolean, enumerated types, uns8, uns16, uns32, uns64, uns128 byte,
word, dword, qword, lword, int8, int16, int32, int64, int128, char,
real32, real64, real80, string, and cset.

You may also specify arrays whose element base type is one of the above types (or a record or
union subject to the following restriction). Likewise, you can specify record or union constants if
all of their respective fields are one of the above primitive types or a value array, record, or union
constant.

HLA allows array, record, and union constants. If you specify the name of an array, for
example, HLA works with all the values of that array. Likewise, HLA can copy all the values of a
record or union with a single statement.

HLA allows literal Unicode character and string constants (e.g., u’a’ and u"unicode") or
identifiers that are of wchar or wstring type in an expression, but no other terms are allowed in such
an expression (as this is being written).

9.3.22 identifier1.identifier2 {...}
 Selects a field from a record or union constant. Identifier1 must be a record or union object

defined in a const or val section. Identifier2 (and any following dot-identifiers) must be a field of the
record or union. HLA replaces this object with the value of the specified field.

Examples:

recval.fieldval
recval.subrecval.fieldval

Don’t forget that with union constant, you may only access the last field into which you’ve
actually stored data (see the section on union constants for more details).

9.3.23 identifier [index_list]
 Identifier must be an array constant defined in either a const or val section. Index_list is a list

of constant expressions separated by commas. The index list selects a specified element of the
Public Domain Created by Randy Hyde Page 132

HLA Reference Manual 5/24/10 Chapter 9
"identifier" array. HLA reports an error if you supply more indices than the array has dimensions.
HLA returns an array slice if you specify fewer indices than the array has dimensions (for example,
if an array is declared as "a:uns8[4,4]" and you specify "a[2]" in a constant expression, HLA returns
the third row of the array (a[2,0]..a[2,3]) as the value of this term).

Examples:

arrayval[0]
aval[1,4,0]
Public Domain Created by Randy Hyde Page 133

HLA Reference Manual 5/24/10 Chapter 10
10 HLA Program Structure and Organization

10.1 HLA Program Structure
HLA supports two types of compilations: programs and units. A program is an HLA source

file that includes the code (the "main program") that executes immediately after the operating
system loads the program into memory. A unit is a module that contains procedures, methods,
iterators, and data that is to be linked with other modules. Note that units may be linked with other
HLA modules (including an HLA main program) or with code written in other languages
(including high-level languages or other x86 assembly languages). This chapter will discuss the
generic form of an HLA program; see the chapter on HLA Units and External Compilation for a
detailed description of HLA units.

An executable file must have exactly one main program (written either in HLA or some other
language). Therefore, most applications written entirely in HLA will have exactly one program
module and zero or more units (it is possible to fake a program module using units; for more
information see the on-line documents "Taking Control Over Code Emission" and "Calling HLA
Code from Non-HLA Programs with Exception Handling" on Webster (http://webster.cs.ucr.edu).
Therefore, the best place to begin discussion HLA program structure is by defining the HLA
program. Here's the minimalist HLA program:

program pgmId;
begin pgmID;
end pgmID;

In this example, pgmID is a user-defined identifier that names the program. Note that this
name is local to the program (that is, it is not visible outside the source file and neither the source
file's name nor the executable's file name need be the same as this name (though it's not a bad idea
to make them the same). Note that the exact same identifier following the program reserved word
must follow the begin and end reserved words.

The minimalist HLA program, above, doesn't do much; if you compile and execute this
program it will immediately return control to the operating system. However, this short program
actually does quite a bit for an empty assembly language program. When you create an HLA
program, you're asking HLA to automatically generate some template code to do certain operations
such as initializing the exception-handling system, possibly setting up command-line parameters
for use by the program, and emitting code to automatically return control to the operating system
when the program completes execution (by running into the end pgmID clause). As this code is
generally needed for every HLA assembly language program, it's nice that the HLA compiler will
automatically emit this template code for you. If you happen to be a die-hard assembly programmer
and you don't want the compiler emitting any instructions you haven't explicitly written, fear not,
HLA doesn't force you to accept the code it's written; for more details, see the "Taking Control
Over Code Emission" article on Webster that was mentioned earlier.

A non-minimalist HLA program takes the following generic form:

program pgmId;
<< declarations >>

begin pgmID;
<< main program instructions>>

end pgmID;

The <<declarations>> section is where you will put the declarations/definitions for constants,
data types, variables, procedures, methods, iterators, tables, and other data. The << main program
instructions >> section is where you will put machine instructions and HLA HLL-like statements.

An HLA unit is even simpler than an HLA program. It takes the following form:

unit unitId;
<< declarations >>

end unitID;
Public Domain Created by Randy Hyde Page 134

HLA Reference Manual 5/24/10 Chapter 10
In this example, unitID is a user-defined identifier that names the unit. Note that this name is
local to the unit (that is, it is not visible outside the source file and the source file's name need be the
same as this name. Note that the exact same identifier following the unit reserved word must
follow the end reserved word. Unlike programs, units do not have a begin clause following by a
sequence of instructions; this is because units don't provide the main program code for the
application. Again, for more details about units, see the chapter on HLA Units.

10.2 The HLA Declaration Section
The declaration section in an HLA program or unit is relatively complex, supporting the

definition and declaration of most of the components in the HLA program or unit. An HLA
declaration section generally contains one or more of the following items:

• A labels section (label)

• A constant declaration section (

• const)

• A values declaration section (

• value)

• An automatic variables declaration section (

• var)

• An initialized static data storage declaration section (

• static)

• An initialized read-only data storage declaration section (

• readonly)

• An uninitialized static data storage declaration section (

• storage)

• A procedures declaration section (

• proc)

• Old-style procedure, method, and iterator declarations

•

• A

• namespace declaration section

These sections may appear in any order in a program or unit declarations section and multiple
instances of each of these sections may appear in the declarations. The following subsections
describe each of these declaration sections in detail.

10.2.1 The HLA LABEL Declaration Section
The HLA label section is a very special-purpose (and rarely used) declaration section in which

you declare forward-referenced and external statement labels. The syntax for the label section is
either of the following:

label
<< label declarations >>

or

label
<< label declarations >>

endlabel;
Public Domain Created by Randy Hyde Page 135

HLA Reference Manual 5/24/10 Chapter 10
The endlabel clause is optional. If it is present it explicitly marks the end of the forward label
declaration section; if it is absent, then the next declaration section or the begin keyword will
implicitly end the forward label declaration section.

Each label declaration takes one of the three following forms:

userLabel_1;
userLabel_2; external;
userLabel_3; external("externalLabelName");

In these examples, userLabel_x (x=1, 2, or 3) is a user-defined identifier.
The first example above is a forward label declaration. This tells HLA that you're promising

to declare the statement label within the scope of the label section (HLA will generate an error if
you fail to declare the statement label within the scope of the label statement).

The scope of a label statement is the body of instructions associated with the main program,
procedure, method, or iterator that immediately contains the label declaration section. For
example, if the label statement appears in the declaration section of an HLA program, the
corresponding statement label must be defined in the body of that program:

program labelDemo;
label

someLabel;

<< other declarations >>
begin labelDemo;

<< main program instructions, part 1 >>
someLabel: // someLabel must be defined in this code.
<< main program instructions, part 2 >>

end labelDemo;

Note that HLA automatically handles forward-referenced labels within the (machine
instructions) body of a program, procedure, method, or iterator, without an explicit label
declaration. The following is legal even though you do not have a forward declaration of
someLabel:

program labelDemo;
.
.
.

begin labelDemo;

.

.

.
lea(eax, &someLabel);

.

.

.
jmp someLabel;

.

.

.
someLabel: // someLabel's declaration appears after its use.
Public Domain Created by Randy Hyde Page 136

HLA Reference Manual 5/24/10 Chapter 10
.

.

.

end labelDemo;

The above is legal because the procedure references someLabel in the same scope where it is
declared. Now consider the following example:

program labelDemo;
.
.
.
procedure ReferencesSomeLabel;

.

.

.
begin ReferencesSomeLabel;

.
.

.
lea(eax, &someLabel);// Illegal! someLabel is not defined in this

procedure.
.
.
.

end ReferencesSomeLabel;

begin labelDemo;

.

.

.
someLabel: // someLabel's declaration appears outside the scope of its

use.

.

.

.

end labelDemo;

HLA will generate an error in this example because forward references to statement labels
must be resolved within the scope of the procedure (or program) containing the forward reference.
When HLA encounters the "end ReferencesSomeLabel;" clause in the procedure above, it will
report that you haven't defined someLabel in that procedure. The solution to this problem is to use
the label statement to create a forward symbol definition so that someLabel is defined (albeit at a
different lex level) when HLA encounters the lea statement in the previous example. The
following code demonstrates how to do this:

program labelDemo;
label

someLabel;
.
.

Public Domain Created by Randy Hyde Page 137

HLA Reference Manual 5/24/10 Chapter 10
.
procedure ReferencesSomeLabel;

.

.

.
begin ReferencesSomeLabel;

.
.

.
lea(eax, &someLabel);// This is legal because of the label

statement.
.
.
.

end ReferencesSomeLabel;

begin labelDemo;

.

.

.
someLabel: // someLabel had a forward declaration.

.

.

.

end labelDemo;

You can also create external label definitions by attaching the external option to a label
definition. External label definitions take one of two forms:

label
someLabel; external;
someExtLabel;external("externalName");

The first form assumes that someLabel is defined (and the name is made public) in some other
source/object module using the name someLabel. The second form assumes that "externalName" is
defined in some other source/object module and uses the name someExtLabel to refer to that
symbol.

To create a public label that you can reference in another source module, you put an external
label definition in the same source file as the actual symbol declaration, e.g.,

program labelDemo;
label

someLabel; external;
.
.
.

begin labelDemo;

.

.

Public Domain Created by Randy Hyde Page 138

HLA Reference Manual 5/24/10 Chapter 10
.
someLabel: // someLabel is a public symbol.

.

.

.

end labelDemo;

The label statement rarely appears in most HLA programs. It is very unusual to reference a
symbol that is declared outside the scope of that usage. External symbols are usually procedures,
methods, or iterators, and a program will typically use an external procedure, iterator, or method
declaration rather than a label statement to declare such symbols. Nevertheless, label declarations
are necessary on occasion, so you should keep the forward label declaration statement in mind.

Note that label declarations will not make a local symbol in some scope (that is, within some
procedure) visible to code outside that scope. The following will generate an error:

program labelDemo;
label

someLabel;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel:// This is local to this procedure.

.

.

.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This does not reference someLabel in declaresSomeLabel!

lea(eax, &someLabel);

.

.

.

end labelDemo;

The scope of the symbol someLabel defined in declaresSomeLabel is limited to the
declaresSomeLabel procedure. In order to make someLabel visible outside of declaresSomeLabel,
you must make that symbol global. This is done by following the label declaration with two colons
instead of one colon:
Public Domain Created by Randy Hyde Page 139

HLA Reference Manual 5/24/10 Chapter 10
program labelDemo;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel::// This is a global symbol.

.

.

.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This is legal

lea(eax, &someLabel);

.

.

.

end labelDemo;

Note that global symbols are not automatically public. If you need a symbol to be both global
to a procedure and public (visible outside the source file), you must also define that global symbol
as external in a label statement:

program labelDemo;
label

someLabel; external;
.
.
.
procedure declaresSomeLabel;

.

.

.
begin declaresSomeLabel;

.
.

.
someLabel::// This is a global and public symbol.

.

.

Public Domain Created by Randy Hyde Page 140

HLA Reference Manual 5/24/10 Chapter 10
.
end declaresSomeLabel;

begin labelDemo;

.

.

.
// This is legal

lea(eax, &someLabel);

.

.

.

end labelDemo;

Note that global label declarations only make the symbol global at the previous lex level, not
across the whole program. The following will not work properly because label1 is only visible in
the q and p procedures, not in the main program.

program t;
label

label1;

procedure p;

procedure q;
begin q;

label1::

end q;

begin p;
end p;

begin t;

lea(eax, label1);

end t;

The solution to this problem is to make the symbol public by declaring it external in both the q
procedure and in the main program:

program t;
label

label1; external;

procedure p;
Public Domain Created by Randy Hyde Page 141

HLA Reference Manual 5/24/10 Chapter 10
procedure q;
label

label1; external;

begin q;

label1:

end q;

begin p;
end p;

begin t;

lea(eax, label1);

end t;

Of course, referencing a label in a nested procedure like this is highly unusual and is probably
an indication of a poorly designed program. If you find yourself writing this kind of code, you
might want to reconsider your program's architecture.

10.2.2 The HLA CONST Declaration Section
The HLA const section is where you declare symbolic (manifest) constants in an HLA

program or unit. The syntax for the const section is either of the following:

const
<< constant declarations >>

or

const
<< constant declarations >>

endconst;

The endconst clause is optional at the end of the constant declarations in a declaration section;
some programmers prefer to explicitly end a constant declaration section with endconst, others
prefer to implicitly end the constant declarations (by starting another declaration section or with the
begin keyword). The choice is yours, the language doesn't prefer either method nor does good
programming style particularly specify one syntax over the other.

Each constant declaration takes one of the following forms:

userDefinedID := <<constant expression>>;
or
userDefinedID : typeID := <<constant expression>>;

Here are some examples:

const
hasEdge_c := false;
elementCnt_c:= 25;
Public Domain Created by Randy Hyde Page 142

HLA Reference Manual 5/24/10 Chapter 10
weight_c:= 32.5;

debugMode_c:boolean:= true;
maxCnt_c:uns32:= 15;
oneHalf_c:real32:= 0.5;

The "_c" suffix is an HLA programming convention that tells the reader the identifier is a
constant identifier. Although it's probably good programming style for you to follow this
convention in your own HLA programs, HLA does not require this suffix on constant identifiers;
any valid HLA identifier is fine when creating symbolic constants.

If you do not specify a data type for the symbolic constant declaration (as the first three
examples above demonstrate), then HLA will infer the data type from the type of the constant
expression. While this is convenient in many cases, do be aware that HLA might not choose the
same data type you would explicitly provide. This is because a constant expression's type can be
ambiguous, in which case HLA will use whatever type it finds convenient that will work. In the
examples above, hasEdge_c must be a boolean constant because there is no ambiguity about the
type of the constant false. The remaining two examples without an explicit type (elementCnt_c and
weight_c) do not have constant expressions with an unambiguous type. The constant 25 is valid for
types uns8, uns16, uns32, uns64, uns128, byte, word, dword, qword, tbyte, lword, int8, int16,
int32, int64, and int128 (and even real32, real64, and real80 if you really want to push things).
The HLA language definition does not require this constant (25) to assume any one of these
particular values; HLA is free to choose whatever compatible type it wants for this constant. In
most cases, it won't make a difference whether HLA chooses the type uns8 or uns32 for this
constant (or any other of the legal types). However, there are many times that HLA might choose a
type that will create problems with the code you're writing; therefore, it's a good idea to always
explicitly provide a data type as do the last three examples above.

Note that constant expressions in a constant declaration support all the valid constant
expression types discussed in the chapter on HLA Language Elements, including string, character
set, array, record, union, and pointer constants. Indeed, it is often more convenient to create a
constant for some structured data type and use that constant when initializing a static object than to
assign the structured constant directly to the static object, e.g.,

const
myArray_c :dword[8]:= [0,1,2,3,4,5,6,7];

static
myArray:dword[@elements(myArray_c)] := myArray_c;

Note the use of @elements(myArray_c) rather than 8 to specify the number of dword array
elements in the myArray declaration. By declaring the static array this way, you can change the
myArray_c constant declaration by adding or removing array elements and the declaration for
myArray will adjust its size automatically when you recompile.

One benefit to use structured constant declarations to initialize static objects is that you have
full access to the (individual element or field) values of that structured constant during assembly.
For example, you could reference myArray_c[0] in an HLA compile-time language sequence and
know that you're getting the same value that goes into element zero of myArray at run time.

Objects you declare in a const section, as the name suggests, have a fixed value throughout the
scope containing that symbol declaration. The value remains fixed both at compile time and at run
time. Note, however, that HLA supports block-structured scoping rules so the symbol and its value
might not be visible or available for use outside the scope in which you've declared the symbol.
Consider the following program example:

program constDemo;
const

sym := 10;
.
.
.
procedure usesSym;
Public Domain Created by Randy Hyde Page 143

HLA Reference Manual 5/24/10 Chapter 10
begin usesSym;
.

.
.

mov(sym, eax); // Loads 10 into eax
.
.
.

end usesSym;

begin constDemo;

.

.

.
mov(sym, eax); // Loads 10 into eax

.

.

.

end constDemo;

In this example, both instructions that use the symbol sym reference the same object and load
the same value into eax. This is because HLA's block-structured scoping rules make global
symbols visible inside procedures that don't redefine the symbol. Consider, however, the following
example:

program constDemo;
.
.
.
procedure usesSym;
const

sym := 10;
begin usesSym;

.
.

.
mov(sym, eax); // Loads 10 into eax

.

.

.
end usesSym;

begin constDemo;

.

.

.
mov(sym, eax); // This is illegal!

.

.

.

Public Domain Created by Randy Hyde Page 144

HLA Reference Manual 5/24/10 Chapter 10
end constDemo;

HLA will reject this example because the second usage of sym, in the main program, is outside
the scope of the symbol's declaration within the usesSym procedure (see the chapter on procedures
for more information about HLA's scoping rules). Now consider this last example:

program constDemo;
const

sym = 10;
.
.
.
procedure usesSym;
begin usesSym;

.
.

.
mov(sym, eax); // Loads 10 into eax

.

.

.
end usesSym;

procedure declaresLocalSym;
const

sym := 25;
begin declaresLocalSym;

.
.

.
mov(sym, eax); // Loads 25 into eax

.

.

.
end declaresLocalSym;

begin constDemo;

.

.

.
mov(sym, eax); // Loads 10 into eax

.

.

.

end constDemo;

This example seems to contradict the statement given earlier that constant declarations can
have only a single value throughout the source file. The first usage of sym in the usesSym
procedure loads the value 10 into EAX, just as in the earlier example. In the procedure
declaresLocalSym we see a second declaration of sym with the value 25. When the code in this
procedure references sym, HLA substitutes the value 25 for the symbol. This action seems to
contradict the statement that a constant symbol has a fixed value throughout the compilation.
However, the second declaration of sym is not a redeclaration of the original symbol (giving it a
new value); instead, this is the declaration of a brand-new symbol that just happens to share the
Public Domain Created by Randy Hyde Page 145

HLA Reference Manual 5/24/10 Chapter 10
same name (sym) as a symbol declared in the main program. The scope of this second symbol is
limited to the procedure in which it is defined (and any procedures declared within it, though there
are no such procedures in this example). The original symbol is not redefined, it is simply "hidden
from view." At the end of declaresLocalSym, its local symbols are hidden and the global symbols
are again visible. Note that the constant sym reverts to the value 10 at this point. Again, not
meaning to sound redundant, it's important for you to understand that the two sym identifiers
represent different constant objects whose visibility is controlled by the scope of those identifiers.
The chapter on Procedures goes into greater detail about scope and how it affects the visibility of
your symbols.

Unlike labels, you cannot create "external" constants. HLA const objects are manifest
constants. This means that HLA substitutes the values of the const symbols wherever they appear
in the source file before actually compiling the statements containing those symbols. In the object
code file that HLA produces, the constant symbol no longer exists in any form; just the value of
that symbol (unlike, say, an external label or procedure definition that passes the name of the
symbol on to the linkage editor [linker] in order to properly combine object modules containing
mutually-dependent symbols). If you want to use a constant symbol in multiple source files, the
appropriate way to do this is to put the symbol into a header file and include that header file in all
the source files that use the symbol.

10.2.3 The HLA VAL Declaration Section and the Compile-Time "?"
Statement

The HLA val declaration section is very similar to the const declaration section insofar as you
use it to declare symbol names that have a constant value at run time. The difference between the
val and the const declaration sections is that you can reassign a different value to a val constant
during the assembly/compilation process. This is useful for creating compile-time variables and
handling a few other situations where const objects won't work. The syntax for the val section is
either of the following:

val
<< value declarations >>

or

val
<< value declarations >>

endval;

As for the const section, either syntax is perfectly acceptable to HLA and either form neither
form is particular preferred based on good programming style.

The syntax for the individual value declarations is identical to that of the constant declarations
in a const section. There are two main differences: simple declarations without an assignment and
value redefinitions.

The first difference is that a value declaration may consist of a constant identifier and a type
identifier without the assignment of a constant expression. For example:

val
sym :uns32;

This form creates the identifier without giving it an explicit value. HLA assumes that you are
going to assign a value to this val constant before you use the value of that constant.

The second difference is that you can redefine the value of a value object multiple times in a
program, for example:

program valDemo;
val

sym :uns32;
Public Domain Created by Randy Hyde Page 146

HLA Reference Manual 5/24/10 Chapter 10
.

.

.
val

sym := 10;
.
.
.

val
sym := sym + 1;

.

.

.

begin valDemo;

.

.

.
mov(sym, eax); // Loads 11 into eax

.

.

.

end valDemo;

Note that value redefinition in a val section only takes place when reassigning the value in the
same scope as the original symbol definition. If you attempt to redefine the symbol at some point in
the program that would have a different scope, then you will simply create a new object with the
same name that is limited to the scope of the new definition. For example, consider the following
code:

program t;
val

i:=0;
endval;

procedure u;
val

i := 1;
begin u;

#print("i=", i)

end u;

begin t;

#print("i=", i);

end t;

This example prints "i=1" and then "i=0" during compilation. The second declaration of i in
procedure u is a local symbol (local to i), this declaration does not affect the original value of the i
constant. To overcome this problem and provide a way to reassign the value of a val constant
Public Domain Created by Randy Hyde Page 147

HLA Reference Manual 5/24/10 Chapter 10
anywhere in an HLA source file (including outside val declaration sections), HLA provides the
compile-time assignment statement. An HLA compile-time assignment statement is legal
anywhere a space is legal within the confines of an HLA program or unit. The HLA compile-time
assignment statement takes one of the following two forms:

?valIdentifier := <<constant expression>>;
?valIdentifier :typeID := <<constant expression>>;

In these examples valIdentifier is either an undefined symbol or a constant identifier that was
previously declared in a val declaration section or an HLA "?" compile-time assignment statement.
In some respects, the HLA compile-time assignment statement is more flexible than the assignment
of a value constant within a val section. Consider the following two programs that produce
identical results:

program t1;
val

i:=10;
begin t1;

#print("i=", i); // Prints "10" at compile-time

end t1;

program t2;
?i:=10;
begin t2;

#print("i=", i); // Prints "10" at compile-time

end t2;

There is, however, a major limitation to defining val constant identifiers in an HLA compile-
time assignment statement: you cannot redefine the meaning of a symbol within some different
scope (at a higher lex level) when using the compile-time assignment statement. For example, the
following is illegal:

program t;
static

i:uns32;

procedure u;
?i := 1;// This is illegal!
begin u;

#print("i=", i)

end u;

begin t;
.
.
.

end t;

The problem here is that the HLA compile-time assignment statement only defines a new
symbol if it was previously undefined. In this example the symbol i was already defined as a static
Public Domain Created by Randy Hyde Page 148

HLA Reference Manual 5/24/10 Chapter 10
variable. As only value constant identifiers may appear in an HLA compile-time assignment
statement, HLA will reject this program. Note, however, that the following is legal:

program t;

procedure u;
?i := 1;// This is legal!
begin u;

#print("i=", i)

end u;

static
i:uns32;

begin t;
.
.
.

end t;

This program will compile (assuming you have something reasonable between the begin and
end clauses) and print "i=1" during compilation. The difference here is that i was undefined at the
point of the "?i := 1;" assignment statement so HLA was able to create a constant identifier (local to
procedure u). At the end of procedure u, the symbol i was hidden from the rest of the compilation
so the declaration of i in the main program does not produce a duplicate definition error. By the
way, if you really needed to define i as a value constant with procedure u in the illegal example,
you could do the following:

program t;
static

i:uns32;

procedure u;
val

i:uns32 := 1;
begin u;

#print("i=", i)

end u;

begin t;
.
.
.

end t;

Value constants you declare in a val section are not subject to the restriction that the symbol
must be (globally) undefined at the point of the declaration. In the example above, i is a local
symbol in procedure u that just happens to be a val object with the value one.

Although val objects are syntactically similar to const objects, you use them in an HLA
program in almost completely different ways. The main purpose for val objects is to create
compile-time variables that you can use to control compilation via compile-time loops, conditional
compilation, and macros. Comparing const and val objects at compile time is quite similar to
Public Domain Created by Randy Hyde Page 149

HLA Reference Manual 5/24/10 Chapter 10
comparing readonly and static objects at run time. The following example demonstrates how you
can use a val object in a program to unroll a loop at compile time:

program unroll;
static

ary:uns32[16];

begin t;

?loopIndex :uns32 := 0;
#while(loopIndex < 16)

mov(loopIndex, ary[loopIndex*4]);
?loopIndex := loopIndex + 1;

#endwhile
.
.
.

end t;

Note that the #while loop executes at compile time, not at run time. The code between the
#while and #endwhile compile-time statements is equivalent to the following 16 statements:

mov(0, ary[0*4]);
mov(1, ary[1*4]);
mov(2, ary[2*4]);
mov(3, ary[3*4]);
mov(4, ary[4*4]);
mov(5, ary[5*4]);
mov(6, ary[6*4]);
mov(7, ary[7*4]);
mov(8, ary[8*4]);
mov(9, ary[9*4]);
mov(10, ary[10*4]);
mov(11, ary[11*4]);
mov(12, ary[12*4]);
mov(13, ary[13*4]);
mov(14, ary[14*4]);
mov(15, ary[15*4]);

This is because each iteration of the #while loop at compile time compiles all of the statements
between the #while and #endwhile statements. For more information on the #while/#endwhile
statement and using val objects as compile-time variables, please see the chapter on the HLA
Compile-Time Language.

10.2.4 The HLA TYPE Declaration Section
Examples of the HLA type declaration section have been so numerous in the chapter on HLA

Language Elements that describing them here is almost redundant (please review that chapter for
more details). Nevertheless, for completeness and for the sake of a reference guide, this section
describes the syntax of a type declaration section. A type declaration section takes one of the
following two forms:

type
<< type declarations >>
Public Domain Created by Randy Hyde Page 150

HLA Reference Manual 5/24/10 Chapter 10
or

type
<< type declarations >>

endtype;

A type declaration takes one of the following forms:

newTypeID : typeID;
newTypeID : typeID [list_of_array_dimensions];
newTypeID : procedure (<<optional_parameter_list>>);
newTypeID : record <<record_field_declarations>> endrecord;
newTypeID : union <<union_field_declarations>> endunion;
newTypeID : class <<class_field_declarations>> endclass;
newTypeID : pointer to typeID;
newTypeID : enum{ <<list_of_enumeration_identifiers>> };

The purpose of the HLA type section is to declare a new type identifier that you can use when
declaring const, val, var, static, readonly, and storage objects. You can also use type identifiers
you declare in an HLA type section to define procedure prototypes in an HLA proc section. Each
of the forms above deserves its own subsection to describe it, so the following subsections do just
that.

Note that a type declaration only defines a type identifier you can use for declaring other
objects in an HLA source file. A type declaration does not create a variable or constant object of the
specified type. You can use the type identifier in some other declaration section (const, val, var,
static, readonly, storage, etc.) to actually define an object of that type.

10.2.4.1 typeID
Before describing the valid syntax forms for the type declaration section, it's worthwhile to

take a moment to describe the typeID item that appears in many of the type declarations. The
typeID item is a single identifier whose classification is "type" (duh). This can be any of the HLA
built-in types:

boolean
enum
uns8
uns16
uns32
uns64
uns128
byte
word
dword
qword
tbyte
lword
int8
int16
int32
int64
int128
char
wchar
real32
real64
Public Domain Created by Randy Hyde Page 151

HLA Reference Manual 5/24/10 Chapter 10
real80
real128
string
zstring
u
nicode
cset

text
thunk.

The typeID can also be any user-defined type identifier you've previously declared in a type
declaration section.

10.2.4.2 newTypeID : typeID;
The least complex type declaration is a simple type isomorphism, where you take an existing

type and create a new type with all the same attributes except that you use a different name for the
type. For example, suppose you want to use the identifier integer rather than int32 in your
programs. You could do this with the following type declaration:

type
integer :int32;

Within the scope of this declaration, you can use the type name integer anywhere you want to
declare a 32-bit signed integer object.

Warning: exercise care when using type isomorphisms of built-in types in an HLA program.
If you're writing an HLA program, you can generally assume that people reading the source files
you write are reasonably familiar with HLA's built-in types. By creating aliases of those type
names, you make it harder for people who already know HLA to read and understand your
programs because they have to mentally translate your new types to the more familiar type names.
It might seem "cool" to use C++ type names or type names from some other programming
language, but other people reading your programs might not share your enthusiasm for the renamed
types.

One place where type isomorphisms might make sense is when you're creating a new type that
is intended to be a subset of the full type (whose range you check at run time). For example,
suppose you use a set of integers that must be in the range 0..31 for certain sections of your
program. You could create a type definition like the following to let people know that variables of
the specified type are supposed to lie in the range 0..31:
type

smallInt_t :int8; // Holds values in the range 0..31

At run time you could use the bound instruction to verify that values you assign to a smallInt_t
object are actually in the range 0..31:

bound(eax, 0, 31);// Raises an ex.bound exception if not in the
range 0..31.

mov(al, smallIntVar);

This example also demonstrates another common HLA programming convention: using an
"_t" suffix on user-defined type identifiers.

10.2.4.3 newTypeID : typeID [list_of_array_bounds];
This form creates an array type with the specified number of elements. The

list_of_array_bounds item is a list of one or more unsigned integer values that are greater than zero
(and, generally, greater than one). If there are two or more array bound values, the type is a multi-
Public Domain Created by Randy Hyde Page 152

HLA Reference Manual 5/24/10 Chapter 10
dimensional array type and the number of elements is the product of all of the array bound values.
Note that HLA arrays are always indexed from zero to the array's bound value minus one. So an
array declared as

10.2.4.4 newTypeID : procedure (<<optional_parameter_list>>);
A complete discussion of procedure pointer types appears in the chapter on procedures. Please

see that document for a discussion of procedure pointer types. Like all pointer types, objects that
are procedure pointers will consume four bytes in memory (and those four bytes typically hold the
address of some procedure).

10.2.4.5 newTypeID : record <<record_field_declarations>> endrecord;
Please see the discussion of Record Data Types earlier in this document for examples of

record type declarations, their syntax, and their use.

10.2.4.6 newTypeID : union <<union_field_declarations>> endunion;
Please see the discussion of Union Data Types earlier in this document for examples of union

type declarations, their syntax, and their use.

10.2.4.7 newTypeID : class <<class_field_declarations>> endclass;
A complete discussion of class types appears in the chapter on Classes and Object-Oriented

Programming in HLA. Please see that document for a discussion of class types.

10.2.4.8 newTypeID : pointer to typeID;
Please see the discussion of Pointer Data Types earlier in this document for examples of

pointer type declarations, their syntax, and their use.

10.2.4.9 newTypeID : enum{ <<list_of_enumeration_identifiers>> };
Please see the discussion of Enumerated Data Types earlier in this document for examples of

enum type declarations, their syntax, and their use.

10.2.5 The HLA VAR Declaration Section
The var section is where you declare automatic variables in an HLA procedure, method,

iterator, or program. The HLA var section may not appear in the declaration section of an HLA
unit or namespace. A var section may also appear in an HLA class, but the storage mechanism for
class var objects is not the same as for procedures, methods, and iterators. Please see the chapter on
Object-Oriented Programming for more details about var declarations in a class. The basic syntax
for an HLA var section is the following:

var
<< variable declarations >>

or
Public Domain Created by Randy Hyde Page 153

HLA Reference Manual 5/24/10 Chapter 10
var
<< variable declarations >>

endvar;

The syntax for the variable declarations is similar to type declarations; each variable
declaration takes one of the following forms:

varID : typeID;
varID : typeID [list_of_array_dimensions];
varID : procedure (<<optional_parameter_list>>);
varID : record <<record_field_declarations>> endrecord;
varID : union <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

These statements will allocate sufficient storage on the stack for each variable (varID) that you
declare in the var section.

The HLA var section also supports an align directive; the syntax for the align directive in a
var section is the following:

align(constant_expression);

The constant_expression must be a fully-defined constant expression that evaluates to a power
of two that lies in the range 1..16. Technically, the only value that makes sense for the align
expression is 4, as you will soon see.

The var section declares variables for which the HLA run-time code automatically allocates
storage upon entry into a procedure (note: the HLA run-time system automatically allocates storage
only if the @frame procedure option is enabled; otherwise it is the programmer's responsibility to
actually allocate the storage). Automatic variable storage allocation is accomplished using a
standard entry sequence into a procedure, such as the following

push(ebp);// Save old frame pointer
mov(esp, ebp);// Put new frame pointer value into EBP
sub(_vars_, esp);// Allocate storage for var variables on stack

Automatic variables (var objects, or auto variables) are referenced using negative offsets from
the EBP (base pointer) register into the procedure's stack frame (also known as an activation
record). The previous frame pointer (EBP) value is found at [EBP+0] and the auto variables are
found on the stack below this location. Each variable is allocated some amount of storage
(determined by the variables type) and the offset of the variable (from EBP) is computed by
subtracting the variable's size from the offset of the previous object in the var section. Consider the
following var declaration section; the comments tell you the offset to each of the objects from the
EBP register (these offsets assume that there is no display):

var
d :dword;// offset = ebp-4
s :string;// offset = ebp-8
u :uns32;// offset = ebp-12
i :int32;// offset = ebp-16
w :word; // offset = ebp-18
b :byte; // offset = ebp-19
c :char; // offset = ebp-20

The offset of each object is computed by subtracting the size of the object from the offset of the
previous object in the var declaration section (the first object's offset is computed by subtracting
the object size from zero, which is the offset of the saved EPB value).
Public Domain Created by Randy Hyde Page 154

HLA Reference Manual 5/24/10 Chapter 10
Because the x86 supports a 1-byte offset (+/- 128 bytes) form of the "[EBP+offset]" addressing
mode, your code will be slightly shorter if you group all your small variable objects at the
beginning of the var declaration section and putting all your structured data types (e.g., arrays,
records, unions, and character sets) near the end of var section. Consider the following two
variable declaration sections:
var

d :dword; // offset = ebp-4
s :byte[256];// offset = ebp-260

versus

var
s :byte[256];// offset = ebp-256
d :dword; // offset = ebp-260

The instruction "mov(d, eax);" is three bytes shorter if you use the first set of declarations
above (where d's offset is -4) because HLA can encode the offset in one byte instead of a double
word. By putting the declarations of the smaller objects at the beginning of the var section, you
can increase the number of variables that you can reference with a 1-byte displacement.

As HLA processes each variable in a var section, it computes the offset of that variable by
subtracting the variable's size from the offset of the previous variable. If you mix different sized
variables in the var section, you may not get optimal addresses for each of the variables. Consider
the following var section and the corresponding variable offsets:

var
b :byte; // offset = ebp-1
w :word; // offset = ebp-3
d :dword;// offset = ebp-5
q :qword;// offset = ebp-13

Assuming that EBP points at an address that is a multiple of four (and it usually will), all of
these variables will be misaligned except for b, the byte variable. One solution to this problem is to
use the align directive to align each variable at an offset that is a multiple of that variable's size:
var

b :byte; // offset = ebp-1
align(2);
w :word; // offset = ebp-4
align(4);
d :dword;// offset = ebp-8
align(8);
q :qword;// offset = ebp-16

Unfortunately, sticking an align directive before each variable declaration is a pain.
Fortunately, the var declaration supports the same alignment options as record declaration.
Consider the following:

var[4];
b :byte; // offset = ebp-4
w :word; // offset = ebp-8
d :dword;// offset = ebp-12
q :qword;// offset = ebp-24

Of course, allocating four bytes for each automatic variable can be wasteful; you can also do
the following:

var[4:1];
Public Domain Created by Randy Hyde Page 155

HLA Reference Manual 5/24/10 Chapter 10
b :byte; // offset = ebp-1
w :word; // offset = ebp-4
d :dword;// offset = ebp-8
q :qword;// offset = ebp-16

See the discussion of record type declarations earlier in the chapter on HLA Language
Elements for more details about the alignment options.

There is one big issue concerning the use of the var section align statement and the alignment
options: generally you may only assume that the stack pointer is aligned to a 4-byte address upon
entry into a subroutine. Therefore, alignment values other than 1, 2, or 4 may not achieve the
desired memory alignment for your automatic variables. If you absolutely must have your
automatic variables aligned on a boundary greater than four, you will have to explicitly guarantee
that the variable is properly aligned in the activation record. There are a couple of different ways to
do this.

The first way is to allocate storage on the stack (using talloc), create an address into that
storage area that you've aligned to the desired boundary, and then save a pointer to that storage in
another automatic variable. For example, to create a 16-byte aligned object (e.g., for SSE objects
that require 16-byte alignment), you could do the following:

var
ptrToAligned16:pointer to lword;
.
.
.

sub(16, esp);
and($ffff_fff0, esp);
mov(esp, ptrToAligned16);

The "and($ffff_fff0, esp);" instruction ensures that ESP is situated at an address that is
aligned on a 16-byte boundary. Note that this instruction might actually allocate up to 15 additional
bytes (or, if the stack is aligned properly to begin with, up to 12 additional bytes) in order to
guarantee that the new address is aligned to a 16-byte boundary.

Whenever using this technique to allocate storage for an aligned object, you must allocate the
storage before pushing any other data you need to retrieve onto the stack. Because you don't really
know how much storage these three instructions will actually allocate on the stack, you won't know
where any data might be that you've previously pushed onto the stack. As such, you wouldn't be
able to pop that data later on. The best way to avoid this problem is to allocate aligned data
immediately upon entry into a procedure, iterator, or method, before any other stack operations take
place:

procedure hasAlignedStorage; @nostackalign;
var

ptrToAligned16:pointer to lword;
begin hasAlignedStorage;

sub(16, esp);
and($ffff_fff0, esp);
mov(esp, ptrToAligned16);

.

.

.

end hasAligned16;

Note the use of the @nostackalign option. If you're created aligned data on the stack, you're
already aligning ESP to an address that is a multiple of four. Therefore, there is no need for HLA to
emit this instruction for you.
Public Domain Created by Randy Hyde Page 156

HLA Reference Manual 5/24/10 Chapter 10
If you are creating your own stack frame upon entry into the procedure (e.g., you're using the
@noframe option), then you should allocate storage for your aligned objects after you've created
the stack frame/activation record:

procedure hasAlignedStorage; @noframe;
var

ptrToAligned16:pointer to lword;
begin hasAlignedStorage;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp);
sub(16, esp);

and($ffff_fff0, esp);
mov(esp, ptrToAligned16);

.

.

.

end hasAligned16;

Although this scheme allows you to allocate storage that is aligned on a 16-byte boundary (any
other boundary that is a power of two is easy to achieve by modifying the sub and and
instructions), this scheme isn't actually aligning the variables in the var section to a specific
boundary. If you need to align the automatic variables themselves, it's going to take a bit more
work to achieve. Achieving this goal requires that the stack be aligned to a given boundary before
you call the subroutine. Unfortunately, you cannot simply align the stack pointer immediately
upon entry into a subroutine, prior to building the activation record, because any parameters that
the caller has pushed onto the stack must be accessible at fixed positions from EBP. If you align
the stack upon entry into the code, you'll mess up the offsets to the parameters from EBP, thereby
changing the assumptions HLA makes about where those parameters' values lie. Therefore, you
must align the stack pointer to a desired address before pushing any parameters onto the stack.
This means that the calling code will be responsible for aligning the stack and this has to be done on
each call to the subroutine.

The task is to set up the stack pointer so that when it pushes EBP on the stack (while setting up
the activation record) the address of the old EBP value on the stack is a multiple of whatever
alignment you need. Unfortunately, you cannot simply align the stack pointer before the call
because the subroutine's parameters, return address, and the EBP value itself consume space on the
stack that may cause the alignment to change. Therefore, you will need to adjust to the stack pointer
prior to the call so that ESP is aligned to an appropriate address after the caller has pushed the
parameters, return address, and EBP has been preserved on the stack. For example, consider the
following HLA procedure:

procedure p(i:int32);
var[16];

b:byte;
w:word;
d:dword;
l:lword;

begin p;
.
.
.

end p;
Public Domain Created by Randy Hyde Page 157

HLA Reference Manual 5/24/10 Chapter 10
The goal here is to align each of the automatic variables to an address that is a multiple of 16
bytes. Upon entry into the body of the procedure, there will be 12 bytes pushed onto the stack -
four bytes for parameter i, four bytes for the return address, and four bytes with the old EBP value.
Therefore, simply aligning ESP to some multiple of four before the call will not work because
when the call to the procedure occurs, an additional 12 bytes wind up on the stack, leaving ESP
misaligned. What has to be done is to align ESP to a multiple of 16 bytes and then drop the stack
pointer down four bytes so that when the calling sequence pushes those 12 bytes onto the stack,
ESP winds up properly aligned on a 16-byte boundary. This can be done with the following code
sequence (that calls procedure p):

and($FFFF_FFF0, esp);// Align ESP to 16-byte boundary
sub(4, esp); // 4 + 12 bytes keeps it 16-byte aligned
p(2); // Call p.

Alas, "4" is a magic number here that probably won't make much sense to the reader of this
code. Furthermore, if you ever change the number or types of p's parameters, "4" might no longer
be the correct value to use here. Fortunately, HLA's compile-time language provides a compile-
time function, @parms, that returns the number of parameter bytes for the procedure whose name
you specify as an argument. So we can use the following generic version to properly align the
stack on a 16-byte boundary:

and($FFFF_FFF0, esp);
sub(16-((@parms(p)+8) & $F), esp);
p(2);

The "@parms(p)+8" portion of the expression is the total number of bytes pushed on the stack
up to the point where EBP will be pointing in the activation record. The "(@parms(p)+8) & $F"
computes this value modulo 16 because we never need to push more than 15 bytes in order to align
ESP to a 16-byte boundary. Finally, "16-((@parms(p)+8) & $F)" computes the number of bytes
we must drop the stack down in order to guarantee 16-byte alignment upon entry into the
subroutine.

We could make one additional improvement to this code. On occasion, the expression "16-
((@parms(p)+8) & $F)" will evaluate to zero and there is no reason at all to execute the sub
instruction. Because this is a constant expression, we can determine that it is zero at compile time
and use conditional assembly to eliminate the sub instruction:

and($FFFF_FFF0, esp);
#if((16-((@parms(p)+8) & $F)) <> 0)

sub(16-((@parms(p)+8) & $F), esp);

#endif
p(2);

Remember, you have to execute this instruction sequence before each call to procedure p in
order to guarantee that p's local variables are properly aligned on a 16-byte boundary. As it's easy
to forget to execute this sequence prior to calling p, you might want to consider writing a macro to
invoke that will automatically do this for you. Consider the following code:

#macro p(_i_);
and($FFFF_FFF0, esp);
#if((16-((@parms(_p)+8) & $F)) <> 0)

sub(16-((@parms(_p)+8) & $F), esp);

#endif
p(_i_);
#endmacro
Public Domain Created by Randy Hyde Page 158

HLA Reference Manual 5/24/10 Chapter 10
procedure _p(i:int32);
var[16];

b:byte;
w:word;
d:dword;
l:lword;

begin _p;
.
.
.

end _p;
.
.
.

p(2);

One problem with aligning the stack in this manner is that the code suffers from "stack creep".
Each time you call procedure p it might drop the stack down as many as 12 bytes. If this isn't a
problem (e.g., if you call p from within some other procedure that cleans up the stack upon
returning to its caller) then you can ignore the stack creep. However, if you've pushed data onto the
stack that you need to pop after the call to p, or if you're calling p within a loop and that would
cause considerable stack creep, then you'll want to save ESP's value in a local (automatic) variable
in the calling code and restore ESP upon return, e.g.,:

mov(esp, espSave);
p(2); // This is the macro from above!
mov(espSave, esp);

Be sure to use a local automatic, not a static, variable for espSave. Also, avoid the temptation
to use push and pop to preserve ESP's value, remember that ESP is modified by the call to p and
you won't be popping what you've pushed.

One last feature available in the var section is the ability to set the starting offset of the
activation record. By default, HLA uses the offset zero as the base offset of the activation record.
HLA assigns local (automatic) variables negative offsets from this base offset and parameters
positive offsets from the base offset. Using the following syntax, you can change the base offset
from zero to any other signed integer value you choose:

var:= <<signed integer expression>>;
<< var declaration section>>

The first local variable you declare in the << var declaration section >> will have the offset you
specify by <<signed integer expression>>. Note that HLA will not first subtract the size of the
first object from your base offset as it normally does for the automatic variables you declare. It
uses the value you supply as the offset of the first variable you declare. Also note that this syntax
does not change the offsets assigned to the parameters for the procedure. Therefore, EBP must
point at the same location (at the old value of EBP immediately below the return address) it would
if you didn't set the starting offset.

In general, this syntax is far more useful for record data structures than it is for var activation
records, but it can be useful if you want to explicitly declare the saved EBP value and the display (if
one is present). For example:

procedure p(i:int32);
var := 0;

saveEBP:dword;
display:dword[2];
b :byte;
Public Domain Created by Randy Hyde Page 159

HLA Reference Manual 5/24/10 Chapter 10
w :word;
d :dword;
l :lword;

begin _p;
.
.
.

end _p;

The var declaration section also supports the following (rarely-used) @nostorage syntax:

varID : typeID; @nostorage;
varID : typeID [list_of_array_dimensions]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;

These declarations assign the current offset (after subtracting the size of the object) into the
activation record to the variable you've declared, but they do not reserve any storage for such
variables. As a result, variable declarations with the @nostorage option in the var section overlay
the following variable declaration(s). Consider the following variable declarations:
 var

w:word; @nostorage;
b:byte; @nostorage;
d:dword;

The b variable will be sitting at offset -1, the w variable will be at offset -2, and the d variable
will be sitting at offset -4. Note that these variables overlap one another in memory. Be very careful
when using the @nostorage option in the var declaration section. If you declare a large object
using the @nostorage option and you don't declare sufficient storage in variables after that object,
accessing that object may wind up wiping data in "no man's land" on the stack.

Note that because offsets into the activation record are negative, the @nostorage option
behaves differently in the var section from the way it works in the static, storage, and readonly
sections. If you have a byte variable with an @nostorage option followed by a dword variable, the
byte variable will be sitting in the H.O. byte of the dword object (rather than in the L.O. byte
position, as it would in a static, storage, or readonly section). For this reason, you'll rarely see the
@nostorage option used in a var section.

10.2.6 The HLA STATIC Declaration Section
The static section is where you declare static/data variables in an HLA namespace, class,

procedure, method, iterator, or program. The basic syntax for an HLA static section is the
following:

static
<< static variable declarations >>

or

static
<< static variable declarations >>

endstatic;

Each static variable declaration can take one of the following forms:

Uninitialized forms:
Public Domain Created by Randy Hyde Page 160

HLA Reference Manual 5/24/10 Chapter 10
varID : typeID;
varID : typeID [list_of_array_dimensions];
varID : procedure (<<optional_parameter_list>>);
varID : record <<record_field_declarations>> endrecord;
varID : union <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

Initialized forms:
varID : typeID := <<constant expression>>;
varID : typeID [list_of_array_dimensions] := <<constant expression>>;
varID : procedure (<<optional_parameter_list>>) := <<constant
expression>>;
varID : pointer to typeID := <<constant expression>>;
varID : enum{ <<list_of_enumeration_identifiers>> } := <<constant
expression>>;

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [list_of_array_dimensions]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external("external_name");
varID : typeID [list_of_array_dimensions]; external;
varID : typeID [list_of_array_dimensions]; external("external_name");
varID : procedure (<<optional_parameter_list>>); external;
varID : procedure (<<optional_parameter_list>>); external(
"external_name");
varID : pointer to typeID; external;
varID : pointer to typeID; external("external_name");

The first set of declarations above creates non-initialized static variables. "Non-initialized"
means that the program does not explicitly initialize these static variables before the program
begins execution; in fact, the system initializes all non-initialized static objects to zero (or all zero
bits) when the program loads into memory. Although you can safely assume that all non-initialized
static variables contain zero bits, it's still wise to explicitly initialize static variables you expect to
contain zero; leave the non-initialized forms of the static variable declaration for those variables
whose initial value is completely irrelevant (e.g., because the program will initialize the value
before ever using it).

Here are some examples of non-initialized variable declarations:

static
i :int32;
user :someUserType;
ary :char[3];
usrAry :someUserType[2];
procPtr:procedure (cnt:uns32);
quickRec:record

a :char;
Public Domain Created by Randy Hyde Page 161

HLA Reference Manual 5/24/10 Chapter 10
b :boolean;
c :char;

endrecord;
quickUn:union

a :char;
b :boolean;
c :char;

endunion;
charPtr:pointer to char;
usrPtr :pointer to someUserType;
colors :enum{ red, green, blue };

Static variables also support initialization via some constant expression using the syntax from
the second group of declarations given earlier. The type of the constant expression must be
compatible with the type of the static variable you are declaring (that is, the type must match or
HLA must be able to convert the constant's type to the specified type at compile time). Here are
some examples:

type
someUserType :record

b:boolean;
c:char;
w:word;
d:dword;

endrecord;

procedure p(parameter:uns32);
begin p;

.

.

.
end p;

static
i :int32 := -4;
user :someUserType := someUserType:[false, 'a', 0, 1];
ary :char[3] := ['a', 'b', 'c'];
usrAry :someUserType[2] :=

[
someUserType:[false, 'a', 0, 1],
someUserType:[true, 'b', 1, 0]

];

procPtr:procedure (cnt:uns32) := &p;
charPtr:pointer to char := &ary[0];
usrPtr :pointer to someUserType := &user;

You will notice that you cannot provide initializer constants for all of the static variable
declarations. In particular, you cannot assign a constant to a static variable directly declared as a
record, union, or enum object. However, as this last example demonstrates, this isn't a limitation
because you can easily create a user-defined type that is a record, union, or enum type and use that
type in a static variable declaration (e.g., as was done with someUserType in this example).

The third syntactical form (the "no allocation" forms) create a typed label in memory without
explicitly allocating storage for that static variable. As a result, a variable with the @nostorage
option will be sitting at the same memory location as the following variable(s) you declare in
memory. Consider the following example:
static
Public Domain Created by Randy Hyde Page 162

HLA Reference Manual 5/24/10 Chapter 10
b :byte; @nostorage;
u :uns32;@nostorage;
i :int32;

The b, u, and i variables will all be sitting at the same starting address in memory; any
modification to one of these variables will modify the others, as well. This declaration is almost
equivalent to putting these three variables into a union data type.

The static declaration section also allows the declaration of external (and public) variables (see
the "External Forms" syntax given earlier). Each external declaration can take one of two forms,
one using the "external;" declaration and one using the "external("external_name");" declaration.
For example:

static
b :byte; external;
u :uns32;external("u_var");

When external appears by itself, HLA will use the declared variable's name (e.g., b in this
example) as the external name. Whenever you use the second form (with the string argument),
HLA will use the declared name within the current source file and use the string name supplied as
the external argument as the external name (e.g., u_var in place of u in this example).

When you compile and link your program, the system assumes that you have declared all
external static variables in some other object module (that you link with the file containing the
external declaration). The file containing the actual variable declaration must define the symbol as
a public symbol. You create a public symbol by having both an external definition of the symbol
and a regular declaration of that symbol, e.g.,

static
b :byte; external;
b :byte := 1;

u :uns32;external("u_var");
u :uns32 := 2;

All public and non-external variables in a static section will consume the corresponding
amount of space in the executable program's disk file. This is true even if you don't explicitly
assign a value to a static object using the initializer syntax. If you don't explicitly assign a value to
a static variable, HLA will write a zero to the corresponding location on the disk. This is how the
system initializes those variables when the program begins running: it simply copies the data from
the disk file to the location in memory where the variable will be accessed. As non-initialized
variables have zeros written to the disk file at their corresponding locations, the operating system
will load those zeros into the memory locations reserved for such variables, thus initializing them to
zero.

An HLA static declaration section can also appear in the body of a procedure or program. In
such a case, you must explicitly terminate the static declaration section with an endstatic clause.
Here's an example of such a declaration section:

procedure p;
begin p;

.

.

.
static

b :byte := 1;
w :word;
d :dword; external;
Public Domain Created by Randy Hyde Page 163

HLA Reference Manual 5/24/10 Chapter 10
endstatic;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of static declaration section is to support variable
declarations in macros that might need to declare static variables but are invoked within the body of
the procedure. It would be unusual for you to explicitly declare static variables this way.

10.2.7 The HLA STORAGE Declaration Section
The storage section is where you declare uninitialized static variables in an HLA namespace,

class, procedure, method, iterator, or program. The basic syntax for an HLA storage section is
similar to that for static except you are not allowed to initialize any variables you declare in the
storage section. The syntax is the following:

storage
<< storage variable declarations >>

or

storage
<< storage variable declarations >>

endstorage;

Each storage variable declaration can take one of the following forms:

Standard forms:
varID : typeID;
varID : typeID [list_of_array_dimensions];
varID : procedure (<<optional_parameter_list>>);
varID : record <<record_field_declarations>> endrecord;
varID : union <<union_field_declarations>> endunion;
varID : pointer to typeID;
varID : enum{ <<list_of_enumeration_identifiers>> };

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [list_of_array_dimensions]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external("external_name");
varID : typeID [list_of_array_dimensions]; external;
varID : typeID [list_of_array_dimensions]; external("external_name");
varID : procedure (<<optional_parameter_list>>); external;
Public Domain Created by Randy Hyde Page 164

HLA Reference Manual 5/24/10 Chapter 10
varID : procedure (<<optional_parameter_list>>); external(
"external_name");
varID : pointer to typeID; external;
varID : pointer to typeID; external("external_name");

Other than you cannot assign an initial value to a storage variable, the declaration of the
variables in the storage section is identical to that of the static section. Please see the discussion in
the static section for more details.

As far as your program is concerned, storage variables are static objects exactly like variables
you declare in a static section. The only real difference between variables you declare in a storage
section and those you declare in a static section is that the disk file holding the program's data and
code does not contain any data for the individual variables. Instead, HLA makes note of the number
of bytes for all your storage variable declarations and stores this size in the object file it produces.
When the operating system loads your program into memory, it makes note of this size and
allocates a sufficient amount of space for these "BSS" (Block Started by a Symbol - an ancient
assembly language term) variables and then writes zeros to that block of storage so that the
variables are all initialized to zero when the program begins running. Although your program will
take the same amount of storage in memory regardless of whether you declare your variables in the
storage or static section, you may save some disk space in the executable file if you declare your
uninitialized variables in the storage section rather than the static section.

An HLA storage declaration section can also appear in the body of a procedure or program. In
such a case, you must explicitly terminate the static declaration section with an endstorage clause.
Here's an example of such a declaration section:

procedure p;
begin p;

.

.

.
storage

b :byte;
w :word;
d :dword; external;

endstorage;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of storage declaration section is to support
variable declarations in macros that might need to declare storage variables but are invoked within
the body of the procedure. It would be unusual for you to explicitly declare storage variables this
way.

10.2.8 The HLA READONLY Declaration Section
The readonly section is where you declare static read-only values in an HLA namespace,

class, procedure, method, iterator, or program. The basic syntax for an HLA readonly section is
the following:

readonly
Public Domain Created by Randy Hyde Page 165

HLA Reference Manual 5/24/10 Chapter 10
<< readonly variable declarations >>

or

readonly
<< static variable declarations >>

endreadonly;

Each readonly object declaration can take one of the following forms:

Initialized forms:
varID : typeID := <<constant expression>>;
varID : typeID [list_of_array_dimensions] := <<constant expression>>;
varID : procedure (<<optional_parameter_list>>) := <<constant
expression>>;
varID : pointer to typeID := <<constant expression>>;
varID : enum{ <<list_of_enumeration_identifiers>> } := <<constant
expression>>;

No allocation forms:
varID : typeID; @nostorage;
varID : typeID [list_of_array_dimensions]; @nostorage;
varID : procedure (<<optional_parameter_list>>); @nostorage;
varID : pointer to typeID; @nostorage;
varID : enum{ <<list_of_enumeration_identifiers>> }; @nostorage;

External forms:
varID : typeID; external;
varID : typeID; external("external_name");
varID : typeID [list_of_array_dimensions]; external;
varID : typeID [list_of_array_dimensions]; external("external_name");
varID : procedure (<<optional_parameter_list>>); external;
varID : procedure (<<optional_parameter_list>>); external(
"external_name");
varID : pointer to typeID; external;
varID : pointer to typeID; external("external_name");

Note that there are no non-initialized forms that have storage allocated for them. A readonly
object must have an initializer attached to it, have the @nostorage attribute (in which case it
inherits the initial value of the following readonly object you declare), or it must be an external
declaration.

HLA places all objects you declare in a readonly section into memory that the operating
system write protects. Any attempt to store data into a readonly object at run time will result in a
segmentation/access violation fault. This is enforced by the operating system, not by HLA. You
can create an instruction that will store data into a readonly object and HLA will compile the
program just fine. When you try to run the program, however, it will generate an exception when
you attempt to execute that instruction.

An HLA readonly declaration section can also appear in the body of a procedure or program.
In such a case, you must explicitly terminate the readonly declaration section with an endreadonly
clause. Here's an example of such a declaration section:

procedure p;
begin p;
Public Domain Created by Randy Hyde Page 166

HLA Reference Manual 5/24/10 Chapter 10
.

.

.
readonly

b :byte := 1;
w :word := 2;
d :dword; external;

endreadonly;
.
.
.

end p;

As far as HLA is concerned, such declarations are treated as though you'd place them in the
declaration section of that procedure (except you cannot access the variables until after they are
declared). The main reason for allowing this type of readonly declaration section is to support
variable declarations in macros that might need to declare readonly variables but are invoked
within the body of the procedure. It would be unusual for you to explicitly declare readonly
variables this way.

10.2.9 The HLA PROC Declaration Section
The proc section is where you declare "new style" procedures, iterators, and methods. The

chapter on procedures goes into detail about the proc section, please see the discussion of the proc
section in that chapter.

10.2.10 THE HLA NAMESPACE Declaration Section
HLA supports a special declaration section known as a namespace. A namespace is a

collection of declarations that HLA gathers together under a single identifier (the namespace
identifier). A namespace declaration uses the following syntax:
namespace userNamespaceID;

<< namespace declarations >>

end userNamespaceID;

userNamespaceID is an identifier you associate with the namespace declarations; you will use
this identifier when referencing members of the namespace in your application. The body of the
namespace, << namespace declarations >>, can be any of the following declaration sections:

const
val
type
static
readonly
storage
proc
old-style procedure, method, and iterator declarations
Note that label and var declaration sections are illegal in a namespace. In addition, you cannot

nest namespace declarations (that is, namespace declarations are not legal in a namespace).
Namespace declarations should always appear an lex-level one in a program or unit. In HLA

v2.x namespaces have a relatively kludged implementation and strange things might happen if you
Public Domain Created by Randy Hyde Page 167

HLA Reference Manual 5/24/10 Chapter 10
declare namespaces within classes, procedures, methods, or iterators; namespace declarations have
not been extensively tested in such cases and will probably fail to work properly.

An unusual feature about namespaces is that the namespace identifier does not have to be
unique within its scope (that is, at lex level one). You can have multiple namespace declarations in
a program with the same namespace identifier. HLA will simply combine these separate
namespaces into a single unit. This is useful, for example, when you've got several different include
files and each include file contains a common namespace declaration with the intent of
constructing one big name space from the three separate ones. Although the namespace identifier
need not be unique, all the declarations in a namespace with a given identifier must be unique.
That is, you cannot declare two objects with the same name in a single name space.

One of the principle purposes of an HLA namespace is to prevent name space pollution. As
your applications increase in size, and especially as you start to link in libraries of subroutines you
(or other people) have created, it becomes difficult to avoid reusing names that other code is
already using. For example, you might want to write a put macro or procedure to output data in
some special way. However, put is a very common name (for example, the HLA Standard Library
uses it) so you'd probably have to dream up a different name if you wanted to use this identifier.
This is where name spaces come to the rescue. You can encapsulate every instance of the put
identifier in a separate namespace and avoid the conflicts. For example, the HLA Standard Library
uses the put identifier all over the place, but it's buried in the stdout, stderr, fileio, str, and other
name spaces, so these identifiers don't conflict with one another.

To access an identifier that is a member of a namespace, you use the same dot notation that
HLA uses for record, union, and class field access. To access a field from a namespace you
specify the name space identifier, a period (dot), followed by the field name. For example, to
invoke the put macro in the HLA Standard Library stdout namespace, you use the (very familiar)
sequence stdout.put. If you create your own namespace, you simply substitute your name space
identifier and the field name, e.g.,:
program nsDemo;

namespace myNamespace;

static
x:dword;

procedure pp(p:dword);
begin pp;
end pp;

end myNamespace;

begin nsDemo;

myNamespace.pp(myNamespace.x);

end nsDemo;

As noted above, namespaces in HLA have a somewhat kludged implementation. One artifact
of this implementation is that within a namespace no global symbols (symbols declared outside the
namespace) are directly visible. This includes some HLA-defined symbols (such as true and
false) in addition to any symbols you've defined. If you need to reference any symbols defined
outside the namespace within code (or expressions) inside the namespace, you will need to prepend
the @global: string to the global symbol; otherwise, HLA will generate an unknown symbol error.
Here is an example of using the @global modifier:

program nsDemo;
type

array:byte[256];

namespace myNamespace;
Public Domain Created by Randy Hyde Page 168

HLA Reference Manual 5/24/10 Chapter 10
static
b:boolean := @global:true;

procedure pp(p:@global:array);
begin pp;
end pp;

end myNamespace;

static
a :array;

begin nsDemo;

myNamespace.pp(a);

end nsDemo;

A namespace declaration section may contain external- and forward-declared objects.
Forward and public objects must be defined somewhere in the namespace within the current
compilation, but you could have the external/forward definition in one instance of a particular
namespace and the actual declaration of the object in another instance of that same namespace, e.g.,

program nsDemo;
namespace myNamespace;

static
b:boolean; external;

procedure pp(p:dword); forward;

end myNamespace;

// Assume some other code is here...

namespace myNamespace;

static
b:boolean;

procedure pp(p:dword);
begin pp;
end pp;

end myNamespace;

begin nsDemo;
end nsDemo;

This example is rather trivial, but it's not hard to imagine a better one. The HLA Standard
Library include files, for example, contain dozens of namespace declarations containing external
entries. The actual source code for the HLA Standard Library contains the actual implementation
within a namespace declaration section (in a unit).

One big advantage to using namespaces is that they improve HLA's compilation speed when
dealing with a large number of symbols. Namespaces use a special symbol table lookup algorithm
that is much faster that the standard symbol table lookup algorithms that HLA uses for symbols
Public Domain Created by Randy Hyde Page 169

HLA Reference Manual 5/24/10 Chapter 10
defined outside a namespace. Using namespaces to encapsulate a large number of symbols can
dramatically improve compile times. For example, the w.hhf header file (that encapsulates all of its
identifiers in the w namespace) used to take about 45 seconds to process on a Pentium IV
processor, prior to putting all the symbols into a namespace. After adding namespaces to HLA, the
compile time was reduced to a couple of seconds. So if you're creating a large project with
hundreds or thousands of data variables and other symbols, you might want to consider sticking
those symbols into a namespace in order to reduce compilation time.
Public Domain Created by Randy Hyde Page 170

HLA Reference Manual 5/24/10 Chapter 11
11 HLA Procedure Declarations and Procedure Calls

Note: this chapter discusses how HLA generates code for various procedure calls and
procedure bodies. The examples given here should be treated as gross approximations only. Most
of these examples come from early version of HLA v1.x and later versions have substantially
improved the code generation. When in doubt, compile a test program with HLA emitting source
code for your favorite assembler and view the output that HLA procedures.

11.1 Procedure Declarations
HLA supports two different ways to declare procedures in a program: the "original style" ("old

style") and the "new style". The "original style" was introduced in HLA v1.0; the "new style" of
procedure declarations was introduced in HLA v2.0. Note that the "original style" (despite often
being called the "old style") is not obsolete nor is it in danger of being deprecated. The original and
new styles of procedure declarations are complementary. The new procedure declaration style
simply adds some consistency and enhanced facilities to HLA.

11.1.1 Original Style Procedure Declarations

Original style procedure declarations are nearly identical to program declarations with two
major differences: procedures are declared using the "procedure" reserved word and procedures
may have parameters. The general syntax is:

procedure identifier (optional_parameter_list); procedure_options
declarations

begin identifier;
statements

end identifier;

Note that you may declare procedures inside other procedure in a fashion analogous to most
block-structured languages (e.g., Pascal).

The optional parameter list consists of a list of var-type declarations taking the form:

optional_access_keyword identifier1 : identifier2 optional_in_reg

optional_access_keyword, if present, must be val, var, valres, result, name, or lazy and
defines the parameter passing mechanism (pass by value, pass by reference, pass by value/result [or
value/returned], pass by result, pass by name, or pass by lazy evaluation, respectively). The default
is pass by value (val) if an access keyword is not present. For pass by value parameters, HLA
allocates the specified number of bytes according to the size of that object in the activation record.
For pass by reference, pass by value/result, and pass by result, HLA allocates four bytes to hold a
pointer to the object. For pass by name and pass by lazy evaluation, HLA allocates eight bytes to
hold a pointer to the associated thunk and a pointer to the thunk’s execution environment (see the
sections on parameters and thunks for more details).

 The optional_in_reg clause, if present, corresponds to the phrase "in reg" where reg is one of
the 80x86’s general-purpose 8-, 16-, or 32-bit registers. You must take care when passing
parameters through the registers as the parameter names become aliases for registers and this can
create confusion when reading the code later (especially if, within a procedure with a register
parameter, you call another procedure that uses that same register as a parameter).

HLA also allows a special parameter of the form:

var identifer : var
Public Domain Created by Randy Hyde Page 171

HLA Reference Manual 5/24/10 Chapter 11
 This creates an untyped reference parameter. You may specify any memory variable as the
corresponding actual parameter and HLA will compute the address of that object and pass it on to
the procedure without further type checking. Within the procedure, the parameter is given the
dword type.

The procedure_options component above is a list of keywords that specify how HLA emits
code for the procedure. There are several different procedure options available:
@noalignstack, @alignstack, @pascal, @stdcall, @cdecl, @align(int_const),
@use reg32, @leave, @noleave, @enter, @noenter, and @returns("text").

Option Description

 @noframe,
@frame

By default, HLA emits code at the beginning of the procedure to
construct a stack frame. The @noframe option disables this
action. The @frame option tells HLA to emit code for a particular
procedure if stack frame generation is off by default. HLA also
uses these two special reserved words as a compile-time variables
to set the default frame generation for all procedures. Setting
@frame to true (or @noframe to false) turns on frame generation
by default; setting @frame to false (or @noframe to true) turns off
frame generation.

 @nodisplay,
@display

By default, HLA emits code at the beginning of the procedure to
construct a display within the frame. The @nodisplay option
disables this action. The @display option tells HLA to emit code
to generate a display for a particular procedure if display generation
is off by default. Note that HLA does not emit code to construct the
display if @noframe is in effect, though it will assume that the
programmer will construct this display themself. HLA also uses
these two special identifiers as a compile-time variable to set the
default display generation for all procedures. Setting @display to
true (or @nodisplay to false) turns on display generation by
default; setting @display to false (or @nodisplay to true) turns off
display generation.

 @noalignstack,
@alignstack

By default (assuming @frame generation is active), HLA will emit
an instruction to align ESP on a four-byte boundary after allocating
local variables. Win32, *NIX, and other 32-bit OSes require the
stack to be double-word-aligned (hence this option). If you know
the stack will be double-word-aligned, you can eliminate this extra
instruction by specifying the @noalignstack option. Conversely,
you can force the generation of this instruction by specifying the
@alignstack procedure option. HLA also uses these two special
identifiers as a compile-time variable to set the default display
generation for all procedures. Setting @alignstack to true (or
@noalignstack to false) turns on stack alignment generation by
default; setting @alignstack to false (or @noalignstack to true)
turns off stack alignment code generation.
Public Domain Created by Randy Hyde Page 172

HLA Reference Manual 5/24/10 Chapter 11
 @pascal,
@cdecl,
@stdcall

These options give you the ability to specify the parameter passing
mechanism for procedures. By default, HLA uses the @pascal
calling sequence for all procedures. This calling sequence pushes
the parameters on the stack in a left-to-right order (i.e., in the order
they appear in the parameter list). It also automatically cleans up
the stack upon return from the procedure. The @cdecl procedure
option tells HLA to pass the parameters from right-to-left so that
the first parameter appears at the lowest address in memory and it is
the user’s responsibility to remove the parameters from the stack
upon return from the procedure. The @stdcall procedure option is
a hybrid of the @pascal and @cdecl calling conventions. It
pushes the parameters in the right-to-left order (just like @cdecl)
but @stdcall procedures automatically remove their parameter
data from the stack (just like @pascal). Win32 API calls use the
@stdcall calling convention.
Note that iterators and methods always use the Pascal calling
convention; you may only apply the @cdecl and @stdcall options
to HLA procedures.

 @align(int_constant)
The @align(int_const) procedure option aligns the procedure on
a 1, 2, 4, 8, or 16 byte boundary. Specify the boundary you desire
as the parameter to this option. The default is @align(1), which is
unaligned; HLA also uses this special identifiers as a compile-time
variable to set the default procedure alignment . Setting @align :=
1 turns off procedure alignment while supplying some other value
(which must be a power of two) sets the default procedure
alignment to the specified number of bytes.

 @use reg32
When passing parameters, HLA can sometimes generate better
code if it has a 32-bit general purpose register for use as a
scratchpad register. By default, HLA never modifies the value of a
register behind your back; so, it will often generate less than
optimal code when passing certain parameters on the stack. By
using the @use procedure option, you can specify one of the
following 32-bit registers for use by HLA: EAX, EBX, ECX,
EDX, ESI, or EDI. By providing one of these registers, HLA may
be able to generate significantly better code when passing certain
parameters.

 @returns("text")
This option specifies the compile-time return value whenever a
function name appears as an instruction operand. For example,
suppose you are writing a function that returns its result in EAX.
You should probably specify a "returns" value of "EAX" so you can
compose that procedure just like any other HLA machine
instruction (see the example below and the section on machine
instructions for more details).
Public Domain Created by Randy Hyde Page 173

HLA Reference Manual 5/24/10 Chapter 11
 The following example demonstrates how the @returns option works:

program returnsDemo;
#include("stdio.hhf");

procedure eax0; @returns("eax");
begin eax0;

mov(0, eax);

end eax0;

begin returnsDemo;

mov(eax0(), ebx);

 @leave,
@noleave

These two options control the code generation for the standard exit
sequence. If you specify the @leave option then HLA emits the
x86 leave instruction to clean up the activation record before the
procedure returns. If you specify the @noleave option, then HLA
emits the primitive instructions to achieve this, e.g.,
 mov(ebp, esp);
 pop(ebp);

The manual sequence is faster on some architectures, the leave
instruction is always shorter.

Note that @noleave occurs by default if you’ve specified
@noframe. By default, HLA assumes @noleave but you may
change the default using these special identifiers as a compile-time
variable to set the default leave generation for all procedures.
Setting @leave to true (or @noleave to false) turns on leave
generation by default; setting @leave to false (or @noleave to true)
turns off the use of the leave instruction.

 @enter,
@noenter

These two options control the code generation for a procedure’s
standard entry sequence. If you specify the @enter option then
HLA emits the x86 enter instruction to create the activation
record. If you specify the @noenter option, then HLA emits the
primitive instructions to achieve this.

The manual sequence is always faster, using the enter instruction
is usually shorter.

Note that @noenter occurs by default if you’ve specified
@noframe. By default, HLA assumes @noenter but you may
change the default using these special identifiers as a compile-time
variable to set the default enter generation for all procedures.
Setting @enter to true (or @noenter to false) turns on enter
generation by default; setting @enter to false (or @noenter to
true) turns off the use of the enter instruction.
Public Domain Created by Randy Hyde Page 174

HLA Reference Manual 5/24/10 Chapter 11
stdout.put("ebx=", ebx, nl);

end returnsDemo;

11.1.2 "New Style" Procedure Declarations
HLA v2.0 added a new form of procedure declaration to make the syntax of procedure

declarations more consistent with the other declaration sections (i.e., const, val, type, var, static,
readonly, and storage). The new syntax uses the proc keyword to begin a procedure declaration
section, e.g.,

 proc
 << procedure declarations using new style syntax>>

You may optionally end a proc section with an endproc clause:

 proc
 << procedure declarations using new style syntax>>

endproc;

A procedure, iterator, or method declaration appearing in a proc section is declared using
one of the following forms:

identifier : procedure_type;
begin identifier;

<<procedure body>>
end identifier;

identifier : procedure_type procedure_options;
begin identifier;

<<procedure body>>
end identifier;

identifier is the name of the procedure you're declaring. This is a standard HLA identifier.
procedure_type is either a predefined (in the type section) procedure type or the reserved word

procedure followed by an optional parameter list. Here are some examples of procedure
declarations using both schemes:

type
proc_t : procedure(i:int32; u:uns32);

proc
proc1:proc_t;
begin proc1;

<<procedure body>>
end proc1;

proc2:procedure(a:char);
begin proc2;

<<procedure body>>
end proc2;

endproc;
Public Domain Created by Randy Hyde Page 175

HLA Reference Manual 5/24/10 Chapter 11
The advantage of using a procedure type identifier to capture the parameter list is especially
evident when defining several forward or external procedure declarations in a header file. If you
have several procedures that all have the same parameter list (e.g., Win32 winproc type
procedures), you can save a lot of typing by specifying a generic procedure type rather than
repeating the same parameter list over and over again in the procedure declarations (using the
original style declarations).

The syntax for procedure options in the new style procedure declarations is slightly different
from the original style. Procedure options, if present, appear after the procedure type (or parameter
list) and are surrounded by a pair of braces; they are separated by spaces or commas rather than
terminated by semicolons. Here are some examples:

type
proc_t : procedure(i:int32; u:uns32);

proc
procx:proc_t; external;
procy:procedure(d:dword) { @returns("@c")}; forward;

proc1 :proc_t {@noframe, @nodisplay};
begin proc1;

<<procedure body>>
end proc1;

proc2:procedure(var a:char)
{@cdecl, @use eax, @returns("eax"), @noframe};

begin proc2;
<<procedure body>>

end proc2;

Note that an original style procedure (or iterator or method) declaration will terminate a
proc section. If you want to add some additional new style procedure declarations after an original
style declaration, you will have to begin a new proc section by supplying another proc keyword
definition.

HLA v1.x provided the ability to create a pointer to a procedure using syntax like the
following:

procedure someProc(i:int32; u:uns32);
begin someProc;

<< procedure body >>
end someProc;

.

.

.
type

someProc_t :pointer to someProc;

static
ptrToSomeProc:someProc_t;

Objects of someProc_t will be pointers to procedures have two parameters (int32 and uns32,
as per the original someProc declaration). This syntax has always been a kludge (it was added at
the request of an early HLA user) but the original HLA procedure declaration syntax really didn't
allow anything that was better. Basing a type on an instance of an existing procedure declaration is
ugly syntax. The better solution is to do the converse, base the procedure declaration on some
procedure type. This is what the new procedure declaration syntax does.
Public Domain Created by Randy Hyde Page 176

HLA Reference Manual 5/24/10 Chapter 11
type
someProc_t :procedure(i:int32; u:uns32);

proc
someProc :someProc_t;
begin someProc;

<< procedure body >>
end someProc;

.

.

.

static
ptrToSomeProc:someProc_t;

11.2 Overloaded Procedure/Iterator/Method Declarations

Starting with HLA v2.5, the HLA language supports an overloads declaration in the proc
declaration section. In previous versions of HLA it was possible to use the overload macro to
create overloaded procedures, but that macro has some serious limitations. The new overloads
declaration lifts many of the restrictions of the overload macro.

Because the overloads declaration replaces the functionality of the overload macro, the macro
was moved out of the hla.hhf header file and into its own overload.hhf header file. The stdlib.hhf
header file does not automatically include overload.hhf; therefore, if you are using the overload
macro in your programs you will need to explicitly include the overload.hhf header file to compile
without error. Better yet, convert your existing code to use the new overloads declaration.

Overloaded functions allows you to call a function (procedure, method, or iterator) based on a
calling signature rather than just by the function's name. A call signature consists of the function's
name and the number and types of its parameter list. Several functions can share the same name
but have different signatures based on their parameter lists. For example, consider a put function
with the following signatures:

procedure put(u:ins32);
procedure put(i:int32);
procedure put(c:char);

If you call put with an uns32 parameter, it will invoke the version of the procedure that has an
uns32 argument; likewise, if you pass an int32 or char parameter, the call to put will invoke the
corresponding procedure.

The number of parameters also affects the function's signature; consider an extension of the
put procedure signatures:

procedure put(u:ins32);
procedure put(u:ins32; size:int32);
procedure put(i:int32);
procedure put(i:int32; size:int32);
procedure put(c:char);
procedure put(c:char; size:int32);

An invocation of the form "put(u32Var);" will call the first version of put; an invocation of
the form "put(u32Var, width);" will call the second version above (assuming u32Var is an uns32
object and width is an int32 object).
Public Domain Created by Randy Hyde Page 177

HLA Reference Manual 5/24/10 Chapter 11
Unlike some HLLs, HLA doesn't allow you to declare multiple procedures with the same name
(but different signatures). The problem with that approach is that HLA has to generated internal
("mangled") names and this creates problems when you try to link overloaded procedures with
other code (particularly if it isn't written in that same language). Instead, HLA's overloads
declaration takes a more reasonable approach where you define the names of the individual
functions (using standard procedure declarations with unique function names) and then use a set of
overloads declarations to assign different signatures (with the same name) to these functions.

The overloads declaration appears in a proc section and uses the following basic syntax:

ovldName : overloads functionName;
ovldName : overloads functionName ("string calling sequence");

Here are a couple of overload example declarations:

procedure proc1(i:int32); external;
procedure proc2(i:int32; j:int32); external;
procedure proc3(i:in32; j:int32; k:int32); external;

proc
prc : overloads proc1;
prc : overloads proc2;
prc : overloads proc3;

In this example, prc is the overloaded procedure name. Invoking prc will call proc1, proc2, or
proc3, depending on the complete invocation signature. Note that you don't actually create a
procedure named prc. The overloads declaration tells HLA that ovldName overloads the
functionName in the overloads declaration.

In the overloads declaration, functionName must be the name of an already-defined
procedure, method, or iterator. This can be a forward, external, or actual procedure/iterator/
method declaration. Note that you cannot specify a procedure type name here; only actual
procedure/method/iterator names are legal (as in the example above).

The overloaded name (e.g., prc in the example above) must be either an undefined identifier or
an existing overloads name. Overloads identifiers follow all the usual HLA scoping rules with
one extension: if you declare an overloads identifier inside a procedure, method, or iterator and
that identifier is an overloads identifier outside that function, then the local declaration will extend
the global declaration, not replace it. For example, consider this code:
program example;

static
i:int32;
u:int32;

proc
proc1 :procedure(i:int32); external;
proc2 :procedure (u:uns32); external;

prc : overloads proc1;

procedure local;
proc

prc :overloads proc2;
begin local;

prc(i); // Calls proc1
prc(u); // Calls proc2

end local;
Public Domain Created by Randy Hyde Page 178

HLA Reference Manual 5/24/10 Chapter 11
begin example;

prc(i); // calls proc1
prc(u); // Illegal, no valid signature for this call

end example;

Note how the signature that has an uns32 argument is visible only inside local. Also note that
the prc signature defined outside local is also usable inside local, despite the local declaration of
prc inside the local procedure. Outside the local procedure, prc is still valid but the signature that
has an uns32 argument is no longer visible.

Note that signatures do not have to be unique. Consider the following declarations:

procedure proc1(i:int32); external;
procedure proc2(i:int32); external;

proc
prc : overloads proc1;
prc : overloads proc2;

Although proc1 and proc2 have the same argument list (that is, the number of parameters and
types of the parameters match), the overloads declarations are legal. This, however, creates an
ambiguity: if you invoke "prc(int32Var);" how will HLA differentiate the two calls? The answer
is simple: HLA uses the last overloads declaration to disambiguate the declarations. This might
seem confusing and a poor design decision, but this was a conscious design decision. To
understand why HLA does this, consider the following example:

program example;
static

i:int32;

proc
proc1 :procedure(i:int32); external;
proc2 :procedure (i:int32); external;

prc : overloads proc1;

procedure local;
proc

prc :overloads proc2;
begin local;

prc(i); // Calls proc2

end local;

begin example;

prc(i); // calls proc1

end example;

Within a function, a local declaration of an overloads identifier can hide a global invocation
that has the same signature. As the above example demonstrates, the global declaration is visible
again beyond the body of the local function.
Public Domain Created by Randy Hyde Page 179

HLA Reference Manual 5/24/10 Chapter 11
When you invoke an overloads function, HLA applies a multi-step signature-matching
algorithm to determine which of the overloaded functions to call. First, the number of parameters
must exactly agree with some overloads declaration or HLA will reject the invocation.

HLA compares the invocation parameter list against the list of overloads declaration. It scans
the list backwards from the last overloads declaration (for a given overloads identifier) through to
the first identifier. If an exact match to the parameter's types is found, then HLA will call that
procedure, method, or iterator.

If HLA scans through the complete list of overloaded function names and doesn't come up
with an exact signature match, then it will make a second pass through the list and relax the
parameter matching requirements to see if a match is possible. The relaxation takes the following
form:

Smaller unsXX types are "promoted" to larger types (e.g., an uns8 actual parameter can be
passed to a function with an uns32 formal parameter).

Hexadecimal types (byte, word, dword, qword, tbyte, and lword) are compatible with all
integer and unsigned types of the same size.

 Note that the x86's registers are hexadecimal types.
Dwords are compatible with pointers.
Pointer constants are compatible with strings.

Because relaxing the type checking can produce ambiguity, the "last overloads to first
overloads" disambiguation rule apples. Therefore, you should declare higher priority overloads
declarations last in the proc section.

The overloads declaration takes two forms:

ovldName : overloads functionName;
ovldName : overloads functionName ("string calling sequence");

When you use the first form (as in all the examples to this point), invoking the overloaded
name (ovldName) substitutes the actual function name (functionName) whose parameter list
matches the actual call. That is, given a declaration of the form:

prc : overloads proc1; // Assume: procedure proc1(u:uns32);

And given the invocation:

prc(uns32Var);

HLA will generate the following actual procedure call:

proc1(uns32Var);

In certain circumstances, calling the function using the declared function name is insufficient.
For example, if you have a class variable (an object), then you'll actually need to invoke the
procedure using the actual object name, not by simply invoking the class procedure, method, or
iterator name. The second form of the overloads declaration allows you to specify a string that
HLA will expand when calling the actual function. Consider the following declarations inside a
namespace:

namespace ns;

procedure a(u:uns32);
begin u;

//…
end u;

procedure b(i:int32);
Public Domain Created by Randy Hyde Page 180

HLA Reference Manual 5/24/10 Chapter 11
begin b;
//…

end b;

proc
ab:overloads a;
ab:overloads b;

end ns;

This set of overloads declarations will not work outside the namespace. You would like to be
able to invoke ab using "ns.ab(uns32Var);" or "ns.ab(int32Var);" but this will not work outside
the namespace because an invocation of the form "ns.ab(uns32Var);" produces a call of the form
"a(uns32Var);". Of course, outside the namespace this will either generate a syntax error (symbol
not found or mismatched parameter list) or it will call the wrong procedure (a procedure named a
outside the namespace). The solution is to use the second declaration form and explicitly specify
the namespace name, as follows:

namespace ns;

procedure a(u:uns32);
begin u;

//…
end u;

procedure b(i:int32);
begin b;

//…
end b;

proc
ab:overloads a ("@global:ns.a");
ab:overloads b ("@global:ns.b");

end ns;

The "@global:" prefix exists in case you invoke the ns.ab overloaded procedure name inside
another namespace.

Object references are another matter altogether. Consider the following declarations:

type
class c;

procedure a(u:uns32);
begin u;

//…
end u;

procedure b(i:int32);
begin b;

//…
end b;

proc
ab:overloads a;
ab:overloads b;
Public Domain Created by Randy Hyde Page 181

HLA Reference Manual 5/24/10 Chapter 11
endclass;

static
cv :c;

An invocation of the form "cv.ab(uns32Var);" produces the call "a(uns32Var);" which does
not call the class procedure. Unfortunately, supplying a string operand of the form "c.a" in the
overloads declaration will not solve the problem. Because a class procedure can be called using
several different object variables (and, in the case of class procedures, using the class name), you
have to supply the actual object name as part of the invocation string. Fortunately, HLA supplies a
compile-time function, @curVar, which returns a string containing the current full variable name
(including the overloaded name). The following declaration shows how to use @curVar to
achieve this:

type
c:class

procedure a(u:uns32); external;
procedure b(i:int32); external;

proc
ab :overloads a

(
"@text(@substr(@curvar, 0, @length(@curvar)-2)" +

"""a"")"
);

ab :overloads b
(

"@text(@substr(@curvar, 0, @length(@curvar)-2)" +
"""b"")"

);

endclass;

With this class declaration, an invocation of the form

cv.ab(uns32Var);

produces the call

@text(@substr(@curvar, 0, @length(@curvar)-2)+"a")(uns32Var);

which expands to

cv.a(uns32Var);

Note that @curvar in this example returns the string "cv.ab". The @substring function
strips the last two characters from the string (the name of the overloaded function) and then
appends "a" or "b" to the string to produce a call to the appropriate function. Because this string is
a bit unwieldy, the HLA Standard Library’s hla.hhf module includes a macro named "ovrldStr" that
you can use to generate this text for you. This macro requires a single argument that is the name of
the function you want to overload (a or b in this example). Here’s what the above code would look
like when using this macro:
type
Public Domain Created by Randy Hyde Page 182

HLA Reference Manual 5/24/10 Chapter 11
c:class

procedure a(u:uns32); external;
procedure b(i:int32); external;

proc
ab :overloads a(hla.ovrldStr(a));
ab :overloads b(hla.ovrldStr(b));

endclass;

Of course, you must #include the hla.hhf header file in order to use this macro.
For those who are interested in how things work internally, the hla.ovrldStr macro takes

the following form:

#macro ovrldStr(string theFunc);

"@text(@left(@curvar, @rindex(@curvar, 0, ""."")+1) +
""" + theFunc +""")"

#endmacro

Because of the limitations of HLA's implementation languages (Flex and Bison), there are
some limitations to how well HLA can recognize various parameter signatures. These problems
will be corrected in HLA v3.0. In the meantime, if you run into any problems, you can easily work
around the issue(s) by directly calling the procedure or by explicitly type-casting the actual
arguments.

11.3 The _vars_ and _parms_ Constants and the _display_
Array

To help those who insist on constructing the activation record themselves, HLA declares two
local constants within each procedure: _vars_ and _parms_. The _vars_ symbol is an integer
constant that specifies the number of bytes of local variables declared in the procedure. This
constant is useful when allocating storage for your local variables. The _parms_ constant specifies
the number of bytes of parameters. You would normally supply this constant as the parameter to a
ret() instruction to automatically clean up the procedure’s parameters when it returns.

Example:

procedure demoVarsParms(parm1:int32; parm2:dword); @nodisplay; @noframe;
var

var1:dword;
var2:dword;

begin demoVarsParms;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp);

.

.

.
mov(ebp, esp);
pop(ebp);
ret(_parms_);

end demoVarsParms;
Public Domain Created by Randy Hyde Page 183

HLA Reference Manual 5/24/10 Chapter 11
If you do not specify @nodisplay, then HLA defines a run-time variable named _display_
that is an array of pointers to activation records. For more details on the _display_ variable, see
the section on lexical scope.

11.4 External Procedure Declarations
You can declare external procedures (procedures defined in other HLA units or written in

languages other than HLA) using the following syntaxes:

Original Syntax:

procedure externProc1 (optional parameters) ; options; external;

procedure externProc2 (optional parameters) ; options; external(
"external_name");

New Style Syntax:

proc
externProc1 :procedure(optional parameters) {options}; external;
externProc2 :procedure(optional parameters) {options}; external(

"external_name");
endproc;

As with normal procedure declarations, the parameter list and the procedure options are
optional. Note that @external and external are synonyms. @external is deprecated so you should
use external in new code.

The first form is generally used for HLA-written functions. HLA will use the procedure’s
name (externProc1 in this case) as external name.

The second form lets you refer to the procedure by one name within your HLA program
(externProc2 in this case) and by a different name ("external_name" in this example) in the
generated object code. This second form has two main uses: (1) if you choose an external
procedure name that just happens to conflict with a back-end assembler reserved word, the program
may compile correctly but fail to assemble. Changing the external name to something else solves
this problem. (2) When calling procedures written in external languages you may need to specify
characters that are not legal in HLA identifiers. For example, Win32 API calls often use names like
WriteFile@24 containing illegal (in HLA) identifier symbols. The string operand to the external
option lets you specify any name you choose. Of course, it is your responsibility to see to it that
you use identifiers that are compatible with the external environment; HLA doesn’t check these
names.

External procedure declarations do not allow the same set of procedure options as regular
procedure declarations. In particular, only those options that affect the calling sequence (rather than
affecting the code generation within the procedure itself) are legal in an external declaration. The
procedure options that are legal within an external procedure declaration are:

@use Reg32
@returns("string")
@cdecl
@pascal
@stdcall

If you declare an external procedure and then declare that same procedure in the same source
file, that procedure name becomes public and is accessible to source files outside the current file.
When declaring the public procedure body (after the appearance of the external procedure
Public Domain Created by Randy Hyde Page 184

HLA Reference Manual 5/24/10 Chapter 11
declaration prototype earlier in the source file), the legal procedure options are those that affect the
generation of code within the procedure; those that specify how HLA generates code to call the
procedure are illegal (that is, the set of procedure options between the external declaration and the
procedure's actual declaration are mutually exclusive. If an external procedure declaration appears
in a source file, then the actual procedure declaration's procedure options are limited to the
following:

@noframe, @frame
@nodisplay, @display
@noalignstack, @alignstack
@align(int_constant)
@leave, @noleave
@enter, @noenter

11.5 Forward Procedure Declarations
A forward procedure declaration provides a way to declare a procedure prototype that allows

you to specify the calling syntax for a procedure before actually declaring the body of that
procedure. In HLA, the syntax for a forward declaration (procedure prototype) is the following:

Original Syntax:

procedure forwardProc (optional parameters) ; options; forward;

New Style Syntax:

proc
forwardProc :procedure(optional parameters) {options}; forward;

The forward declaration syntax is necessary because HLA requires all procedure symbols to
be declared before they are used. In a few rare cases (where mutual recursion occurs between two
or more procedures), it may be impossible to write your code such that every procedure is declared
before the first call to the code. More commonly, sorting your procedures to ensure that all
procedures are written before their first call may force an artificial organization on the source file,
making it harder to read. The forward procedure declaration handles this situation for you. It lets
you create a procedure prototype that describes how the procedure is to be called without actually
specifying the procedure body. Later on in the source file, the full procedure declaration must
appear.

Note: an external declaration also serves as a forward declaration. If you have an external
definition at the beginning of your program (perhaps it appears in an include file), you do not need
to provide a forward declaration as well.

As for external procedure declarations, forward declarations do not allow the same set of
procedure options as regular procedure declarations. In particular, only those options that affect the
calling sequence (rather than affecting the code generation within the procedure itself) are legal in a
forward declaration. The procedure options that are legal within a forward procedure declaration
are:

@use Reg32
@returns("string")
@cdecl
@pascal
@stdcall

When the procedure declaration appears later in the source file, the legal procedure options are
Public Domain Created by Randy Hyde Page 185

HLA Reference Manual 5/24/10 Chapter 11
@noframe, @frame
@nodisplay, @display
@noalignstack, @alignstack
@align(int_constant)
@leave, @noleave
@enter, @noenter

Note that the presence of a forward declaration in a source file does not make the procedure
name public. Also, note that you may not have both a forward and external procedure declaration
for the same procedure name.

11.6 Setting Default Procedure Options
By default, HLA does the following:

• Creates a display for every procedure

• Emits code to construct the stack frame for each procedure

• Emits code to align ESP on a four-byte boundary upon procedure entry

• Assumes that it cannot modify any register values when passing (non-register) parameters

• The first instruction of the procedure is unaligned.

These options are the most general and "safest" for beginning assembly language
programmers. However, the code HLA generates for this general case may not be as compact or as
fast as is possible in a specific case. For example, few procedures will actually need a display data
structure built upon procedure activation. Therefore, the code that HLA emits to build the display
can reduce the efficiency of the program. Advanced programmers, of course, can use procedure
options like @nodisplay to tell HLA to skip the generation of this code. However, if a program
contains many procedures and none of them requires a display, continually adding the @nodisplay
option can get annoying. Therefore, HLA allows you to treat these directives as "pseudo-compile-
time-variables" to control the default code generation. E.g.,

?@display := true; // Turns on default display generation.
?@display := false; // Turns off default display generation.
?@nodisplay := true; // Turns off default display generation.
?@nodisplay := false; // Turns on default display generation.

?@frame := true; // Turns on default frame generation.
?@frame := false; // Turns off default frame generation.
?@noframe := true; // Turns off default frame generation.
?@noframe := false; // Turns on default frame generation.

?@alignstack := true; // Turns on default stk alignment code generation.
?@alignstack := false; // Turns off default stk alignment code generation.
?@noalignstack := true; // Turns off default stk alignment generation.
?@noalignstack := false; // Turns on default stk alignment generation.

?@enter := true; // Turns on default ENTER code generation.
?@enter := false; // Turns off default ENTER code generation.
?@noenter := true; // Turns off default ENTER code generation.
?@noenter := false; // Turns on default ENTER code generation.

?@leave := true; // Turns on default LEAVE code generation.
?@leave := false; // Turns off default LEAVE code generation.
?@noleave := true; // Turns off default LEAVE code generation.
?@noleave := false; // Turns on default LEAVE code generation.
Public Domain Created by Randy Hyde Page 186

HLA Reference Manual 5/24/10 Chapter 11
?@align := 1; // Turns off procedure alignment (align on byte boundary).
?@align := int_expr; // Sets alignment, must be a power of two.

These directives may appear anywhere in the source file. They set the internal HLA default
values and all procedure declarations following one of these assignments (up to the next,
corresponding assignment) use the specified code generation option(s). Note that you can override
these defaults by using the corresponding procedure options mentioned earlier.

11.7 Disabling HLA’s Automatic Code Generation for
Procedures

Before jumping in and describing how to use the high-level HLA features for procedures, the
best place to start is with a discussion of how to disable these features and write "plain old
fashioned" assembly language code. This discussion is important because procedures are the one
place where HLA automatically generates a lot of code for you and many assembly language
programmers prefer to control their own destinies; they don’t want the compiler to generate any
excess code for them. So disabling HLA’s automatic code generation capabilities is a good place to
start.

By default, HLA automatically emits code at the beginning of each procedure to do five things:

(1) Preserve the pointer to the previous activation record (EBP);
(2) build a display in the current activation record;
(3) allocate storage for local variables;
(4) load EBP with the base address of the current activation record;
(5) adjust the stack pointer (downwards) so that it points at a double-word-aligned address.
When you return from a procedure, by default HLA will deallocate the local storage and

return, removing any parameters from the stack.
To understand the code that HLA emits, consider the following simple procedure:

procedure p(j:int32);
var
 i:int32;
begin p;
end p;

Here is a dump of the symbol table that HLA creates for procedure p:

p <0,proc>:Procedure type (ID=p__hla_1) parms:4

 vars <1,cons>:uns32, (4 bytes) =4
 i <1,var >:int32, (4 bytes, ofs:-12)
 parms <1,cons>:uns32, (4 bytes) =4
 display <1,var >:dword, (8 bytes, ofs:-4)
 j <1,valp>:int32, (4 bytes, ofs:8)
 finalize <1,val >:string, (0 bytes) =""
 initialize <1,val >:string, (0 bytes) =""
 p <1,proc>:

The important thing to note here is that local variable i is at offset -12 and HLA automatically
created an 8-byte local variable named _display_ which is at offset -4 (note: the _display_
variable uses negative indexes, so the two 4-byte elements are at offset -4 [index 0] and -8 [index -
1]).

HLA, with the "-hla" and "-source" command-line parameters, produces the following pseudo-
HLA code for the procedure above (annotations in italics are not emitted by HLA, this output is
subject to changes in HLA code generation algorithms; the output is pure assembly language with
no "hidden" or high-level code):
Public Domain Created by Randy Hyde Page 187

HLA Reference Manual 5/24/10 Chapter 11
procedure p__hla_2;
begin p__hla_2;
 push(ebp);;Dynamic link (pointer to previous activation record)
 push([ebp-4]);;Display for lex level 0
 lea([esp+4], ebp);;Get frame ptr (point EBP at current
activation record)
 push(ebp);;Ptr to this proc's A.R. (part of display
construction)
 sub(4, esp);;Local storage.
 and(-4, esp);;dword-align stack

xp__hla_2__hla_:
 mov(ebp, esp);;Deallocate local variables.
 pop(ebp);;Restore pointer to previous activation record.
 ret(4);;Return, popping parameters from the stack.
end p__hla_2;

Building the display data structure is not very common in standard assembly language
programs. This is only necessary if you are using nested procedures and those nested procedures
need to access non-local variables. Since this is a rare situation, many programmers will
immediately want to tell HLA to stop emitting the code to generate the display. This is easily
accomplished by adding the @nodisplay procedure option to the procedure declaration. Adding
this option to procedure p produces the following:

procedure p(j:int32); @nodisplay;
var
 i:int32;
begin p;
end p;

Compiling this procedures the following symbol table dump:

Symbol Table:

p <0,proc>:Procedure type (ID=p__hla_1) parms:4

 vars <1,cons>:uns32, (4 bytes) =4
 i <1,var >:int32, (4 bytes, ofs:-4)
 parms <1,cons>:uns32, (4 bytes) =4
 j <1,valp>:int32, (4 bytes, ofs:8)
 finalize <1,val >:string, (0 bytes) =""
 initialize <1,val >:string, (0 bytes) =""
 p <1,proc>:

Note that the _display_ variable is gone and the local variable i is now at offset -4. Here is
the code that HLA emits for this new version of the procedure:

procedure p__hla_2;
begin p__hla_2;
 push(ebp);;Save ptr to previous activation record.
 mov(esp, ebp);;Point EBP at current activation record.
 sub(4, esp);;Local storage.
 and(-4, esp);;Align stack on dword boundary.
Public Domain Created by Randy Hyde Page 188

HLA Reference Manual 5/24/10 Chapter 11
; Exit point for the procedure:

xp__hla_2__hla_:
 mov(ebp, esp);;Deallocate local variables.
 pop(ebp);;Restore pointer to previous activation record.
 ret(4);;Return, popping parameters from the stack.
end p__hla_2;

As you can see, this code is smaller and a bit less complex. Unlike the code that built the
display, it is common for an assembly language programmer to construct an activation record in a
manner similar to this. Indeed, about the only instruction out of the ordinary above is the "AND"
instruction that double-word-aligns the stack (OS calls require the stack to be double-word-aligned,
and the system performance is much better if the stack is double-word aligned).

This code is still relatively inefficient if you don’t pass parameters on the stack and you don’t
use automatic (non-static, local) variables. Many assembly language programmers pass their few
parameters in machine registers and maintain local values in the registers. If this is the case, then
the code above is pure overhead. You can inform HLA that you wish to take full responsibility for
the entry and exit code by using the @noframe procedure option. Consider the following version
of p:

procedure p(j:int32); @nodisplay; @noframe;
var
 i:int32;
begin p;
end p;

(This produces the same symbol table dump as the previous example).

HLA emits the following code for this version of p:

procedure p__hla_2;
begin p__hla_2;
end p__hla_2;

Whoa! There’s nothing there! But this is exactly what the advanced assembly language
programmer wants. With both the @nodisplay and @noframe options, HLA does not emit any
extra code for you. You would have to write this code yourself.

By the way, you can specify the @noframe option without specifying the @nodisplay
option. HLA still generates no extra code, but it will assume that you are allocating storage for the
display in the code you write. That is, there will be an 8-byte _display_ variable created and i
will have an offset of -12 in the activation record. It will be your responsibility to deal with this.
Although this situation is possible, it’s doubtful this combination will be used much at all.

Note a major difference between the two versions of p when @noframe is not specified and
@noframe is specified: if @noframe is not present, HLA automatically emits code to return from
the procedure. This code executes if control falls through to the "end p;" statement at the end of the
procedure. Therefore, if you specify the @noframe option, you must ensure that the last statement
in the procedure is a ret() instruction or some other instruction that causes an unconditional transfer
of control. If you do not do this, then control will fall through to the beginning of the next
procedure in memory, probably with unintended results.

The ret() instruction presents a special problem. It is dangerous to use this instruction to return
from a procedure that does not have the @noframe option. Remember, HLA has emitted code
that pushes much data onto the stack. If you return from such a procedure without first removing
this data from the stack, your program will probably crash. The correct way to return from a
procedure without the @noframe option is to jump to the bottom of the procedure and run off the
end of it. Rather than require you to explicitly put a label into your program and jump to this label,
HLA provides the exit procname; instruction. HLA compiles the exit instruction into a jmp that
Public Domain Created by Randy Hyde Page 189

HLA Reference Manual 5/24/10 Chapter 11
transfers control to the clean-up code HLA emits at the bottom of the procedure. Consider the
following modification of p and the resulting assembly code produced:

procedure p(j:int32); @nodisplay;
var
 i:int32;
begin p;
 exit p;
 nop();
end p;

procedure p__hla_2;
begin p__hla_2;

 push(ebp);
 mov(esp, ebp);
 sub(4, esp);
 and(-4, esp);
 jmp xp__hla_2__hla_;
 nop;
xp__hla_2__hla_:
 mov(ebp, esp);
 pop(ebp);
 ret(4);
end p__hla_2;

As you can see, HLA automatically emits a label to the assembly output file (xp__hla_2__hla_ in
this instance) at the bottom of the procedure where the clean-up code starts. HLA translates the
"exit p;" instruction into a jmp to this label.

If you look back at the code emitted for the version of p with the @noframe option, you’ll
note that HLA did not emit a label at the bottom of the procedure. Therefore, HLA cannot generate
a jump to this nonexistent label, so you cannot use the exit statement in a procedure with the
@noframe option (HLA will generate an error if you attempt this).

Of course, HLA will not stop you from putting a ret() instruction into a procedure without the
@noframe option (some people who know exactly what they are doing might actually want to do
this). Keep in mind, if you decide to do this, that you must deallocate the local variables (that’s
what the "mov esp, ebp" instruction is doing), you need to restore EBP (via the "pop ebp"
instruction above), and you need to deallocate any parameters pushed on the stack (the "ret 4"
handles this in the example above). The following code demonstrates this:

procedure p(j:int32); @nodisplay;
var
 i:int32;
begin p;

 if(j = 0) then

 // Deallocate locals.

 mov(ebp, esp);

 // Restore old EBP

 pop(ebp);
Public Domain Created by Randy Hyde Page 190

HLA Reference Manual 5/24/10 Chapter 11

 // Return and pop parameters

 ret(4);

 endif;
 nop();
end p;

procedure p__hla_2;
begin p__hla_2;

 push(ebp);
 mov(esp, ebp);
 sub(4, esp);
 and(-4, esp);
 cmp(0, (type dword [ebp+8]));
 jne false__hla_3;
 mov(ebp, esp);
 pop(ebp);
 ret(4);
false__hla_3:
 nop;
xp__hla_2__hla_:
 mov(ebp, esp);
 pop(ebp);
 ret(4);
end p__hla_2;

If "real" assembly language programmers would generally specify both the @noframe and
@nodisplay options, why not make them the default case (and use @frame and @display
options to specify the generation of the activation record and display)? Well, keep in mind that
HLA was originally designed as a tool to teach assembly language programming to beginning
students. Those students have considerable difficulty comprehending concepts like activation
records and displays. Having HLA generate the stack frame code and display generation code
automatically saves the instructor from having to teach (and explain) this code. Even if the student
never uses a display, it doesn’t make the program incorrect to go ahead and generate it. The only
real cost is a little extra memory and a little extra execution time. This is not a problem for
beginning students who haven’t yet learned to write efficient code. Therefore, HLA was optimized
for the beginner at the expense of the advanced programmer. It is also worthwhile to point out that
the behavior of the EXIT statement depends upon displays if you attempt to exit from a nested
procedure; yet another reason for HLA’s default behavior. Of course, you can always override
HLA’s default behavior by using the @nodisplay and @noframe compile-time variablesw.

If you are absolutely certain that your stack pointer is aligned on a four-byte boundary upon
entry into a procedure, you can tell HLA to skip emitting the and($FFFF_FFFC, ESP); instruction
by specifying the @noalignstack procedure option. Note that specifying @noframe also
specifies @noalignstack.

11.8 Procedure Calls and Parameters in HLA
HLA’s high-level support consists of three main features: HLL-like declarations, the HLL

statements (IF, WHILE, etc), and HLA’s support for procedure calls and parameter passing. This
section discusses the syntax for procedure declarations and how HLA generates code to
automatically pass parameters to a procedure.
Public Domain Created by Randy Hyde Page 191

HLA Reference Manual 5/24/10 Chapter 11
The syntax for HLA procedure declarations was touched on earlier; however, it’s probably a
good idea to review the syntax as well as describe some options that previous sections ignored.
There are several procedure declaration forms; the following examples demonstrate them all1:

// Standard procedure declaration:

procedure procname (opt_parms); proc_options
begin procname;

<< procedure body >>
end procname;

// New style procedure declaration:

proc
procname :procedure(opt_parms); proc_options
begin procname;

<< procedure body >>
end procname;

// External procedure declarations:

procedure extname (opt_parms); proc_options external;
procedure extname (opt_parms); proc_options external("name");

// New style external procedure declarations:

proc
extname :procedure(opt_parms) {proc_options}; external;
extname :procedure(opt_parms) {proc_options}; external("name");

endproc;

// Original forward procedure declarations:

procedure fwdname (opt_parms); proc_options forward;

// New style forward procedure declarations:

proc
fwdname :procedure(opt_parms) {proc_options}; forward;

Opt_parms indicates that the parameter list is optional; the parentheses are not present if there are
no parameters present.

Proc_options is any combination (zero or more) of the procedure options (see the discussion
earlier for these options)

11.9 Calling HLA Procedures
There are two standard ways to call an HLA procedure: use the call instruction or simply

specify the name of the procedure as an HLA statement. Both mechanisms have their plusses and
minuses.

1. This section only discusses procedure declarations. Other sections will describe iterators and methods.
Public Domain Created by Randy Hyde Page 192

HLA Reference Manual 5/24/10 Chapter 11
To call an HLA procedure using the call instruction is exceedingly easy. Simply use either of
the following syntaxes:

call(procName);
call procName;

Either form compiles into an 80x86 call instruction that calls the specified procedure. The
difference between the two is that the first form (with the parentheses) returns the procedure’s
"returns" value, so this form can appear as an operand to another instruction. The second form
above always returns the empty string, so it is not suitable as an operand of another instruction.
Also, note that the second form requires a statement or procedure label, you may not use memory-
addressing modes in this form; on the other hand, the second form is the only form that lets you
"call" a statement label (as opposed to a procedure label); this form is useful on occasion.

If you use the call statement to call a procedure, then you are responsible for passing any
parameters to that procedure. In particular, if the parameters are passed on the stack, you are
responsible for pushing those parameters (in the correct order) onto the stack before the call. This
is a lot more work than letting HLA push the parameters for you, but in certain cases you can write
more efficient code by pushing the parameters yourself.

The second way to call an HLA procedure is to simply specify the procedure name and a list of
actual parameters (if needed) for the call. This method has the advantage of being easy and
convenient at the expense of a possible slight loss in efficiency and flexibility. This calling method
should also prove familiar to most HLL programmers. As an example, consider the following HLA
program:

program parameterDemo;

#include("stdio.hhf");

procedure PrtAplusB(a:int32; b:int32); @nodisplay;
begin PrtAplusB;

 mov(a, eax);
 add(b, eax);
 stdout.put("a+b=", (type int32 eax), nl);

end PrtAplusB;

static
 v1:int32 := 25;
 v2:int32 := 5;

begin parameterDemo;

 PrtAplusB(1, 2);
 PrtAplusB(-7, 12);
 PrtAplusB(v1, v2);

 mov(-77, eax);
 mov(55, ebx);
 PrtAplusB(eax, ebx);

end parameterDemo;

This program produces the following output:

a+b=3
a+b=5
a+b=30
Public Domain Created by Randy Hyde Page 193

HLA Reference Manual 5/24/10 Chapter 11
a+b=-22

As you can see, call PrtAplusB in HLA is very similar to calling procedures (and passing
parameters) in a high-level language like C/C++ or Pascal. There are, however, some key
differences between and HLA call and a HLL procedure call. The next section will cover those
differences in detail. The important thing to note here is that if you choose to call a procedure using
the HLL syntax (that is, the second method above), you will have to pass the parameters in the
parameter list and let HLA push the parameters for you. If you want to take complete control over
the parameter passing code, you should use the call instruction.

11.10Parameter Passing in HLA, Value Parameters
The previous section probably gave you the impression that passing parameters to a procedure

in HLA is nearly identical to passing those same parameters to a procedure in a high-level
language. The truth is, the examples in the previous section were rigged. There are actually many
restrictions on how you can pass parameters to an HLA procedure. This section discusses the
parameter passing mechanism in detail.

The most important restriction on actual parameters in a call to an HLA procedure is that HLA
only allows memory variables, registers, constants, and certain other special items as parameters. In
particular, you cannot specify an arithmetic expression that requires computation at run-time
(although a constant expression, computable at compile time is okay). The bottom line is this: if
you need to pass the value of an expression to a procedure, you must compute that value prior to
calling the procedure and pass the result of the computation; HLA will not automatically generate
the code to compute that expression for you.

The second point to mention here is that HLA is a strongly typed language when it comes to
passing parameters. This means that with only a few exceptions, the type of the actual parameter
must exactly match the type of the formal parameter. If the actual parameter is an int8 object, the
formal parameter had better not be an int32 object or HLA will generate an error. The only
exceptions to this rule are the byte, word, dword, qword, tbyte, and lword types. If a formal
parameter is of type byte, the corresponding actual parameter may be any one-byte data object. If a
formal parameter is a word object, the corresponding actual parameter can be any two-byte object.
Likewise, if a formal parameter is a dword object, the actual parameter can be any four-byte data
type. And so on… Conversely, if the actual parameter is a byte, word, dword, qword, tbyte, or
lword object, it can be passed without error to any one, two, four, eight, ten, or sixteen-byte actual
parameter (respectively). Programmers who are lazy make all their parameters one of these
hexadecimal types (at least, wherever possible). Programmers who care about the quality of their
code use untyped parameters cautiously.

For efficiency reasons (dictated by the operating system and the Intel ABI), HLA procedure
calls always pass all parameters as a multiple of four bytes. When passing a byte-sized parameter
on the stack by value, the actual parameter value consumes the L.O. byte of the double word passed
on the stack. The function ignores the H.O. three bytes of the value passed for this parameter,
though by convention (to make debugging a little easier) you should try to pass zeros in the H.O.
three bytes if it is not inconvenient to do so.

11.10.1 Passing Byte-Sized Parameters by Value
When passing a byte-sized constant, you should simply push a double-word containing the 8-

bit value, e.g,
pushd(5);
call someSubroutine;

When passing the 8-bit value of the 8-bit registers AL, BL, CL or DL onto the stack, you
should simply push the 32-bit register that holds the 8-bit register, e.g.,

push(eax); // Pushes AL onto the stack
call someSubroutine;
push(ebx); // Pushes BL onto the stack
call someOtherSubroutine;
Public Domain Created by Randy Hyde Page 194

HLA Reference Manual 5/24/10 Chapter 11
Note that this trick does not apply to the AH, BH, CH, or DH registers. The best code to use
when you need to push these registers is to drop the stack down by four bytes and then move the
desired register into the memory location you’ve just created on the stack, e.g.,
sub(4, esp);
mov(AH, [esp]); // Pushes AH onto the stack
call someSubroutine;
sub(4, esp);
mov(BH, [esp]); // Pushes BH onto the stack
call someOtherSubroutine;

Here’s another way you can accomplish this (a little slower, but leaves zeros in the H.O. three
bytes):
pushd(0);
mov(CH, [esp]); // Pushes CH onto the stack
call someSubroutine;

When passing a byte-sized variable, you should try to push the variable’s value and the following
three bytes, using code like the following:

pushd((type dword eightBitVar));
call someSubroutine;

There is one drawback to the approach above. In three very rare cases the code above could
cause a segmentation fault. If the 8-bit variable is located on the last three bytes of a page in
memory (4,096 bytes) and the next memory page is not readable, the system will generate a fault if
you attempt to push all four bytes. In such a case, the next best solution, if a register is available, is
to move the 8-bit value into AL, BL, CL, or DL and push the corresponding 32-bit register. If no
registers are available, then you can write code like the following:
push(eax);
push(eax);
mov(byteVar, al);
mov(al, [esp+4]);
pop(eax);
call someSubroutine;

This code is ugly and slightly inefficient, but it will always work (assuming, of course, you
don’t get a stack overflow).
The HLA compiler will generate code similar to this last example if you pass a static byte variable
as the actual parameter to a library function expecting an 8-bit value parameter:

someLibraryRoutine(byteVar);

Therefore, if efficiency is a concern to you, you should try to load the byte variable (byteVar in
this example) into AL, BL, CL, or DL prior to calling someLibraryRoutine, e.g.,
mov(boolVar, al);
someLibraryRoutine(al);

Note that HLA will push a whole double-word if the actual parameter is an automatic variable
or some other parameter (both of which are allocated on the stack). In this case, you're generally
guaranteed that the three bytes following the byte variable in memory are in readable memory
space. It is possible to set up the EBP register to violate this assumption, but HLA assumes that
you're not trying to cause a segmentation fault and assumes that it's safe to access those extra three
bytes beyond the byte variable. Here is an example of the code generation for various byte
parameters:

program t;
static
Public Domain Created by Randy Hyde Page 195

HLA Reference Manual 5/24/10 Chapter 11
b:byte;

procedure p(b0:byte); @nodisplay;

procedure q(b1:byte; b2:byte; b3:byte; b4:byte; b5:byte; b6:byte;
b7:byte);

begin q;
end q;

var
b8 :byte;
w :word;
b9 :byte;

begin p;

q(b, b0, b8, b9, al, ah, 255);

end p;

begin t;
end t;

Here's the code generation for the call to the q procedure (MASM syntax, as output by HLA
v2.2). Note that the comments in italics are not emitted by HLA:

 ; Push static variable b onto the stack

pushd(0);
push(eax);
mov(b__hla_1, al);
mov(al, [esp+4]);
pop(eax);

 ; Push parameter b0 onto the stack:

push((type dword [ebp+8]));

 ; Push automatic variable b8 onto the stack:

pushd(0);
push(eax);
mov([ebp-1], al);
mov(al, [esp+4]);
pop(eax);

 ; Push automatic variable b9 onto the stack:

push((type dword [ebp-4]));

 ; Push AL onto the stack:

push(eax);

 ; Push AH onto the stack:
Public Domain Created by Randy Hyde Page 196

HLA Reference Manual 5/24/10 Chapter 11
sub(4, esp);
mov(ah, [esp]);

 ; Push 255 onto the stack:

pushd(255);

 ; Call q

call q__hla_3;

Note the difference in code generation between the b8 and b9 local variables. Because b8 has
an offset of -1 in the activation record and HLA is playing it safe and only accessing a single byte at
[EBP-1]. This prevents any access to bytes that have a positive or zero index off of EBP. It
generates slightly better code if the variable's index is -4 or less because it can safely push four
bytes and all four bytes will have a negative offset from EBP. Moral of the story: if you intend to
use the HLA HLL-like calling sequence and you intend to pass local (automatic) variables as byte
parameters, try to ensure that those byte variables have an offset of -4 or less in the activation
record.

If one of the EAX, EBX, ECX, or EDX registers is always free and available when calling a
procedure with byte-sized parameters, you can often improve the quality of the code that HLA
generates by attaching an @uses procedure option to the procedure's declaration. Consider the
following modification to the above code:

program t;
static

b:byte;

procedure p(b0:byte); @nodisplay;

procedure q
(

b1 :byte;
b2 :byte;
b3 :byte;
b4 :byte;
b5 :byte;
b6 :byte;
b7 :byte

); @use ecx;
begin q;
end q;

var
b8 :byte;
w :word;
b9 :byte;

begin p;

q(b, b0, b8, b9, al, ah, 255);

end p;

begin t;
Public Domain Created by Randy Hyde Page 197

HLA Reference Manual 5/24/10 Chapter 11
end t;

The @use ecx; clause tells HLA that it can use the ECX register, wiping out its contents, if
HLA finds it convenient to do so. Compare the code HLA generates for the call to q above against
the earlier versions:

; Push static variable b onto the stack

mov(b__hla_1, cl);
push(ecx);

 ; Push parameter b0 onto the stack:

push((type dword [ebp+8]));

 ; Push automatic variable b8 onto the stack:

mov([ebp-1], cl);
push(ecx);

 ; Push automatic variable b9 onto the stack:

push((type dword [ebp-4]));

 ; Push AL onto the stack:

push(eax);

 ; Push AH onto the stack:

sub(4, esp);
mov(ah, [esp]);

 ; Push 255 onto the stack:

pushd(255);

 ; Call q

call q__hla_3;

If you want to use the high-level calling sequence, but you don’t like the inefficient code HLA
sometimes produces when generating code to pass your byte-sized parameters, you can always use
the #{...}# sequence parameter to override HLA’s code generation and substitute your own code
for one or two parameters. Of course, it doesn’t make any sense to pass all the parameters in a
procedure using this trick, it would be far easier just to use the call instruction. Example:

q(b, b0, #{push((type dword b8));}#, b9, al, ah, 255);

If efficiency is a concern to you and the @use reg32 procedure option isn't acceptable (perhaps
because you can't guarantee that a register is always available), you should try to load a byte
variable you want to pass as a parameter into AL, BL, CL, or DL prior to calling the subroutine,
e.g.,

mov(byteVar, al);
Public Domain Created by Randy Hyde Page 198

HLA Reference Manual 5/24/10 Chapter 11
someSubroutine(al);

11.10.2 Passing Word-Sized Parameters by Value
When passing a word-sized parameter on the stack by value, the actual parameter value

consumes the L.O. two bytes of the double word passed on the stack. The function ignores the H.O.
word of the value passed for this parameter, though by convention (to make debugging a little
easier) you should try to pass zeros in the H.O. word if it is not inconvenient to do so.

When passing a word-sized constant, you should simply push the double word containing the
16-bit value, e.g.,

pushd(5);
call someSubroutine;

When passing the 16-bit value of a 16-bit register (AX, BX, CX, DX, SI, DI, BP, or SP) onto
the stack, you should simply push the 32-bit register that holds the 16-bit register, e.g.,

push(eax); // Pushes AX onto the stack
call someSubroutine;
push(ebx); // Pushes BX onto the stack
call someOtherSubroutine;

When passing a word-sized variable, you should try to push the variable’s value and the
following two bytes, using code like the following:

pushd((type dword sixteenBitVar));
call someSubroutine;

There is one drawback to the approach above. In three very rare cases, the code above could
cause a segmentation fault. If the 16-bit variable is located on the last three bytes of a page in
memory (4,096 bytes) and the next memory page is not readable, the system will generate a fault if
you attempt to push all four bytes. In such a case, the next best solution, is to use two consecutive
pushes:
pushw(0);// H.O. word is zeros
push(sixteenBitVar);
call someSubroutine;

The HLA compiler will generate code similar to this last example if you pass a word variable as the
actual parameter to a function expecting a 16-bit value parameter:

someSubroutine(wordVar);

Here is a more complete example:

program t;
static

w:word;

procedure p(w0:word); @nodisplay;

procedure q
(

w1 :word;
w2 :word;
Public Domain Created by Randy Hyde Page 199

HLA Reference Manual 5/24/10 Chapter 11
w3 :word;
w4 :word;
w5 :word;
w6 :word;
w7 :word

);
begin q;
end q;

var
w8 :word;
w :word;
w9 :word;

begin p;

q(w, w0, w8, w9, ax, si, 255);

end p;

begin t;
end t;

This procedures the following (pseudo-HLA) assembly language output:

; Push w

pushw(0);
push((type word [ebp-4]));

; Push w0

push((type dword [ebp+8]));

; Push w8

pushw(0);
push((type word [ebp-2]));

; Push w9

pushw(0);
push((type word [ebp-6]));

; Push ax

push(eax);

; Push si

push(esi);

; Push 255

pushd(255);
Public Domain Created by Randy Hyde Page 200

HLA Reference Manual 5/24/10 Chapter 11
; call q

call q__hla_3;

11.10.3 Passing Double-Word-Sized Parameters by Value
Because 32-bit double-word objects are the native x86 data type, there are only a few issues

with passing 32-bit parameters on the stack to a standard library routine.
First, and this applies to all stack operations not just 32-bit pushes and pops, you should always

keep the stack 32-bit aligned. That is, the value in ESP should always contain a value that is a
multiple of four (i.e., the L.O. two bits of ESP must always contain zeros). If this is not the case,
many OS API and standard library function calls will fail.

When passing a 32-bit value onto the stack, just about any mechanism you can use to push that
value is perfectly valid. You can efficiently push constants, registers, and memory locations using a
single push instruction, e.g.,

pushd(12345); // Passing a 32-bit constant
push(mem32); // Passing a dword variable
push(eax); // Passing a 32-bit register
call someRoutine;

Of course, you can always use the HLA high-level syntax to pass a 32-bit object to a
subroutine. HLA automatically generates the appropriate code to pass the dword object as a
parameter on the stack. Note that HLA automatically recognizes the lexeme "dx:ax" as a 32-bit
value and will push these two registers (DX first, AX second) onto the stack.

11.10.4 Passing Quad-Word-Sized Parameters by Value
Because qword (64-bit) objects are a multiple of 32 bits in size, manually passing qword

objects on the stack is very easy. All you need do is push two double-word values. Because the
stack grows downward in memory and the x86 is a little endian machine, you must push the H.O.
dword first and the L.O. dword second.

If the qword value is held in a register pair, then push the register containing the H.O. dword
first and the L.O. dword second. For example, if EDX:EAX contains the 64-bit value, then you’d
push the qword as follows:

push(edx); // Push H.O. dword
push(eax); // Push L.O. dword
call someLibraryRoutine;

If the qword value is held in a qword variable, then you must first push the H.O. dword of that
variable followed by the L.O. dword, e.g.,
push((type dword qwordVar[4])); // Push H.O. dword first
push((type dword qwordVar)); // Push L.O. dword second
call someLibraryRoutine;

If the qword value you wish to pass is a constant, then you have to compute the L.O. and H.O.
dword values for that constant and push those. When using HLA, you can use the compile-time
computational capabilities of HLA to do this for you, e.g.,

pushd(((some64bitConst) >> 32);
pushd(((some64bitConst) & $FFFF_FFFF);
call someLibraryRoutine;
Public Domain Created by Randy Hyde Page 201

HLA Reference Manual 5/24/10 Chapter 11
If this is something you do frequently, you might want to create a macro to break up the 64-bit
value and push it for you.

Of course, you can always use the HLA high-level syntax to pass a 64-bit object to a
subroutine. HLA automatically generates the appropriate code to pass the qword object as a
parameter on the stack. Note that HLA automatically recognizes the lexeme "edx:eax" as a 64-bit
value and will push these two registers (EDX first, EAX second) onto the stack.

11.10.5 Passing Tbyte-Sized Parameters by Value
For efficiency reasons, operating system APIs and HLA standard library routines always pass

all parameters as a multiple of four bytes. When passing a tbyte-sized parameter on the stack by
value, the actual parameter value consumes the L.O. ten bytes of the three double words passed on
the stack. The function ignores the H.O. word of the value passed for this parameter, though by
convention (to make debugging a little easier) you should try to pass zeros in the H.O. word if it is
not inconvenient to do so.

The following code demonstrates how to pass a ten-byte object to a standard library routine:
pushw(0); // Dummy H.O. word of zero
push((type word tbyteVar[8])); // Push H.O. byte of tbyte object
push((type dword tbyteVar[4])); // Push bytes 4-7 of tbyte object
push((type dword tbyteVar[0])); // Push L.O. dword of tbyte object
call someLibraryRoutine;

If your tbyte object is not at the very end of allocated memory, you could probably combine
the first two instructions in this sequence to produce the following (slightly more efficient) code:
push((type dword tbyteVar[8])); // Pushes two extra bytes.

This pushes the two bytes beyond tbyteVar onto the stack but, presumably, the function will
ignore all bytes beyond the tenth byte passed on the stack, so the actual values in those H.O. two
bytes are irrelevant. Note the earlier discussion (in the section on pushing byte parameters) about
the rare possibility of a memory access error when using this trick.

Of course, you can always use the HLA high-level syntax to pass an 80-bit object to a standard
library routine. HLA automatically generates the appropriate code to pass the tbyte object as a 12-
byte parameter on the stack.

11.10.6 Passing Lword-Sized Parameters by Value
Because lword (128-bit) objects are a multiple of 32 bits in size, manually passing lword

objects on the stack is very easy. All you need do is push four dword values. Because the stack
grows downward in memory and the x86 is a little endian machine, you must push the H.O. dword
first and the L.O. dword last.

If the lword value is held in an lword variable, then you must first push the H.O. dword of that
variable followed by the lower-order dwords, down to the L.O. dword, e.g.,
push((type dword qwordVar[12])); // Push H.O. dword first
push((type dword qwordVar[8])); // Push bytes 8-11 second
push((type dword qwordVar[4])); // Push bytes 4-7 third
push((type dword qwordVar)); // Push L.O. dword last
call someRoutine;

If the lword value you wish to pass is a constant, then you have to compute the four dword
values for that constant and push those. When using HLA, you can use the compile-time
computational capabilities of HLA to do this for you, e.g.,

pushd(((some128bitConst) >> 96);
pushd(((some128bitConst) >> 64 & $FFFF_FFFF);
pushd(((some128bitConst) >> 32 & $FFFF_FFFF);
Public Domain Created by Randy Hyde Page 202

HLA Reference Manual 5/24/10 Chapter 11
pushd(((some128bitConst) & $FFFF_FFFF);
call someRoutine;

If this is something you do frequently, you might want to create a macro to break up the 128-
bit value and push it for you.

Of course, you can always use the HLA high-level syntax to pass a 128-bit object to a standard
library routine. HLA automatically generates the appropriate code to pass the lword object as a
parameter on the stack.

11.10.7 Passing Large Parameters by Value
When using a HLL-like call, HLA will automatically copy an actual value parameter into local

storage for the procedure, regardless of the size of the parameter. If your value parameter is a one-
million-byte array, HLA will allocate storage for 1,000,000 bytes and then copy that array in on
each call. C/C++ programmers may expect HLA to automatically pass arrays by reference (as C/
C++ does) but this is not the case. If you want your parameters passed by reference, you must
explicitly state this.

If you're not using a HLL-like call, it is your responsibility to make room for large parameters
and copy that parameter data to the stack before a call. Consider the following example that passes
a fair-sized array (256 bytes) by value:

program t;
type

array:byte[256];

procedure p(a:array);
begin p;
end p;

static
theArray:array;

begin t;

p(theArray);

end t;

Here is the code that HLA generates for the call to procedure p in the main program above:

// Reserve storage for the 256-byte array to be passed on the stack

lea([esp-256], esp);

// Preserve the registers that rep.movsd uses:

push(esi);
push(edi);
push(ecx);
pushfd;

// Copy the array from the source location (theArray) to
// the storage just allocated on the stack:

cld;
lea(theArray__hla_2, esi);
Public Domain Created by Randy Hyde Page 203

HLA Reference Manual 5/24/10 Chapter 11
mov(64, ecx);
lea([esp+16], edi);// Address of array on stack
rep movsd

// Restore the registers:

popfd;
pop(ecx);
pop(edi);
pop(esi);

// Call p
call p__hla_1;

The code HLA generates to copy value parameters, while not particularly bad, certainly isn’t
always optimal. If you need the fastest possible code when passing parameters by value on the
stack, it would be better if you explicitly pushed the data yourself.

11.11Parameter Passing in HLA, Reference, Value/Result, and
Result Parameters

The one good thing about pass by reference, pass by value/result, and pass by result parameters
is that the parameters are always four byte pointers, regardless of the size of the actual parameter.
Therefore, HLA has an easier time generating code for these parameters than it does generating
code for pass by value parameters.

In a procedure call HLA treats reference, value/result, and result parameters identically. The
code within the procedure is responsible for differentiating these parameter types (value/result and
result parameters generally require copying data between local storage and the actual parameter).
The following discussion will simply refer to pass by reference parameters, but it applies equally
well to pass by value/result and pass by result.

When passing a parameter by reference, you must push the address of the actual parameter
(rather than its value) onto the stack. For static objects, you can use the push immediate instruction,
e.g., (in HLA syntax):

pushd(&staticVar);
call someLibraryRoutine;

For automatic variables, or objects whose address is not a simple static offset (e.g., a complex
pointer address involving registers and what-not), you’ll have to use the LEA instruction to first
compute the address and then push that register’s value, e.g.,

lea(eax, anAutomaticVar); // Variable allocated on the stack
push(eax);
call someLibraryRoutine;

If the variable’s address is a simple offset from a single register (such as automatic variables
declared in the stack frame and referenced off of the EBP register), you can push the address of the
variable by pushing the base register and adding the offset of that variable to the value left on the
stack, thusly:

push(ebp); // anAutoVar is found at EPB+@offset(anAutoVar)
add(@offset(anAutoVar), (type dword [esp]));
call someLibraryRoutine;
Public Domain Created by Randy Hyde Page 204

HLA Reference Manual 5/24/10 Chapter 11
If the address you want to pass in a reference parameter is a complex address, you’ll have to
use the LEA instruction to compute that address and push it onto the stack. This, unfortunately,
requires a free 32-bit register. If no 32-bit registers are free, you can use code like the following to
achieve this:

sub(4, esp);// Reserve space for parameter on stack
push(eax); // Preserve EAX
lea(eax, [ebp+@offset(autoVar)][ecx*4+3]);
mov(eax, [esp+4]); // Store in parameter location
pop(eax); // Restore EAX
call someLibraryRoutine;

Of course, it’s much nicer to use the HLA high-level syntax for calls like this as the HLA
compiler will automatically handle all the messy code generation details for you.

Like high-level languages, HLA places a whopper of a restriction on pass by reference
parameters: they can only be memory locations. Constants and registers are not allowed since you
cannot compute their address. Do keep in mind, however, that any valid memory-addressing mode
is a valid candidate to be passed by reference; you do not have to limit yourself to static and local
variables. For example, "[eax]" is a perfectly valid memory location, so you can pass this by
reference (assuming you type-cast it, of course, to match the type of the formal parameter). The
following example demonstrate a simple procedure with a pass by reference parameter:

program refDemo;

#include("stdlib.hhf")

 procedure refParm(var a:int32);
 begin refParm;

 mov(a, eax);
 mov(12345, (type int32 [eax]));

 end refParm;

 static
 i:int32:=5;

begin refDemo;

 stdout.put("(1) i=", i, nl);
 mov(25, i);
 stdout.put("(2) i=", i, nl);
 refParm(i);
 stdout.put("(3) i=", i, nl);

end refDemo;

The output produced by this code is

(1) i=5
(2) i=25
(3) i=12345

As you can see, the parameter a in refParm exhibits pass by reference semantics since the
change to the value a in refParm changed the value of the actual parameter (i) in the main
program.
Public Domain Created by Randy Hyde Page 205

HLA Reference Manual 5/24/10 Chapter 11
Note that HLA passes the address of i to refParm, therefore, the a parameter contains the
address of i. When accessing the value of the i parameter, the refParm procedure must deference
the pointer passed in a. The two instructions in the body of the refParm procedure accomplish
this.

Look at the code that HLA generates for the call to refParm:

pushd(&(i__hla_1884+0));
call refParm__hla_1883;

(i__hla_1884 is the back-end assembler compatible name that HLA generated for the static
variable i.)

As you can see, this program simply computed the address of i and pushed it onto the stack.
Now consider the following modification to the main program:

program refDemo;
#include("stdlib.hhf");

 procedure refParm(var a:int32);
 begin refParm;

 mov(a, eax);
 mov(12345, (type int32 [eax]));

 end refParm;

 static
 i:int32:=5;

 var
 j:int32;

begin refDemo;

 mov(4, ebx);
 mov(0, j);
 refParm(j);
 refParm(i[ebx]);
 lea(eax, j);
 refParm([eax+ebx]);

end refDemo;

This version emits the following (pseudo-HLA syntax) code for the body of the main program:

// mov(4, ebx);

mov(4, ebx);

// mov(0, j);

mov(0, (type dword [ebp-8]));

// refParm(j);
Public Domain Created by Randy Hyde Page 206

HLA Reference Manual 5/24/10 Chapter 11
push(ebp);
add(-8, (type dword [esp]));
call refParm__hla_1883;

// refParm(i[ebx]);

push(eax);
push(eax);
lea(i__hla_1884[ebx], eax);
mov(eax, [esp+4]);
pop(eax);
call refParm__hla_1883;

// lea(eax, j);

lea([ebp-8], eax);

// refParm([eax+ebx]);

push(eax);
push(eax);
lea([eax+ebx*1], eax);
mov(eax, [esp+4]);
pop(eax);
call refParm__hla_1883;

As you can see, the code emitted for the last two calls is ugly. These calls would be good
candidates for using the call instruction directly. Also see Hybrid Parameters elsewhere in this
chapter. Another option is to use the @use reg32 option to tell HLA it can use one of the 32-bit
registers as a scratchpad. Consider the following:
procedure refParm(var a:int32); @use esi;

.

.

.

This sequence generates the following code (which is a little better than the previous example):

// mov(4, ebx);

mov(4, ebx);

// mov(0, j);

mov(0, (type dword [ebp-8]));

// refParm(j);

lea([ebp-8], esi);
push(esi);
call refParm__hla_1883;

// refParm(i[ebx]);

lea(i__hla_1884[ebx], esi);
push(esi);
call refParm__hla_1883;
Public Domain Created by Randy Hyde Page 207

HLA Reference Manual 5/24/10 Chapter 11
// lea(eax, j);

lea([ebp-8], eax);

// refParm([eax+ebx]);

lea([eax+ebx*1], esi);
push(esi);
call refParm__hla_1883;

As a rule, the type of an actual reference parameter must exactly match the type of the formal
parameter. There are a couple exceptions to this rule. First, if the formal parameter is dword, then
HLA will allow you to pass any four-byte data type as an actual parameter by reference to this
procedure. Second, you can pass an actual dword parameter by reference if the formal parameter is
a four-byte data type.

There is a third exception to the "the types must exactly match" rule. If the formal reference
parameter is some data type HLA will allow you to pass an actual parameter that is a pointer to this
type. Note that HLA will actually pass the value of the pointer, rather than the address of the
pointer, as the reference parameter. This turns out to be convenient, particularly when calling
Win32 API functions and other C/C++ code. Note, however, that this behavior isn’t always
intuitive, so be careful when passing pointer variables as reference parameters.

If you want to pass the value of a double word or pointer variable in place of the address of
such a variable to a pass by reference, value/result, or result parameter, simply prefix the actual
parameter with the val reserved word in the call to the procedure, e.g.,

refParm(val dwordVar);

This tells HLA to use the value of the variable rather than it’s address.

You may also use the val keyword to pass an arbitrary 32-bit numeric value for a string parameter.
This is useful in certain Win32 API calls where you pass either a pointer to a zero-terminated
sequence of characters (i.e., a string) or a small integer "ATOM" value.

11.12Untyped Reference Parameters
HLA provides a special formal parameter syntax that tells HLA that you want to pass an object

by reference and you don’t care what its type is. Consider the following HLA procedure:

procedure zeroObject(var object:byte; size:uns32);
begin zeroObject;

<< code to write "size" zeros to "object" >
end zeroObject;

The problem with this procedure is that you will have to coerce non-byte parameters to a byte
before passing them to zeroObject. That is, unless you’re passing a byte parameter, you always
have to call zeroObject thusly:

zeroObject((type byte NotAByte), sizeToZero);

For some functions you call frequently with different types of data, this can get painful very
quickly.

The HLA untyped reference parameter syntax solves this problem. Consider the following
declaration of zeroObject:

procedure zeroObject(var object:var; size:uns32);
begin zeroObject;

<< code to write "size" zeros to "object" >
Public Domain Created by Randy Hyde Page 208

HLA Reference Manual 5/24/10 Chapter 11
end zeroObject;

Notice the use of the reserved word var instead of a data type for the object parameter. This
syntax tells HLA that you’re passing an arbitrary variable by reference. Now you can call
zeroObject and pass any (memory) object as the first parameter and HLA won’t complain about
the type, e,g.,

zeroObject(NotAByte, sizeToZero);

Note that you may only pass untyped objects by reference to a procedure.
Note that untyped reference parameters always take the address of the actual parameter to pass

on to the procedure, even if the actual parameter is a pointer. Normal pass by reference semantics in
HLA will pass the value of a pointer, rather than the address of the pointer variable, if the base type
of the pointer matches the type of the reference parameter. Sometimes you’ll have the address of
an object in a register or a pointer variable and you’ll want to pass the value of that pointer object
(i.e., the address of the ultimate object) rather than the address of the pointer variable. To do this,
simply prefix the actual parameter with the val keyword, e.g.,

zeroObject(ptrVar); // Passes the address of ptrVal
zeroObject(val ptrVar); // Passes ptrVar’s value.

11.13Pass by Value/Result and Pass by Result Parameters
Although the behavior of pass by value/result and pass by result parameters is identical to pass

by reference on a procedure call (that is, the caller passes the address of the object to the subroutine
rather than the value), inside the procedure the behavior of these parameter-passing mechanisms is
quite different. This section will discuss those differences and how you use pass by value/result
and pass by result parameters in a program. The pass by result parameter-passing mechanism is
actually a subset of the pass by value/result mechanism, so this section will fully describe the pass
by value/result mechanism and then point out the difference between the two parameter-passing
mechanisms.

One problem with the pass by reference calling sequence is that it is possible to create aliases
of variables in a parameter list that lead to non-intuitive results in your program. Consider the
following (very famous) example:

program refDemo;
#include("stdlib.hhf");

 procedure famous(var a:int32; var b:int32);
 begin famous;

// a := 5;

mov(a, ebx);
mov(5, (type int32 [ebx]));

// b := 10;

mov(b, ebx);
mov(10, (type int32 [ebx]);

// print a+b

mov(a, ebx);
mov([ebx], eax);
mov(b, ebx);
add([ebx], eax);
stdout.put("a+b=", (type int32 eax), nl);
Public Domain Created by Randy Hyde Page 209

HLA Reference Manual 5/24/10 Chapter 11

 end famous;

static
someVar:int32;

begin refDemo;

famous(someVar, someVar);

end refDemo;

The output from this program is "a+b=20" which is somewhat counter-intuitive (the intuitive
result, looking only at the code in famous, would be "a+b=15"). If you study the code above (no
need to look at the low-level machine code), you'll discover the problem. In the call to famous, the
main program passes the address of someVar in both parameter positions. Therefore, inside
famous, both a and b contain the address of someVar. When famous stores the value 5 into the
variable pointed at by a, it overwrites in someVar with 5. Because b also points at someVar, when
famous stores the value 10 into the location pointed at by b, it overwrites the value 5 that it
originally stored there. When famous accesses the values pointed at by a and b (to compute their
sum), it retrieves the value 10 for both memory accesses and, therefore, computes the sum of 20.

The problem in this example is that a and b are aliases (different names for the same variable).
The occurrence of aliases can sometimes create problems, as this example demonstrates. Note that
the pass by value parameter-passing mechanism doesn't suffer from this problem because it makes
a distinct copy of the parameter's value. Were you to use pass by value in the example above, you'd
get the intuitive result of "a+b=15" because a and b would have both been separate variables in
famous' activation record. The drawback to pass by value, of course, is that any modification to a
pass by value parameter is not reflected in the actual parameter that was passed to the procedure.

The pass by value/result parameter-passing mechanism is a combination of the pass by value
and pass by reference mechanisms: it provides a mechanism for passing values into and out of a
procedure while avoiding the problem of aliases (by creating a local copy of the actual parameter's
value in the activation record of the procedure). Here's how pass by value/result works:

the caller passes in an address of the actual parameter
the subroutine makes a copy of the actual parameter's data into a local (automatic) variable
the subroutine manipulate the copy of the data just as it would a value parameter or any other

local (automatic) variable
before the subroutine returns, it copies the data from the local object to the memory location

pointed at by the address that the caller passed to the procedure for the actual parameter.
Note that two copies of the data are made: one copy is made upon entry into the subroutine

(from the actual parameter to the local copy) and one copy is made upon exit from the procedure
(from the local copy to the actual parameter). Inside the procedure, however, all pass by value/
result parameters have their own copy of their actual parameter's data, so there are no aliases. Were
you to rewrite famous to use pass by value result, you'd get the intuitive result of "a+b=15".

The pass by value/result and pass by result parameter-passing mechanisms are unusual because
their behavior is quite different when @frame or @noframe is specified for the procedure.
Whenever you specify @frame (or if this is the default condition), then HLA will automatically
allocate storage for the local copy of the data and the formal parameter name will refer to that local
data in the activation record. You will not have direct access (via some sort of parameter name) to
the address that the caller actually passed into the procedure. This is actually convenient and
natural; you want to treat pass by value/result parameters as though they were simple values.
Consider the following example:

program valresDemo;
?@nodisplay := true;
?@nostackalign:= true;

 procedure p(valres a:int32; valres b:int32);
Public Domain Created by Randy Hyde Page 210

HLA Reference Manual 5/24/10 Chapter 11
 begin p;
 end p;

static
someVar:int32;
someVar2:int32;

begin valresDemo;

p(someVar, someVar2);

end valresDemo;

Here is the symbol table for procedure p in this code:

p <0,proc>:Procedure type (ID=p__hla_1)

 vars <1,cons>:uns32, (4 bytes) =8
 b <1,var >:int32, (4 bytes, ofs:-8)
 a <1,var >:int32, (4 bytes, ofs:-4)
 parms <1,cons>:uns32, (4 bytes) =8
 a <1,vrp >:int32, (4 bytes, ofs:12)
 b <1,vrp >:int32, (4 bytes, ofs:8)
 finalize <1,val >:string, (0 bytes) =""
 initialize <1,val >:string, (0 bytes) =""
 p <1,proc>:

Note that the symbols a and b appear twice in p's symbol table. The first pair (which HLA
always finds when searching through the symbol table) corresponds to the local copies of these
parameters that HLA allocates on the stack. The second pair (which are inaccessible to your
program because HLA always finds the other pair first) corresponds to the actual addresses that the
caller pushes onto the stack.

Here is the code that HLA generates for procedure p (including the code it automatically
generates to copy the value/result parameter data to the local copy):
procedure p__hla_1;
begin p__hla_1;

// Set up the activation record:

 push(ebp);
 mov(esp, ebp);

// Allocate storage for locals (specifically, for the
// local copies of a and b):

 sub(8, esp);

// Copy the actual values pointed at by a and b to
// the local copies:

 push(esi);
 push(ecx);
Public Domain Created by Randy Hyde Page 211

HLA Reference Manual 5/24/10 Chapter 11
 mov([ebp+12], esi);// Get pointer to a
 mov([esi], ecx);// Get a's value
 mov(ecx, [ebp-4]);// Store value into local copy

 mov([ebp+8], esi);// Get pointer to b
 mov([esi], ecx);// Get b's value
 mov(ecx, [ebp-8]);// Store value into local copy

 pop(ecx);
 pop(esi);

// Exit from procedure p:

xp__hla_1__hla_:

// Copy the data from the local copies back to
// the actual parameters:

 push(edi);
 push(ecx);

 mov([ebp+12], edi);// Get pointer to a
 mov([ebp-4], ecx);// Get a's local value
 mov(ecx, [edi]);// Store into actual a

 mov([ebp+8], edi);// Get pointer to b
 mov([ebp-8], ecx);// Get b's local value
 mov(ecx, [edi]);// Store into actual b

 pop(ecx);
 pop(edi);

// Clean up the activation record and leave:

 mov(ebp, esp);
 pop(ebp);
 ret(8);
end p__hla_1;

If the procedure has the @noframe option, then the formal parameter name refers to the
address passed by the caller on the stack. It is your responsibility to allocate storage for the local
copy of the pass by value/result parameter and copy the data from the address specified to your
local copy. Here's the code above with the @noframe option:
program valresDemo;
?@nodisplay := true;
?@nostackalign:= true;

 procedure p(valres a:int32; valres b:int32); @noframe;
 begin p;
 end p;

static
someVar:int32;
someVar2:int32;
Public Domain Created by Randy Hyde Page 212

HLA Reference Manual 5/24/10 Chapter 11

begin valresDemo;

p(someVar, someVar2);

end valresDemo;

Here's p's symbol table for this code:
p <0,proc>:Procedure type (ID=p__hla_1) parms:8

 vars <1,cons>:uns32, (4 bytes) =0
 parms <1,cons>:uns32, (4 bytes) =8
 a <1,vrp >:int32, (4 bytes, ofs:12)
 b <1,vrp >:int32, (4 bytes, ofs:8)
 finalize <1,val >:string, (0 bytes) =""
 initialize <1,val >:string, (0 bytes) =""
 p <1,proc>:

Note that there is only one set of a and b parameters in this symbol table and they refer to the
addresses passed on the stack rather than to any local data. You are responsible for allocating the
storage making a local copy of the data when the @noframe option is present. Essentially, when
you have valres parameters in a procedure that has the @noframe option, the effect is the same as
if you declared the parameters as pass by reference parameters.

Given the amount of code HLA generates to copy pass by value/result parameters to and from
the actual parameter locations, you might question whether using pass by value/result is very
efficient. As it turns out, if you're accessing the value/result objects frequently in a program, you
can quickly recoup the cost of the data copy operation with the more efficient access to a local
variable (versus the indirect access that takes place with a reference variable).

Pass by result parameters are very similar to pass by value/result. The only difference is that
HLA-generated code (when @frame is active) does not copy any data into the local copy of the
parameter variable. Pass by result parameters are more efficient than pass by value/result if you
are only using such parameters to return a value to the caller.

Note that HLA uses callee-copying semantics for pass by value/result and pass by result
parameters. It's also possible to use caller-copying semantics (though HLA doesn't directly support
this). The way to achieve caller-copy semantics is to pass the parameters by value but not remove
them from the stack upon return. When the procedure returns to the caller, the caller can pop the
data off the stack and store it into the original actual parameter locations. Obviously, this scheme
generates a lot more code if you call the procedure a large number of times, but it can be slightly
more efficient in certain cases because the procedure won't need to preserve registers it uses to copy
the data to and from the local copy of the parameter data.

11.14Parameter Passing in HLA, Name and Lazy Evaluation
Parameters

HLA provides a modicum of support for pass by name and pass by lazy evaluation parameters.
A pass by name parameter consists of a thunk that returns the address of the actual parameter. A
pass by lazy evaluation parameter is a thunk that returns the value of the actual parameter.
Whenever you specify the name or lazy keywords before a parameter, HLA reserves eight bytes to
hold the corresponding thunk in the activation record. It is your responsibility to create a thunk
whenever calling the procedure.

There is a minor difference between passing a thunk parameter by value and passing a lazy
evaluation or name parameter to a procedure. Pass by name/lazy parameters require an immediate
thunk constant; you cannot pass a thunk variable as a pass by name or lazy parameter.

To pass a thunk constant as a parameter to a pass by name or pass by lazy evaluation
parameter, insert the thunk’s code inside "#{...}#" sequence in the parameter list and preface the
Public Domain Created by Randy Hyde Page 213

HLA Reference Manual 5/24/10 Chapter 11
whole thing with the thunk reserved word. The following example demonstrates passing a thunk
as a pass by name parameter:

program nameDemo;
#include("stdio.hhf");

 procedure passByName(name ary:int32; var ip:int32);
 @nodisplay;
 const i:text := "(type int32 [ebx])";
 const a:text := "(type int32 [eax])";
 begin passByName;

 mov(ip, ebx);
 mov(0, i);
 while(i < 10) do

 ary(); // Get address of "ary[i]" into eax.
 mov(i, ecx);
 mov(ecx, a);
 inc(i);

 endwhile;

 end passByName;

 procedure thunkParm(t:thunk);
 begin thunkParm;

 t();

 end thunkParm;

var
 index:int32;
 array:int32[10];
 th:thunk;

begin nameDemo;

 thunk th := #{ stdout.put("Thunk Variable",nl) }#;
 thunkParm(th);
 thunkParm(thunk #{ stdout.put("Thunk Constant" nl); }#);

 // passByName(th, index); -- would be illegal;

 passByName
 (
 thunk
 #{
 push(ebx);
 mov(index, ebx);
 lea(eax, array[ebx*4]);
 pop(ebx);
 }#,
 index
);
Public Domain Created by Randy Hyde Page 214

HLA Reference Manual 5/24/10 Chapter 11

 mov(0, ebx);
 while(ebx < 10) do

 stdout.put
 (
 "array[",
 (type int32 ebx),
 "]=",
 array[ebx*4],
 nl
);
 inc(ebx);

 endwhile;

end nameDemo;

This program produces the following output:

Thunk Variable
Thunk Constant
array[0]=0
array[1]=1
array[2]=2
array[3]=3
array[4]=4
array[5]=5
array[6]=6
array[7]=7
array[8]=8
array[9]=9

The main purpose of pass by name and pass by lazy evaluation parameters is to support
deferred parameter evaluation. When you pass a value, reference, value/result, or result parameter
to a procedure, the value of that parameter is evaluated exactly once, at the point of the procedure
call. When you pass a pass by name or pass by lazy evaluation parameter to a procedure, you're
passing a thunk that is called to evaluate the parameter's value whenever you want to reference that
parameter's value. From HLA's perspective, pass by name and pass by lazy evaluation parameters
are implemented exactly the same way. The intent is that the respective thunks for this parameters
return the address (pass by name) of the object or the value (pass by lazy evaluation) of the actual
parameter object.

11.15Hybrid Parameter Passing in HLA
HLA’s automatic code generation for parameters specified using the high-level language

syntax isn’t always optimal. In fact, sometimes it is downright inefficient (though, to be fair, the
code generation has gotten much better over the past decade; there are only a few degenerate
examples we can draw from today). This is because HLA makes very few assumptions about your
program. For example, suppose you are passing a word parameter to a procedure by value. Since
all parameters in HLA consume an even multiple of four bytes on the stack, HLA will zero extend
the word and push it onto the stack. It does this using code like the following:

pushw 0
pushw Parameter
Public Domain Created by Randy Hyde Page 215

HLA Reference Manual 5/24/10 Chapter 11
Clearly, you can do better than this if you know something about the variable. For example, if
you know that the two bytes following Parameter are in memory (as opposed to being in the next
page of memory that isn’t allocated, and access to such memory would cause a protection fault),
you could get by with the single instruction:

push dword ptr Parameter

Unfortunately, HLA cannot make these kinds of assumptions about the data because doing so
could create malfunctioning code (actually, if Parameter is an automatic variable or a parameter
passed in from some other call, then HLA will make this assumption - this is an example of how
HLA's code generation has improved over the years).

One solution, of course, is to forego the HLA high-level language syntax for procedure calls
and manually push all the parameters your self and call the procedure via the call instruction.
However, this is a major pain involving lots of extra typing and produces code that is difficult to
read and understand. Therefore, HLA provides a hybrid parameter passing mechanism that lets
you continue to use a high-level language calling syntax yet still specify the exact instructions
needed to pass certain parameters. This hybrid scheme works out well because HLA actually does
a good job with most parameters (e.g., if they are an even multiple of four bytes, HLA generates
efficient code to pass the parameters; it’s only those parameters that have a weird size that HLA
generates less than optimal code for).

If a parameter consists of the "#{" and "}#" brackets with some corresponding code inside the
brackets, HLA will emit the code inside the brackets in place of any code it would normally
generate for that parameter. So if you wanted to pass a 16-bit parameter efficiently to a procedure
named "Proc" and you’re sure there is no problem accessing the two bytes beyond this parameter,
you could use code like the following:

Proc(#{ push((type dword WordVar)); }#);

Notice the similarity to pass by name/eval parameters. However, no thunk reserved word
prefaces the code in this instance.

Whenever you pass a non-static1 variable as a parameter by reference, HLA generates the
following (MASM-syntax) code to pass the address of that variable to the procedure:

pusheax
pusheax
lea eax, Variable
mov [esp+4], eax
pop eax

It generates this particular code to ensure that it doesn’t change any register values (after all,
you could be passing some other parameter in the EAX register). If you have a free register
available, you can generate slightly better code using a calling sequence like the following
(assuming EBX is free):

HasRefParm
(

#{
lea(ebx, Variable);
push(ebx);

}#
);

Note that HLA will generate slightly better code for automatic variables and parameters that
don't have an indexed addressing mode attached to them. Examining the HLA output code (using -

1. Static variables are those you declare in the static, readonly, and storage sections. Non-static variables include
parameters, VAR objects, and anonymous memory locations.
Public Domain Created by Randy Hyde Page 216

HLA Reference Manual 5/24/10 Chapter 11
source and -hla command-line options) is a good way to see exactly what HLA is doing with your
procedure calls.

11.16Parameter Passing in HLA, Register Parameters
HLA provides a special syntax that lets you specify that certain parameters be passed in

registers rather than on the stack. The following are some examples of procedure declarations that
use this feature:

procedure a(u:uns32 in eax); forward;
procedure b(w:word in bx); forward;
procedure d(c:char in ch); forward;

Whenever you call one of these procedures, the code that HLA automatically emits for the call
will load the actual parameter value into the specified register rather than pushing this value onto
the stack. You may specify any general-purpose 8-bit, 16-bit, or 32-bit register after the in
keyword following the parameter’s type. Obviously, the parameter must fit in the specified
register. You may only pass reference parameters in 32-bit registers; you cannot pass parameters
that are not one, two, or four bytes long in a register.

You can get in to trouble if you’re not careful when using register parameters, consider the
following two procedure definitions:
procedure one(u:uns32 in eax; v:dword in ebx); forward;
procedure two(a:uns32 in eax);
begin two;

one(25, a);

end two;

The call to one in procedure two looks like it passes the values 25 and whatever was passed in
for a in procedure two. However, if you study the HLA output code, you will discover that the call
to one passes 25 for both parameters. They reason for this is because HLA emits the code to load
25 into EAX in order to pass 25 in the u parameter. Unfortunately, this wipes out the value passed
into two in the a variable, hence the problem. Be aware of this if you use register parameters often.

11.17Instruction Composition and Parameter Passing in HLA
You can use HLA's instruction composition feature in calls to HLA procedures. Consider the

following simple example:
program instrCompDemo;
?@nodisplay := true;
?@nostackalign:= true;

 procedure p(var a:dword); @noframe;
 begin p;
 end p;

var

someVar:int32;

begin instrCompDemo;

p([lea(eax, someVar)]);

end instrCompDemo;
Public Domain Created by Randy Hyde Page 217

HLA Reference Manual 5/24/10 Chapter 11
You can also use instruction composition to compute certain expression values to pass as value
parameters to an HLA procedure:
program instrCompDemo;
?@nodisplay := true;
?@nostackalign:= true;

 procedure p(a:dword); @noframe;
 begin p;
 end p;

var

i :int32;
j :int32;

begin instrCompDemo;

// Pass i+j as the value parameter:

p(add(mov(i, eax), mov(j, ebx)));

end instrCompDemo;

Here's the code that HLA generates for the procedure call in the last example:

mov([ebp-8], eax);
mov([ebp-12], ebx);
add(eax, ebx);
push(ebx);
call p__hla_1;

The HLA returns statement provides another mechanism for using instruction composition
to pass parameters to an HLA function. Here is the basic syntax for the returns statement:

returns({ << HLA statements >> }, "string")

HLA will compile the statements between the braces and then return the string operand as the
"returns" value for the entire construct. If this string contains an x86 register, a memory location,
or an appropriate constant, HLA will emit the appropriate push instruction for that string operand if
the returns statement appears as a procedure parameter. Here is an example of this usage:

// Pass i+j as the value parameter:

p
(

returns
(

{
mov(i, eax);
mov(j, ebx);
add(eax, ebx);

},
"ebx"

)
);

Note that this example emits the same code as the previous example. Though this example is a bit
longer, it’s also much easier to read and comprehend.
Public Domain Created by Randy Hyde Page 218

HLA Reference Manual 5/24/10 Chapter 11
11.18Lexical Scope
HLA is a block-structured language that enforces the scope of local identifiers. HLA uses

lexical scope to determine when and where an identifier is visible to the program. Identifiers
declared within a procedure are always visible within that procedure and to any local procedures
declared after the identifier. Local identifiers are never visible outside the procedure declaration.
The scoping rules are similar to languages like Pascal, Ada, and Modula-2. As an example,
consider the following code:
program scopeDemo;

#include("stdio.hhf");

var
 i:int32;
 j:int32;
 k:int32;

 procedure lex1;
 var
 i:int32;
 j:int32;

 procedure lex2;
 var
 i:int32;
 begin lex2;

 mov(i, eax); //1
 mov(ebx::j, eax); //2
 mov(ecx::k, eax); //3

 end lex2;

 begin lex1;

 mov(i, eax); //4
 mov(j, eax); //5
 mov(ecx::k, eax); //6

 end lex1;

 procedure alsolex1;
 var
 i:int32;
 m:int32;
 begin alsolex1;

 mov(i, eax); //4
 mov(m, eax); //5
 mov(ecx::k, eax); //6

 end alsolex1;

Public Domain Created by Randy Hyde Page 219

HLA Reference Manual 5/24/10 Chapter 11
begin scopeDemo;

 mov(i, eax); //7
 mov(j, eax); //8
 mov(k, eax); //9

end scopeDemo;

Note: the purpose of the ebx:: and ecx:: prefixes on certain variables will become clear in a
moment. Also note that this code is not functional, it was written only as an illustration.

In this example, you will note that lex2 is nested within lex1, which is nested within the main
program. The alsolex1 procedure is nested within the main program but inside no other
procedure. To describe this arrangement, compiler writers use the term lex level to denote the
depth of nesting. HLA defines the main program to be lex level zero. Each time you nest a
procedure you increase its lex level. So lex1 is at lex level one since it is directly nested inside the
main program at lex level zero. The lex2 procedure is at lex level two because it is nested inside
the lex1 procedure. Finally, alsolex1 is also at lex level one because it is nested inside the main
program (which is lex level zero).

Within a given procedure (or the main program), all identifiers must be unique. That is, you
cannot have two symbols named i in the same procedure. In different procedures, however, you
may reuse the names. If all procedures were written at lex level one, then no procedure would be
able to directly access the local variables in any other procedure (this is the case with the C/C++
language). In block-structured languages, like HLA, it is possible to access certain non-local
variables in other procedures if the current procedure (whose code is attempting to access said
variable) is nested within the other procedure.

In the example above, lex2 accesses three variables: i, j, and k. The i variable is local to
lex2, so there is nothing surprising here. The j variable is local to lex1 and global to lex2.
Likewise, the k variable is global to both lex1 and lex2 yet lex2 can access it. Whenever a
procedure is nested within another (either directly or indirectly), the nested procedure can access all
variables in the global, nesting, procedures (including the main program)1 unless the procedure
declares a local name with the same name as a global name (the local name always takes
precedence in this case). The term "scope" refers to the visibility of these names.

Being able to use a name during compilation is one thing, accessing the memory location
associated with that name at run-time is something else entirely. Most block-structured high-level
languages (HLLs) emit lots of extra code to access these "intermediate" and global variables for
you. Why the extra code? Well remember, local procedure variables are accessed on the stack by
indexing off the EBP register (which points at a procedure’s "activation record"). When a
procedure like lex1 above calls a local procedure like lex2, the lex2 procedure promptly saves
the value in EBP (that points at lex1’s activation record) and it points EBP at the new activation
record for lex2. Unfortunately, lex2 no longer has access to lex1’s local variables since EBP no
longer points at lex1’s locals. This creates a bit of a problem.

"But wait!" you exclaim. "EBP is pointing at the pointer to lex1’s activation record, why not
just use double indirection to get the pointer to lex1’s locals?" This is a good idea, but it fails if
lex2 is recursive. There are two or three general solutions to this problem; HLA uses a display to
access non-local values.

A display is nothing more than an array of pointers. Display[0] is a pointer to the most
recent activation record at lex level zero, Display[1] is a pointer to the most recent activation
record at lex level one, Display[2] is a pointer to the most recent activation record at lex level
two, etc. (note the use of the phrase most recent. This ensures that displays work properly even
when recursion occurs). With a display, to access a non-local variable, you just go to the memory
location specified by Display[varlex] + varoffset where varlex is the lex level of the symbol
you wish to access and varoffset is the offset into the activation record where the variable’s data
can be found.

Sound complex? Actually, HLA simplifies this quite a bit. First, as long as you don’t specify
the @nodisplay procedure option, HLA automatically emits the code to build a display at the

1. Strictly speaking, this isn’t true. The nested procedure has access to all global variables that were declared
before the procedure’s declaration.
Public Domain Created by Randy Hyde Page 220

HLA Reference Manual 5/24/10 Chapter 11
start of the procedure’s code1. HLA also defines a run-time variable, _display_, that points at
(the end of) this array of pointers. To access a non-local variable requires two instructions, one to
fetch the address of the variable’s activation record and one to access the variable. Correcting the
previous program, the code would look something like this:

 procedure lex2;
 var
 i:int32;
 begin lex2;

 mov(i, eax);

 // access non-local variable j
 // at lex level 1.

 mov(_display_[-1*4], ebx);
 mov(ebx::j, eax);

 // access non-local variable k
 // at lex level 0.

 mov(_display_[0], ecx);
 mov(ecx::k, eax);

 end lex2;

There are two things to note about the display: first, the entries are stored at negative indices in
the array (0, -1, -2, etc) rather than at positive indices (this is due to Intel's implementation of
displays). Second, don’t forget that this is a run-time array of double-words so you must multiply
each index by the array element size, which is four in this case.

Once you’ve loaded the address into a register, the reg::var syntax tells HLA to use the
specified register rather than EBP as the pointer to the variable’s activation record. The
"mov(ecx::k,eax);" instruction, for example, compiles to "mov eax, [ecx+koffset]" where koffset
represents the offset of k in the main program’s activation record.

In general, few programs take advantage of nested procedures and access to local variables, so
it is very common to find programmers putting @nodisplay after all their procedures. Of course,
if you do this, HLA does not generate display and access to non-local variables (declared in the var
section) is not possible. Of course, static variables are not allocated in the activation record, so you
always have access to non-local static variables even if you don’t generate the code for a display.

1. It is important that all nested procedures construct the display. You couldn’t use the @nodisplay option in
lex1 and expect lex2 to properly build the display. In general, unless you know exactly what you are doing, your
procedures should all have the @nodisplay option, or none of them should have it.
Public Domain Created by Randy Hyde Page 221

HLA Reference Manual 5/24/10 Chapter 12
12 HLA Classes and Object-Oriented Programming

12.1 Class Data Types
HLA supports object-oriented programming via the class data type. A class declaration takes

the following form:

class

<< declarations >>

endclass;

Classes allow const, val, var, static, readonly, storage, procedure, iterator, and method
declarations. In general, just about everything allowed in a program declaration section except
labels, types, and namespaces are legal in a class declaration.

Unlike C++ and Object Pascal, where the class declarations are nearly identical to the record/
struct declarations, HLA class declarations are noticeably different than HLA records because you
supply const, var, static, etc., declaration sections within the class. As an example, consider the
following HLA class declaration:

type
SomeClass:

class

var
i:int32;

const

pi:=3.14159;

method incrementI;

endclass;

Unlike records, you must put each declaration into an appropriate section. In particular, data
fields must appear in a static, readonly, storage, or var section.

Note that the body of a procedure or method does not appear in the class declaration. Only
prototypes (forward declarations) appear within the class definition itself. The actual procedure or
method is declared elsewhere in the code.

12.2 Classes, Objects, and Object-Oriented Programming in
HLA

HLA provides support for object-oriented program via classes, objects, and automatic method
invocation. Indeed, supporting method calls requires HLA to violate an important design principle
(that HLA generated code does not disturb values in any registers except ESP and EBP).
Nevertheless, supporting object-oriented programming and automatic method calls was so
important, an exception was made in this instance. More on that in a moment.

It is worthwhile to review the syntax for a class declaration. First, class declaration may only
appear in a type section within an HLA program. You cannot define classes in the var, static,
storage, or readonly sections and HLA does not allow you to create class constants1. Within the
type section, a class declaration takes one of the following forms:
Public Domain Created by Randy Hyde Page 222

HLA Reference Manual 5/24/10 Chapter 12
type
baseClass:

class
Declarations, including const,
val, var, and static sections, as
well as procedures, methods, and
macros.

endclass;

derivedClass:
class inherits(baseClass)

Declarations, including const,
val, var, and static sections, as
well as procedure and method prototypes, and
macros.

endclass;

Note that you may not include type sections or namespace sections in a class. Allowing type
sections in a class creates some special problems (having to due with the possibility of nested class
definitions). Name spaces are illegal because they allow type sections internally (and there is no
real need for name spaces within a class).

Note that you may only place procedure, iterator, and method prototypes in a class
definition. Procedure and method prototypes look like a forward declaration without the forward
reserved word; they use the following syntax:

procedure procName(optional_parameters); options
method methodName(optional_parameters); options
iterator iterName(optional_parameters); optional_external

procName, iterName, and methodName are the names you wish to assign to these program
units. Note that you do not preface these names with the name of the class and a period.

If the procedure, iterator, or method has any parameters, they immediately following the
procedure/iterator/method name enclosed in parentheses. The parentheses must not be present if
there are no parameters. A semicolon immediately follows the parameters, or the procedure/
method name if there are no parameters.

12.3 The THIS and SUPER Reserved Words
Within a class method, procedure, or iterator, you will often need to access one of the class

fields of the current object. Upon entry into a class method or iterator, the ESI register will always
be pointing at the class object’s data. Upon entry into a class procedure, the ESI register will either
contain NULL (if you call the class procedure directly, specifying the class name rather than an
object name) or a pointer to the object’s data (if you call the class procedure using an object name
or object pointer name). You can use HLA’s type coercion operation to access the object’s data
fields or call other methods in the class, e.g.,:

method someClass.SomeMethod;
begin SomeMethod;

mov((type someClass [esi]).someField, eax);
(type someClass [esi]).someOtherMethod(eax);

1. Of course, you may create class variables (objects) by specifying the class type name in the var or static
sections.
Public Domain Created by Randy Hyde Page 223

HLA Reference Manual 5/24/10 Chapter 12
end SomeMethod;

Of course, you must take care not to overwrite the value passed in ESI to the method (or iterator or
procedure) when using it in this fashion.

HLA offers a special reserved word, this, that simplifies accessing fields of the current
object. The this keyword automatically expands to “(type current_object_class [esi])”, so you
could write the previous code thusly:

method someClass.SomeMethod;
begin SomeMethod;

mov(this.someField, eax);
this.someOtherMethod(eax);

end SomeMethod;

Note that calling a class function associated with any other object will load ESI with the
address of that object’s data; so if you make such a call within a method the current value in ESI
may be replaced. Using this after such a call will produce undefined results:

method someClass.aMethod;
begin aMethod;

someOtherObject.itsMethod(0);
mov(this.someField, eax); // Incorrect! ESI is wiped out!

end aMethod;

On occasion, a method may need to call the base class’ version of that method in order to
handle some operations done by the base class. The intent might be like the following (incorrect
example):

method derivedClass.someFunction;
begin someFunction;

// Attempt to call the base class’ method:

(type baseClass [esi]).someFunction();

// Do some work specific to this class:
.
.
.

end someFunction;

This won’t work as intended. The code above will likely end up in an infinite loop because the
current object’s virtual method table (VMT) entry for someFunction points at the
derivedClass.someFunction method. Simply coercing the type of [esi] won’t change this
(indeed, this is how polymorphism in object-oriented programming works). If you really want to
call the base class’ method, you should use the super keyword. The super keyword is similar to
this except that it is only valid for method calls. Consider the following example:

method derivedClass.someFunction;
begin someFunction;
Public Domain Created by Randy Hyde Page 224

HLA Reference Manual 5/24/10 Chapter 12
// Attempt to call the base class’ method:

super.someFunction();

// Do some work specific to this class:
.
.
.

end someFunction;

The difference between this and super is that the super keyword loads the EDI register
(which points at the VMT) with the address of the base class’ VMT rather than the current classes
VMT. This forces the call to the base class’ method rather than to the current (derived) class’
method. See the discussion of the override keyword later in the chapter for more details on
derived and base class methods.

12.4 Class Procedure and Method Prototypes
Class procedure and method prototypes allow two options: an @returns clause and/or an

external clause. The @pascal, @cdecl, @stdcall, @nodisplay and @noframe options
are not allowed in the prototype. See the section on procedures for more details on the @returns
and external clauses. The iterator only allows the external option.

You can also use new style procedure declarations in an HLA class to declare procedures,
iterators, and macros. Here is a simple example of a class using the new style syntax:
type

myClass:
class

proc
classProc:procedure(i:int32);
classMethod:method(j:int32);
classIterator:iterator(k:int32);

endproc;

endclass;

Unlike procedures and methods, if you define a macro within a class you must supply the body
of the macro within the class definition.

Consider the following example of a class declaration:

type
baseClass:

class

var
i:int32;

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

endclass;
Public Domain Created by Randy Hyde Page 225

HLA Reference Manual 5/24/10 Chapter 12
By convention, all classes should have a class procedure named create. This is the
constructor for the class. The create procedure should return a pointer to the class object in the ESI
register, hence the @returns("esi"); clause in this example.

This procedure includes two accessor functions, geti and seti, that provide access to the
class variable i. Note that HLA classes do not support the public, private, and protected visibility
options found in HLLs like C++ and Delphi. HLA’s design assumes that assembly language
programmers are sufficiently disciplined such that they will not access fields that should be
private1.

Of course, the class’ procedures and methods must be defined at one point or another. Here are
some reasonable examples of these class definitions (a full explanation will appear later):

procedure baseClass.create;
begin create;

push(eax);
if(esi = 0) then

malloc(@size(baseClass));
mov(eax, esi);

endif;
mov(baseClass._VMT_, this._pVMT_);
pop(eax);
ret();

end create;

procedure baseClass.geti; @nodisplay; @noframe;
begin geti;

mov(this.i, eax);
ret();

end geti;

method baseClass.seti(ival:int32); @nodisplay;
begin seti;

push(eax);
mov(ival, eax);
mov(eax, this.i);
pop(eax);

end seti;

These procedure and method declarations look almost like regular procedure declarations with
one important difference: the class name and a period precede the procedure or method name on the
first line of the procedure/method declaration. Note, however, that only the procedure or method
name appears after the begin and end clauses.

Another important difference is the procedure options. Only the @nodisplay/@display,
@noalignstack/@alignstack, and @noframe/@frame options are legal here (the converse

1. Actually, HLA was designed this way because far too often programmers make fields private and other
programmers decide they really needed access to those fields, software engineering be damned. HLA relies upon
the discipline of the programmers to stay out of trouble on this matter.
Public Domain Created by Randy Hyde Page 226

HLA Reference Manual 5/24/10 Chapter 12
of the class procedure/method prototype definitions which only allow external and @returns).
Note that class procedures, methods, and iterators do not support the @pascal, @cdecl, or
@stdcall procedure options (they always use the Pascal calling convention).

Class procedures and methods must be defined at the same lex level and within the same scope
as the class declaration. Usually class declarations are a lex level zero (i.e., inside the main
program or within a unit), so the corresponding procedure and method declarations must appear at
lex level zero as well. Of course, it is legal to declare a class type within some other procedure (at
lex level one or higher). If you do this, the class procedure and method declarations must appear at
the same level.

Note that class declarations also support the new procedure declaration syntax with a proc
section. Here is the previous example using the new style procedure declarations:
type

baseClass:
class

var
i:int32;

proc
create :procedure {@returns("esi")};
geti :procedure {@returns("eax")};
seti :method(ival:int32); external;

endclass;

proc
baseClass.create: procedure;
begin create;

push(eax);
if(esi = 0) then

malloc(@size(baseClass));
mov(eax, esi);

endif;
mov(baseClass._VMT_, this._pVMT_);
pop(eax);
ret();

end create;

baseClass.geti :procedure: @nodisplay @noframe;
begin geti;

mov(this.i, eax);
ret();

end geti;

baseClass.seti :method(ival:int32); @nodisplay;
begin seti;

push(eax);
mov(ival, eax);
mov(eax, this.i);
Public Domain Created by Randy Hyde Page 227

HLA Reference Manual 5/24/10 Chapter 12
pop(eax);

end seti;

12.5 Inheritance
HLA classes support inheritance using the inherits reserved word. Consider the following

class declaration that inherits the fields from the baseClass declaration in the previous section:

derivedClass:
class inherits(baseClass)

var
j:int32;
f:real64;

endclass;

This class inherits all the fields from baseClass and adds two new fields, j and f. This
declaration is roughly equivalent to:

derivedClass:

var
i:int32;

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

var
j:int32;
f:real64;

endclass;

It is "roughly" equivalent because there is no need to create the derivedClass.create and
derivedClass.geti procedures or the derivedClass.seti method. This class inherits the
procedures and methods written for baseClass along with the field definitions.

Like records, it is possible to "override" the var fields of a base class in a derived class. To do
this, you use the overrides keyword. Note that this keyword is valid only for var fields in a class,
you may not override static objects with this keyword. Example:

derivedClass:
class inherits(baseClass)

procedure create; @returns("esi");
procedure geti; @returns("eax");
method seti(ival:int32); @external;

var
overrides i: dword; // New copy of i for this class.
j:int32;
Public Domain Created by Randy Hyde Page 228

HLA Reference Manual 5/24/10 Chapter 12
f:real64;

endclass;

While on the subject of class var objects, you should be aware that class var objects are not
(necessarily) allocated on the stack in an activation record as are local var variables in a
procedure, method, or iterator. Class var objects are allocated in storage associated with a class
object, that actual memory could be on the stack, in static memory, or on the heap.

Occasionally, you may want to override a procedure in a base class. For example, it is very
common to supply a new constructor in each derived class (since the constructor may need to
initialize fields in the derived class that are not present in the base class). The override1

keyword tells HLA that you intend to supply a new procedure or method declaration and you do not
want to call the corresponding functions in the base class. Consider the following modifications to
derivedClass that override the create procedure and seti method:

derivedClass:
class inherits(baseClass)

var
j:int32;
f:real64;

override procedure create;
override method seti;

endclass;

When you override a procedure or method, you are not allowed to specify any parameters or
procedure options except the external option. This is because the parameters and @returns
strings must exactly match the declarations in the base class. So even though seti in this derived
class doesn’t have an explicit parameter declared, the ival parameter is still required in a call to
seti.

Of course, once you override procedures and methods in a derived class, you must provide
those program units in your code. Here is an example of a section of a program that provides
overridden procedures and methods along with their declarations:

type

 base: class

 var
 i:int32;

 procedure create;
 method geti;
 method seti(ival:int32);

 endclass;

 derived:class inherits(base)

 var

1. Note that the syntax is override, not overrides as is used for overriding data fields. This is an
unfortunate consequence of HLA’s grammar.
Public Domain Created by Randy Hyde Page 229

HLA Reference Manual 5/24/10 Chapter 12
 j:int32;

 override procedure create;
 override method seti;

 method getj;
 method setj(jval:int32);

 endclass;

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 malloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

 method base.geti; @nodisplay; @noframe;
 begin geti;

 mov(this.i, eax);
 ret();

 end geti;

 method base.seti(ival:int32); @nodisplay;
 begin seti;

 push(eax);
 mov(ival, eax);
 mov(eax, this.i);
 pop(eax);

 end seti;

 procedure derived.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);
Public Domain Created by Randy Hyde Page 230

HLA Reference Manual 5/24/10 Chapter 12

 endif;

 // Do any initialization done by the base class:

 call base.create;

 // Do our own specific initialization.

 mov(&derived._VMT_, this._pVMT_);
 mov(1, this.j);

 // Return

 pop(eax);
 ret();

 end create;

 method derived.seti(ival:int32); @nodisplay;
 begin seti;

 push(eax);
 mov(ival, eax);

 // call inherited code to do whatever it does:

 (type base [esi]).seti(ival);

 // Now handle the code that we do specially.

 mov(eax, this.j);

 // Okay, return to caller.

 pop(eax);

 end seti;

 method derived.setj(jval:int32); @nodisplay;
 begin setj;

 push(jval);
 pop(this.j);

 end setj;

 method derived.getj; @nodisplay; @noframe;
 begin getj;

 mov(this.j, eax);
 ret();

 end getj;
Public Domain Created by Randy Hyde Page 231

HLA Reference Manual 5/24/10 Chapter 12
12.6 Abstract Methods
Sometimes you will want to create a base class as a template for other classes. You will never

create instances (variables) of this base class, only instances of classes derived from this class. In
object-oriented terminology, we call this an abstract class. Abstract classes may contain certain
methods that will always be overridden in the derived classes. Hence, there is no need to actually
supply the method for this base class. HLA, however, always checks to verify that you supply all
methods associated with a class. Therefore, you normally have to supply some sort of method,
even if it’s just an empty method, to satisfy the compiler. In those instances where you really don’t
need such a method, this is an annoyance. HLA’s abstract methods provide a solution to this
problem.

You declare an abstract method in a class declaration as follows:

type
c: class

method absMethod(parameters: uns32); abstract;

proc
anotherAbsMethod:method(parms:uns32) {@returns("eax")};

abstract;

endclass;

The abstract keyword must follow the @returns option if the @returns option is present. In the
new style procedure syntax, the abstract option must follow the declaration.

The abstract keyword tells HLA not to expect an actual method associated with this class.
Instead, it is the responsibility of all classes derived from "c" to override this method. If you
attempt to call an abstract method, HLA will raise an exception and abort program execution.

12.7 Classes versus Objects
An object is an instance of a class. In plain English, this means that a class is only a data type

while an object is a variable whose type is some class type. Therefore, actual objects may be
declared in the var, static, readonly, or storage declaration section. Here are a couple of typical
examples:

var
b: base;

static
d: derived;

Each of these declarations reserves storage for all the data in the specified class type.
For reasons that will shortly become clear, most programmers use pointers to objects rather

than directly declared objects. Pointer declarations look like the following:

var
ptrToB: pointer to base;

static
ptrToD: pointer to derived;

Of course, if you declare a pointer to an object, you will need to allocate storage for the object
(call the HLA Standard Library mem.alloc routine) and initialize the pointer variable with the
Public Domain Created by Randy Hyde Page 232

HLA Reference Manual 5/24/10 Chapter 12
address of the allocated storage. As you will soon see, the class constructor typically handles this
allocation for you.

12.8 Initializing the Virtual Method Table Pointer
Whether you allocate storage for an object statically (in the static section), automatically (in

the var section), or dynamically (via a call to mem.alloc), it is important to realize that the object
is not properly initialized and must be initialized before making any method calls. Failure to do so
will most likely cause your program to crash when you attempt to call a method or access other data
in the class.

The first four bytes of every object contain a pointer to that object’s virtual method table. The
virtual method table, or VMT, is an array of pointers to the code for each method in the class. To
help you initialize this pointer, HLA automatically adds two fields to every class you create:
VMT which is a static double-word entry (the significance of this being a static entry will become
clear later) and _pVMT_ which is a var field of the class whose type is pointer to dword. _pVMT_
is where you must put a pointer to the virtual method table. The pointer value to store here is the
address of the _VMT_ entry. This initialization can be done using the following statement:

mov(&ClassName._VMT_, ObjectName._pVMT_);

ClassName represents the name of the class and ObjectName represents the name of the
static or var variable object. If you’ve allocated storage for an object pointer using mem.alloc,
you’d use code like the following:

mov(ObjectPtr, ebx);
mov(&ClassName._VMT_, (type ClassName [ebx])._pVMT_);

In this example, ObjectPtr represents the name of the pointer variable. ClassName still
represents the name of the class type.

Typically, the initialization of the pointer to the virtual method table takes place in the class’
constructor procedure (it must be a procedure, not a method!). Consider the example from the
previous section:

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

As you can see here, this example uses the keyword this._pVMT_ rather than (type
derived [esi])._pVMT_ That’s because this is a shorthand for using the ESI register as a
pointer to an object of the current class type.
Public Domain Created by Randy Hyde Page 233

HLA Reference Manual 5/24/10 Chapter 12
12.9 Creating the Virtual Method Table
For various technical reasons (related to efficiency), HLA does not automatically create the

virtual method table for you; you must explicitly tell HLA to emit the table of pointers for the
virtual method table. You can do this in either the static or the readonly declaration sections. The
simple way is to use a statement like the following in either the static or readonly section:

VMT(classname);

If you intend to reference a VMT outside the source file in which you declare it, you can use
the external option to make the symbol accessible, e.g.,

VMT(classname); external;

Note that an external declaration of this form is optional. HLA always makes the VMT name
for a class an external symbol. If you actually declare the VMT (using the first declaration above),
HLA also makes the VMT symbol public.

If you need to be able to access the pointers in this table, there are two ways to do this. First,
you can refer to the classname._VMT_ double-word variable in the class. Another way is to
directly attach a label to the VMT you create using a declaration like the following:

vmtLabel: VMT(classname);

The vmtLabel label will be a static object of type dword.
As for unnamed VMT declarations, HLA will automatically make the VMT symbol (and the

vmtLabel symbol) external and public. If you want to explicitly specify a named external VMT
declaration, you can do so with either of the following statements:

vmtLabel: VMT(classname); external;
vmtLabel: VMT(classname); external("externalVmtLabelName");

12.10Calling Methods and Class Procedures
Once the virtual method table of an object is properly initialized, you may call the methods and

procedures of that object. The syntax is very similar to calling a standard HLA procedure except
that you must prefix the procedure or method name with the object name and a period. For
example, assume you have some objects with the following types (base is the type in the examples
of the previous sections):

var
b: base;
pb: pointer to base;

With these variable declarations, and some code to initialize the pointers to the base virtual
method table, the calls to the base procedures and methods might look like the following:

b.create();
b.geti();
b.seti(5);

pb.create();
pb.geti();
pb.seti(eax);
Public Domain Created by Randy Hyde Page 234

HLA Reference Manual 5/24/10 Chapter 12
Note that HLA uses the same syntax for an object call regardless of whether the object is a
pointer or a regular variable.

Whenever HLA encounters a call to an object’s procedure or method, HLA emits some code
that will load the address of the object into the ESI register. This is the one place HLA emits code
that modifies the value in a general-purpose register! You must remember this and not expect
to be able to pass any values to an object’s procedure or methods in the ESI register. Likewise,
don’t expect the value in ESI to be preserved across a call to an object’s procedure or method. As
you will see shortly, HLA may also emit code that modifies the EDI register as well as the ESI
register. Therefor, don’t count on the value in EDI, either.

The value in ESI, upon entry into the procedure or method, is that object’s this pointer. This
pointer is necessary because the exact same object code for a procedure or method is shared by all
object instances of a given class. Indeed, the this reserved word within a method or class procedure
is really nothing more than shorthand for "(type ClassName [esi])".

Perhaps an obvious question is "What is the difference between a class procedure and a
method?" The difference is the calling mechanism. Given an object b, a call to a class procedure
emits a call instruction that directly calls the procedure in memory. In other words, class procedure
calls are very similar to standard procedure calls with the exception that HLA emits code to load
ESI with the address of the object1. Methods, on the other hand, are called indirectly through the
virtual method table. Whenever you call a method, HLA actually emits three machine instructions:
one instruction that load the address of the object into ESI, one instruction that loads the address of
the virtual method table (i.e., the first four bytes of the object) into EDI, and a third instruction that
calls the method indirectly through the virtual method table. For example, given the following four
calls:

b.create();
b.geti();

pb.create();
pb.geti();

HLA emits the following 80x86 assembly language code:

 lea(esi, [ebp-12]); //b
 call classname.create;

 lea(esi, [ebp-12]); //b
 mov([esi], edi);
 call((type dword ptr [edi+geti_offset_in_VMT]); //geti

 mov([ebp-16], esi); //pb
 call classname.create

 mov([ebp-16], esi); //b
 mov([esi], edi);
 call((type dword [edi+geti_offset_in_VMT]); //geti

HLA class procedures roughly correspond to C++’s static member functions. HLA’s methods
roughly correspond to C++’s virtual member functions. Read the next few sections on the impact
of these differences.

If you call a method within some other method using the super keyword, the code does not
fetch the VMT pointer from the current object. Instead, the code directly loads EDI with the
address of the appropriate VMT:

1. When calling a class procedure, HLA nevers disturbs the value in the EDI register. EDI is only tweaked when
you call methods.
Public Domain Created by Randy Hyde Page 235

HLA Reference Manual 5/24/10 Chapter 12
super.someMethod();

generates x86 code like the following:

 lea(edi, baseClass_VMT);
 call((type dword ptr [edi+methodOffsetInVMT]));

12.11Accessing VMT Fields
The VMT is basically an array of pointers. Offsets zero through (n-1)*4, where n is the

number of methods in a class (including inherited methods), hold pointers to each of the methods
associated with the class. The previous section described how HLA emits a call to a class method.
You can manually do this by simulating the same code that HLA emits. The @offset compile-time
function, when supplied with the name of a class method as its operand, will return an index into
the VMT where the address of that method is found. Therefore, you could manually call a method
using code like the following:

mov(objectPtr, esi); // or lea(esi, objectVar);
mov([esi], edi); // Get VMT pointer into EDI
call([edi+@offset(derivedClass.methodToCall)]);

In this example, derivedClass is the name of the class and methodToCall is the name of some
method in that class. Note that you must supply the full classname.methodname identifier to the
@offset compile-time function so HLA can properly identify the method. Of course, it’s
generally easier to call the method using objectPtr.methodToCall, but for those who insist on
calling the method using low-level code, this is how it is done.

You might be tempted to streamline the code above to something like the following:

mov(objectPtr, esi); // or lea(esi, objectVar);
call(derivedClass._VMT_[@offset(derivedClass.methodToCall)]);

Resist the temptation to do this at all costs! First, this defeats polymorphism; objectPtr might
actually contain a pointer to some other class that was derived from derivedClass. The code
immediately above will always call derivedClass.methodToCall, even if it actually should be
calling some_class_derived_from_derivedClass.methodToCall. The former example
will handle this correctly.

Before the super keyword was added to HLA, the accepted way to call a base class’ version of
some method was to manually call the method, as was done in the first example of this section
(though ESI usually contained the THIS/object pointer, so you didn’t normally need to load it into
ESI).

In HLA v2.8 and v2.9, several new fields were added to the VMT at negative offsets from the
VMT’s base address. At offset -4 there is a pointer to the parent class’ VMT (this field contains
NULL if this is a base class that has no parent class). At offset -8 is the size, in bytes, of an object
of the class’ type. At offset -12 is a string object that contains the name of the class associated with
the VMT. The HLA Standard Library hla.hhf header file contains a record definition you can use
to access these fields in a VMT:

namespace hla;

vmtRec:
record := -12;

vmtName :string;
vmtSize :uns32;
vmtParent :pointer to dword;

endrecord;
Public Domain Created by Randy Hyde Page 236

HLA Reference Manual 5/24/10 Chapter 12
end hla;

Using the record definition above, you could load the class’ name into EAX with a statement
like this:

mov((type hla.vmtRec derivedClass._VMT_).vmtName, eax);

Don’t forget to include the hla.hhf header file in order to gain access to the declaration of the
vmtRec record.

12.12Non-object Calls of Class Procedures
In addition to the difference in the calling mechanism, there is another major difference

between class procedures and methods: you can call a class procedure without an associated object.
To do so, you would use the class name and a period, rather than an object name and a period, in
front of the class procedure’s name. E.g.,

base.create();

Since there is no object here (remember, base is a type name, not a variable name, and types do
not have any storage allocated for them at run-time), HLA cannot load the address of the object into
the ESI register before calling create. This situation can create some big problems in your code if
you attempt to use the this pointer within a class procedure. Remember, an instruction like "mov(
this.i, eax);" really expands to "mov((type base [esi]).i, eax);" The question that should come to
mind is "where is ESI pointing when one makes a non-object call to a class procedure?"

When HLA encounters a non-object call to a class procedure, HLA loads the value zero
(NULL) into ESI immediately before the call. Therefore, ESI doesn’t contain junk but it does
contain the NULL pointer. If you attempt to dereference NULL (e.g., by accessing this.i) you
will probably bomb the program. Therefore, to be safe, you must check the value of ESI inside
your class procedures to verify that it does not contain zero.

The base.create constructor procedure demonstrates a great way to use class procedures to
your advantage. Take another look at the code:

 procedure base.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;

 mov(&base._VMT_, this._pVMT_);
 mov(0, this.i);
 pop(eax);
 ret();

 end create;

This code follows the standard convention for HLA constructors with respect to the value in
ESI. If ESI contains zero (NULL), this function will allocate storage for a brand new object,
initialize that object, and return a pointer to the new object in ESI1. On the other hand, if ESI
Public Domain Created by Randy Hyde Page 237

HLA Reference Manual 5/24/10 Chapter 12
contains a non-null value, then this function does not allocate memory for a new object, it simply
initializes the object at the address provided in ESI upon entry into the code.

Certainly, you do not want to use this trick (automatically allocating storage if ESI contains
NULL) in all class procedures; but it’s still a real good idea to check the value of ESI upon entry
into every class procedure that accesses any fields using ESI or the this reserved word. One way to
do this is to use code like the following at the beginning of each class procedure in your program:

if(ESI = NULL) then

raise(AttemptToDerefZero);

endif;

If this seems like too much typing, or if you are concerned about efficiency once you’ve
debugged your program, you could write a macro like the following to solve your problem:

#macro ChkESI;
#if(CheckESI)

if(ESI = 0) then

raise(AttemptToDerefZero);

endif;
#endif

#endmacro

Now all you have to do is stick an innocuous ChkESI macro invocation at the beginning of
your class procedures (maybe on the same line as the begin clause to further hide it) and you’re in
business. By defining the boolean constant CheckESI to be true or false at the beginning of your
code, you can control whether this "inefficient" code is generated into your programs.

12.13Static Class Fields
There exists only one copy, shared by all objects, of any static, readonly, or storage data

objects in a class. Since there is only one copy of the data, you do not access variables in the class’
static section using the object name or the this pointer. Instead, you preface the field name with the
class name and a period.

For example, consider the following class declaration that demonstrates a very common use of
static variables within a class:

program DemoOverride;

#include("memory.hhf")
#include("stdio.hhf")
type

 CountedClass:
 class

 static
 CreateCnt:int32 := 0;

1. Of course, it is the caller’s responsibilty to save this pointer away into an object pointer variable upon return
from the class procedure.
Public Domain Created by Randy Hyde Page 238

HLA Reference Manual 5/24/10 Chapter 12

 procedure create;
 procedure DisplayCnt;

 endclass;

 procedure CountedClass.create; @nodisplay; @noframe;
 begin create;

 push(eax);
 if(esi = 0) then

 mem.alloc(@size(base));
 mov(eax, esi);

 endif;
 mov(&CountedClass._VMT_, this._pVMT_);
 inc(this.CreateCnt);
 pop(eax);
 ret();

 end create;

 procedure CountedClass.DisplayCnt; @nodisplay; @noframe;
 begin DisplayCnt;

 stdout.put("Creation Count=", CountedClass.CreateCnt, nl);
 ret();

 end DisplayCnt;

var
 b: CountedClass;
 pb: pointer to CountedClass;

begin DemoOverride;

 CountedClass.DisplayCnt();

 b.create();
 CountedClass.DisplayCnt();

 CountedClass.create();
 mov(esi, pb);
 CountedClass.DisplayCnt();

end DemoOverride;
Public Domain Created by Randy Hyde Page 239

HLA Reference Manual 5/24/10 Chapter 12
In this example, a static field (CreateCnt) is incremented by one for each object that is
created and initialized. The DisplayCnt procedure prints the value of this static field. Note that
DisplayCnt does not access any non-static fields of CountedClass. This is why it doesn’t
bother to check the value in ESI for zero.

There is a big issue with respect to static fields in a class. If you include the header file
containing the class definition in more than one HLA source file (that is part of a single project),
HLA will create one copy of the static object for each source file. This can produce linkage errors if
you attempt to link those files together. The solution to this problem is to create an external symbol
in the class declaration:
type

 CountedClass:
 class

 static
 CreateCnt:int32;
 external("CountedClass_CreateCnt");

 procedure create;
 procedure DisplayCnt;

 endclass;

The external declaration in this example expects you to provide an external int32 object named
CountedClass_CreateCnt. You can do this (in one of the HLA source files) using code like the
following:
static

CreateCnt :int32; external("CountedClass_CreateCnt");
CreateCnt :int32 := 0;

12.14Taking the Address of Class Procedures, Iterators, and
Methods

You can use the static address-of operator ("&") to obtain the memory address of a class
procedure, method, or iterator by applying this operator to the class procedure/method/iterator’s
name with a classname prefix. E.g.,

type
c : class

procedure p;
method m;
iterator i;

endclass;

procedure c.p; begin p; end p;
method c.m; begin m; end m;
iterator c.i; begin i; end i;

.

.

.
mov(&c.p, eax);
mov(&c.m, ebx);
mov(&c.i, ecx);
Public Domain Created by Randy Hyde Page 240

HLA Reference Manual 5/24/10 Chapter 12
Please note that when you apply the address-of operator ("&") to a class procedure/method/
iterator you must specify the class name, not an object name, as the prefix to the procedure/method/
iterator name. That is, the following is illegal given the class definition for c, above:

static
myClass: c;

.

.

.
mov(&myClass.p, eax);

12.15Program Unit Initializers and Finalizers
HLA does not automatically call an object’s constructor like C++ does. There is no code

associated with a unit that automatically executes to initialize that unit as in (Turbo) Pascal or
Delphi. Likewise, HLA does not automatically call an object’s destructor. However, HLA does
provide a mechanism by which you can automatically execute initialization and shutdown code
without explicitly specifying the code to execute at the beginning and end of each procedure. This
is handled via the HLA _initialize_ and _finalize_ strings. All programs, procedures,
methods, and iterators have these two predeclared string constants (val strings, actually) associated
with them. Whenever you declare a program unit, HLA inserts these constants into the symbol
table and initializes them with the empty string.

HLA expands the _initialize_ string immediately before the first instruction it finds after
the begin clause for a program, procedure, iterator, or method. Likewise, it expands the
finalize string immediately before the end clause in these program units. Since, by default,
these string constants hold the empty string, they usually have no effect. However, if you change
the values of these constants within a declaration section, HLA emits the corresponding code at the
appropriate point. Consider the following example:

procedure HasInitializer;
?_initialize_ := "mov(0, eax);";

begin HasInitializer;

stdout.put("EAX = ", eax, nl);

end HasInitializer;

This program will print "EAX = 0000_0000" since the _initialize_ string contains an
instruction that moves zero into EAX.

Of course, the previous example is somewhat irrelevant since you could have more easily put
the mov instruction directly into the program. The real purpose of the initialize and finalize strings
in an HLA program is to allow macros and include files to slip in some initialization code. For
example, consider the following macro:

#macro init_int32(initValue):theVar;

:forward(theVar);
theVar: int32
?_initialize_ = _initialize_ +

"mov(" +
@string:initValue +
", " +
@string:theVar +
");";

#endmacro

Now consider the following procedure:
Public Domain Created by Randy Hyde Page 241

HLA Reference Manual 5/24/10 Chapter 12
procedure HasInitedVars;
var

i: init_int32(0);
j: init_int32(-1);
k: init_int32(1);

begin HasInitedVars;

stdout.put("i=", i, " j=", j, " k=", k, nl);

end HasInitedVars;

The first init_int32 macro above expands to (something like) the following code:

i: forward(_1002_);
1002: int32
?_initialize_ := _initialize_ +

 "mov(" +
 "0" +
 ", " +
 "i" +
");";

Note that the last statement is equivalent to:
?_initialize_ := _initialize_ + "mov(0, i);"

Also note that the text object _1002_ expands to "i".

If you take a step back from this code and look at it from a high level perspective, you can see
that what it does is initialize a var variable by emitting a mov instruction that stores the macro
parameter into the var object. This example makes use of the forward declaration clause in order
to make a copy of the variable’s name for use in the mov instruction. The following is a complete
program that demonstrates this example (it prints "i=1", if you’re wondering):

program InitDemo;
#include("stdlib.hhf")

 #macro init_int32(initVal):theVar;

 forward(theVar);
 theVar:int32;
 ?_initialize_ :=
 initialize +
 "mov(" +
 @string:initVal +
 ", " +
 @string:theVar +
 ");";
 #endmacro

var
 i:init_int32(1);

begin InitDemo;
Public Domain Created by Randy Hyde Page 242

HLA Reference Manual 5/24/10 Chapter 12
 stdout.put("i=", i, nl);

end InitDemo;

Note how this example uses string concatenation to append an initialization string to the end of
the existing string. Although _initialize_ and _finalize_ start out as the empty string, there
may be more than one initialization string required by the program. For example, consider the
following modification to the code above:

var
i:init_int32(1);
j:init_int32(2);

The two macro invocations above produce the initialization string "mov(1, i);mov(2,j);". Had
the macro not used string concatenation to attach its string to the end of the existing
initialize string and then only the last initialization statement would have been generated.

You can put any number of statements into an initialization string, although the compiler tools
used to write HLA limit the length of the string to something less than 32,768 characters. In
general, you should try to limit the length of the initialization string to something less than 4,096
characters (this includes all initialization strings concatenated together within a single procedure).

Two very useful purposes for the initialization string include automatic constructor invocation
and Unit initialization code invocation. Let’s consider the unit situation first. Associated with
some unit you might have some code that you need to execute to initialize the code when the
program first loads in to memory, e.g.,

unit NeedsInit;
#include("NeedsInit.hhf")
static

i:uns32;
j:uns32;

procedure InitThisUnit;
begin InitThisUnit;

mov(0, i);
mov(1, j);

end InitThisUnit;
.
.
.

end NeedsInit;

Now suppose that the NeedsInit.hhf header file contains the following lines:

procedure InitThisUnit; @external;
?_initialize_ := _initialize_ + "InitThisUnit();";

When you include the header file in your main program (that uses this unit), the statement
above will insert a call to the InitThisUnit procedure into the main program. Therefore, the
main program will automatically call the InitThisUnit procedure without the user of this unit
having to explicitly make this call.

You can use a similar approach to automatically invoke class constructors and destructors in a
procedure. Consider the following program that demonstrates how this could work:
Public Domain Created by Randy Hyde Page 243

HLA Reference Manual 5/24/10 Chapter 12
program InitDemo2;
#include("stdlib.hhf")

type
_MyClass:

class
procedure create;
var

i: int32;

endclass;

#macro MyClass:theObject;
forward(theObject);
theObject: _MyClass;
?_initialize_ := _initialize_ +

@string:theObject +
".create();"

#endmacro

procedure _MyClass.create;
begin create;

push(eax);
if(esi = 0) then

mem.alloc(@size(_MyClass));
mov(eax, esi);

endif;
mov(&_MyClass._VMT_, this._pVMT_);
mov(12345, this.i);
pop(eax);

end create;

procedure UsesMyClass;
var

mc:MyClass;

begin UsesMyClass;

stdout.put("mc.i=", mc.i, nl);

end UsesMyClass;

static
vmt(_MyClass);

begin InitDemo2;

UsesMyClass();

Public Domain Created by Randy Hyde Page 244

HLA Reference Manual 5/24/10 Chapter 12
end InitDemo2;

The variable declaration mc:MyClass inside the UsesMyClass procedure (effectively)
expands to the following text:

mc: _MyClass;
?_initialize_ := _initialize_ + "mc.create();";

Therefore, when the UsesMyClass procedure executes, the first thing it does is call the
constructor for the mc/_MyClass object. Notice that the author of the UsesMyClass procedure
did not have to explicitly call this routine.

You can use the _finalize_ string in a similar manner to automatically call any destructors
associated with an object.

Note that if an exception occurs and you do not handle the exception within a procedure
containing _finalize_ code, the program will not execute the statements emitted by
finalize (any more than the program will execute any other statements within a procedure that
an exception interrupts). If you absolutely, positively, must ensure that the code calls a destructor
before leaving a procedure (via an exception), then you might try the following code:

?_initialize_ :=
initialize +
<<string to call constructor>> +
"try ";

?_finalize_ :=
finalize +
"anyexception push(eax); " +
<<string to call destructor>> +
"pop(eax); raise(eax); endtry; " +
<<string to call destructor>>;

This version slips a try..endtry block around the whole procedure. If an exception occurs, the
anyexception handler traps it and calls the associated destructor, then re-raises the exception so the
caller will handle it. If an exception does not occur, then the second call to the destructor above
executes to clean up the object before control transfers back to the caller. Note that this is not a
perfect solution because it does not prevent the programmer from slipping in their own try..endtry
statement with an anyexception clause that doesn't bother to execute the _finalize_ code.
Public Domain Created by Randy Hyde Page 245

HLA Reference Manual 5/24/10 Chapter 13
13 The HLA Compile-Time Language

13.1 HLA Compile-Time Language, Macros, and Pragmas
This topic section describes one of HLA’s more impressive features - the compile time

language. Combined with the macro preprocessor, the HLA compile-time language lets you
customize the HLA language in almost an infinite variety of ways.

Compile-time programs are just that- programs that execute while HLA is compiling your
source file. You embed compile-time language statements directly in your HLA source files and
these short program fragments control how HLA compiles your assembly code.

This section doesn’t fully explain the HLA compile-time language because you’ve already
seen some major parts of it. For example, val constants in the HLA source file are equivalent to
compile-time variables. The "?" statement is the compile-time assignment statement. This topic
section, therefore, builds on the material that appears elsewhere in HLA Reference Manual.

13.2 Viewing the Output of the HLA Compile-Time Language
The HLA compile-time language can generate assembly language statements during the

compilation of an HLA program. Because it isn't always obvious what code the compile-time
language is generating, you'll sometimes need the ability to view the output of the HLA compiler.
This is easily accomplished using the HLA command-line option "-hla". This command-line option
tells HLA to produce an assembly language output file that uses a pseudo-HLA syntax. The result
is not compilable under HLA, but it will show you the "pure" assembly language output that HLA
produces from your original source file. Here's an example source file:
program demoCTLoutput;
var

array:dword[11];
begin demoCTLoutput;

#for(i := 0 to 10)

mov(i, array[i*4]);

#endfor;

end demoCTLoutput;

Here is the output that the HLA compiler produces for the main program when you supply the
"-hla" command-line option:
begin _HLAMain;
procedure start;
begin start;
end start;

 call BuildExcepts__hla_;
 pushd(0);
 push(ebp);
 push(ebp);
 lea([esp-4], ebp);
 sub(44, esp);
 and(-4, esp);

 mov(0, (type dword [ebp-48]));
 mov(1, (type dword [ebp-44]));
 mov(2, (type dword [ebp-40]));
Public Domain Created by Randy Hyde Page 245

HLA Reference Manual 5/24/10 Chapter 13
 mov(3, (type dword [ebp-36]));
 mov(4, (type dword [ebp-32]));
 mov(5, (type dword [ebp-28]));
 mov(6, (type dword [ebp-24]));
 mov(7, (type dword [ebp-20]));
 mov(8, (type dword [ebp-16]));
 mov(9, (type dword [ebp-12]));
 mov(10, (type dword [ebp-8]));
QuitMain__hla_::
 pushd(0);
 call((type dword __imp__ExitProcess@4));
end _HLAMain;

13.3 #linker Directive
 The #linker directive passes a single string argument along to the linker. This is typically

done to specify the name of some object or library file to link with the current file during the link
edit phase. This directive has the following syntax:

#linker("linker directive or file")

For example, under Linux the following #linker commands tell HLA to have the linker link in
part of the C Standard Library:
#if(os.linux)

#linker("-I /lib/ld-linux.so.2")
#linker("-lc")

#endif

As you can see from this example, each #linker string argument is really just a command-line
argument that is passed along to the GNU ld linker (which is exactly how the #linker command
operates under any OS). If multiple #linker commands appear in a source file (as is the case in this
example), HLA concatenates the command-line arguments together (with a space separating them)
prior to passing the command-line arguments to the linker.

13.4 The #Include Directive
 Like most languages, HLA provides a source inclusion directive that inserts some other file

into the middle of a source file during compilation. HLA’s #include directive is very similar to the
pragma of the same name in C/C++ and you primarily use them both for the same purpose:
including library header files into your programs.

HLA’s include directive has the following syntax:

#include(string_expression)

Note that any arbitrary compile-time string expression is legal. You are not limited to a literal
string constant.

The #include directive is legal anywhere whitespace is legal. The string specifies a filename
that HLA will insert into the program during compilation at the point the #include appears. If HLA
cannot find the file specified by the string constant in the current directory (or in the directory
specified if the string contains a pathname), then HLA tries to find the file in the location specified
by the "hlainc" environment variable. If HLA still doesn’t find the file, HLA will report an error.

Although you can use the #include directive to insert any arbitrary text at an arbitrary point in
your program, the vast majority of the time you will use #include to include a library header file
(either an HLA Standard Library header file or a library header file you’ve written) into your
program. HLA requires that you compile all external files at lex level zero. Therefore, if you are
Public Domain Created by Randy Hyde Page 246

HLA Reference Manual 5/24/10 Chapter 13
including some declarations into your program, the #include directive should be just inside the
main program. Convention dictates that #include directives that include library headers should
appear immediately after the program or unit header in a file.

13.5 The #IncludeOnce Directive
When composing complex header files, particularly when constructing library header files,

you may find in necessary to insert a #include("file") directive into some other header files.
Generally, this is not a problem, HLA certainly allows nested include files (up to 256 files deep).
However, unless you are very careful about how you organize your files, it is very easy to create an
"include loop" where one header file includes another and that other header file includes the first.
Attempting to compile a program that includes either header file results in an infinite "include
loop" during compilation; clearly, this is not desirable.

 The standard way to handle this situation is to surround all the statements in an include file
with a #if statement as follows:

#if(!@defined(headerfilename_hhf))

?headerfilename_hhf := true;

<< Statements associated with this header file go here >>

#endif

The first time HLA includes this file the symbol "headerfilename_hhf" is not defined, so HLA
processes the statements in the body of the #if statement. The very first statement defines this
"headerfilename_hhf" symbol (the value and type of this symbol are irrelevant for our purposes;
only the fact that the symbol exists is important). Thereafter, if some other header file includes this
file a second (or additional) time, the "headerfilename_hhf" symbol is defined, so HLA skips all the
statements in the header file since the value of the boolean expression in the #if statement is false.
Therefore, HLA only processes the statements of this header file (at least those inside the #if
statement) the first time it encounters this particular header file.

A drawback to this scheme is that HLA must still open the header file and read every line from
the file, even if it ignores all the lines in the file. For large header files, (e.g., the "stdlib.hhf" header
file) this can consume a significant amount of time during compilation. The #includeonce
directive provides a solution for this problem.

You use the #includeonce directive just like the #include directive. The only difference
between the two is that HLA keeps track of all files it has processed using the #include or
#includeonce directives and will not process a header file a second time if you attempt to include it
using the #includeonce directive.

Whenever HLA processes the #includeonce directive, it first compares its string operand with
a list of strings appearing in previous #include or #includeonce directives. If it matches one of
these previous strings, then HLA ignores the #includeonce directive; if the include filename does
not appear in HLA’ internal list, then HLA adds this filename to the list and includes the file.

Note that HLA’s #includeonce directive only compares strings for equality. If you use two
separate filenames for the same file, HLA will not detect this and it will include the file a second
time. E.g., if the current directory is "C:\hlafiles" then the following sequence will include the file
"whoops.hhf" twice:

#IncludeOnce("whoops.hhf")
#IncludeOnce("c:\whoops.hhf")

Also note that the #include directive will include its file regardless of whether the program
previously included that file with a #includeonce directive, e.g., the following sequence also
includes "whoops.hhf" twice:

#IncludeOnce("whoops.hhf")
#Include("whoops.hhf")
Public Domain Created by Randy Hyde Page 247

HLA Reference Manual 5/24/10 Chapter 13
For these two reasons, it’s still a good idea to protect all header files using the #if technique
mentioned earlier, even if you use the #includeonce directive throughout.

13.6 Macros
HLA has one of the most powerful macro expansion facilities of any programming language.

HLA’s macros are the key to extending the HLA language. The following subsections describe
HLA’s powerful macro processing facilities.

13.6.1 Standard Macros
HLA provides powerful macro capabilities. You can declare macros almost anywhere

whitespace is allowed in a program using the following syntax:

#macro identifier (optional_parameter_list) ;
statements

#endmacro

Note that a semicolon does not follow the #endmacro clause.
Example:

#macro MyMacro;
?i = i + 1;

#endmacro

The optional parameter list must be a list of one or more identifiers separated by commas.
Unlike procedure declarations, you do not associate a type with macro parameters. HLA
automatically associates the type "text" with macro parameters (except for two special cases noted
below). Example:

#macro MacroWParms(a, b, c);
?a = b + c;

#endmacro

 Optionally, the last (or only) name in the identifier list may take the form identifier[].
This syntax tells the macro that it may allow a variable number of parameters and HLA will create
an array of string objects to hold all the parameters (HLA uses a string array rather than a text array
because text arrays are illegal). Example:

#macro MacroWVarParms(a, b, c[]);
?a = b + @text(c[0]) + c[1]);

#endmacro

If the macro does not allow any parameters, then you follow the identifier with a semicolon
(i.e., no parentheses or parameter identifiers). See the first example in this section for a macro
without any parameters.

When using the array form (variable parameters) in a macro argument list, HLA will parse the
remaining actual parameters and shove them into the array, one (perceived) parameter per string
array element. Sometimes, however, you might want to handle the parameter parsing chores
yourself (for example, to allow commas as part of an actual macro parameter) rather than have
HLA handle this task for you. HLA provides an option to tell it to grab all remaining (or simply all)
parameter text passed in the actual parameter list and stores all this data into a compile-time string
object. To achieve this, you prefix the last (or only) formal macro parameter with the reserved word
string, e.g.,

#macro MacroWStringParms(a, b, string c);
Public Domain Created by Randy Hyde Page 248

HLA Reference Manual 5/24/10 Chapter 13
<<macro body>>
#endmacro

In this example, the first two actual parameters will be assigned to the text objects a and b within
the macro. Any remaining parameters will be collected as a single string and stored into the c
formal parameter as a string.

One very useful purpose for string macro parameters is to allow you to grab a list of parameters
you want to pass on to some other macro or procedure as a single object. E.g.,

procedure abc(a:byte; b:word; c:dword);
begin abc;
 .
 .
 .
end abc;

#macro CallsAbc(string abcParms);
 .
 .
 .
 abc(@text(abcParms));
 .
 .
 .
#endmacro
 .
 .
 .
 CallsAbc(1, 2, 3);

The final macro invocation in this sequence passes the three parameters "1,2,3" to the abc function.

 Occasionally you may need to define some symbols that are local to a particular macro
invocation (that is, each invocation of the macro generates a unique symbol for a given identifier).
The local identifier list allows you to do this. To declare a list of local identifiers, simply following
the parameter list (after the parenthesis but before the semicolon) with a colon (":") and a comma
separated list of identifiers, e.g.,

#macro ThisMacro(parm1):id1,id2;
...

HLA automatically renames each symbol appearing in the local identifier list so that the new
name is unique throughout the program. HLA creates unique symbols using some form such as
_XXXX_HLA_ where XXXX is some hexadecimal numeric value. To guarantee that HLA can
generate unique symbols, you should avoid defining symbols of this form in your own programs (in
general, symbols that begin and end with an underscore are reserved for use by the compiler and the
HLA standard library). Example:

#macro LocalSym : i,j;

j: cmp(ax, 0)
jne(i)
dec(ax)
jmp(j)

i:
#endmacro
Public Domain Created by Randy Hyde Page 249

HLA Reference Manual 5/24/10 Chapter 13
Without the local identifier list, multiple expansions of this macro within the same procedure
would yield multiple statement definitions for i and j. With the local statement present, however,
HLA substitutes symbols similar to _0001_HLA_ and _0002_HLA_ for i and j for the first
invocation and symbols like _0003_HLA_ and _0004_HLA_ for i and j on the second invocation,
etc. This avoids duplicate symbol errors if you do not use (poorly chosen) identifiers like
_0001_HLA_ and _0004_HLA_ in your code.

The statements section of the macro may contain any legal HLA statements (including
definitions of other macros). However, the legality of such statements is controlled by where you
expand the macro.

To invoke a macro, you simply supply its name and an appropriate set of parameters. Unless
you specify a variable number of parameters (using the array syntax) then the number of actual
parameters must exactly match the number of formal parameters. If you specify a variable number
of parameters, then the number of actual parameters must be greater than or equal to the number of
formal parameters (not counting the array parameter).

During macro expansion, HLA automatically substitutes the text associated with an actual
parameter for the formal parameter in the macro’s body. The array parameter, however, is a string
array rather than a text array so you will have force the expansion yourself using the @text
function:

#macro example(variableParms[]);
?@text(variableParms[0]) := @text(variableParms[1]);

#endmacro

Actual macro parameters consist of a string of characters up to, but not including a separate
comma or the closing parentheses, e.g.,

example(v1, x+2*y)

"v1" is the text for parameter #1, "x+2*y" is the text for parameter #2. Note that HLA strips
all leading whitespace and control characters before and after the actual parameter when expanding
the code in-line. The example immediately above would expand do the following:

?v1 := x+2*y;

 If (balanced) parentheses appear in some macro’s actual parameter list, HLA does not count
the closing parenthesis as the end of the macro parameter. That is, the following is legal:

example(v1, ((x+2)*y))

This expands to:

?v1 := ((x+2)*y);

 If you need to embed commas or unmatched parentheses in the text of an actual parameter, use
the HLA literal quotes #(and)# to surround the text. Everything (except surrounding whitespace)
inside the literal quotes will be included as part of the macro parameter’s text. Example:

example(v1, #(array[0,1,i])#)

The above expands to:

?v1 := array[0,1,i];

Without the literal quote operator, HLA would have expanded the code to

?V1 := array[0;
Public Domain Created by Randy Hyde Page 250

HLA Reference Manual 5/24/10 Chapter 13
and then generated an error because (1) there were too many actual macro parameters (four instead
of two) and (2) the expansion produces a syntax error.

Of course, HLA’s macro parameter parser does not consider commas appearing inside string
or character constants as parameter separators. The following is legal, as you would expect:

example(charVar, ‘,’)

As you may have noticed in these examples, a macro invocation does not require a terminating
semicolon. Macro expansion occurs upon encountering the closing parenthesis of the macro
invocation. HLA uses this syntax to allow a macro expansion anywhere in an HLA source file.
Consider the following:

#macro funny(dest)
, dest);

#endmacro

mov(0 funny(ax)

This code expands to "mov(0, ax);" and produces a legal machine instruction. Of course, this
is a truly horrible example of macro use (the style is really bad), but it demonstrates the power of
HLA macros in your program. This "expand anywhere" philosophy is the primary reason macro
invocations do not end with a semicolon.

13.6.2 Where You Declare a Macro Affects its Visibility
You may declare a macro almost anywhere whitespace is allowed in a program. This increases

the utility of macros as part of the HLA Compile-time Language. However, there are some issues
of which you should be aware when declare macros at arbitrary points; this section will discuss
those issues so you can avoid some pitfalls of this new flexibility.

First, unless you have good reason to do otherwise, you really should declare your macros in a
declaration section of your program. Long-time HLA programmers have grown used to finding
them there and, by placing your macros in a declaration section (e.g., wherever a procedure
declaration is allowed), you’ll make your programs easier to read because other programmers can
look for such declarations in a few known locations. Arbitrarily scattering your macro declarations
all over the place can make your programs harder to read. In addition, it should be understood that
you must declare a macro before the first invocation.

Like other identifiers in an HLA program, macro identifiers have a scope that limits their
visibility. If you declare a macro within a procedure, then that macro’s identifier is only visible
within that procedure and you cannot invoke (call) the macro outside of the procedure (that is,
beyond the end statement associated with the procedure). Note that this is true even if you declare
the macro in the body of the procedure, outside the procedure’s declaration section, e.g.,

procedure SomeProc;
begin SomeProc;

#macro mov0eax;
mov(0, eax)

#endmacro

mov0eax; // legal here

end SomeProc;

mov0eax; // undefined symbol here.

If you declare a macro in a namespace or within an HLA class, you may invoke that macro
from outside the namespace or class declaration by prefixing the macro identifier with the
Public Domain Created by Randy Hyde Page 251

HLA Reference Manual 5/24/10 Chapter 13
namespace or class or object identifier using the normal dot-notation for access to fields of the
namespace or class. Note that you may invoke namespace or class macros within the namespace or
class without the namespace prefix (just as you may access other symbol types within the
namespace or class without the prefix).

You may also embed macro definitions within records and unions. However, when you do this
HLA will insert the macro’s symbol into the field list for the record or union. Because HLA does
not provide a way to access anything other than variable fields of a record or union outside the
declaration of that type, you will not be able to invoke the macro from outside the record or union
declaration. However, you may invoke that macro within the same record/union declaration that
contains the macro definition, e.g.,

type
r :record

i:int32;
#macro inrec;

k:int32;
#endmacro
j:int32;
inrec; // Legal expansion here

endrecord;

var
r.inrec; // this is not legal here. Use a namespace or class to do

this.

Because of some limitations of the HLA implementation language (Flex/Bison), there is an
important peculiarity you should know when declaring macros. In particular, HLA may process a
macro declaration before it finishes processing whatever occurs immediately before the macro.
Therefore, if the successful definition of a macro depends on whatever appears immediately before
the macro, the declaration may fail. Though this is rare, it does occur occasionally. Should this
happen to you, try an insert an innocuous syntactical item (like a semicolon) before the macro
declaration.

13.6.3 Multi-part (Context Free) Macro Invocations:
HLA macros provide some very powerful facilities not found in other macro assemblers. One

of the unique features that HLA macros provide is support for multi-part (or context-free) macro
invocations. This feature is accessed via the #terminator and #keyword reserved words.
Consider the following macro declaration:
program demoTerminator;

#include("stdio.hhf");

#macro InfLoop:TopOfLoop, LoopExit;
TopOfLoop:

#terminator endInfLoop;
jmp TopOfLoop;
LoopExit:

#endmacro;

static
i:int32;

begin demoTerminator;

mov(0, i);
InfLoop
Public Domain Created by Randy Hyde Page 252

HLA Reference Manual 5/24/10 Chapter 13
stdout.put("i=", i, nl);
inc(i);

endInfLoop;

end demoTerminator;

The #terminator keyword, if it appears within a macro, defines a second macro that is
available for a one-time use after invoking the main macro. In the example above, the
endInfLoop macro is available only after the invocation of the InfLoop macro. Once you invoke
the EndInfLoop macro, it is no longer available (though the macro calls can be nested, more on
that later). During the invocation of the #terminator macro, all local symbols declared in the
main macro (InfLoop above) are available (note that these symbols are not available outside the
macro body. In particular, you could refer to neither TopOfLoop nor LoopExit in the statements
appearing between the InfLoop and endInfLoop invocations above). The code above, by the
way, emits code similar to the following:

_0000_HLA_:
stdout.put("i=", i, nl);
inc(i);
jmp _0000_HLA_;

_0001_HLA_:

The macro expansion code appears in italics. This program, therefore, generates an infinite loop
that prints successive integer values.

These macros are called multi-part macros for the obvious reason: they come in multiple
pieces (note, though, that HLA only allows a single #terminator macro). They are also referred
to as Context-Free macros because of their syntactical nature. Earlier, this document claimed that
you could refer to the #terminator macro only once after invoking the main macro. Technically,
this should have said "you can invoke the terminator once for each outstanding invocation of the
main macro." In other words, you can nest these macro calls, e.g.,

InfLoop

mov(0, j);
InfLoop

inc(i);
inc(j);
stdout.put("i=", i, " j=", j, nl);

endInfLoop;

endInfLoop;

The term Context-Free comes from automata theory; it describes this nestable feature of these
macros.

As should be painfully obvious from this InfLoop macro example, it would be nice if one
could define more than one macro within this context-free group. Furthermore, the need often
arises to define limited-scope scope macros that can be invoked more than once (limited-scope
means between the main macro call and the terminator macro invocation). The #keyword
definition allows you to create such macros.

In the InfLoop example above, it would be nice if you could exit the loop using a statement
like brkLoop (note that break is an HLA reserved word and cannot be used for this purpose). The
#keyword section of a macro allows you to do exactly this. Consider the following macro
definition:
Public Domain Created by Randy Hyde Page 253

HLA Reference Manual 5/24/10 Chapter 13
#macro InfLoop:TopOfLoop, LoopExit;
TopOfLoop:

#keyword brkLoop;
jmp LoopExit;

#terminator endInfLoop;
jmp TopOfLoop;
LoopExit:

#endmacro;

As with the #terminator section, the #keyword section defines a macro that is active after
the main macro invocation until the terminator macro invocation. However, #keyword macro
invocations do not terminate the multi-part invocation. Furthermore, #keyword invocations may
occur more that once. Consider the following code that might appear in the main program:

mov(0, i);
InfLoop

mov(0, j);
InfLoop

inc(j);
stdout.put("i=", i, " j=", j, nl);
if(j >= 10) then

brkLoop;

endif

endInfLoop;
inc(i);
if(i >= 10) then

brkLoop;

endif;

endInfLoop;

The brkLoop invocation inside the "if(j >= 10)" statement will break out of the inner-most
loop, as expected (another feature of the context-free behavior of HLA’s macros). The brkLoop
invocation associated with the "if(i >= 10)" statement breaks out of the outer-most loop. Of
course, the HLA language provides the forever..endfor loop and the break and breakif
statements, so there is no need for this InfLoop macro, nevertheless, this example is useful
because it is easy to understand. If you are looking for a challenge, try creating a statement similar
to the C/C++ switch/case statement; it is perfectly possible to implement such a statement with
HLA’s macro facilities, see the HLA Standard Library for an example of the switch statement
implemented as a macro.

The discussion above introduced the #keyword and #terminator macro sections in an
informal way. There are a few details omitted from that discussion. First, the full syntax for HLA
macro declarations is actually:

#macro identifier (optional_parameter_list) :optional_local_symbols;
statements

#keyword identifier (optional_parameter_list) :optional_local_symbols;
statements
Public Domain Created by Randy Hyde Page 254

HLA Reference Manual 5/24/10 Chapter 13
note: additional #keyword declarations may appear here

#terminator identifier (optional_parameter_list)
:optional_local_symbols;

statements
#endmacro

There are three things that should immediately stand out here: (1) you may define more than
one #keyword within a macro. (2) #keywords and #terminators allow optional parameters. (3)
#keywords and #terminators allow their own local symbols.

 The scope of the parameters and local symbols isn’t particularly intuitive (although it turns out
that the scope rules are exactly what you would want). The parameters and local symbols declared
in the main macro declaration are available to all statements in the macro (including the statements
in the #keyword and #terminator sections). The InfLoop macro used this feature since the
JMP instructions in the brkLoop and endInfLoop sections referred to the local symbols declared
in the main macro. The InfLoop macro did not declare any parameters, but had they been present,
the brkLoop and endInfLoop sections could have used those parameters as well.

Parameters and local symbols declared in a #keyword or #terminator section are local to
that particular section. In particular, parameters and/or local symbols declared in a #keyword
section are not visible in other #keyword sections or in the #terminator section.

One important issue is that local symbols in a multipart macro are visible in the main code
between the start of the multipart macro and the terminating macro. That is, if you have some
sequence like the following:

InfLoop

jmp LoopExit;

endInfLoop;

The HLA substitutes the appropriate internal symbol (e.g., _xxxx_HLA_) for the LoopExit
symbol. This is somewhat unintuitive and might be considered a flaw in HLA’s design. Future
versions of HLA may deal with this issue; in the meantime, however, some code takes advantage of
this feature (to mask global symbols) so it’s not easy to change without breaking a lot of code. Be
forewarned before taking advantage of this "feature", however, that it will probably change in HLA
v3.x. An important aspect of this behavior is that macro parameter names are also visible in the
code section between the initial macro and the terminator macro. Therefore, you must take care to
choose macro parameter names that will not conflict with other identifiers in your program. E.g.,
the following will probably lead to some problems:

static
i:int32;

#macro parmi(i);
mov(i, eax);

#terminator endParmi;
mov(eax, i);

#endmacro
.
.
.
parmi(xyz);
mov(i, ebx);// actually moves xyz into ebx, since the parameter i

// overrides the global variable i here.
endParmi;
Public Domain Created by Randy Hyde Page 255

HLA Reference Manual 5/24/10 Chapter 13
13.6.4 Macro Invocations and Macro Parameters:
As mentioned earlier, HLA treats all non-array macro parameters as text constants that are

assigned a string corresponding to the actual parameter(s) passed to the macro. I.e., consider the
following:

#macro SetI(v);
?i := v;

#endmacro

SetI(2);

The above macro and invocation is roughly equivalent to the following:

const
v : text := "2";
?i := v;

When utilizing variable parameter lists in a macro, HLA treats the parameter object as a string
array rather than a text array (because HLA does not support text arrays). For example, consider
the following macro and invocation:

#macro SetI2(v[]);
?i := v[0];

#endmacro

SetI2(2);

Although this looks quite similar to the previous example, there is a subtle difference between
the two. The former example will initialize the constant (value) i with the int32 value 2. The
second example will initialize i with the string value "2".

If you need to treat a macro array parameter as text rather than as a string object, use the HLA
@text function that expands a string parameter as text. E.g., the former example could be rewritten
as:

#macro SetI2(v[]);
?i := @text(v[0]);

#endmacro

SetI2(2);

In this example, the @text function tells HLA to expand the string value v[0] (which is "2")
directly as text, so the "SetI2(2)" invocation expands as
?i := 2;
rather than as
?i := "2";

On occasion, you may need to do the converse of this operation. That is, you may want to treat
a standard (non-array) macro parameter as a string object rather than as a text object. You can
accomplish this by using the @string(text_object) function. When HLA encounters this construct,
it will substitute a string constant for the identifier. The following example demonstrates one
possible use of this feature:

program demoString;
Public Domain Created by Randy Hyde Page 256

HLA Reference Manual 5/24/10 Chapter 13
#macro seti3(v);
#print("i is being set to " + @string(v))
?i := v;

#endmacro

begin demoString;

seti3(4)
#print("i = " + string(i))
seti3(2)
#print("i = " + string(i))

end demoString;

Note that HLA supports a second, deprecated, form: @string:identifier. Though you might
see this form in older source code, you should not use this form in HLA v2.x programs as this
feature will probably be eliminated from a future version of HLA.

If an identifier is a text constant (e.g., a macro parameter or a const/value identifier of type
text), special care must be taken to modify the string associated with that text object. A simple val
expression like the following won’t work:
?textVar:text := "SomeNewText";

The reason this doesn’t work is subtle: if textVar is already a text object, HLA immediately
replaces textVar with its corresponding string; this includes the occurrence of the identifier
immediately after the "?" in the example above. So were you to execute the following two
statements:
?textVar:text := "x";
?textVar:text := "1";

the second statement would not change textVar’s value from "x" to "1". Instead, the second
statement above would be converted to:

?x:text := "1";

and textVar’s value would remain "x". To overcome this problem, HLA provides a special
syntactical entity that converts a text object to a string and then returns the text object ID. The
syntax for this special form is @tostring:identifier. The example above could be rewritten as:

?textVar:text := "x";
?@tostring:textVar:text := "1";

In this example, textVar would be a text object that expands to the string "1".

13.6.5 Processing Macro Parameters
As described earlier, HLA processes as parameters all text between a set of matching

parentheses after the macro’s name in a macro invocation. HLA macro parameters are delimited by
the surrounding parentheses and commas. That is, the first parameter consists of all text beyond the
left parenthesis up to the first comma (or up to the right parenthesis if there is only one parameter).
The second parameter consists of all text just beyond the first comma up to the second comma (or
right parenthesis if there are only two parameters); and so on. The last parameter consists of all text
from the last comma to the closing right parenthesis. Within a single parameter, any text appearing
between "(" and ")", "[" and "]", or "{" and "}" will be considered as a single parameter, even if
there are commas present. Therefore, procedure calls (with parameters), array element accesses,
character set constants, macro invocations, and other such items will constitute a single macro
parameter. The follow macro invocation, for example, has three arguments because the
parmMacro invocation counts as a single parameter:
Public Domain Created by Randy Hyde Page 257

HLA Reference Manual 5/24/10 Chapter 13
ThreeParms(a, parmMacro(0, 1), b);

This example demonstrates another feature of HLA’s macro processing system - HLA uses
deferred macro parameter expansion. That is, the text of a macro parameter is expanded when
HLA encounters the formal parameter within the macro’s body, not while HLA is processing the
actual parameters in the macro invocation (which would be eager evaluation).

There are three exceptions to the rule of deferred parameter evaluation: (1) text constants are
always expanded in an eager fashion (that is, the value of the text constant, not the text constant’s
name, is passed as the macro parameter). (2) The @text function, if it appears in a parameter list,
expands the string parameter in an eager fashion. (3) The @eval function immediately evaluates its
parameter; the discussion of @eval appears a little later.

In general, there is very little difference between eager and deferred evaluation of macro
parameters. In some rare cases, there is a semantic difference between the two. For example,
consider the following two programs:

program demoDeferred;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:string := "2";

begin demoDeferred;

?i := two(z, 2);
#print("i=" + string(i))

end demoDeferred;

In the example above, the code passes the actual parameter "z" as the value for the formal
parameter "x". Therefore, whenever HLA expands "x" it gets the value "z", which is a local
symbol inside the "two" macro, that expands to the value "1". Therefore, this code prints "3" ("1"
plus y’s value which is "2") during assembly. Now consider the following code:

program demoEager;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:string := "2";

begin demoEager;

?i := two(@text(z), 2);
#print("i=" + string(i))

end demoEager;

The only differences between these two programs are their names and the fact that demoEager
invocation of "two" uses the @text function to eagerly expand z’s text. As a result, the formal
parameter "x" is given the value of z’s expansion ("2") and HLA ignores the local value for "z" in
macro "two". This code prints the value "4" during assembly. Note that changing "z" in the main
program to a text constant (rather than a string constant) has the same effect:
Public Domain Created by Randy Hyde Page 258

HLA Reference Manual 5/24/10 Chapter 13
program demoEager;
#macro two(x, y):z;

?z:text:="1";
x+y

#endmacro

const
z:text := "2";

begin demoEager;

?i := two(z, 2);
#print("i=" + string(i))

end demoEager;

This program also prints "4" during assembly.

One place where deferred vs. eager evaluation can get you into trouble is with some of the
HLA built-in functions. Consider the following HLA macro:

#macro DemoProblem(Parm);

#print(string(Parm))

#endmacro
.
.
.

DemoProblem(@linenumber);

(The @linenumber function returns, as an uns32 constant, the current line number in the file).

When this program fragment compiles, HLA will use deferred evaluation and pass the text
@linenumber as the parameter Parm. Upon compilation of this fragment, the macro will expand
to "#print(string(@linenumber))" with the intent, apparently, being to print the line number of the
statement containing the DemoProblem invocation. In reality, that is not what this code will do.
Instead, it will print the line number, in the macro, of the "#print(string (Parm));" statement. By
delaying the substitution of the current line number for the @linenumber function call until inside
the macro, deferred execution produces the wrong result. What is really needed here is eager
evaluation so that the @linenumber function expands to the line number string before being
passed as a parameter to the DemoProblem macro. The @eval built-in function provides this
capability. The following coding of the DemoProblem macro invocation will solve the problem:

DemoProblem(@eval(@linenumber));

Now the compiler will execute the @linenumber function and pass that number as the macro
parameter text rather than the string "@linenumber". Therefore, the #print statement inside the
macro will print the actual line number of the DemoProblem statement rather than the line number
of the #print statement.

Keep these minor differences in mind if you run into trouble using macro parameters.

13.7 Built-in Functions:
HLA provides several built-in functions that take constant operands and produce constant

results. It is important that you differentiate these compile-time functions from run-time functions.
These functions do not emit any object code, and therefore do not exist while your program is
running. They are only available while HLA is compiling your program. Note that many of these
Public Domain Created by Randy Hyde Page 259

HLA Reference Manual 5/24/10 Chapter 13
functions are trivial to implement in assembly language or have counterparts in the HLA standard
library. Therefore, the fact that they are not available at run-time shouldn’t prove to be much of a
problem.

13.8 Constant Type Conversion Functions
boolean(const_expr)

The expression must be an ordinal or string expression. If const_expr is numeric, this
function returns false for zero and true for everything else. If const_expr is a character, this
function returns true for "T" and false for "F". It generates an error for any other character value. If
const_expr is a string, the string must contain "true" or "false" else HLA generates an error.

int8(const_expr)
int16(const_expr)
int32(const_expr)
int64(const_expr)
int128(const_expr)
uns8(const_expr)
uns16 const_expr)
uns32(const_expr)
uns64(const_expr)
uns128(const_expr)
byte(const_expr)
word(const_expr)
dword(const_expr)
qword(const_expr)
lword(const_expr)

These functions convert their parameter to the specified integer. For real operands, the result is
truncated to form a numeric operand. For all other numeric operands, the result is ranged checked.
For character operands, the ASCII code of the specified character is returned. For boolean objects,
zero or one is returned. For string operands, the string must be a sequence of decimal characters
that are converted to the specified type. Note that byte, word, and dword, …, types are
synonymous with uns8, uns16, and uns32, …, for the purposes of range checking.

real32(const_expr)
real64(const_expr)
real80(const_expr)

These functions are similar to the earlier integer functions, except these functions produce the
obvious real results. Only numeric and string parameters are legal.

char(const_expr)

Const_expr must be an ordinal or string value. This function returns a character whose
ASCII code is that ordinal value. For strings, this function returns the first character of the string.

string(const_expr)

This function produces a reasonable string representation of the parameter. Almost all data
types are legal.

cset(const_expr)

The parameter must be a character, string, or character set. For character parameters, this
function returns the singleton set containing only the specified character. For strings, each
character in the string is unioned into the set and the function returns the result. If the parameter is
a character set, this function makes a copy of that character set.
Public Domain Created by Randy Hyde Page 260

HLA Reference Manual 5/24/10 Chapter 13
13.8.1 Bitwise Type Transfer Functions
The type conversion functions of the previous section will automatically convert their

operands from the source type to the destination type. Sometimes you might want to change the
type of some object without changing its value. For many "conversions" this is exactly what takes
place. For example, when converting an uns8 object to an uns16 value using the uns16(---)
function, HLA does not modify the bit pattern at all. For other conversions, however, HLA may
completely change the underlying bit pattern when doing the conversion. For example, when
converting the real32 value 1.0 to a dword value, HLA completely changes the underlying bit
pattern ($3F80_0000) so that the dword value is equal to one. On occasion, however, you might
actually want to copy the bits straight across so that the resulting dword value is $3F80_0000. The
HLA bit-transfer type conversion compile-time functions provide this facility.

The HLA bit-transfer type conversion functions are the following:
@int8(const_expr)
@int16(const_expr)
@int32(const_expr)
@int64(const_expr)
@int128(const_expr)
@uns8(const_expr)
@uns16 const_expr)
@uns32(const_expr)
@uns64(const_expr)
@uns128(const_expr)
@byte(const_expr)
@word(const_expr)
@dword(const_expr)
@qword(const_expr)
@lword(const_expr)
@real32(const_expr)
@real64(const_expr)
@real80(const_expr)
@char(const_expr)
@cset(const_expr)

The above functions extract eight, 16, 32, 64, or 128 bits from the constant expression for use
as the value of the function. Note that supplying a string expression as an argument isn’t
particularly useful since the functions above will simply return the address of the string data in
memory while HLA is compiling the program. The @byte function provides an additional syntax
with two parameters; see the next section for details.

@string(const_expr)

HLA string objects are pointers (in both the language as well as within the compiler). So
simply copying the bits to the internal string object would create problems since the bit pattern
probably is not a valid pointer to string data during the compilation. With just a few exceptions,
what the @string function does is takes the bit data of its argument and translates this to a string
(up to 16 characters long). Note that the actual string may be between zero and 16 characters long
since the HLA compiler (internally) uses zero-terminated strings to represent string constants.
Note that the first zero byte found in the argument will end the string.

If you supply a string expression as an argument to @string, HLA simply returns the value of
the string argument as the value for the @string function. If you supply a text object as an
argument to the @string function, HLA returns the text data as a string without first expanding the
text value . If you supply a pointer constant as an argument to the @string function, HLA returns
the string that HLA will substitute for the static object when it emits the assembly file.

13.8.2 General functions
 @abs(numeric_expr)

Returns the absolute equivalent of the numeric value passed as a parameter.
Public Domain Created by Randy Hyde Page 261

HLA Reference Manual 5/24/10 Chapter 13
 @byte(integer_expr, which)

The which parameter is a value in the range 0..15. This function extracts the specified byte
from the value of the integer_expression parameter. (This is an extension of the @byte type
transfer function.)

@byte(real32_expr, which)

The which parameter is a value in the range 0..3. This function extracts the specified byte
from the value of the real32_expression parameter.

@byte(real64_expr, which)

The which parameter is a value in the range 0..7. This function extracts the specified byte
from the value of the real64_expression parameter.

@byte(real80_expr, which)

The which parameter is a value in the range 0..9. This function extracts the specified byte
from the value of the real80_expression parameter.

 @ceil(real_expr)

This function returns the smallest integer value larger than or equal to the expression passed as
a parameter. Note that although the result will be an integer, this function returns a real80 value.

 @cos(real_expr)

The real parameter is an angle in radians. This function returns the cosine of that angle.

 @date

This function returns a string of the form "YYYY/MM/DD" containing the current date.

 @env(string_expr)

This function returns a string containing the value of a system environment variable (whose
name you pass as the string parameter). If the specified environment variable does not exist, this
function returns the empty string.

 @exp(real_expr)

This function returns a real80 value that is the result of the computation e**real_expr (i.e., e
raised to the specified power).

 @extract(cset_expr)

This function returns a character from the specified character set constant. Note that this
function doesn’t actually remove the character from the set, if you want to do that, then you will
need to explicitly remove the character yourself. The following code demonstrates how to do this:

program extractDemo;

val
c:cset := {'a'..'z'};

begin extractDemo;

#while(c <> {})

?b := @extract(c);
#print("b=" + b)
?c := c - {b};
Public Domain Created by Randy Hyde Page 262

HLA Reference Manual 5/24/10 Chapter 13
#endwhile

end extractDemo;

 @floor(real_expr)

This function returns the largest integer value less than or equal to the supplied expression.
Note that the returned result is of type real80 even though it has no fractional component.

 @isalpha(char_expr)

This function returns true if the character expression is an upper or lower case alphabetic
character.

 @isalphanum(char_expr)

This function returns true if the parameter is an alphabetic or numeric character. It returns
false otherwise.

 @isdigit(char_expr)

This function returns true if the character expression is a decimal digit.

 @islower(char_expr)

This function returns true if the character expression is a lower case alphabetic character.

 @isspace(char_expr)

This function returns true if the character expression is a "whitespace" character. Typically,
this would be spaces, tabs, newlines, returns, linefeeds, etc.

 @isupper(char_expr)

This function returns true if the character expression is an upper case alphabetic character.

 @isxdigit(char_expr)

This function returns true if the supplied character expression is a hexadecimal digit.

 @log(real_expr)

This function returns the natural (base e) logarithm of the supplied parameter.

 @log10(real_expr)

This function returns the base-10 logarithm of the supplied parameter.

 @max(comma_separated_list_of_ordinal_or_real_values)

This function returns the largest value from the specified list.

 @min(comma_separated_list_of_ordinal_or_real_values)

This function returns the least of the values in the specified list.

 @odd(int_expr)

This function returns true if the integer expression is an odd number.

 @random(int_expr)
Public Domain Created by Randy Hyde Page 263

HLA Reference Manual 5/24/10 Chapter 13
This function returns a random uns32 value.

 @randomize(int_expr)

This function uses the integer expression passed as a parameter as the new seed value for the
random number generator.

 @sin(real_expr)

This function returns the sine of the angle (in radians) passed as a parameter.

 @sort(array_expr, int_expr, left_compare_id, right_compare_id, str_expr)

This function returns an array containing the elements of array_expr sorted in ascending order.
The second parameter (int_expr) specifies the number of elements in the array to sort (sorting
always begins with element zero and continues for int_expr elements). Note that @sort always
returns an array that is the same size as array_expr, but only the first int_expr elements are sorted.

Because array_expr elements can be an arbitrary type, you must supply a mechanism for
comparing individual elements of the array. This is accomplished using the last three parameters to
@sort. First, you must supply the names of two HLA val objects as the left_compare_id and
right_compare_id parameters. These two value objects must be the same type as an element of
array_expr. The last parameter must be a string constant holding the name of a macro that will
compare the values in these two identifiers and return true if left_compare_id is less than
right_compare_id (This has to be a string constant so that HLA won’t attempt to immediately
expand the macro when encountering the name).

Though it shouldn’t matter much, the current implementation of @sort uses a quick-sort
algorithm. There is no guarantee that this function will continue to use quicksort in the future,
however.

Here’s a quick example:
#macro abcmp;

(a < b)
#endmacro

val
a:int32;
b:int32;
array:int32[8] := [8,7,6,5,4,3,2,1];
sortedArray:int32[8] := @sort(array, @elements(array), a, b, "abcmp"

);

 @sqrt(real_expr)

This function returns the square root of the parameter.

 @system(string_expr)

This function executes the system command specified by the string (i.e., a command-line
operation for a shell interpreter). It captures all the output sent to the standard output device by this
command and returns that data as a string value.

 @tan(real_expr)

This function returns the tangent of the angle (in radians) passed as a parameter.

 @time

This function returns a string of the form "HH:MM:SS xM" (x= A or P) denoting the time at
the point this function was called (according to the system clock).
Public Domain Created by Randy Hyde Page 264

HLA Reference Manual 5/24/10 Chapter 13
13.8.3 String functions:
 @delete(str_expr, int_start, int_len)

This function returns a string consisting of the str_expr passed as a parameter with
(possibly) some characters removed. This function removes int_len characters from the string
starting at index int_start (note that strings have a starting index of zero).

 @index(str_expr1, int_start, str_expr2)

This function searches for str_expr2 within str_expr1 starting at character position
int_start within str_expr1. If the string is found, this function returns the index into
str1_expr1 of the first match (starting at int_start). This function returns -1 if there is no
match.

 @insert(str_expr1, int_start, str_expr2)

This function inserts str_expr2 into str_expr1 just before the character at index
int_start.

@left(str_expr, int_length)

This function returns the left-most int_length characters of the specified string.

@leftdel(str_expr, int_length)

This function deletes the left-most int_length characters of the specified string and returns
the result.

@length(str_expr)

This function returns the length of the specified string.

@lowercase(str_expr, int_start)

This function returns a string of characters from str_expr with all uppercase alphabetic
characters converted to lower case. Only those characters from int_start on are copied into the
result string.

@replace(str_expr1, str_expr2, str_expr3)

This function searches for every occurrence of str_expr2 found within str_expr1. It replaces
each occurrence found with str_expr3 and returns the resultant string.

@replace(str_expr1, str_array_expr2)

An extended version of the @replace function. The second argument must be an arra of
strings with an even number of elements. For each pair of strings this function will replace each
occurrence of the first string of the pair found in str_expr1 with the value of the second string in
the pair. E.g., ?resultStr := @replace(“Hello there world”, [[“there”, “”], [“ world”, “world”]]);

@right(str_expr, int_length)

This function returns the right-most int_length characters of the specified string.

@rightdel(str_expr, int_length)

This function deletes the right-most int_length characters of the specified string and returns
the result.

@rindex(str_expr1, int_start, str_expr2)

Similar to the index function, but this function searches for the last occurrence of str_expr2
in str_expr1 rather than the first occurrence.

@strbrk(str_expr, int_start, cset_expr)
Public Domain Created by Randy Hyde Page 265

HLA Reference Manual 5/24/10 Chapter 13
This function returns the index of the first character beyond int_start in str_expr that is a
member of the cset_expr parameter. This function returns -1 if none of the characters are in the
set.

@strset(char_expr, int_len)

This function returns a string consisting of int_len copies of char_expr.

@strspan(str_expr, int_start, cset_expr)

This function returns the index of the first character beyond position int_start in str_expr
that is not a member of the cset_expr parameter. This function returns -1 if all of the characters
are in the set.

@substr(str_expr, int_start, int_len)

This function returns the substring specified by the starting position and length in str_expr.

@tokenize(str_expr, int_start, cset_delims, cset_quotes)

This function returns an array of strings obtained by doing a lexical scan of the str_expr
passed as a parameter (starting at character index int_start). Each element of this array consists
of all characters between any sequences of delimiter characters (specified by the cset_delims
parameter). The only exceptions are strings appearing between bracketing (quoting) symbols. The
fourth parameter specifies the possible bracketing characters. If cset_quotes contains a
quotation mark (") then all sequences of characters between a pair of quotes will be treated as a
single string. Similarly, if cset_quotes contains an apostrophe, then all characters between a pair
of apostrophes will be treated as a single string. If the cset_quotes parameters contains one of
the pairs "(" / ")", "{" / "}", or "[" / "]" (both characters from a given pair must be present), then
@Tokenize will consider all characters between these bracketing symbols to be a single string.

You should use the @elements function to determine how many strings are present in the
resulting array of strings (this will always be a one-dimensional array, although it is possible for it
to have zero elements).

@trim(str_expr, int_start)

This function returns a string consisting of the characters in str_expr starting at position
int_start with all leading and trailing whitespace removed.

@uppercase(str_expr, int_start)

This function returns a string consisting of the characters in str_expr starting at position
int_start with all lower case alphabetic character converted to uppercase.

13.8.4 String/Pattern matching functions
The HLA string/pattern matching functions all attempt to match a string against a pattern.

These functions all return a boolean result indicating success or failure (i.e., whether the string
matches the pattern).

Most of these functions have two optional parameters: Remainder and Matched. If the
function succeeds it generally copies the matched string into the val string constant specified by the
Matched parameter and it copies all the characters in the InputStr parameter the follow the
matched text into the Remainder parameter. You may specify the Remainder parameter without
also specifying the Matched parameter, but if you need the matched result, you must specify all
the parameters. The Remainder and Matched parameters appear in italics in all of the following
functions to denote that they are optional.

If the function fails, the values of the Remainder and Matched parameters are generally
undefined.

 @peekCset(InputStr, charSet, Remainder, Matched)
Public Domain Created by Randy Hyde Page 266

HLA Reference Manual 5/24/10 Chapter 13
This function checks the first character of InputStr to see if it is a member of charSet. The
function returns true/false depending on the result of the set membership test. If the function
succeeds it copies the value of the InputStr parameter to Remainder and creates a single
character string from the first character of InputStr and stores this into Matched.

 @oneCset(InputStr, charSet, Remainder, Matched)

This function checks the first character of InputStr to see if it is a member of charSet. The
function returns true/false depending on the result of the set membership test. If the function
succeeds, it copies all characters but the first of InputStr parameter to Remainder and copies the
first character of InputStr into Matched.

 @uptoCset(InputStr, charSet, Remainder, Matched)

This function matches all characters up to, but not including, a single character from the
charSet character set parameter. If the InputStr parameter does not contain a character in the
specified character set, this function fails. If it succeeds, it copies all the matched characters (not
including the character in the character set) to the Matched parameter and it copies all remaining
characters (including the character in the character set) to the Remainder parameter.

 @zeroOrOneCset(InputStr, charSet, Remainder, Matched)

If the first character of InputStr is a member of charSet, this function succeeds and returns
that character in the Matched parameter. It also returns the remaining characters in the string in the
Remainder parameter.

This function always succeeds (since it matches zero characters). If the first character of
InputStr is not in charSet, then this function returns InputStr in Remainder and returns the
empty string in Matched.

 @exactlynCset(InputStr, charSet, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are in the character set
specified by charSet. The n+1st character must not be in the character set specified by
charSet. If this function succeeds (i.e., returns true), then it copies the first n characters to the
Matched string and it copies all remaining characters into the Remainder string. If this function
fails and returns false, Remainder and Matched are undefined.

 @firstnCset(InputStr, charSet, n, Remainder, Matched)

This function is very similar to exactlyncset except it doesn’t require that the n+1st
character not be a member of the charSet set. If the first n characters of InputStr are in
charSet, this function succeeds (returning true) and copies those n characters into the Matched
string; it also copies any following characters into the Remainder string.

 @nOrLessCset(InputStr, charSet, n, Remainder, Matched)

This function always succeeds. It will match between zero and n characters in InputStr from
the charSet set. The n+1st character may be in charSet, this function doesn’t care and only
matches up to the nth character. This function copies up to n matched characters to the Matched
string (the empty string if it matches zero characters); the remaining characters in the string are
copied to the Remainder parameter.

 @nOrMoreCset(InputStr, charSet, n, Remainder, Matched)

This function succeeds if it matches at least n characters from InputStr against the charSet
set. It returns false if there are fewer than n characters from charSet at the beginning of
InputStr. If this function succeeds, it copies the characters it matches to the Matched string and
all characters after that sequence to the Remainder string.

 @ntomCset(InputStr, charSet, n, Remainder, Matched)
Public Domain Created by Randy Hyde Page 267

HLA Reference Manual 5/24/10 Chapter 13
This function succeeds if InputStr begins with at least n characters from charSet. If
additional characters in InputStr are in this set, ntomcset will match up to m characters (n < m).
It will not match any additional characters beyond the mth character, although those characters may
be in the charSet set without affecting the success/failure of this routine. If this routine succeeds,
it copies all the characters it matches to the Matched parameter and any remaining characters to the
Remainder parameter.

 @exactlyntomCset(InputStr, charSet, n, Remainder, Matched)

Similar to the ntomcset function, except this function fails if more than m characters at the
beginning of InputStr are in the specified character set.

 @zeroOrMoreCset(InputStr, charSet, Remainder, Matched)

This function always succeeds. If the first character of InputStr is not in charSet, this
function copies InputStr to Remainder, sets matched to the empty string, and returns true. If
some sequence of characters at the beginning of InputStr is in charSet, this function copies those
characters to Matched and copies the following characters to Remainder.

 @oneOrMoreCset(InputStr, charSet, Remainder, Matched)

This function succeeds if InputStr begins with at least one character from charSet. It will
match all characters at the beginning of InputStr that are members of charSet. It copies the
matched chars to the Matched string and any remaining characters to the Remainder string. It
fails if the first character of InputStr is not a member of charSet.

 @peekChar(InputStr, Character, Remainder, Matched)

This function succeeds if the first character of InputStr matches Character. If it succeeds,
it copies the character to the Matched string and copies the entire string (including the first
character) to Remainder.

 @oneChar(InputStr, Character, Remainder, Matched)

This function succeeds if the first character if InputStr is equal to Character. If it
succeeds, it copies the matched character to Matched and any remaining characters to Remainder.
If it fails, then Remainder and Matched are undefined.

 @uptoChar(InputStr, Character, Remainder, Matched)

This function matches all characters up to, but not including, the specified character. If fails if
the specified character is not in the InputStr string. If this function succeeds and returns true, it
copies the matched character to the Matched string and copies all remaining characters to the
Remainder string (the Remainder string will begin with the value found in Character). If this
function fails, it leaves Remainder and Matched undefined.

 @zeroOrOneChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character this function returns true and sets Remainder equal to
InputStr and sets Matched to the empty string. If the first character of InputStr is equal to
Character, then this function returns that character in Matched and returns any remaining
characters from InputStr in Remainder.

 @zeroOrMoreChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character, this function returns true and sets Remainder equal to
InputStr and setsMatched to the empty string. If InputStr begins with a sequence of
characters that are all equal to Character, then this function returns those characters in Matched
and returns any remaining characters from InputStr in Remainder.
Public Domain Created by Randy Hyde Page 268

HLA Reference Manual 5/24/10 Chapter 13
 @oneOrMoreChar(InputStr, Character, Remainder, Matched)

This function always succeeds since it can match zero characters. If the first character of
InputStr is not equal to Character this function returns true and sets Remainder equal to
InputStr and sets Matched to the empty string. If InputStr begins with a sequence of
characters that are all equal to Character, then this function returns those characters in Matched
and returns any remaining characters from InputStr in Remainder.

 @exactlynChar(InputStr, Character, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. The
n+1st character cannot be equal to Character. If this function succeeds, it returns a string
consisting of n copies of Character in Matched and returns any remaining characters in
Remainder. Matched and Remainder are undefined if this function returns false.

 @firstnChar(InputStr, Character, n, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. The
n+1st character may or may not be equal to Character. If this function succeeds, it returns a
string consisting of n copies of Character in Matched and returns any remaining characters in
Remainder.

 @nOrLessChar(InputStr, Character, n, Remainder, Matched)

This function always returns true. It matches up to n copies of Character at the beginning of
InputStr. More than n characters can be equal to Character and this routine will still succeed.
However, this routine only matches the first n copies of Character in InputStr. It copies the
matched characters to the Matched string and copies any remaining characters to the Remainder
string.

 @nOrMoreChar(InputStr, Character, n, Remainder, Matched)

The normorechar function matches any string that begins with at least n copies of
Character. If it succeeds, it copies the sequence of Character chars to the Matched string and
copies any remaining characters (that must begin with something other than Character) to the
Remainder string. This function fails and returns false if the string doesn’t begin with at least n
copies of Character. Note that the Remainder and Matched variables are undefined if this
function fails.

 @ntomChar(InputStr, Character, n, m, Remainder, Matched)

This function returns true if the first n characters of InputStr are equal to Character. It will
match up to m characters (m >= n). The m+1st character does not have to be different than
Character, although this function will match, at most, m characters. If this function succeeds, it
copies the matched characters to the Matched string and any following characters to the
Remainder string. If this function fails and returns false, the values of Matched and Remainder
are undefined.

 @exactlyntomChar(InputStr, Character, n, m, Remainder, Matched)

This function succeeds and returns true if there are at least n copies of Character at the
beginning of InputStr and no more than m copies of Character at the beginning of InputStr.
If this function succeeds, it copies the matched characters at the beginning of InputStr to the
Matched parameter and any following characters to the Remainder parameter. If this function
fails, the values of Remainder and Matched are undefined upon return.

 @peekiChar
 @oneiChar
 @uptoiChar
 @zeroOrOneiChar
 @zeroOrMoreiChar
Public Domain Created by Randy Hyde Page 269

HLA Reference Manual 5/24/10 Chapter 13
 @oneOrMoreiChar
 @exactlyniChar
 @firstniChar
 @nOrLessiChar
 @nOrMoreiChar
 @ntomiChar
 @exactlyntomiChar

These functions use the same syntax as the standard xxxxxChar functions. The difference is
that these functions do a case insensitive comparison of the Character parameter with the
InputStr parameter.

 @matchStr(InputStr, String, Remainder, Matched)

This function checks to see if the string specified by String appears as the first set of
characters at the beginning of InputStr. This function returns true if InputStr begins with
String. If this function succeeds, it copies String to Matched and any following characters to
Remainder.

 @matchiStr(InputStr, String, Remainder, Matched)

Just like @matchStr except this function does a case insensitive comparison.

 @uptoStr(InputStr, String, Remainder, Matched)

The uptoStr function matches all characters in InputStr up to, but not including, the string
specified by String. If it succeeds, it copies all the matched characters (not including the string
specified by String) into the Matched parameter and any following characters to Remainder. If
this function returns false, the values of Remainder and Matched are undefined.

 @uptoiStr(InputStr, String, Remainder, Matched)

Same as @uptoStr function except that this function does a case insensitive comparison.

 @matchToStr(InputStr, String, Remainder, Matched)

This function is similar to @uptoStr except this function matches all characters up to and
including the characters in the String parameter.

 @matchToiStr(InputStr, String, Remainder, Matched)

Same as @matchToStr except this function does a case insensitive comparison.

 @matchID(InputStr, Remainder, Matched)

This is a special matching function that matches characters in InputStr that correspond to an
HLA identifier. That is, InputStr must begin with an alphabetic character or an underscore and
@matchID will match all following alphanumeric or underscore characters. If this function
succeeds by matching a prefix of InputStr that looks like an identifier, it copies the matched
characters to Matched and all following characters to Remainder. This function returns false if
the first character of InputStr is not an underscore or an alphabetic character. Note that the first
character beyond a matched identifier can be anything other than an alphanumeric or underscore
character and this function will still succeed.

 @matchIntConst(InputStr, Remainder, Matched)
Public Domain Created by Randy Hyde Page 270

HLA Reference Manual 5/24/10 Chapter 13
This function matches a string of one or more decimal digit characters (i.e., an unsigned
integer constant). The Matched parameter, if present, must be an int32 val object. If
@matchIntConst succeeds, it will convert the string to an integer and copy this integer to the
Matched parameter; it will also copy any characters following the integer string to the Remainder
parameter.

 @matchRealConst(InputStr, Remainder, Matched)

This function matches a sequence of characters at the beginning of InputStr that correspond
to a real constant (note that a simple sequence of digits, i.e., an integer, satisfies this). The number
may have a leading plus or minus sign followed by at least one decimal digit, an optional fractional
part and an optional exponent part (see the definition of an HLA real literal constant for more
details). If this function succeeds, it converts the string to a real80 value and stores this value into
Matched (which must be a real80 val object). The characters after the matched string are copied
into the Remainder parameter. If this function fails, the values of Matched and Remainder are
undefined.

 @matchNumericConst(InputStr, Remainder, Matched)

This is a combination of @matchRealConst and @matchIntConst. It checks the prefix of
InputStr. If it corresponds to an integer constant it will behave like @matchIntConst. If the
prefix string corresponds to a real constant, this function behaves like @matchRealConst. If the
prefix matches neither, this function returns false.

 @matchStrConst(InputStr, Remainder, Matched)

This function matches a sequence of characters that correspond to an HLA literal string
constant. Note that such constants generally contain quotes surrounding the string. If this function
returns true, it copies the matched string, minus the quote delimiters, to the Matched parameter and
it copies the following characters to the Remainder parameter. If this function fails, those two
parameter values are undefined.

This function automatically handles several idiosyncrasies of HLA literal string constants. For
example, if two adjacent quotes appear within a string, @matchStrConst copies only a single
quote to the Matched parameter. If two quoted strings appear at the beginning of InputStr
separated only by whitespace (a space or any control character other than NUL), then this function
concatenates the two strings together. Likewise, any character objects (surrounded by apostrophes
or taking the form #ddd, #$hh, or #%bbbbbbbb where ddd is a decimal constant, hh is a
hexadecimal constant, and bbbbbbbb is a binary constant) are automatically concatenated into the
result string. See the definition of HLA literal constants for more details.

 @zeroOrMoreWS(InputStr, Remainder)

This function always succeeds. It matches zero or more whitespace characters (white space is
defined here as a space or any control character other than NUL [ASCII code zero]). This function
copies any characters following the white space characters to the Remainder parameter (this could
be the empty string).

 @oneOrMoreWS(InputStr, Remainder)

This function matches one or more whitespace characters (white space is defined here as a
space or any control character other than NUL [ASCII code zero]). If this function succeeds, it
copies any characters following the white space characters to the Remainder parameter. If this
function fails, the Remainder string’s value is undefined.

 @WSorEOS(InputStr, Remainder)
Public Domain Created by Randy Hyde Page 271

HLA Reference Manual 5/24/10 Chapter 13
This function always succeeds. It matches zero or more whitespace characters (white space is
defined here as a space or any control character) or the end of string token (a zero terminating byte).
This function copies any characters following the white space characters to the Remainder
parameter (this could be the empty string if it matches EOS or there is only white space at the end
of the string).

 @WSthenEOS(InputStr)

This function matches zero or more whitespace characters (white space is defined here as a
space or any control character) immediately followed by the EOS token (a zero terminating byte).
Technically, it allows a Remainder parameter, but such a parameter will always be set to the
empty string if this function succeeds, so it’s hardly useful to supply the parameter.

 @peekWS(InputStr, Remainder)

This function returns true if the first character if InputStr is a white space character. If it
succeeds and the Remainder parameter is present, this function copies InputStr to Remainder.

 @EOS(InputStr)

This function returns true if InputStr is the empty string.

 @reg(InputStr)

This function returns true if InputStr matches a valid register name.

 @reg8(InputStr)

This function returns true if InputStr matches a valid eight-bit register name.

 @reg16(InputStr)

This function returns true if InputStr matches a valid 16-bit register name.

 @reg32(InputStr)

This function returns true if InputStr matches a valid 32-bit register name.

13.8.5 Symbol and constant related functions and assembler
control functions

 @name(identifier)

This function returns a string of characters that corresponds to the name of the identifier (note:
after text/macro expansion). This is useful inside macros when attempting to determine the name
of a macro parameter variable (e.g., for error messages, etc). This function returns the empty string
if the parameter is not an identifier.

 @type(identifier_or_expression)

This function returns a unique integer value that specifies the type of the specified symbol.
Unfortunately, this unique integer may be different across assemblies. Do not use this function
when comparing types of objects in different source code modules. This is a deprecated function.
Future versions of the assembler will return the same value as @typename. Do not use this
function in new code, and change any existing uses to use @typename instead.

 @typename(identifier_or_expression)

This function returns the string name of the type of the identifier or constant expression.
Examples include "int32", "boolean", and "real80".
Public Domain Created by Randy Hyde Page 272

HLA Reference Manual 5/24/10 Chapter 13
 @basetype(identifier_or_expression)

Similar to @typename, except this function returns the underlying primitive type for array and
pointer objects. For other types, it behaves just like @typename.

 @ptype(identifier_or_expression)

This function returns a small integer constant denoting the primitive type of the specified
identifier or expression. Primitive types would include things like int32, boolean, and real80. See
the "hla.hhf" header file for the latest set of constant definitions for @pType. At the time this was
written, the definitions were (though don't count on these particular values):

// pType constants.

hla.ptIllegal:= 0;
hla.ptBoolean:= 1;
hla.ptEnum:= 2;

hla.ptUns8:= 3;
hla.ptUns16:= 4;
hla.ptUns32:= 5;
hla.ptUns64:= 6;
hla.ptUns128:= 7;

hla.ptByte:= 8;
hla.ptWord:= 9;
hla.ptDWord:= 10;
hla.ptQWord:= 11;
hla.ptTByte:= 12;
hla.ptLWord:= 13;

hla.ptInt8:= 14;
hla.ptInt16:= 15;
hla.ptInt32:= 16;
hla.ptInt64:= 17;
hla.ptInt128:= 18;

hla.ptChar:= 19;
hla.ptWChar:= 20;

hla.ptReal32:= 21;
hla.ptReal64:= 22;
hla.ptReal80:= 23;
hla.ptReal128:= 24;

hla.ptString:= 25;
hla.ptZString:= 26;
hla.ptWString:= 27;
hla.ptCset:= 28;

hla.ptArray:= 29;
hla.ptRecord:= 30;
hla.ptUnion:= 31;
hla.ptRegex:= 32;
hla.ptClass:= 33;
hla.ptProcptr:= 34;
hla.ptThunk:= 35;
Public Domain Created by Randy Hyde Page 273

HLA Reference Manual 5/24/10 Chapter 13
hla.ptPointer:= 36;

hla.ptLabel:= 37;
hla.ptProc:= 38;
hla.ptMethod:= 39;
hla.ptClassProc:= 40;
hla.ptClassIter := 41;
hla.ptIterator:= 42;
hla.ptProgram:= 43;
hla.ptMacro:= 44;
hla.ptText:= 45;
hla.ptRegExMac:= 46;

hla.ptNamespace:= 47;
hla.ptSegment:= 48;
hla.ptAnonRec:= 49;
hla.ptAnonUnion := 50;
hla.ptVariant:= 51;
hla.ptError:= 52;

// Total Number of ptypes we support:

hla.sizePTypes:= 53;

 @baseptype(identifier_or_expression)

This function returns a small integer constant denoting the underlying primitive type of the
specified identifier or expression. See the discussion for @ptype for details. The difference
between @ptype and @baseptype is that @baseptype returns the element type for arrays and the
base type for ptPointer types.

 @class(identifier_or_expression)

This returns a symbol’s class type. The class type is constant, value, variable, static, etc., this
has little to do with the class abstract data type See the "hla.hhf" header file for the current symbol
class definitions. At the time this was written, the definitions were:

hla.cIllegal:= 0;
hla.cConstant:= 1;
hla.cValue:= 2;
hla.cType := 3;
hla.cVar := 4;
hla.cParm := 5;
hla.cStatic:= 6;
hla.cLabel:= 7;
hla.cProc := 8;
hla.cIterator:= 9;
hla.cClassProc:= 10;
hla.cClassIter := 11;
hla.cMethod:= 12;
hla.cMacro:= 13;
hla.cKeyword:= 14;
hla.cTerminator:= 15;
hla.cRegEx:= 16;
hla.cProgram:= 17;
hla.cNamespace:= 18;
hla.cSegment := 19;
Public Domain Created by Randy Hyde Page 274

HLA Reference Manual 5/24/10 Chapter 13
hla.cRegister:= 20;
hla.cNone := 21;

 @size(identifier_or_expression)

This function returns the size, in bytes, of the specified object.

 @elementsize(identifier_or_expression)

This function returns the size, in bytes, of an element of the specified array. If the parameter is
not an array identifier, this function generates an assembly-time error.

 @offset(identifier)

For var, parm, method, and class iterator objects only, this function returns the integer offset
into the activation record (or object record) of the specified symbol.

 @staticname(identifier)

For static/readonly/storage objects, procedures, methods, iterators, and external objects, this
function returns a string specifying the "static" name of that string. HLA emits this name to the
assembly output file for certain objects (when producing an assembly language output file).

 @lex(identifier)

This function returns an integer constant specifying the static lexical nesting for the specified
symbol. Variables declared in the main program have a lex level of zero. Variables declared in
procedures (etc.) that are in the main program have a lex level of one. This function is useful as an
index into the _display_ array when accessing non-local variables.

 @IsExternal(identifier)

This function returns true if the specified identifier is an external symbol.

 @arity(identifier_or_expression)

This function returns zero if the specified identifier is not an array. Otherwise, it returns the
number of dimensions of that array.

 @dim(array_identifier_or_expression)

This function returns a single array of integers with one element for each dimension of the
array passed as a parameter. Each element of the array returned by this function gives the number
of elements in the specified dimension. For example, given the following code:

val threeD: int32[2, 4, 6];
tdDims:= @dim(threeD);

The tdDims constant would be an array with the three elements [2, 4, 6];

 @elements(array_identifier_or_expression)

This function returns the total number of elements in the specified array. For multi-
dimensional array constants, this function returns the number of all elements, not just a particular
row or column.

 @defined(identifier)

This function returns true if the specified identifier is has been previously defined in the
program and is currently in scope.

 @pclass(identifier)
Public Domain Created by Randy Hyde Page 275

HLA Reference Manual 5/24/10 Chapter 13
If the specified identifier is a parameter, this function returns a small integer indicating how the
parameter was passed to the function. These constants are defined in the hla.hhf header file. At
this time this document was written, these constants had the following values.

hla.illegal_pc:= 0;
hla.valp_pc:= 1;
hla.refp_pc:= 2;
hla.vrp_pc:= 3;
hla.result_pc:= 4;
hla.name_pc:= 5;
hla.lazy_pc:= 6;

valp_pc means pass by value. refp_pc means pass by reference. vrp_pc means pass by
value/result (value/returned). result_pc means pass by result. name_pc means pass by name.
lazy_pc means pass by lazy evaluation.

 @localsyms(record_union_procedure_method_or_iterator_identifier)

This function returns an array of string listing the local names associated with the argument. If
the argument is a record or union object, the elements of the string array contain the field names for
the specified record or union. Note that the field names appear in their declaration order (that is,
element zero contains the name of the first field, element one contains the name of the second field,
etc.).

If the argument is a procedure, method, or iterator, the string array this function returns is a list
of all the local identifiers in that program unit. Note that the local object names appear in the
reverse order of their declarations (that is, element zero contains the name of the last local name in
the program unit, element one contains the second identifier, etc.). Note that parameters are
considered local identifiers and will appear in this array. Also note that HLA automatically
predefines several symbols when you declare a program unit; those HLA declared symbols also
appear in the array of strings @localsyms creates.

Currently, @localsyms does not allow namespace, program, or class identifiers. This
restriction may be lifted in the future if there is sufficient need.

 @isconst(expr)

This function returns true if the specified parameter is a constant identifier or expression.

 @isreg(expr)

This function returns true if the specified parameter is one of the 80x86 general purpose
registers. It returns false otherwise.

 @isreg8(expr)

This function returns true if the specified parameter is one of the 80x86 eight-bit general
purpose registers. It returns false otherwise.

 @isreg16(expr)

This function returns true if the specified parameter is one of the 80x86 16-bit general purpose
registers. It returns false otherwise.

 @isreg32(expr)

This function returns true if the specified parameter is one of the 80x86 32-bit general purpose
registers. It returns false otherwise.

 @isfreg(expr)

This function returns true if the specified parameter is one of the 80x86 FPU registers. It
returns false otherwise.
Public Domain Created by Randy Hyde Page 276

HLA Reference Manual 5/24/10 Chapter 13
 @ismem(expr)

This function returns true if the specified expression is a memory address.

 @isclass(expr)

This function returns true if the specified parameter is a class or a class object.

 @istype(identifier)

This function returns true if the specified identifier is a type id.

 @linenumber

This function returns the current line number in the source file.

 @linenumberstk(expr)

The expression must be a small unsigned integer value. @linenumberstk(0) returns the current
line number in the source file (exactly like @linenumber). If the expression evaluates to some value
larger than zero, the @linenumberstack crawls up the macro/include/text expansion/regular
expression include stack and prints the line number of the invocation at the level specified by the
argument. Note that @linenumberstk(1) prints the line number of the invocation of the current
macro (or include, etc.). If the expression is larger than the number of entries on the line number
stack, this function returns the line number of the first invocation.

 @filename

This function returns the name of the current source file.

 @filenamestk(expr)

The expression must be a small unsigned integer value. @filenamestk(0) returns the current
filename for the source file (exactly like @filename). If the expression evaluates to some value
larger than zero, the @filenamestack crawls up the macro/include/text expansion/regular
expression include stack and prints the filename of the invocation at the level specified by the
argument. If the expression is larger than the number of entries on the filename stack, this function
returns the filename of the main file.

 @curlex

This function returns the current static lex level (e.g., zero for the main program).

 @curoffset

This function returns the current var offset within the activation record.

 @curdir

This function returns +1 if processing parameters, it returns -1 otherwise. This corresponds to
whether variable offsets are increasing or decreasing in an activation record during compilation.
This function also returns +1 when processing fields in a record or class. This function returns zero
when processing fields in a union.

 @addofs1st

This function returns true when processing local variables, it returns false when processing
parameters and record/class/union fields.

 @lastobject

This function returns a string containing the name of the last macro object processed.

 @curobject
This function returns a string containing the name of the last class object processed.
Public Domain Created by Randy Hyde Page 277

HLA Reference Manual 5/24/10 Chapter 13
@curvar

This function returns a string containing the name of the last memory object processed.

13.8.6 Pseudo-Variables
HLA provides several special identifiers that act as functions in expressions and as variables in

val assignments. These "pseudo-variables" let you control the code emission during compilation.
Typically, you would use these pseudo-variables in a statement like "?@bound:=true;" in order to
set their values.

 @errorprefix

This variable contains a string (default the empty string). Whenever the assembler reports an
error message, it first checks this string to see if it is not the empty string. If the string is not the
empty string, then HLA will print this string before printing the error message. This pseudo-
variable is useful when processing macros and an error message might not appear until deep into
the macro expansion. The programmer can set up a helpful string (perhaps using the
@lineNumberStack and/or @fileNameStack functions) to print when an error occurs.

 @parmoffset

This variable contains the starting offset for parameters. This is generally eight for most
procedures since the parameters start at offset eight. You can change this value during assembly by
assigning a value to this variable (e.g., ?@parmoffset = 10;). However, this activity is not
recommended except by advanced programmers.

 @localoffset

This variable returns the starting offset for local variables in an activation record. This is
typically zero. You can change this value during assembly by assigning a value to this variable
(e.g., ?@localoffset = -10;). However, this activity is not recommended except by advanced
programmers.

 @basereg

This variable returns a string containing either "ebp" or "esp". You assign either ebp or esp
(the registers, not a string) to this variable. This sets the base register that HLA uses for automatic
(var) variables. The default is ebp. Examples:

?SaveBase :string := @basereg;
?@basereg := esp;
<< code that uses esp to access locals and parameters>>
?@basereg := @text(SaveBase); // Restore to original register.

Note the use of @text to convert the string to an actual register name. This must be done because
HLA only allows the assignment of the actual ebp/esp registers to @basereg, not a string.

 @enumsize

This assembly time variable specifies the size (in bytes) of enumerated objects. This has a
default value of one.

 @minparmsize

This assembly time variable has the initial value four. You should not change the value of this
object when running under Win32, *NIX, or other 32-bit OS.

 @bound

This assembly time variable is a boolean value that indicates whether HLA compiles the
bound instruction into actual machine code (or ignores the bound instruction).

 @into
Public Domain Created by Randy Hyde Page 278

HLA Reference Manual 5/24/10 Chapter 13
This assembly time variable is a boolean value that indicates whether HLA compiles the into
instruction into actual machine code.

 @label

This assembly time variable is an integer value that must be assigned a value greater than zero.
This value controls how HLA generates internal unique symbols. HLA normally translates non-
external/non-public symbols to some form such as "originalSymbol__XXX_nnnn" where
originalSymbol is the identifier appearing in the HLA source file, XXX is some special string
(currently "HLA" as this is being written, but this is subject to change in future versions of HLA),
and nnnn is a decimal integer string. HLA increments the value of nnnn for each symbol it
generates, thus ensuring that all internal symbols are unique within a given source file.

A problem can occur with HLA's unique symbol generation algorithm if you're generating an
assembly language source file for use with an assembler such as MASM that has an option to make
all symbols public. Usually, symbols of the form "originalSymbol__XXX_nnnn" are private to a
given source file, such symbols are almost never public. However, if you compile HLA code to a
MASM source file and them compile the MASM code with the "all symbols public" option, it's
quite possible, when linking multiple files together, that you wind up with duplicate symbol errors
from the linker. In such (rare) cases, you can use the @label pseudo-variable to work around this
problem by changing the value HLA uses for its internal label counter. For example, if the linker
complains that the symbol "false__HLA_1023" is multiply defined, you can use the @label
pseudo-variable to change the symbol number suffixes in one of the source files using a statement
like following near the beginning of your source file:

?@label := 5000;
Be careful about using this pseudo-variable; you should only change the value once and you

should only change it near the beginning of a source file. If you reset the @label value to a smaller
value somewhere beyond the start of the source file, you can create internal symbol conflicts in
your source file. Use this option with care!

 @exceptions

This assembly time variable controls whether HLA emits full exception handling code or an
abbreviated set of routines. If this variable contains true, then HLA emits the full exception
handling code. If false, the HLA emits the minimal amount of code to pass exceptions on to
Windows or *NIX. Note that this variable only affects code generation in the main program, it
does not affect the code generation in a unit. This variable must be set to true before the begin
clause associated with the main program if it is to have any effect. Note that including the
EXCEPTS.HHF file automatically sets this to true; so you will have to explicitly set it to false if
you include this file (or some other file that includes EXCEPTS.HHF, like STDLIB.HHF).

 @optstring

By default, HLA folds string constants to generate better code. This means that whenever you
ask the compiler to emit code for a string constant like "Hello World" the compiler will first check
to see if it has already emitted such a string. If so, the compiler uses the reference to the original
string constant rather than emitting a second copy of the string; this shortens the size of your
program if there are multiple occurrences of the same string in the program. Since string constants
generally go into a read-only section of memory, the program cannot accidentally change this
unique occurrence. The @optstrings pseudo-variable lets you control this optimization. If
@optstrings is true (the default condition), then HLA folds all duplicate string constants; if
@optstrings is false, then HLA emits duplicate strings to the code.

 @trace

This boolean variable controls the emission of "trace" statements by the HLA compiler. This
feature is offered in lieu of a decent debugger for tracing through HLA programs. When this
variable is false (the default), HLA emits the code you specify. However, if you set this compile-
time variable to true, HLA emits the following code before most statements in the program:

traceLine(filename, linenumber);

The filename parameter is a string that specifies the current filename HLA is processing. The
linenumber parameter is an uns32 value that specifies the current line number in the file. You are
Public Domain Created by Randy Hyde Page 279

HLA Reference Manual 5/24/10 Chapter 13
responsible for supplying the "_traceLine_" procedure somewhere in your program. Here’s a
typical implementation:

procedure trace(filename:string; linenumber:uns32); @external(
"_traceLine_");
procedure trace(filename:string; linenumber:uns32); @nodisplay;
begin trace;

pushfd(); // This function must preserve all registers and flags!
stdout.put(filename, ": #", linenumber, nl);
popfd();

end trace;

As the comments above note, it is your responsibility to preserve all registers and flags in the
traceLine procedure. If you fail to do this, it will corrupt those values in the code that calls
traceLine.

A common operation inside the _traceLine_ procedure is to display register values. Don’t
forget that EBP’s and ESP’s values are modified by this call. Furthermore, if you do any
processing whatsoever at all, the flag values will change. To obtain EBP’s value prior to the call,
fetch the double-word at address [EBP+0]. To obtain ESP’s value, take the value of EBP inside
traceLine and subtract 16 from it (EBP, return address, and eight bytes of parameters are on
the stack). Obviously if you build _traceLine_’s activation record yourself, these values can
change. To display the flag values, access the copy of the FLAGs register you pushed on the stack
(at offset [EBP-4] in the code above).

In addition to simply displaying values, you can write some very sophisticated debugging
routines that let you set breakpoints, watch values, and so on. Someday the HLA Standard Library
will include some trace support functions, until then have fun doing whatever you want.

13.8.7 Text emission functions
 @text(str_expr)

This function replaces itself with the text of the specified parameter. The result is then
processed by HLA. E.g.,

 @text("mov(0, eax);");

The above is equivalent to the single move instruction.

 @string(identifier)

The identifier must be a constant of type text. HLA replaces this item with the string data
assigned to the text object.

 @string:identifier

The identifier must be a constant of type text. HLA replaces this item with the string data
assigned to the text object. Note that this operation is deprecated. HLA now allows @string(
textVal) to convert a text object to a string value.

 @tostring:identifier

Like @string:identifier, the identifier must be a constant of type text. Also like
@string:identifier, HLA replaces this item with the string data assigned to the text object.
However, this function also converts identifier from a text to a string object.
Public Domain Created by Randy Hyde Page 280

HLA Reference Manual 5/24/10 Chapter 13
13.8.8 Miscellaneous Functions
 @section

This function returns a 32-bit bitmap that identifies the current point in the source.
Identification is as follows:

Bit 0: Currently processing the CONST section.
Bit 1: Currently processing the VAL section.
Bit 2: Currently processing the TYPE section.
Bit 3: Currently processing the VAR section.
Bit 4: Currently processing the STATIC section.
Bit 5: Currently processing the READONLY section.
Bit 6: Currently processing the STORAGE section.

Bit 12:Currently processing statements in the "main" program.
Bit 13:Currently processing statements in a procedure.
Bit 14:Currently processing statements in a method.
Bit 15:Currently processing statements in an iterator.
Bit 16:Currently processing statements in a #macro.
Bit 17:Currently processing statements in a #keyword macro.
Bit 18:Currently processing statements in a #terminator macro.
Bit 19:Currently processing statements in a thunk.

Bit 23:Currently processing statements in a Unit.
Bit 24:Currently processing statements in a Program.

Bit 25:Currently processing statements in a record.
Bit 26:Currently processing statements in a union.
Bit 27:Currently processing statements in a class.
Bit 28:Currently processing statements in a namespace.

This function is useful in macros to determine if a macro expansion is legal at a given point in
a program.

13.9 #Text and #endtext Text Collection Directives
The #TEXT and #ENDTEXT directives surround a block of text in an HLA program from

which HLA will create an array of string constants. The syntax for these directives is:

 #text(identifier)

<< arbitrary lines of text >>

#endtext

The identifier must either be an undefined symbol or an object declared in the VAL
section.

This directive converts each line of text between the #text and #endtext directives into a string
and then builds an array of strings from all this text. After building the array of strings, HLA
assigns this array to the identifier symbol. This is a val constant array of strings. The
#text..#endtext directives may appear anywhere in the program where white space is allowed.

Although these directives provide an easy way to initialize a constant array of strings, the real
purpose for these directives is to allow the inclusion of Domain Specific Embedded Language
(DSEL) text within an HLA program. Presumably, a parser (written with macros, regular
Public Domain Created by Randy Hyde Page 281

HLA Reference Manual 5/24/10 Chapter 13
expression macros, and the HLA compile-time language) would process the statements between the
#text and #endtext directives.

13.10#String and #endstring Text Collection Directives
The #string and #endstring directives surround a block of text in an HLA program from

which HLA will create a single string constant. The syntax for these directives is:

 #string(identifier)

<< arbitrary lines of text >>

#endstring

Either the identifier must be an undefined symbol or an object declared in the val section.
These directives are similar in principle to the #text..#endtext directives except that they

produce a single string (including new line characters) holding the entire block of text rather than
an array of strings.

Although these directives provide an easy way to initialize a string, the real purpose for these
directives is to allow the inclusion of Domain Specific Embedded Language (DSEL) text within an
HLA program. Presumably, a parser (written with macros, regular expression macros, and the
HLA compile-time language) would process the statements between the #string and #endstring
directives.

13.11Regular Expression Macros and the @match/@match2
Functions

Regular expression macros contain sequences of pattern-matching statements that you can use
to determine if some string takes a particular form. With HLA’s regular expression macros and the
attendant @match and @match2 functions, you can develop sophisticated language processors
inside HLA and specify whatever syntax you like (well, within certain bounds) for those languages.

Technical Note: although these features are called "regular expression macros", the
purists out there will note that "regular expression" is actually a misnomer here.
HLA’s regular expression macros actually handle a subset of the context-free
languages. This language facility is called "regular expression macros" because most
programmers, even those not intimately familiar with automata theory, recognize the
term and associate "pattern matching" with the term. Hence the use of the term
"regular expression" when "context-free grammar" would probably be a better
choice. For those of you who aren’t intimately familiar with automata theory design,
fear not: the context-free languages are a proper superset of the regular languages
and you’re not being short-changed here. HLA’s "regular expression" macros will
actually handle all the stuff you can do with a regular expression, and more.

Before describing the syntax for a regular expression macro, it’s probably best to begin by
discussing how you use them in a program. This will better motivate you when this document
actually discusses the regular expression syntax.

Regular expressions are used for pattern matching.1 Generally, a regular expression is applied
to some string of text and a boolean "success (matched) / failure (no match)" result comes back
from the operation. The HLA compile-time function @match (and @match2) is how you achieve
this task. The basic syntax for the @match2 function is the following:

1. Actually, the purists will argue that regular expressions are used for pattern generation, not recognition.
Because these two facilities are technically equivalent in theoretical computer science, this documentation will
ignore this issue and claim that regular expressions are pattern matching devices.
2. For brevity, this document will use @match to imply the use of @match or @match2. The two functions are
almost identical in usage other than how they handle whitespace.
Public Domain Created by Randy Hyde Page 282

HLA Reference Manual 5/24/10 Chapter 13
@match(stringToMatch, RegexMacroName, ReturnsResult, Remainder,
MatchedString)

This function returns the boolean result true if the regular expression specified by
RegexMacroName matches some prefix of the string stringToMatch. The remaining three
arguments are optional, though if one argument is present then any preceding arguments must also
be present.

The optional ReturnsResult argument must be an HLA val identifier. The @match function
will store a special #return string into this val object. We’ll look at what a #return string is a little
later in this documentation. For now, suffice to say that this is the "text" that the regex macro
expands into (regex macros do not expand in-place as standard HLA macros do). If this argument is
not present and the regex macro produces a #return string, then HLA simply throws away the
associated string data.

The optional Remainder argument must be an HLA val identifier. If this argument is present,
then the ReturnsResult argument must also be present. This argument is identical to the
"remainder" arguments of the string matching functions given earlier. When matching
stringToMatch with RegexMacroName, the regex macro might not match the entire string, only a
prefix of the string (this is still a successful match). Any remaining characters that are not matched
once @match exhausts the regular expression are collected and stored into the Remainder
argument,, if it is present. @match will not generate this string if you do not pass the Remainder
argument (and the string information is simply thrown away at that point).

The optional MatchedString argument must be an HLA val identifier. If this argument is
present, then the Remainder and ReturnsResult arguments must also be present. This argument is
identical to the "matched" arguments of the string matching functions given earlier. If the regular
expression macro successfully matches stringToMatch, then @match will store a copy of the
sequence that has been matched into this val argument.

Note that if the @match function returns false, because RegexMacroName failed to match the
characters in stringToMatch, then @match will not disturb the existing values of the
ReturnsResult, Remainder, and MatchedString parameters. Therefore, you should only expect
those arguments to contain reasonable values if @match returns true.

13.11.1 #regex..#endregex
The syntax for a regular expression macro is very similar to a standard macro declaration. Here

is the basic form:

#regex macroName (optional_parameter_list) : optional_locals_list;

<< regex body >>

#endregex

The optional_parameter_list and optional_locals_list items are identical (in syntax) to a macro
declaration. The following #regex statements demonstrate some of the legal permutations:

#regex noParmsOrLocals;
#regex onParmNoLocals(oneParm);
#regex oneLocalNoParms:oneLocal;
#regex variableParms(a, b, c[]);
#regex stringParms(string parms);

It’s actually a somewhat rare occurrence for a regular expression macro to have parameters. The
semantics for parameters (and locals) are different for compiled and precompiled regular
expression macros. Therefore, it’s a good idea to avoid using parameters unless they are necessary.

The body of a #regex macro consists of zero or more regular expression items following by an
optional #return clause. If the regular expression body is empty, then the regular expression will
match the empty string, which means it will match any string appearing in an @match function
call. The section Regular Expression Elements describes the exact syntax for the body of a regular
expression macro. The next section describes the optional #return clause.
Public Domain Created by Randy Hyde Page 283

HLA Reference Manual 5/24/10 Chapter 13
13.11.2 The #return Clause
A #regex macro declaration may optionally contain a #return clause immediately after the

regular expression body (and immediately before the #endregex clause). The #return clause
specifies a string expression to return (via the ReturnsResult argument in the @match function
call). Here is a typical example:

#regex newMov;
 <<body for newMov>>
#returns "mov(eax, ebx)"
#endregex

Note that an arbitrary HLA string expression is legal after the #returns clause, not just a
simple literal constant. So you can use the concatenation operation (+) or any other HLA compile-
time string functions to build up the #return string. Note that there is no semicolon at the end of
the string expression. The #endregex properly terminates the string expression.

If no #return clause is present in a #regex macro, then that #regex macro returns the empty
string as the #return string result.

The main purpose for the #return clause is to return some text to expand in the invoking code
should the @match function succeed. Unlike standard macros, you cannot expect to be able to
arbitrarily expand text found in a #regex macro because you only "invoke" #regex macros in an
@match function call, and those generally appear in a compile-time boolean expression. For
example, if the #regex macro above directly emitted the mov instruction during the invocation of
this macro, you’d get syntax errors whenever you made calls like:
#if(@match("Hello World", newMov))
 .
 .
#endif

because HLA would emit the mov instruction right into the boolean expression associated with the
#if statement (which is syntactically incorrect). By putting the #return value into a string and
returning that string result, the system can defer the expansion of the text until the caller gets to an
appropriate context, e.g., (from earlier)

#if(@match("Hello World", newMov, returnResult))

@text(returnResult);

#endif

This example expands the "mov(eax, ebx)" instruction if and only if the pattern matches "Hello
World".

If you would like the default situation to be "expand text if match" then it’s easy enough to
write a macro to do this job for you:

#macro expand(theStr, theRegex):returnResult;

#if(@match(theStr, theRegex, returnResult))

@text(returnResult);

#endif

#endmacro
 .
 .
expand("Hello World", newMov);
Public Domain Created by Randy Hyde Page 284

HLA Reference Manual 5/24/10 Chapter 13
The return string is automatically processed by the #match(regex)..#endmatch block. See the
description of #match..#endmatch for more details.

13.11.3 Regular Expression Elements
The "meat" of a regular expression macro is the sequence of regular expression elements that

appear in a #regex macro body. Each element in a regular expression body can match a part of the
source string. The following subsections describe each regular expression element in detail.

With only a couple exceptions (that will be noted as they arrive), each time a regular
expression element matches a character in the source string (the first parameter provided to
@match), the match operation consumes that character. For example, if the source string is "Hello
World" and the first regular expression element matches the single character ‘H’, then ‘H’ is
consumed from the source string (yielding "ello World") and further regular expression elements
operate on that remainder of the string.

13.11.4 Kleene Star, Plus, and Numeric Range Specifications
Most regular expression elements we’re about to explore match a single instance of

themselves. For example, a literal character constant in the body of a regular expression macro will
match a single character in the source string (see the next section). You can modify this match
operation by supplying one of the following suffixes to the literal character constant.

Examples:
‘c’* Matches zero or more ‘c’ characters.
‘c’+ Matches one or more ‘c’ characters.
‘c’:[4] Matches exactly four ‘c’ characters.
‘c’:[4,6] matches between four and six ‘c’ characters.
‘c’:[4,*] Matches four or more ‘c’ characters.

Exceptions to this syntax will be noted whenever they occur.

13.11.5 Matching Characters in a Regular Expression
A character literal constant within a #regex body matches the corresponding character in the

source string. For example, the following regular expression macro matches a string beginning with
the single character ‘c’:

#regex matchesC;

Suffix Meaning

* (Kleene star) Matches zero or more occurrences of the preceding operand.

+ (Kleene plus) Matches one or more occurrences of the preceding operand.

:[n] Matches exactly n occurrences of the preceding operand. ’ must be a reasonably-valued
unsigned integer constant expression.

:[n,m] Matches between n and m occurrences of the preceding operand. n and m must be
reasonable unsigned integer constants with n<m.

:[n,*] Matches n or more occurrences of the preceding operand. n must be a reasonably-
valued unsigned integer constant expression.
Public Domain Created by Randy Hyde Page 285

HLA Reference Manual 5/24/10 Chapter 13
‘c’
#endregex

Note that this form only allows a single character constant. In particular, you cannot specify an
arbitrary HLA character expression. However, you can also use the HLA @matchChar
(synonym: @oneChar) function in a regular expression body to specify a character expression.
@matchChar requires a single parameter that must evaluate to a single character. For example,

#regex matchesC;
@matchChar(char(uns8(‘b’) + 1)) // Matches ‘c’

#endregex

The single character match operation consumes a single character from the beginning of the
source string if it successfully matches the first character of the source string.

Examples of character matching repetition:
‘c’* Matches zero or more ‘c’ characters.
‘c’+ Matches one or more ‘c’ characters.
‘c’:[4] Matches exactly four ‘c’ characters.
‘c’:[4,6] matches between four and six ‘c’ characters.
‘c’:[4,*] Matches four or more ‘c’ characters.
@matchChar(char(uns8(‘b’) + 1))* Matches zero or more ‘c’ characters

13.11.6 Case-insensitive Character Matching in a Regular
Expression

You can perform a case-insensitive character match by prefixing a literal character constant
with the "!" operation. For example, !’c’ matches either ‘c’ or ‘C’. Here is an explicit example:

#regex matchesCorc;
!’c’

#endregex

If you want to specify a character expression rather than a single literal character constant, you
can use the @matchiChar function in a manner similar to @matchChar given earlier. This
operation also consumes a single character from the source string if a match occurs.

Examples of character matching repetition:
!‘c’* Matches zero or more ‘c’ or ‘C’ characters.
!‘c’+ Matches one or more ‘c’ or ‘C’ characters.
!‘c’:[4] Matches exactly four ‘c’ or ‘C’ characters.
!‘c’:[4,6] matches between four and six ‘c’ or ‘C’ characters.
!‘c’:[4,*] Matches four or more ‘c’ or ‘C’ characters.
@matchiChar(char(uns8(‘b’) + 1))* Matches zero or more ‘c’ or ‘C’
characters

Note that repetitive matches allow any combination of upper and lower case characters. For
example, !‘c’+ will match the sequence "ccCcCCc".

13.11.7 Negated Character Matching
Sometimes you’ll want to match "anything but a given character." The HLA #regex macro

body provides a shortcut for matching anything but a single character. By placing a minus sign in
front of a single literal character constant, you can tell HLA to match anything but that character.
E.g., -’c’ matches anything but the ‘c’ character. You can combine this with the "!" operator to
match anything but the upper or lower case version of a character. For example, -!’c’ matches
anything but ‘c’ or ‘C’.
Public Domain Created by Randy Hyde Page 286

HLA Reference Manual 5/24/10 Chapter 13
There is no generic function you can call like @matchChar or @matchiChar if you want to
specify a character expression rather than a character literal constant. However, you can easily
achieve the same effect by using negated character sets. See the discussion of matching character
sets a little later in this documentation.

If the first character of the source string is not the specified literal constant, then this operation
consumes the first character of the source string.

Examples of character matching repetition:
-‘c’* Matches zero or more characters that are not ‘c’.
-‘c’+ Matches one or more characters that are not ‘c’.
-‘c’:[4] Matches exactly four characters that are not ‘c’.
-‘c’:[4,6] matches between four and six characters that are not ‘c’.
-‘c’:[4,*] Matches four or more characters that are not ‘c’.

13.11.8 String Matching in Regular Expressions
A string literal constant within a #regex body matches the corresponding sequence of

characters in the source string. For example, the following regular expression macro matches a
string beginning with the sequence "str":

#regex matchesC;
"str"

#endregex

Note that this form only allows a single literal string constant. In particular, you cannot specify
an arbitrary HLA string expression. However, you can also use the HLA @matchStr function in a
regular expression body to specify a string expression. @matchStr requires a single parameter that
must evaluate to a single string. For example,

#regex matchesHelloWorld;
@matchStr("Hello " + "World") // Matches "Hello World"

#endregex

The string match operation consumes one character from the source string for each character in
the regular expression element, but only if the match is completely successful. This is, if the first
few characters of the source string match the regular expression element but not all the characters
match, then the operation consumes no characters.

Although it is not commonly done, the repetition operations apply to string objects as well as
characters. Examples of string matching repetition:

"str"* Matches zero or more "str" sequences.
"str"+ Matches one or more "str" sequences.
"str":[4] Matches exactly four "str" sequences.
"str":[4,6] matches between four and six "str" sequences.
"str":[4,*] Matches four or more "str" sequences.
@matchStr("Hello" + " world")* Matches zero or more "Hello world"
sequences.

13.11.9 Case-insenstive String Matching in Regular Expressions
Like character matching, you can do a case-insensitive string match by prefixing a string literal

constant with "!" or by using the @matchiStr function. E.g.,

#regex caseInsensitive;
@matchiStr("Hello world")

#endregex
Public Domain Created by Randy Hyde Page 287

HLA Reference Manual 5/24/10 Chapter 13
Another example:

#regex caseInsensitive;
!"Hello world"

#endregex

Although it is not commonly done, the repetition operations apply to string objects as well as
characters. Examples of case-insensitive string matching repetition:
!"str"* Matches zero or more "str" sequences (case insensitive).
!"str"+ Matches one or more "str" sequences (case insensitive).
!"str":[4] Matches exactly four "str" sequences (case insensitive).
!"str":[4,6] matches between four and six "str" sequences (case
insensitive).
!"str":[4,*] Matches four or more "str" sequences (case insensitive).
@matchiStr("Hello" + " world")*

Matches zero or more "Hello world" sequences (case insensitive).

13.11.10 Negated String Matching
You can put the "-" operator in front of a string literal expression to specify that the match

should fail if the following characters match a given string. For example,

#regex caseInsensitive;
-"Hello world"

#endregex

will succeed as long as the next 11 characters are not "Hello world". You can also apply the case-
insenstive operator to this sequence,,, e.g., -!"Hello worrld".

Note: negated string matching never consumes any characters from the source string. That is,
once this pattern succeeds, the source string contains the same data it did before the match
operation. Character consumption doesn’t make sense for this operation because the source string
could actually be shorter than the negated match string (in which case we still want the pattern to
succeed because the source string doesn’t begin with the negated string).

The repetition operators to not apply to negated string-matching operations.

13.11.11 String List Matching
The following regular expression syntax tells HLA to successfully match if any one of a list of

strings matches the front of the source string:

["string1", "string2", ..., "stringn"]

The match operation fails only if all the strings in the list fail to match the front of the source
string. If multiple strings match the start of the source string, then the first string in the list is the
one that will match. So if you want a maximal match, put the longest strings at the beginning of the
list, e.g.,

["these", "the", "th"]

Similarly, if you want a minimal match, put the shortest strings first in the list.

If this operation succeeds, then it consumes the matching characters from the source string.
The repetition operators to not apply to string list matching operations. If you really need this

capability, use the alternation operator (discussed later).
Public Domain Created by Randy Hyde Page 288

HLA Reference Manual 5/24/10 Chapter 13
13.11.12 Character Set Matching in a Regular Expression
A character set literal constant within a #regex body matches a character from the set in the

source string. For example, the following regular expression macro matches a string beginning with
any of the character ‘c’, ‘s’, or ‘t’:

#regex matchesC;
{‘c’, ‘s’, ‘e’, ‘t’}

#endregex

Note that this form only allows a single character set constant. In particular, you cannot specify
an arbitrary HLA character set expression. However, you can also use the HLA @matchCset
(synonym: @oneCset) function in a regular expression body to specify a character set expression.
@matchCset requires a single parameter that must evaluate to a single character. For example,

#regex matchesC;
@matchCset(-{‘c’,’C’} + numericCset) // Matches anything but ‘c’,

‘C’, or a digit
#endregex

The single character set match operation consumes a single character from the beginning of the
source string if it successfully matches the first character of the source string.

Examples of character matching repetition:
{’0’..’9’}* Matches zero or more digit characters.
{’0’..’9’}+ Matches one or more digit characters.
{’0’..’9’}:[4] Matches exactly four decimal digit characters.
{’0’..’9’}:[4,6] matches between four and six decimal digit characters.
{’0’..’9’}:[4,*] Matches four or more digit characters.
@matchCset({"0123456789"})* Matches zero or more digit characters

13.11.13 Negated Character Set Matching
Although you can use the @matchCset function to specify a negated character set (e.g.,

@matchCset(-someSet)), for simple literal character set constants HLA allows a shortcut
operation. Just put a minus sign in front of the literal character set constant. E.g., -{‘c’, ‘C’,’d’,’D’}
matches anything except upper/lower case C and D.

13.11.14 Matching Arbitrary Characters
You can match a single character (regardless of its value) using the negated empty character

set (i.e., -{}). However, HLA provides a shortcut for this - the period operator. A period appearing
in regular expression body will match any single character and consume that character from the
source string. It only fails if there are no more characters in the source string.
.* Matches zero or more characters.
.+ Matches one or more characters.
.:[4] Matches exactly four characters.
.:[4,6] matches between four and six characters.
.:[4,*] Matches four or more characters.

The .* pattern is useful at the beginning of a pattern if you want to match some subsequent
pattern anywhere in the source string. The .* pattern will skip over any characters up to the desired
pattern.

Note that there are some performance issues (at compile time) concerning the use of the
repeated "." operator in complex regular expressions. Please see the section on regular expression
performance later in this document.
Public Domain Created by Randy Hyde Page 289

HLA Reference Manual 5/24/10 Chapter 13
13.11.15 Sequences (Concatenation) - The ‘,’ Operator
Most regular expressions will consist of more than a single regular expression item. The ","

operator lets you create a sequence of regular expression items in a regular expression macro. The
resulting regular expression is effectively a concatenation of the match semantics. For example,
consider the following regular expression macro:

#regex identifier;
{‘a’..’z’, ‘A’..’Z’, ‘_’}, {‘a’..’z’, ‘A’..’Z’, ‘_’}*

#endregex

This regular expression matches a sequence of characters that begin with at least one alphabetic or
underscore character followed by zero or more alphanumeric or underscore characters (i.e., the
definition of an HLA identifier). Here is another example that matches signed integer literal
constants:

#regex intConst;
‘-’:[0,1], {‘0’..’9’}+

#endregex

The repetition operators do not apply to sequences (they apply, instead, to the last element of
the regular expression sequence). See the discussion of parentheses ("()") for a way to apply a
repetition to a sequence.

13.11.16 Alternation - The "|" Operator
The alternation operator ("|") lets HLA select from amongst several different alternative

regular expression elements. The basic syntax is:
RX1 | RX2

where RX1 and RX2 are two regular expressions (e.g., the regular expression elements we’ve
discussed thus far). The @match function will try to match the first regular expression against the
source string. If this succeeds, then the whole expression succeeds and the @match function
ignores the second alternative. If matching the first regular expression fails, then the @match
function tries to match against the second regular expression. The success or failure of the match is
then based on the result of this second match.

Because R | S is itself a regular expression, recursively we can come up with an arbitrary list of
alternatives, e.g.,

RX1 | RX2 | RX3 | RX4 | ... | RXn

The @match function will try to match the first expression. If that fails, it will try the second; if
that fails, it will try the third, etc. If any of the n regular expressions succeeds, then the alternation
succeeds and @match ignores any remaining regular expressions in the alternation expression. The
alternation sequence fails only if all the subpatterns fail. Note that the string list operator, ["str1",
"str2", str3", ..., "strn"] is just a shorthand for:

"str1" | "str2" | ... | "strn"

The repetition operators do not apply to alternative sequences (they apply, instead, to the last
element of the alternation sequence). See the discussion of parentheses ("()") for a way to apply a
repetition to an alternation sequence.

13.11.17 Subexpressions - The "()" operator
Like arithmetic operators, regular expression operators exhibit operator precedence. The

precedence order is repetitive operators (e.g., "*" and ":[2]"), sequences (","), and last, alternation
("|"). This precedence is natural and eliminates some ambiguity that would otherwise be present in
a regular expression. For example, consider the following regular expression sequence:
Public Domain Created by Randy Hyde Page 290

HLA Reference Manual 5/24/10 Chapter 13
 ‘c’, ‘d’ | ‘e’

Does this mean match the string "cd" or "e" (that is, match ‘c’, ‘d’ or match ‘e’), or does this mean
match either of the strings "cd" or "cd" (that is, match ‘c’ followed by ‘d’ or ‘e’)? An argument
could be made for either resolution of the ambiguity. However, the ‘,’ operator has higher
precedence than the "|" operator in HLA, so the first possibility is the one that HLA uses (that is, it
matches "cd" or "e").

No matter which choice is made with respect to precedence, there will be situations where you
need to override the precedence. As for arithmetic expressions, you can use the parentheses to
override precedence. For example, if you really want to match "cd" or "ce" in the previous
example, you could rewrite the expression as follows:

‘c’, (‘d’ | ‘e’)

You may apply the repetition operators to a parenthetical regular expression. For example, the
regular expression

‘c’, (‘d’ | ‘e’)*

matches the character ‘c’ followed by a string of zero or more ‘d’ and ‘e’ characters.

Some regular expression items don’t directly support the repetition operators. For example,
sequences don’t support the repetition operators (because of precedence issues). You can use
parentheses to overcome this problem, e.g.,

(‘a’, ‘b’, {‘c’,’d’}):+
matches a sequence of characters containing "abc" or "abd" (or both) repeated one or more times.

Note: some operators don’t support repetition because it just doesn’t make sense to do so. Be
careful when you force repetition on to an operation that doesn’t otherwise support it. It’s very easy
to create a regular expression that never succeeds, or always succeeds, by misapplying the
repetition operators.

13.11.18 Extracting Substrings - The Extraction Operator "<>:"
On occasion, you’ll want to save some part of the source string you’ve matched. Granted, the

@match function has a MatchedString argument that returns the entire matched string, but
sometimes you'll want to extract only a portion of the entire matched string. The regular expression
extraction operator lets you achieve this. The extraction operator uses the following syntax:

< Regular_Expression_sequence >:identifier

For the purposes of pattern matching, the extraction operator behaves exactly like the
subexpression (parentheses) operator. Everything between the two angle brackets ("<" and ">") is
used as a unit. If this sequence matches the source string, then the @match function will extract the
substring matched by this subexpression and store that string into the compile-time variable
specified by identifier. This identifier must be a regular expression macro parameter, a regular
expression local symbol, or a global val object.

One very common use of the #return statement is to return some string composed of items
processed by the extraction operator. For example, if you want to create a LISP-like assembly
language, you could use a regular expression macro like the following (for the mov, add, and sub
instructions):

#regex stmt:mnemonic, op1, op2;

‘(‘,
<["mov"", "add", "sub"]>:mnemonic, // Match the mnemonic
‘,’,
<.*>:op1, // Everything up to the 2nd comma is the 1st operand
‘,’,
<.*>:op2, // Everything up to the ‘)’ is the 2nd operand
Public Domain Created by Randy Hyde Page 291

HLA Reference Manual 5/24/10 Chapter 13
‘)’
#return mnemonic + "(" + op1 + "," + op2 + ")" //Construct HLA statement
#endmacro

13.11.19 Invoking Other #regex Macros in a Regular Expression
HLA’s #regex macros allow you to call other #regex macros as though they were pattern

matching functions. This one feature alone is what gives HLA’s "regular expressions" the power to
handle many context-free grammars (rather than being limited to just the regular language subset).
If you include the name of some #regex macro within a regular expression, the @match function
will match the current source string using that other regular expression and it’s success or failure
will determine if the match proceeds upon return from that other #regex macro. Consider the
following example:

#regex ID;
{‘a’..’z’, ‘A’..’Z’, ‘_’}, {‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’}*

#endregex

#regex arrayAccess;
ID, ‘[‘, {‘0’..’9’}+, ‘]’

#endregex

The arrayAccess regular expression matches an identifier followed by a numeric constant
surrounded by braces, e.g., "myArray[4]".

Regular expression invocations can even be recursive. However, you must be careful not to
create an infinitely recursive loop (that is, creating a "left recursive" expression, using compiler
terminology). Advanced HLA users (and hopefully you are an advanced HLA user if you’re
reading this stuff) might think that they can use HLA’s conditional assembly directives (e.g., #if) to
halt the recursion. Though the compile-time language elements may appear in a #regex macro, they
don’t work the way you probably think that they do; in particular, they cannot be used to terminate
left recursion. There primary ways to make decisions in regular expressions is via success/failure
and via alternation. Specifically, if you have two regular expressions R and S, then the expression
"R, S" will not execute S if R fails. Similarly, the sequence "R | S" will not execute S if R succeeds.
If these two sequences are inside S, then you can stop infinite recursion via the success or failure of
R.

Eliminating left recursion (and left factoring, another important operation for creating
grammars that a predictive parser like @match can use) is a subject well beyond the scope of this
manual. Pick up any decent compiler design text for details.

There are some important compile-time performance issues associated with invoking regular
expression macros from within another regular expression.

13.11.20 Lookahead (peeking)
Sometimes when matching a string, you’ll need to look ahead one or more characters to

determine whether you can satisfy the current regular expression. A classic example is the "less
than" operator in many programming languages ("<"). A simple regular expression of the form ‘<‘
is insufficient because the next character might be "=" or ">" (for languages that use "<>" to denote
‘not equals’, such as HLA). Of course, with HLA’s regular expressions you could use the string list
["<=", "<>", "<"] to handle this specific match, but in general you might want the ability to look
ahead a character or two before deciding if you’re going to succeed. This is accomplished using the
peek operator and functions.

For literal constants, prefacing the constant with "/" tells the @match function that the
following literal constant must appear in the source string, but @match will not consume any of
those characters. For example, ‘a’/’b’ requires that the source string begin with "ab" but it only
consumes the ‘a’ from the source string. Similarly, !"ax"/-{‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’} matches
"ax" (case-insensitive) as long as whatever follows is not an alphanumeric or underscore character
(btw, this expression isn’t quite good enough, you’ll also want to allow end of string after the "ax",
but we haven’t discussed how to match end of string yet, so that will have to wait).
Public Domain Created by Randy Hyde Page 292

HLA Reference Manual 5/24/10 Chapter 13

@

@

@

@

@

@

@

@

@

@

@

@

@

You can also use the @peekChar, @peekiChar, @peekStr, @peekiStr, and @peekCset
functions to look ahead without consuming any characters in the source string. E.g, this last
example is equivalent to:

!"ax" @peekCset(-{‘a’..’z’, ‘A’..’Z’, ‘0’..’9’, ‘_’})

13.11.21 Utility Matching Functions
HLA’s regular expression macros support several utility functions that match common strings,

thus sparing you from having to write regular expressions for these common items. The following
table lists the built-in functions.

Name Parameters Supports
Repetition

Description

eos No Matches the end of the string.

ws Yes Matches a whitespace character.

reg No Matches an x86 general-purpose 8, 16, or 32-bit
register.

reg8 No Matches an x86 8-bit register name.

reg16 No Matches an x86 16-bit register name.

reg32 No Matches an x86 32-bit register name.

regfpu No Matches an x86 FPU register name (HLA syntax:
st0, st1, ..., st7).

regmmx No Matches an x86 MMX register name (HLA syntax:
mm0, mm1, ..., mm7)

regxmm No Matches an x86 SSE register name (HLA syntax:
xmm0, xmm1, ..., xmm7)

matchid No Matches a sequence that looks like an HLA
identifier (begins with alphabetic or underscore,
followed by zero or more alphanumeric or
underscore characters).

matchIntConst No Matches a sequence of one orr more decimal digits.

matchRealConst No Matches a sequence that is a syntactically (HLA)
valid floating-point literal constant.

matchStrConst No Matches an HLA string literal (including quotes
around the object).
Public Domain Created by Randy Hyde Page 293

HLA Reference Manual 5/24/10 Chapter 13

@

@

@

@

@

@

13.11.22 Backtracking
#regex regular expressions fully support backtracking during pattern matching. This means

that if a regular expression ambiguously specifies the text to match (and most non-trivial regular
expressions are ambiguous), then the @match function will back up and try possible alternatives if
one possibility fails. The most obvious example is the alternation operator. If you have a regular
expression of the form R | S and R fails to match, then the @match function will "back track" in the
source string to where R began its match (‘unconsuming any characters consumed by R) and retry
the match using S.

matchWord ("string") No Similar to @matchStr (or "literal String") except
that the next character after the string it matches
must not be alphanumeric or underscore.

matchiWord ("string") No Case-insensitive variant of @matchWord.

arb Yes Matches an arbitrary character. Similar to ‘.’ but
uses a lazy algorithm rather than a greedy algorithm
(that is, it matches as few characters as possible
rather than as many characters as possible when the
repetition operator allows an arbitrary number of
characters).

pos (n) No n is a small unsigned integer. This pattern succeeds
if the current character being matched is the nth
character in the original source string (the one
passed to @match). Note that the first character in
the string is at @pos(0).

tab (n) No n is a small unsigned integer. This pattern succeeds
if n is greater than or equal to the current character
position in the original source string. If the current
character position is less than n, then @tab matches
all characters up to the nth position. Note that the
first character in the string is at @tab(0).

at:identifier No This function stores the current zero-based index
into the source string into the val object identifier
(identifier can also be a #regex parameter or local
symbol). The type of this value is uns32.
Public Domain Created by Randy Hyde Page 294

HLA Reference Manual 5/24/10 Chapter 13
Alternation certainly isn’t the only case where backtracking occurs. Consider the following
regular expression:

.*, "hello"

This regular expression matches the string "hello" anywhere in the source string. The .* prefix
skips over an arbitrary number of characters and then "hello" must match some substring of the
source string. Note that the .* regular expression is greedy. That is, it will match as many characters
as possible. Indeed, when @match first encounters .*, it will match the remainder of the string.
Such a match, of course, will cause the next patter ("hello") to fail as there are no characters left in
the string. When this happens, @match will back up some characters (up to the first character that
.* matched) and then see if the following regular expression matches. If so, then @match succeeds.
If @match backs up all the way in the source string to where .* began matching in the source
string. The @match function fails only if it back tracks all the way to the start of what .* matches
and then the subsequent pattern still fails.

One thing to note here: because .* is greedy, a regular expression like .*, "hello" will match
everything up to the last occurrence of "hello" in the source string, not up to the first occurrence. If
you would prefer to match up to the first "hello" in the source string, you cannot use a greedy
algorithm when skipping arbitrary characters. The @arb function matches arbitrary characters, like
‘.’, except it uses a lazy (or deferred) matching algorithm, matching as few characters as possible.
An expression like @arb* begins by matching zero characters. If the subsequent pattern fails, it
matches one character. If the subsequent pattern fails, it tries matching two characters, and so on.
Therefore, the regular expression @arb*, "hello" will match up to the first occurrence of "hello" in
the source string.

Backtracking can be a very expensive operation if you’re not careful when designing your
regular expressions. Consider the following regular expression:

‘a’+, ‘a’+, ‘a’+

This regular expression (ambiguously) matches three or more ‘a’ characters. Consider what
happens, however, when it is fed a source string such as "aaa". The first ‘a’+ term above matches
the entire string. This causes the second ‘a’+ term to fail, so backtracking occurs. The first ‘a’+
term backs off one character and now the second ‘a’+ term can succeed. At this point, the third ‘a’+
term fails. So the second ‘a’+ expression attempts to backtrack, but it fails to match, so the first ‘a’+
term backs up one more character. Now, the second ‘a’+ term greedily grabs the two available
characters. The third ‘a’+ term fails at this point, so backtracking occurs yet again. The second ‘a’+
term backs up one character and, finally, the third ‘a’+ term succeeds. As you can see, this is a lot
of work to match a three-character string. In general, backtracking is exponential time complexity
(that is, the number of backtracking operations that can take place is proportional to 2**n, where n
is the number of regular expression elements). Fortunately, with a little care, you can usually avoid
the degenerate cases that exhibit such poor performance. For example, the previous expression
could be efficiently written as ‘a’:[3,*].

Matching an arbitrary number of characters is best done at the end of a regular expression
rather than at the beginning or in the middle of a regular expression. Doing so reduces the amount
of backtracking that will take place. If you cannot avoid matching an arbitrary sequence of
characters, then the next best thing to avoid is having two or more subexpressions in a regular
expression that match arbitrary expressions. When you have two or more subexpressions that can
match an arbitrary number of characters, backtracking can get ugly. Fortunately, you can usually
avoid such degenerate cases by carefully choosing your regular expressions.

13.11.23 Lazy Versus Greedy Evaluation
By default, the algorithms that @match uses are greedy. That is, if a given subexpression can

match an arbitrary number of characters it will attempt to match as many as possible. If matching
too many would cause the match operation to fail, then backtracking will come to the rescue and
allow the pattern match to succeed (if at all possible). If all you care about is whether the pattern
matches, then it really doesn’t matter whether the match algorithm is greedy or non-greedy. There
are two cases, however, where you might want to use a non-greedy ("lazy") algorithm: compile-
time performance and minimal string matching.

As you saw in the previous section on backtracking, using a greedy algorithm can produce
very slow performance in certain degenerate situations. A lazy algorithm (which matches as few
Public Domain Created by Randy Hyde Page 295

HLA Reference Manual 5/24/10 Chapter 13
characters as possible rather than as many characters as possible) will generally produce much
better performance as it can reduce the amount of backtracking that takes place. For example, if
you could run the ‘a’+, ‘a’+, ‘a’+ algorithm from the previous section using lazy evaluation, then it
would match the first three ‘a’ characters it finds and stop. No backtracking would take place.

Another issue with greedy evaluation is that it always matches the maximum length string.
Perhaps this is not what you want. Perhaps you want to match the minimal length string and then
process the remainder of the string (after the match) separately. For example, you might expect the
following pattern to match everything up to "hello" in the source string and leave the rest of the
source string in the remainder operand:

.*, "hello"

In fact, this regular expression matches everything up to the last occurrence of "hello" in the source
string. Therefore, if the source string is something like "hello world, hello people, hello creation"
then the remainder string winds up being " creation". Sometimes you want minimal string matching
so greedy evaluation is inappropriate.

You can specify lazy evaluation in a pattern using the following repetition forms (assume R is
some regular expression that supports repetition):

R::[n,m] Matches between n and m copies of R
R::[n,*] Matches n or more copies of R

Although you cannot directly specify lazy evaluation for the unadorned * and + operators, you can
easily synthesize lazy evaluation for these operators as follows:

R::[0,*] Matches zero or more copies of R
R::[1,*] Matches one or more copies of R

13.11.24 The @match and @match2 Functions
Consider a simple regular expression that matches a string of the form "id+id" (that is, a simple

arithmetic expression). The #regex macro might take the following form:

#regex simpleExpr;
@matchID, ‘+’, @matchID

#endregex

and you could use this regular expression with an @match invocation like this:

?boolResult := @match("value1+value2", simpleExpr);

This will work great right up to the point you try something like the following, at which point the
pattern matching operation will fail:

?falseResult := @match("value1 + value2", simpleExpr);

(notice that there are spaces around the ‘+’ operator in the source string.)

You can solve this problem, and allow arbitrary whitespace in an expression, by inserting
@ws* regular expressions at appropriate points in your regular expression. For example, you could
rewrite simpleExpr thusly:

#regex simpleExpr;
@ws*, @matchID, @ws*, ‘+’, @ws*, @matchID

#endregex

This new regular expression will ignore whitespace at all the appropriate points in the source string.

There are three problems with sticking @ws* terms throughout your regular expression. First,
it clutters up the regular expression and makes it difficult to read. Second, it’s easy to misplace (or
Public Domain Created by Randy Hyde Page 296

HLA Reference Manual 5/24/10 Chapter 13
leave out) one of the @ws* terms. Finally, a bunch of terms like @ws* can have a serious impact
on the processing time needed by @match when backtracking occurs.

The @match2 function solves these three problems. @match2 automatically skips any white
space present before each term it finds in a regular expression that it processes. This spares you
having to clutter your code with @ws* items, it guarantees that it skips whitespace before each
term, and the whitespace it skips is not subject to backtracking issues. Therefore, unless you want
absolute control over matching whitespace in your source strings, you should really use the
@match2 function rather than @match.

In some very rare cases, you may need the ability to switch between @match and @match2
semantics within the same regular expression. For example, if you want to be able to parse HLA-
style character constants, you might be tempted to use a regular expression like the following:

"‘’’’" | ‘’’’, ., ‘’’’

(That is, match ‘’’’ or a single character surrounded by apostrophes.)

Unfortunately, if you use @match2 to process this regular expression it will fail when you
attempt to match the character constant ‘ ‘. This is because @match2 will skip the space between
the two apostrophes. To avoid this problem, the solution is to make a recursive call to @match
within the regular expression, as follows:

"‘’’’" | @match(‘’’’, ., ‘’’’)

This guarantees @match semantics (no whitespace skipping) for the specified subexpression. Note
that there are no returns, remainder, or matched parameters allowed here, and the source string is
always the current string being processed.

You can also call @match2 in a similar manner if you want to guarantee @match2 semantics
in a subexpression.

13.11.25 Compiling and Precompiling Regular Expressions
To improve pattern matching performance, particularly when backtracking occurs, HLA does

not interpret the text of a #regex macro directly. Instead, HLA compiles a #regex macro into an
internal format and operates on that internal format rather than on the #regex text directly. This
effects the operation and usage of #regex macros in several subtle ways. To avoid complications
when using #regex macros, it’s important to understand how compiling #regex macros affects their
operation.

Prior to the introduction of #regex macros, there were two distinct times a programmer had to
be concerned with: assembly (compile) time and run time. For example, the #if statement operates
at compile time whereas the if statement operates at run time. In order to fully utilize the HLA
compile-time language, a programmer has to become comfortable with the difference between
compile-time operations and run-time code. #regex regular expressions also exhibit two distinct
phases - compile time and run time - though the confusing part is that both of these phases take
place during the HLA compilation phase. Unfortunately, and this is the confusing part, the
complete facilities of the HLA compile-time language are only available during regular expression
compilation, not while HLA is executing those regular expressions.

Consider, for a moment, the following #regex macro definition:

#regex sample(count);
#for(i:= 1 to count)

‘a’,
#endfor
‘b’

#endregex

At first glance, this code seems rather straightforward. You would think that it would match the
number of ‘a’ characters passed as the parameter, followed by a single ‘b’ character. If fact, the
behavior is subtlety different. As for machine instructions, the #for loop simply replicates the body
while compiling the regular expression. Once compiled, the number of matching ‘a’ characters is
Public Domain Created by Randy Hyde Page 297

HLA Reference Manual 5/24/10 Chapter 13
immutable. For example, if you compile a regular expression using the value 5 as the actual
argument value, the above regular expression macro is equivalent to:

#regex sample(count);
‘a’, ‘a’, ‘a’, ‘a’, ‘a’,
‘b’

#endregex

 Unless you recompile this regular expression with a different argument value, the value will never
be anything other than five.

Of course, one question that naturally rises is "how does one compile a #regex macro?" None
of the examples to date have require the use of a special "regular expression compiler" to process a
#regex macro before using it. Well, as it turns out, HLA will automatically compile a #regex macro
to its internal form if you use such a macro within an @match/@match2 function call or if a
#regex macro name appears within some other regular expression. Because the regular expression
is compiled on the spot, the distinction between compile time and run time for the regular
expression almost becomes a moot point.

The only problem with compiling a regular expression every time you encounter it is that
compilation can be an expensive operation if you recompile a regular expression on each use.
Consider the following #regex macros:

#regex matchHello;
"hello"

#endregex

#regex hasHello;
.*, matchHello

#endregex

The .* operand in hasHello guarantees that backtracking will occur within this regular
expression. Unfortunately, on each backtracking instance (and there will be five of them in this
case), HLA is forced to recompile the regular expression. This is extremely inefficient. For this
reason, you should try to avoid placing uncompiled regular expression macro invocations inside a
#regex definition. Instead, you should precompile the regular expression to the internal form and
specify that compiled version. This saves the expense of recompiling the regular expression on
each invocation of the internal #regex macro.

The obvious question is "how does one precompile a #regex macro?" This is accomplished by
creating a val object of type regex and assigning a #regex macro to that val identifier. For
example:

#regex matchHello;
"hello"

#endregex

val
compiledMatchHello :regex := matchHello;

When HLA sees a statement like this, it compiles the #regex macro (matchHello in this example)
to the internal form and stores this internal data structure into the regex val object
(compiledMatchHello in this example). Now you can use the compiled variant of the #regex macro
just like the macro itself with one very important difference - compiled regexes do not allow any
actual arguments. The processing of the #regex parameters (and any HLA compile-time language
statements appearing in the macro) takes place when the #regex macro is compiled, the statements
that would make use of those compile-time language statements is gone when HLA actually
executes the regular expression.

If you’re only going to use a regular expression macro once in a source file, precompiling the
macro won’t achieve anything. However, if you use a regular expression macro several times, and
especially if you use the regex macro within some other regular expression, you should get in the
habit of precompiling the #regex macro and using the compiled version. Here’s a good convention
Public Domain Created by Randy Hyde Page 298

HLA Reference Manual 5/24/10 Chapter 13
to use: prefix your #regex macro names with an underscore and then immediately follow the
#regex macro with a val statement that compiles the macro to the unadorned name, e.g.,
regex _matchHello;

"hello"
#endregex

val
matchHello :regex := matchHello;

13.11.26 The #match..#endmatch Block
Although you can use @match and regular expression macros as generic pattern-matching

functions in your HLA compile-time program, the true intended purpose of these pattern-matching
facilities is to allow you to write your own "mini-languages" (i.e., domain-specific languages)
directly in your HLA source files. The #match..#endmatch directives provide a convenient way to
compile such domain-specific languages (DSELs). A #match..#endmatch block takes the
following form:

#match(regexID)

<<body>>

#endmatch

The #match directive converts the block of text after the closing parenthesis and up to the
#endmatch directive into a single string, runs @match on this string along with the regular
expression specified by regexID, and then expands the return string to text if the @match function
returns true. This is roughly equivalent to:

?returnStr:string;
#if(@match(<<body text as a string>>, regexID, returnStr))

@text(returnStr);

#endif

Here is a hypothetical example of #match..#endmatch in action:

#match(smallBASIClanguage)

 for i = 1 to 10
 print i
 next i

#endmatch

Presumably, the smallBASIClanguage regular expression would contain the statements to compile
the body of the #match..#endmatch statement into the corresponding machine instructions.

13.11.27 Using Regular Expressions in Your Assembly Programs
Unless you’ve had a firm grounding in compiler theory and pattern-matching theory, you’re

probably wondering what the heck these #regex macros are all about. What do they have to do with
assembly language? Although this documentation cannot begin to go into details about automata
theory and whatnot, it is useful to describe exactly why you might want to create and use #regex
macros in your assembly programs.
Public Domain Created by Randy Hyde Page 299

HLA Reference Manual 5/24/10 Chapter 13
HLA’s standard macro facilities let you extend the HLA language, but you don’t have a whole
lot of say in the design of the syntax for those macro invocations. Though HLA’s context-free
macro facilities provide many options you just don’t see in other assemblers, the truth is that you’re
stuck using the standard HLA syntax when using macros. Regular expressions give you the ability
to design a syntax of your own choosing. You can even create full programming languages inside
HLA using #regex pattern matching macros. All you need to is place your "program" inside some
HLA compile-time string object (e.g., using the #text..#endtext directive) and then call @match to
compile your program.

Examples of #regex macros appear in the HLA examples download module. Please grab a
copy of these examples to see some working examples of HLA #regex macros.

13.12The #asm..#endasm and #emit Directives
These directives are deprecated and should not appear in new HLA programs. Much of the

need for these statements has gone away over the years as HLA’s instruction set was expanded to
incorporate most x86 instructions. These statements emit text to an output assembly language
source file; obviously, these statements have no effect when HLA produces object code directly.

Probably the biggest use of the #asm..#endasm directive today is to emit comments into the
assembly language source file that HLA produces. This is useful if you want to mark a section of
the assembly language code to determine statement boundaries in the output code. If you use this
scheme to inject comments into the output code, you should always encode your comments as
follows:

;/* comment text */

The ";" character begins comments in all output assembly languages except HLA and Gas; the
';' is a statement separator in HLA and Gas (which is an innocuous output character). The "/*" and
"*/" sequences are the comment delimiters in HLA and Gas. Of course, the (pseudo-) HLA output
from an HLA compilation is not compilable, so it doesn't really matter if you emit correct comment
syntax for pseudo-HLA output, but Gas uses the same comment syntax as HLA so that's the best
approach to use if you want your output to be portable across all assemblers.

Note that the HLA back engine will also ignore any text after a ';' up to the end of the line.
Therefore, you can emit this text when directly producing object files with the HLABE and it will
not impact the output code. Here is an example:

program seeCode;
begin seeCode;

#asm
; /* Beginning of main program body */
#endasm

mov(0, eax);
mov(1, ebx);
add(eax, ebx);

#asm
; /* End of main program body */
#endasm

end seeCode;

Here is the code that HLA emits with the "-masm -source" command-line parameters for the
main program:

_HLAMain proc near32

start proc near32
Public Domain Created by Randy Hyde Page 300

HLA Reference Manual 5/24/10 Chapter 13
start endp

 call BuildExcepts__hla_
 pushd 0
 push ebp
 push ebp
 lea ebp, [esp-4]

 ; /* Beginning of main program body */
 mov eax, 0
 mov ebx, 1
 add ebx, eax

 ; /* End of main program body */
QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
_HLAMain endp

13.13The #system Directive
The #system directive requires a single string parameter. It executes this string as an operating

system (shell/command interpreter) operation via the C "system" function call. This call is useful,
for example, to run a program during compilation that dynamically creates a text file that an HLA
program may include immediately after the #system invocation.

Example:
#system("dir")
Note that the #system directive is legal anywhere white space is allowable and doesn’t require

a semicolon at the end of the statement.

13.14The #print and #error Directives
The #print directive displays its parameter values during compilation. The basic syntax is the

following:

#print(comma, separated, list, of, constant, expressions, ...)

 The #print statement is very useful for displaying messages during assembly (e.g., when
debugging complex macros or compile-time programs). The items in the #print list must evaluate
to constant (const or val) values at compile time.

A common use for #print is to display "TODO" messages during compilation, alerting the
programmer to features that have yet to be implemented in the application. This helps remind the
programmer that code still needs to be written so they don't forget to incorporate that feature. For
example,

#print("TODO: Still need to add expression parser here")

 The #error directive behaves like #print insofar as it prints its parameter to the console
device during compilation. However, this instruction also generates an HLA error message and
does not allow the creation of an object file after compilation. This statement only allows a single
string expression as a parameter. If you need to print multiple values of different types, use string
concatenation and the @string function to achieve this. Example:
Public Domain Created by Randy Hyde Page 301

HLA Reference Manual 5/24/10 Chapter 13
#error("Error, unexpected value. Value = " + #string(theValue))

Notice that neither the #print nor the #error statements end with a semicolon.

13.15Compile-Time File Output (#openwrite, #append, #write,
#closewrite)

These compile-time statements let you do simple file output during compilation. The
#openwrite statement opens a single file for output, #write writes data to that output file, and
#closewrite closes the file when output is complete. These statements are useful for
automatically generating include files that the source file will include later on during the
compilation. These statements are also useful for storing bulk data for later retrieval or generating
a log during assembly.

The #openwrite statement uses the following syntax:
#openwrite(string_expression)

This call opens a single output file using the filename specified by the string expression. If the
system cannot open the file, HLA emits a compilation error. Note that #openwrite only allows one
output file to be active at a time. HLA will report an error if you execute #openwrite and there is
already an output file open. If the file already exists, HLA deletes it prior to opening it (so be
careful!). If the file does not already exist, HLA creates a new one with the specified name.

The #append statement has the same syntax as #openwrite. The difference is that using
#append will not first delete the file you are opening. Instead, all data written to the file will be
appended to the end of the existing file (if any).

The #write statement uses the same syntax as the #print directive. Note, however, that
#write doesn’t automatically emit a newline after writing all its operands to the file; if you want a
newline output you must explicitly supply it as the last parameter to #write.

The #closewrite statement closes the file opened via #openwrite or #append. HLA
automatically closes this file at the end of assembly if you leave it open. However, you must
explicitly close this file before attempting to use the data (via include or #openread) in your
program. Also, since HLA allows only one open output file at a time, you must use #closewrite
to close the file before you can open another with #openwrite.

Warning: Internally, the #write statement simply redirects the standard output stream to
send output to the write file and then invokes #print, restoring the standard output file handle
upon return. This creates a minor problem if there is a syntax error in the #write operand list --
the error message is written to the output file! If you’re having problems with the #write output,
temporarily change it to #print to see if there’s an error in the statement. This defect will
probably get fixed in some future version.

13.16Compile-time File Input (#openread, @read, #closeread)
These compile-time statements and function let you do simple file input during compilation.

The #openread statement opens a single file for input, @read is a compile-time function that
reads a line of text from the file, and #closeread closes the file when input is complete. These
statements are useful for reading files produced by #openwrite/#write/#closewrite or any
other text file during compilation.

The #openread statement uses the following syntax:
#openread(filename)

The filename parameter must be a string expression or HLA reports an error. HLA attempts to
open the specified file for reading; HLA prints an error message if it cannot open the file.

The @read function uses the following call syntax:
@read(val_object)

The val_object parameter must either be a symbol you’ve defined in a val section (or via "?") or it
must be an undefined symbol (in which case @read defines it as a val object). @read is an HLA
compile-time function (hence the "@" prefix rather than "#"; HLA uses "#" for compile-time
statements). It returns either true or false, true if the read was successful, false if the read
operation encountered the end of file. Note that if any other read error occurs, HLA will print an
error message and return false as the function result. If the read operation is successful, then HLA
Public Domain Created by Randy Hyde Page 302

HLA Reference Manual 5/24/10 Chapter 13
stores the string it read (up to 4095 characters) into the val object specified by the parameter.
Unlike #openread and #closeread, the @read function may not appear arbitrarily in your
source file. It must appear within a constant expression since it returns a boolean result (and it is
your responsibility to check for EOF).

 The #closeread statement closes the input file. Since you may only have one open input file
at a time, you must close an open input file with #closeread prior to opening a second file.
Syntax:

#closeread

Example of using compile-time file I/O:

#openwrite("hw.txt")
#write("Hello World", nl)
#closewrite
#openread("hw.txt")
?goodread := @read(s);
#closeread
#print("data read from file = ", s)

13.17The Conditional Compilation Statements (#if)
The conditional compilation statements in HLA use the following syntax:

#if(constant_boolean_expression)

<< Statements to compile if the >>
<< expression above is true. >>

#elseif(constant_boolean_expression)

<< Statements to compile if the >>
<< expression immediately above >>
<< is true and the first expres->>
<< sion above is false. >>

#else

<< Statements to compile if both >>
<< the expressions above are false. >>

#endif

 The #elseif and #else clauses are optional. As you would expect, there may be more than one
#elseif clause in the same conditional if sequence.

Unlike some other assemblers and high-level languages, HLA’s conditional compilation
directives are legal anywhere whitespace is legal. You could even embed them in the middle of an
instruction! While directly embedding these directives in an instruction isn’t recommended
(because it would make your code very hard to read), it’s nice to know that you can place these
directives in a macro and then replace an instruction operand with a macro invocation.

An important thing to note about this directive is that the constant expression in the #IF and
#ELSEIF clauses must be of type boolean or HLA will emit an error. Any legal constant
expression that produces a boolean result is legal here. In particular, you are limited to expressions
like those allowed by the HLA HLL IF statement.

Keep in mind that conditional compilation directives are executed at compile-time, not at run-
time. You would not use these directives to (attempt to) make decisions while your program is
actually running.
Public Domain Created by Randy Hyde Page 303

HLA Reference Manual 5/24/10 Chapter 13
13.18The Compile-Time Loop Statements (#while and #for)
The HLA compile time language also provides a couple of looping structures -- the #while

loop and the #for loop.
The #while..#endwhile compile-time loop takes the following form:

#while(constant_boolean_expression)

<< Statements to execute as long >>
<< as the expression is true. >>

#endwhile

While processing the #while..#endwhile loop, HLA evaluates the constant boolean
expression. If it is false, HLA immediately skips to the first statement beyond the #endwhile
directive.

If the expression is true, then HLA proceeds to compile the body of the #while loop. Upon
encountering the #endwhile directive, HLA jumps back up to the #while clause in the source
code and repeats this process until the expression evaluates false.

Warning: since HLA allows you to create loops in your source code that evaluation during the
compilation process, HLA also allows you to create infinite loops that will lock up the system
during compilation. If HLA seems to have gone off into la-la land during compilation and you’re
using #while loops in your code, it might not be a bad idea to put some #print directives into
your loop(s) to see if you’ve created an infinite loop.

Note: because of the limitations of HLA’s implementation language (FLEX and BISON), it is
not possible to begin a #while loop and have the matching #endwhile appear in a (different)
macro or TEXT constant. When the HLA compiler encounters a #while statement it scans the
source code looking for the matching #endwhile collecting up the statements that make up the
body of the loop. During this scan it does not expand TEXT constants or macros. Hence, if you
bury the #endwhile in a macro or TEXT constant HLA will not be able to find it. For
performance and functional reasons, HLA cannot expand macro and TEXT variables during this
scan. This is a limitation we will all have to live with until v3.0 of HLA (which will be rewritten in
a different language).

The #for..#endfor loop can take one of the following forms:

#for(loop_control_var := Start_expr to end_expr)

<< Statements to execute as long as the loop control variable’s >>
<< value is less than or equal to the ending expression. >>

#endfor

#for(loop_control_var := Start_expr downto end_expr)

<< Statements to execute as long as the loop control variable’s >>
<< value is greater than or equal to the ending expression. >>

#endfor

The HLA compile-time #for..#endfor statement is very similar to the for loops found in
languages like Pascal and BASIC. This is a definite loop that executes some number of times
determine when HLA first encounters the #for directive (this can be zero or more times, but the
number is computed only once when HLA encounters the #for). The loop control variable must
be a val object or an undefined identifier (in which case, HLA will create a new val object with the
specified name). In addition, the number control variable must be an eight, sixteen, or thirty-two
bit integer value (uns8, uns16, uns32, int8, int16, or int32). In addition, the starting and ending
expressions must be values that an int32 val object can hold.
Public Domain Created by Randy Hyde Page 304

HLA Reference Manual 5/24/10 Chapter 13
The #for loop with the to clause initializes the loop control variable with the starting value
and repeats the loop as long as the loop control variable’s value is less than or equal to the ending
expression’s value. The #for..to..#endfor loop increments the loop control variable on each
iteration of the loop.

The #for loop with the downto clause initializes the loop control variable with the starting
value and repeats the loop as long as the loop control variable’s value is greater than or equal to the
ending expression’s value. The #for..downto..#endfor loop decrements the loop control
variable on each iteration of the loop.

Note that the #for..to/downto..#endfor loop only computes the value of the ending
expression once, when HLA first encounters the #for statement. If the components of this
expression would change as a result of the execution of the #for loop’s body, this will not affect
the number of loop iterations.

The #for..#endfor loop can also take the following form:

#for(loop_control_var in composite_expr)

<< Statements to execute for each element present in the expression >>

#endfor

The composite_expr in this syntactical form may be a string, a character set, an array, or a record
constant.

This particular form of the #for loop repeats once for each item that is a member of the
composite expression. For strings, the loop repeats once for each character in the string and the
loop control variable is set to each successive character in the string. For character sets, the loop
repeats for each character that is a member of the set; the loop control variable is assigned the value
of each character found in the set (you should assume that the extraction of characters from the set
is arbitrary, even though the current implementation extracts them in order of their ASCII codes).
For arrays, this #for loop variant repeats for each element of the array and assigns each successive
array element to the loop control variable. For record constants, the #for loop extracts each field
and assigns the fields, in turn, to the loop control variable.
Examples:

#for(c in "Hello")
#print(c) // Prints the five characters ’H’, ’e’, ..., ’o’

#endfor

// The following prints a..z and 0..9 (not necessarily in that order):

#for(c in {’a’..’z’, ’0’..’9’})
#print(c)

#endfor

// The following prints 1, 10, 100, 1000

#for(i in [1, 10, 100, 1000])
#print(i)

#endfor

// The following prints all the fields of the record type r
// (presumably, r is a record type you’ve defined elsewhere):

#for(rv in r:[0, ’a’, "Hello", 3.14159])
#print(rv)

#endfor
Public Domain Created by Randy Hyde Page 305

HLA Reference Manual 5/24/10 Chapter 13
13.19Compile-Time Functions (macros)
Keep in mind that HLA macros are text expansion devices that may appear anywhere

whitespace is allowed. Therefore, you can use them for so much more than 80x86 instruction
synthesis. In particular, along with the "?" operator, you can create compile-time functions. For
example, consider the following macro that converts the first character of a string to upper case and
forces the remaining characters to lower case:

program macroFuncDemo;
#include("stdio.hhf");

 #macro Capitalize(s);
 @uppercase(@substr(s,0,1), 0) +
 @lowercase(@substr(s, 1, 1000), 0)
 #endmacro

static
 Hello: string := Capitalize("hELLO");
 World: string := Capitalize("world");

begin macroFuncDemo;

 stdout.put(Hello, " ", World, nl);

end macroFuncDemo;

13.20Sample Macro: A Modified IF..ELSE..ENDIF Statement
In this section we'll create a new kind of IF statement that doesn’t nest the same way standard

IF statements nest. In particular, if we define the statement such that all IF clauses nested with an
outer IF..ENDIF block share the same ELSE and ENDIF clauses. If this were the case, then you
could implement some as follows:

if(expr1) then

<< some 'true' statements >>

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

If expr1 is false, control immediately transfers to the ELSE clause. If the value of expr1 is
true, the control falls through to the next IF statement.
Public Domain Created by Randy Hyde Page 306

HLA Reference Manual 5/24/10 Chapter 13
If expr2 evaluates false, then the program jumps to the single ELSE clause that all IFs share in
this statement. Notice that a single ELSE clause (and corresponding ’false’ statements) appear in
this code; hence the code does not necessarily expand in size. If expr2 evaluates true, then control
falls through to the ’true’ statements, exactly like a standard IF statement.

Notice that the nested IF statement above does not have a corresponding ENDIF. Like the
ELSE clause, all nested IFs in this structure share the same ENDIF. Syntactically, there is no need
to end the nested IF statement; the end of the THEN section ends with the ELSE clause, just as the
outer IF statement’s THEN block ends.

Of course, we won't actually define a new macro named "if" because if we did (e.g., by using
the #id statement) we would no longer be able to use standard IF statements in an HLA program (at
least, not without the '~' prefix). Further, doing so would make your programs very difficult to
comprehend if the IF keyword had different semantics in different parts of the program. The
following program uses the identifiers "_if", "_then", "_else", and "_endif" instead. It is
questionable if these are good identifiers in production code (perhaps something a little more
different would be appropriate). The following code example uses these particular identifiers so
you can easily correlate them with the corresponding high-level statements.

/***/
/* */
/* if.hla */
/* */
/* This program demonstrates a modification of */
/* the IF..ELSE..ENDIF statement using HLA's */
/* multi-part macros. */
/* */
/***/

program newIF;
#include("stdlib.hhf")

// Macro implementation of new form of if..then..else..endif.
//
// In this version, all nested IF statements transfer control
// to the same ELSE clause if any one of them have a false
// boolean expression. Syntax:
//
// _if(expression) _then
//
// <<statements including nested _if clauses>>
//
// _else // this is optional
//
// <<statements, but _if clauses are not allowed here>>
//
// _endif
//
//
// Note that nested _if clauses do not have a corresponding
// _endif clause. This is because the single _else and/or
// _endif clauses terminate all the nested _if clauses
// including the first one. Of course, once the code
// encounters an _endif another _if statement may begin.
Public Domain Created by Randy Hyde Page 307

HLA Reference Manual 5/24/10 Chapter 13
// Macro to handle the main "_if" clause.
// This code just tests the expression and jumps to the _else
// clause if the expression evaluates false.

macro _if(ifExpr):elseLbl, hasElse, ifDone;

 ?hasElse := false;
 jf(ifExpr) elseLbl;

// Just ignore the _then keyword.

keyword _then;

// Nested _if clause (yes, HLA lets you replace the main
// macro name with a keyword macro). Identical to the
// above _if implementation except this one does not
// require a matching _endif clause. The single _endif
// (matching the first _if clause) terminates all nested
// _if clauses as well as the main _if clause.

keyword _if(nestedIfExpr);
 jf(nestedIfExpr) elseLbl;

 // If this appears within the _else section, report
 // an error (we don't allow _if clauses nested in
 // the else section, that would create a loop).

 #if(hasElse)

 #error("All _if clauses must appear before the _else clause")

 #endif

// Handle the _else clause here. All we need to is check to
// see if this is the only _else clause and then emit the
// jmp over the else section and output the elseLbl target.

keyword _else;
 #if(hasElse)

 #error("Only one _else clause is legal per _if.._endif")

 #else

 // Set hasElse true so we know that we've seen an _else
 // clause in this statement.

 ?hasElse := true;
 jmp ifDone;
 elseLbl:

 #endif
Public Domain Created by Randy Hyde Page 308

HLA Reference Manual 5/24/10 Chapter 13

// _endif has two tasks. First, it outputs the "ifDone" label
// that _else uses as the target of its jump to skip over the
// else section. Second, if there was no else section, this
// code must emit the "elseLbl" label so that the false conditional(s)

// in the _if clause(s) have a legal target label.

terminator _endif;

 ifDone:
 #if(!hasElse)

 elseLbl:

 #endif

endmacro;

static
 tr:boolean := true;
 f:boolean := false;

begin newIF;

 // Real quick demo of the _if statement:

 _if(tr) _then

 _if(tr) _then
 _if(f) _then

 stdout.put("error" nl);

 _else

 stdout.put("Success");

 _endif

end newIF;

Just in case you’re wondering, this program prints "Success" and then quits. This is because
the nested "_if" statements are equivalent to the expression "true && true && false" which, of
course, is false. Therefore, the "_else" portion of this code should execute.

The only surprise in this macro is the fact that it redefines the _if macro as a keyword macro
upon invocation of the main _if macro. The reason this code does this is so that any nested _if
clauses do not require a corresponding _endif and don’t support an _else clause.

Implementing an ELSEIF clause introduces some difficulties, hence its absence in this
example. The design and implementation of an ELSEIF clause is left to the more serious reader1.

1. I.e., I don’t even want to have to think about this problem!
Public Domain Created by Randy Hyde Page 309

HLA Reference Manual 5/24/10 Chapter 13
13.21Text Processing, Lexical Analysis and the #text..#endtext
Block

Although HLA’s multi-part macros are very powerful and flexible, they to have some
important limitations if you’re trying to create your own statements. In particular, if the statements
you want to create require some operands, the multi-part macro invocation forces you to specify
those operands within parentheses immediately after the macro’s name. While you can probably
live with this most of the time, there are some situations where you might want to specify the new
language feature using a different syntax. Well, with a bit of work it is certainly possible to do this.
HLA’s compile-time language actually provides all the tools you need to write a full-fledged
compiler. While extending HLA in this fashion is well beyond the scope of this text, it is
worthwhile to point you in the right direction, just in case you’re dying to do really fancy things
with HLA.

The key to creating your own personal structures in HLA lies with the HLA compile-time
string and pattern matching functions. These functions let you process strings of data in very
complex ways, translating that string data into whatever you please. Combined with HLA’s
#text..#endtext blocks, which let you copy a portion of your source file into string variables, it is
possible to write an HLA compile-time program that processes those portions of your source files.
Of course, once you process your source file as string data, you can use any syntax you choose (and
support) within that string data. You can design very sophisticated DSELs using this technique.

The #text..#endtext block uses the following syntax:
#text(identifier)

<< arbitrary lines of text >>

#endtext

The identifier symbol must be undefined or a val object within the current scope. HLA creates
a val objected named identifier that will be an array of strings. Each string in the array will contain
one line of text between the #text and #endtext reserved words. The array of strings will contain
the text immediately following "#text(identifier)" up to the character just before the #endtext
directive.

// textDemo.hla
//
// This program demonstrates how the #text and #endtext
// directives operate.

program textDemo;

// A quick demonstration of the #text..#endtext directives:

#text(lines) Hello
World
how are
you #endtext

// Print out the strings gathered into "lines" above
// so you can see the effect of the #text..#endtext directive:

?i := 0;
#while(i < @elements(lines))

 #print(i, ": '", lines[i], "'")
Public Domain Created by Randy Hyde Page 310

HLA Reference Manual 5/24/10 Chapter 13
 ?i := i + 1;

#endwhile
#print("------")

// A cleaner example (typical of what you would find in DSELs):

#text(MyDSELsource)

 if(x=y && a<b || c<>d) then

 print "This is my own special language, a=", a;

 endif;

#endtext

// Print the above text (to attempt to actually compile
// those statements in this example!)

?i := 0;
#while(i < @elements(MyDSELsource))

 #print(i, ": '", MyDSELsource[i], "'")
 ?i := i + 1;

#endwhile

begin textDemo;
end textDemo;

Demonstration of the #TEXT..#ENDTEXT Directives

The program above prints the following when you compile this program with HLA:
0: ' Hello'
1: 'World'
2: 'how are'
3: 'you '

0: ''
1: ''
2: ' if(x=y && a<b || c<>d) then'
3: ' '
4: ' print "This is my own special language, a=", a;'
5: ' '
6: ' endif;'
7: ' '
Public Domain Created by Randy Hyde Page 311

HLA Reference Manual 5/24/10 Chapter 13
8: ''

As this example suggests, if you want to create a DSEL (Domain Specific Embedded
Language) that supports an arbitrary syntax, you would insert your DSEL statements between the
#text and #endtext directives and then use the HLA compile-time language to process this text in
the associated array of strings.

In order to process these statements, one of the first activities will be to break up the text into
its constituent parts. In the second example above, this would correspond to breaking up those nine
strings into:
if
(
x
=
y
&&
a
<
b
||
c
<>
d
)
then
print
"This is my own special language, a="
,
a
;
endif
;

Each of these pieces is called a lexeme. Compiler writers call the process of breaking a stream
of text up into lexemes lexical analysis or scanning. A lexical analyzer or scanner is the code
responsible for actually breaking up the text. While a full treatment of lexical analysis is, again,
beyond the scope of this document1, some simple techniques you can use to write a scanner are
easy to understand and well within the scope of this chapter.

Some languages ignore white space and new lines in the source code; others treat these
characters as part of the syntax. For example, a language such as HLA ignores new lines, you can
cram your whole program onto a single physical source code line if you so desire2. Traditional
assemblers, on the other hand, only allow one statement per line and use the new line sequence to
separate these statements. In our current example (MyDSELsource), we’ll assume that the
language ignores white space and new line characters.

Actually, HLA’s #text..#endtext block automatically eliminates all new lines appearing in the
text. Instead of new lines, HLA copies each line of text (sans new line) to a separate string in the
string array. For our example this is unfortunate because it would be more convenient to treat the
entire block of text as a single string of characters. (Note: you could also use HLA's
#string..#endstring block to capture all the text into a single string, complete with newline
characters; if you do that, then you get to ignore the #while loop below; this example uses
#text..#endtext to demonstrate the process of processing one line at a time.) Therefore, one of the
first jobs of the scanner we are going to write is to combine these separate lines of text back
together. One simple solution is to execute some (compile-time) code like the following before
attempting to process the text:

1. That subject belongs in a text on compiler design and implementation.
2. That would be really bad programming style, but it is legal syntactically.
Public Domain Created by Randy Hyde Page 312

HLA Reference Manual 5/24/10 Chapter 13
?i := 0;
?source := "";
#while(i < @elements(MyDSELsource))

?source := source + " " + MyDSELsource[i];
?i := i + 1;

#endwhile

(Inserting a space between lines is necessary since HLA has removed the original separating
new line character sequence. This prevents the end of one line from running directly into the
beginning of the next line.)

There are two problems with the code above; first, and least important, is that this code wastes
a lot of memory. Once you are done there will be two copies of the source file hanging around in
memory. This is especially problematic if there is a lot of text between the #text and #endtext
directives. The second problem with this sequence is that it is slow, especially if it has to process a
lot of text.

A better solution is to grab a new line of text only after the scanner has finished processing all
the previous text. This is easily handled by including the following compile-time statements at the
beginning of the scanner code:
// Before executing the following code, you must initialize
// CurrentInput and lineNumber as follows:
//
// ?lineNumber := 0;
// ?CurrentInput := MyDSELsource[0];

?CurrentInput := @trim(CurrentInput, 0); // Remove leading spaces from
input.
#while(@length(CurrentInput) = 0)

?lineNumber := lineNumber + 1;
#if(lineNumber < @elements(MyDSELsource))

?CurrentInput := @trim(MyDSELsource[lineNumber], 0);

#endif

#endwhile

Notice that this code only returns an empty string when it exhausts all the lines of text in the
#text..#endtext block. You may test for "end of file" (or, at least, end of this sequence) by
explicitly testing for an empty string after the code above executes. Also, note that this code
automatically removes any leading and trailing spaces from the text it processes (the call to
@TRIM handles this). Therefore, when the above code executes, the first item to process appears
in the first character of the CurrentInput string (assuming, of course, that CurrentInput is not
empty).

Extracting single character lexemes from the input string is easy. You can use the @OneChar
function to see if the first character of a string matches a particular character. For example, if the
plus and minus signs are special lexemes in your language, then you can use code like the
following to see if CurrentInput (from above) begins with one of these characters:
#if(@OneChar(CurrentInput, ’+’, CurrentInput))

<< CurrentInput began with a ’+’. Note that we’ve extracted
the ’+’ from the beginning of CurrentInput in the call above >>

#elseif(@OneChar(CurrentInput, ’-’, CurrentInput))

Public Domain Created by Randy Hyde Page 313

HLA Reference Manual 5/24/10 Chapter 13
<< CurrentInput began with a ’-’. Otherwise this is the same
as the above. >>

#else ...

The compile-time pattern matching functions (e.g., @OneChar) only store the remainder
characters into the remainder operand (the third parameter above, which is CurrentInput) if they
return true. Therefore, if @OneChar in the first #if above does not match a plus sign at the
beginning of the CurrentInput string, it will not change the value of CurrentInput; instead, the
#elseif clause will test the original string. On the other hand, if the first call to @OneChar above
discovers that CurrentInput does begin with a plus sign, then it stores the characters in
CurrentInput following the plus sign into the remainder operand (which is CurrentInput). This
deletes the plus sign from the beginning of the string.

To match specific multi-character lexemes, you would use the compile-time @MatchStr
function. For example, to match the "&&" lexeme, you would use @MatchStr as follows:
#if(@MatchStr(CurrentInput, "&&", CurrentInput))

<< Drop down here if CurrentInput begins with "&&" >>
<< (this also extracts "&&" from the string. >>

#else ...

Like the @OneChar function, the @MatchStr call above only deletes the "&&" characters
from CurrentInput if the string begins with these two characters; otherwise @MatchStr does not
affect the string.

Extracting single character lexemes is generally quite easy, but you must be careful if some
multi-character lexemes begin with the same character as a single character lexeme. For example,
"<" is a common single-character lexeme that generally means "less than." Matching "<" as a
single character lexeme may create problems if you also need to match the two character lexeme
"<=" in your language. If you use the @OneChar function as we did above for plus and minus
then your code may treat the less than or equal operator as two one-character lexemes rather than as
a single two-character lexeme. The solution is to check for the longer lexemes first:
#if(@MatchStr(CurrentInput, "<=", CurrentInput))

<< Come here on "<=" >>

#elseif(@MatchStr(CurrentInput, "<>", CurrentInput))

<< Drop down here if the string begins with "<>" >>

#elseif(@OneChar(CurrentInput, ’<’, CurrentInput))

<< Do this if string begins with ’<’ but not "<=" or "<>" >>

#else ...

Simple lexemes like operators are very easy to process using HLA functions like @OneChar
and @MatchStr. However, there are many string patterns you will want to recognize that do not
consist of simple strings. Two common examples are numeric values and identifiers. To recognize
these lexemes we must use a general pattern that matches more than a single string. Fortunately,
HLA’s compile-time pattern matching functions are up to the task.

Let’s consider the example of an unsigned decimal integer constant first. Such lexemes begin
with a single numeric digit and may contain zero or more additional numeric digits. So the string is
always at least one character long and may be longer, as necessary. Recognizing a character from a
set of characters is easy; all you need do is call the @OneOrMoreCset function to match the value.
The following sample code demonstrates how easy this is:
#if(@OneOrMoreCset(CurrentInput, {’0’..’9’}, CurrentInput, theNumber))
Public Domain Created by Randy Hyde Page 314

HLA Reference Manual 5/24/10 Chapter 13
<< At this point, we’ve matched a string of digits,
"theNumber" contains the string we’ve matched and
"CurrentInput" contains the remainder of the string >>

#else ... // It wasn’t a numeric lexeme.

Note that the call to @OneOrMoreCset in the example above supplies the fourth, optional,
parameter. If @OneOrMoreCset successfully matches a string of digits, it will copy the string it
matched into this fourth parameter (which must be a VAL object). This fourth parameter was not
necessary in the previous examples because the code knew what string it matched since there was
only one possible string it could match. However, the call to @OneOrMoreCset above can match
a nearly infinite variety of different strings. Since you might actually want to use that value while
processing the statements in your language, it’s a good idea to save that value for future use, hence
the last parameter above. As usual, if @OneOrMoreCset fails to match the pattern you specify, it
does not affect the values of CurrentInput or theNumber.

Another common pattern you will often need to recognize is a string that represents an
identifier. Different languages may specify identifiers differently, but a common definition is that
an identifier must begin with an underscore or an alphabetic character and may contain additional
alphanumeric or underscore characters (this matches HLA’s definition of an identifier). HLA
actually has a special pattern matching function, @MatchID, that matches HLA-style identifiers;
we will not employ that function here so you can see how to write more complex patterns.

Recognizing an HLA identifier requires two steps: first, we must ensure that the identifier
begins with an alphabetic character or an underscore. This is easily accomplished with the
following @PeekCset function call:

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})

This call to the @PeekCset function returns true if CurrentInput begins with an underscore or
an alphabetic character, it returns false otherwise. It does not affect CurrentInput’s value.
Therefore, we can use this function to determine if our identifier begins with an appropriate
character. Once we know that it begins with an underscore or alphabetic character, we can easily
match the entire identifier by calling @OneOrMoreCset as follows:
@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)

This call will match all the characters in an identifier and leave those characters in the theID
string; as usual, it removes the identifier from the beginning of the CurrentInput string. You would
typically match an identifier using code like the following:

#if(@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’}))

#if
(

@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>
Public Domain Created by Randy Hyde Page 315

HLA Reference Manual 5/24/10 Chapter 13
#endif

#else ...

If you carefully study the above logic, you might think that you can shorten this to the
following code:
#if
(

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})
&& @OneOrMoreCset

(
CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>

#else ...

However, there is a subtle flaw in this logic. The HLA compile-time language uses complete
boolean evaluation. Therefore, if the call to @PeekCset returns false the code above will go ahead
and call @OneOrMoreCset. Most of the time, this will not adversely affect anything. However,
if the next set of characters in the input stream happen to be a set of numeric digits, the call to
@OneOrMoreCset will return true. Of course, false AND true is still false, but don’t forget that
@OneOrMoreCset has the side effect of modifying CurrentInput. This is probably not what
you’ve intended to do. If you are intent on using the "&&" operator, you can use code like to
following to eliminate the problem with the side effect that the pattern matching functions will
produce:
#if
(

@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})
&& @OneOrMoreCset

(
CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
Remainder,
theID

)
)

<< Okay, we’ve got an identifier and it’s in "theID" >>

?CurrentInput := Remainder;

#else ...

In this example, the remainder of the string is copied into a temporary variable. The code only
overwrites CurrentInput (with the temporary value) if the full expression evaluates true.

Most languages will have a set of reserved words. Reserved words (or keywords) are generally
nothing more than identifiers that have special meaning within the context of a language. In the
MyDSEL example earlier, it is a good bet that the identifiers if, then, print, and endif are all
reserved words in this DSEL. The easiest way to handle (a small number of) reserved words is to
first recognize them as identifiers and then use a sequence of string comparisons to see if the
Public Domain Created by Randy Hyde Page 316

HLA Reference Manual 5/24/10 Chapter 13
identifier you’ve matched is actually a reserved word. You could use code like the following to do
this:

#if(@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’}))

#if
(

@OneOrMoreCset
(

CurrentInput,
{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’},
CurrentInput,
theID

)
)

#if(theID = "if")

<< It’s the "IF" reserved word >>

#elseif(theID = "then")

<< It’s the "THEN" reserved word >>

#elseif(theID = "endif")

<< It’s the "ENDIF" reserved word >>

#elseif(theID = "print")

<< It’s the "THEN" reserved word >>

#else

<< Okay, we’ve got an identifier and it’s in "theID" >>

#endif

#endif

#else ...

HLA lets you design and implement your own complex patterns. However, HLA does contain
some built-in pattern matching functions for some common patterns. These include functions that
match identifiers (@MatchID), integer constants (@MatchIntConst), floating-point constants
(@MatchRealConst), numeric (integer or floating point) constants (@MatchNumericConst), and
string constants (@MatchStrConst). These functions are generally much more convenient to use
and certainly more efficient than using patterns you’ve written to match these types of strings. As
long as HLA’s idea of an identifier, number, or string is suitable for your application, you should
use these pattern-matching functions for these purposes.

In addition to the specialized pattern matching functions above, HLA also provides special
pattern matching function that deal with whitespace and the end of a string. These functions
include @ZeroOrMoreWS, @OneOrMoreWS, @WSorEOS, @WSthenEOS, @PeekWS, and
@EOS. See the HLA Compile-time Language document for more details on these functions.

With the basic tools and techniques out of the way, now it’s time to look at how we would
actually write a scanner using the HLA macro (compile-time function/procedure) facilities. The
following program provides a small lexer for the "MyDSELsource" example above.
Public Domain Created by Randy Hyde Page 317

HLA Reference Manual 5/24/10 Chapter 13
// textDemo2.hla
//
// This program demonstrates how to write a lexical
// analyzer (scanner) with the HLA compile-time language.

program textDemo2;

// DSEL text to scan:

#text(MyDSELsource)

if(x=y && a<b || c<>d) then

print "This is my own special language, a=", a;

endif;

#endtext

// Compile-time function that scans the text above.

macro lexer(Input, index):CurrentInput, Matched;

?CurrentInput:string := "";
?Matched:string := "";

#if(@elements(Input) = 0)

"Expected an array of strings as 'lexer' argument"

#else

?CurrentInput := @trim(Input[index], 0);

// The following #while loop removes all blank lines.

#while(@length(CurrentInput) = 0 && index < @elements(Input))

?index := index + 1;
#if(index < @elements(Input))

?CurrentInput := @trim(Input[index], 0);

#else

?CurrentInput := "#endtext";

#endif

#endwhile
Public Domain Created by Randy Hyde Page 318

HLA Reference Manual 5/24/10 Chapter 13
// If we reached the end of the input, just return
// "#endtext" for this example. The demo code that
// calls this function automatically stops after this
// point.

#if(index >= @elements(Input))

"#endtext"

#else

// Okay, we've got a non-empty string.
// Do the lexical analysis on it.

#if(@OneChar(CurrentInput, '=', CurrentInput))

"=" // Return this item as the lexeme.

// Note: we must check for "<>" before checking for "<".

#elseif(@MatchStr(CurrentInput, "<>", CurrentInput))

"<>"

#elseif(@OneChar(CurrentInput, '<', CurrentInput))

"<"

#elseif(@OneChar(CurrentInput, '(', CurrentInput))

"("

#elseif(@OneChar(CurrentInput, ')', CurrentInput))

")"

#elseif(@OneChar(CurrentInput, ',', CurrentInput))

","

#elseif(@OneChar(CurrentInput, ';', CurrentInput))

";"

#elseif(@MatchStr(CurrentInput, "&&", CurrentInput))

"&&"

#elseif(@MatchStr(CurrentInput, "||", CurrentInput))

"||"

#elseif(@MatchStrConst(CurrentInput, CurrentInput, Matched))

// For the purposes of this program, put the quotes
Public Domain Created by Randy Hyde Page 319

HLA Reference Manual 5/24/10 Chapter 13
// back around the string constant (@MatchStrConst
// removes the delimiting quotes).

("""" + Matched + """")

#elseif(@MatchID(CurrentInput, CurrentInput, Matched))

// We've matched an ID, see if it is actually one
// of the reserved words:

#if(Matched = "if")

("rw: if")

#elseif(Matched = "then")

("rw: then")

#elseif(Matched = "endif")

("rw: endif")

#else

// If it's not one of our reserved words, then
// just return the ID:

("id: " + Matched)

#endif

#else

#error("Unexpected lexeme: " + CurrentInput)
?CurrentInput := "";
""

#endif
?Input[index] := CurrentInput;

#endif

#endif
?CurrentInput:string := "";
?Matched:string := "";

endmacro;

val
lineNumber := 0;

#while(lineNumber < @elements(MyDSELsource))

#print(lexer(MyDSELsource, lineNumber))
Public Domain Created by Randy Hyde Page 320

HLA Reference Manual 5/24/10 Chapter 13
#endwhile

begin textDemo2;
end textDemo2;

Sample Lexical Analyzer
Public Domain Created by Randy Hyde Page 321

HLA Reference Manual 5/24/10 Chapter 14
14 HLA Language Reference and User Manual

14.1 High Level Language Statements
HLA provides several control structures that provide a high level language flavor to assembly

language programming. The statements HLA provides are

try..unprotect..exception..anyexception..endtry
try..always..endtry
raise
if..then..elseif..else..endif
switch..case..default..endswitch
while..endwhile
repeat..until
for..endfor
foreach..endfor
forever..endfor
break, breakif
continue, continueif
begin..end, exit, exitif

JT
JF

These HLL statements provide two basic improvements to assembly language programs: (1)
they make many algorithms much easier to read; (2) they eliminate the need to create tons of labels
in a program (which also helps make the program easier to read).

Generally, these instructions are "macros" that emit one or two machine instructions.
Therefore, these instructions are not always as flexible as their HLL counterparts. Nevertheless,
they are suitable for about 85% of the uses people typically have for these instructions.

Do keep in mind, that even though these statements compile to efficient machine code, writing
assembly language using a HLL mindset produces intrinsically inefficient programs. If speed or
size is your number one priority in a program, you should be sure you understand exactly which
instructions each of these statements emits before using them in your code.

The JT and JF statements are actually "medium level language" statements. They are intended
for use in macros when constructing other HLL control statements; they are not intended for use as
standard statements in your program (not that they don’t work, they’re just not true HLL
statements).

Note: The FOREACH..ENDFOR loop is mentioned above only for completeness. The full
discussion of the FOREACH..ENDFOR statement appears a little later in the section on iterators.

14.2 Exception Handling in HLA:try..exception..endtry
HLA uses the TRY..EXCEPTION..ENDTRY and RAISE statements to implement exception

handling. The syntax for these statements is as follows:

try
<< HLA Statements to execute >>

<< unprotected // Optional unprotected section.
<< HLA Statements to execute >>

>>
Public Domain Created by Randy Hyde Page 321

HLA Reference Manual 5/24/10 Chapter 14
exception(const1)

<< Statements to execute if exception const1 is raised >>

<< optional exception statements for other exceptions >>

<< anyexception //Optional anyexception section.
<< HLA Statements to execute >>

>>

endtry;

raise(const2);

Const1 and const2 must be unsigned integer constants. Usually, these are values defined in
the excepts.hhf header file. Some examples of predefined values include the following:

ex.StringOverflow
ex.StringIndexError

ex.ValueOutOfRange
ex.IllegalChar
ex.ConversionError

ex.BadFileHandle
ex.FileOpenFailure
ex.FileCloseError
ex.FileWriteError
ex.FileReadError
ex.DiskFullError
ex.EndOfFile

ex.MemoryAllocationFailure

ex.AttemptToDerefNULL

ex.WidthTooBig
ex.TooManyCmdLnParms

ex.ArrayShapeViolation
ex.ArrayBounds

ex.InvalidDate
ex.InvalidDateFormat
ex.TimeOverflow
ex.AssertionFailed
ex.ExecutedAbstract

Hardware related exception values:

ex.AccessViolation
ex.Breakpoint
ex.SingleStep

ex.PrivInstr
Public Domain Created by Randy Hyde Page 322

HLA Reference Manual 5/24/10 Chapter 14
ex.IllegalInstr

ex.BoundInstr
ex.IntoInstr

ex.DivideError

ex.fDenormal
ex.fDivByZero
ex.fInexactResult
ex.fInvalidOperation
ex.fOverflow
ex.fStackCheck
ex.fUnderflow

ex.InvalidHandle
ex.StackOverflow

ex.ControlC

This list is constantly changing as the HLA Standard Library grows, so it is impossible to
provide a compete list of standard exceptions at this time. Please see the excepts.hhf header file for
a complete list of standard exceptions. As this was being written, the *NIX-specific exceptions
(signals) had not been added to the list. See the excepts.hhf file on your *NIX system to see if these
have been added. Note that not all OSes support every hardware-related exception value.

 The HLA Standard Library currently reserves exception numbers zero through 1023 for its
own internal use. User-defined exceptions should use an integer value greater than or equal to 1024
and less than or equal to 65535 ($FFFF). Exception value $10000 and above are reserved for use
by Windows Structured Exception Handler and *NIX signals.

The TRY..ENDTRY statement contains two or more blocks of statements. The statements to
protect immediately follow the TRY reserved word. During the execution of the protected
statements, if the program encounters the first exception block, control immediately transfers to the
first statement following the endtry reserved word. The program will skip all the statements in the
exception blocks.

If an exception occurs during the execution of the protected block, control is immediate
transferred to an exception handling block that begins with the exception reserved word and the
constant that specifies the type of exception.

Example:

repeat

mov(false, GoodInput);
try

stdout.put("Enter an integer value:");
stdin.get(i);
mov(true, GoodInput);

exception(ex.ValueOutOfRange)

stdout.put("Numeric overflow, please reenter ", nl);

exception(ex.ConversionError)

stdout.put("Conversion error, please reenter", nl);
Public Domain Created by Randy Hyde Page 323

HLA Reference Manual 5/24/10 Chapter 14
endtry;

until(GoodInput = true);

In this code, the program will repeatedly request the input of an integer value as long as the
user enters a value that is out of range (+/- 2 billion) or as long as the user enters a value containing
illegal characters.

TRY..ENDTRY statements can be nested. If an exception occurs within a nested TRY
protected block, the EXCEPTION blocks in the innermost try block containing the offending
statement get first shot at the exceptions. If none of the EXCEPTION blocks in the enclosing
TRY..ENDTRY statement handle the specified exception, then the next innermost TRY..ENDTRY
block gets a crack at the exception. This process continues until some exception block handles the
exception or there are no more TRY..ENDTRY statements.

If an exception goes unhandled, the HLA run-time system will handle it by printing an
appropriate error message and aborting the program. Generally, this consists of printing
"Unhandled Exception" (or a similar message) and stopping the program. If you include the
excepts.hhf header file in your main program, then HLA will automatically link in a somewhat
better default exception handler that will print the number (and name, if known) of the exception
before stopping the program.

Note that TRY..ENDTRY blocks are dynamically nested, not statically nested. That is, a
program must actually execute the TRY in order to activate the exception handler. You should
never jump into the middle of a protected block, skipping over the TRY. Doing so may produce
unpredictable results.

You should not use the TRY..ENDTRY statement as a general control structure. For example,
it will probably occur to someone that one could easily create a switch/case selection statement
using TRY..ENDTRY as follows:

try
raise(SomeValue);

exception(case1_const)
<code for case 1>

exception(case2_const)
<code for case 2>

etc.
endtry

While this might work in some situations, there are two problems with this code.
First, if an exception occurs while using the TRY..ENDTRY statement as a switch statement,

the results may be unpredictable. Second, HLA’s run-time system assumes that exceptions are rare
events. Therefore, the code generated for the exception handlers doesn’t have to be efficient. You
will get much better results implementing a switch/case statement using a table lookup and indirect
jump (see the Art of Assembly) rather than a TRY..ENDTRY block.

Warning: The TRY statement pushes data onto the stack upon initial entry and pops data off
the stack upon leaving the TRY..ENDTRY block. Therefore, jumping into or out of a
TRY..ENDTRY block is an absolute no-no. As explained so far, then, there are only two
reasonable ways to exit a TRY statement, by falling off the end of the protected block or by an
exception (handled by the TRY statement or a surrounding TRY statement).

The UNPROTECTED clause in the TRY..ENDTRY statement provides a safe way to exit a
TRY..ENDTRY block without raising an exception or executing all the statements in the protected
portion of the TRY..ENDTRY statement. An unprotected section is a sequence of statements,
between the protected block and the first exception handler, that begins with the keyword
UNPROTECTED. E.g.,

try
Public Domain Created by Randy Hyde Page 324

HLA Reference Manual 5/24/10 Chapter 14
<< Protected HLA Statements >>

 unprotected

<< Unprotected HLA Statements >>

 exception(SomeExceptionID)

<< etc. >>

endtry;

Control flows from the protected block directly into the unprotected block as though the
UNPROTECTED keyword were not present. However, between the two blocks HLA compiler-
generated code removes the data pushed on the stack. Therefore, it is safe to transfer control to
some spot outside the TRY..ENDTRY statement from within the unprotected section.

If an exception occurs in an unprotected section, the TRY..ENDTRY statement containing that
section does not handle the exception. Instead, control transfers to the (dynamically) nesting
TRY..ENDTRY statement (or to the HLA run-time system if there is no enclosing
TRY..ENDTRY).

If you’re wondering why the UNPROTECTED section is necessary (after all, why not simply
put the statements in the UNPROTECTED section after the ENDTRY?), just keep in mind that
both the protected sequence and the handled exceptions continue execution after the ENDTRY.
There may be some operations you want to perform after exceptions are released, but only if the
protected block finished successfully. The UNPROTECTED section provides this capability.
Perhaps the most common use of the UNPROTECTED section is to break out of a loop that repeats
a TRY..ENDTRY block until it executes without an exception occuring. The following code
demonstrates this use:

forever

try

stdout.put("Enter an integer: ");
stdin.geti8(); // May raise an exception.

unprotected

break;

exception(ex.ValueOutOfRange)

stdout.put("Value was out of range, reenter" nl);

exception(ex.ConversionError)

stdout.put("Value contained illegal chars" nl);

endtry;

endfor;

This simple example repeatedly asks the user to input an int8 integer until the value is legal and
within the range of valid integers.

Another clause in the TRY..EXCEPT statement is the ANYEXCEPTION clause. If this clause is
present, it must be the last clause in the TRY..EXCEPT statement, e.g.,
Public Domain Created by Randy Hyde Page 325

HLA Reference Manual 5/24/10 Chapter 14
try
<< protected statements >>

<<
unprotected

Optional unprotected statements
>>

<< exception(constant) // Note: may be zero or more of
 of these.

Optional exception handler statements
>>

anyexception
<< Exception handler if none of the others execute >>

endtry;

Without the ANYEXCEPTION clause present, if the program raises an exception that is not
specifically handled by one of the exception clauses, control transfers to the enclosing
TRY..ENDTRY statement. The ANYEXCEPTION clause gives a TRY..ENDTRY statement the
opportunity to handle any exception, even those that are not explicitly listed. Upon entry into the
ANYEXCEPTION block, the EAX register contains the actual exception number.

14.3 Exception Handling in HLA:try..always..endtry
The HLA TRY..ALWAYS..ENDTRY statement is a variant of the try..endtry statement that

has a single ALWAYS block (no EXCEPTION or ANYEXCEPTION clauses). This statement
takes the following form:

try
<< protected statements >>

always

Statements that always execute

endtry;

The ALWAYS block in this statement always executes, whether an exception occurs or no
exception occurs. The ALWAYS block is useful for executing code that must happen regardless of
the successful execution of the protected statements. Examples including closing files that were
opened prior to the TRY statement, freeing memory allocated on the heap, leaving critical sections,
and so on.

If the ALWAYS block executes because an exception occurred, then the code will re-raise the
exception immediately after the AWAYS block finishes execution. An outer TRY..ENDTRY
statement can handle the exception at that point.

If no exeception occurs, then the ALWAYS block executes immediately after the last
protected statement and once the ALWAYS block finishes, control resumes with the first statement
after the ENDTRY.

Note that there is no way inside the ALWAYS block to determine if execution occurs because
of an exception or because the protected statements completed execution without raising an
exception. If you absolutely, positively, need to do something special if an exception occurs, then
Public Domain Created by Randy Hyde Page 326

HLA Reference Manual 5/24/10 Chapter 14
insert a TRY..ANYEXCEPTION..ENDTRY statement around the protected statements or enclose
the TRY..ALWAYS..ENDTRY statement inside a TRY .. EXCEPTION .. ANYEXCEPTION ..
ENDTRY statement:

The following code executes the ANYEXCEPTION block prior to executing the code in the
ALWAYS section:

try
try

<< protected statements >>

anyexception

// Handle the statement before executing the ALWAYS clause
raise(eax);

endtry;

always

// Statements that always execute

endtry;

The following version excutes the ALWAYS block first and then an ANYEXCEPTION block if
there was an exception

try
try

<< protected statements >>

always

// Statements that always execute

endtry;

 anyexception

// Statements that execute after ALWAYS bloc
// if there was an exception

endtry;

14.4 Exception Handling in HLA:raise
The HLA RAISE statement generates an exception. The single parameter is an 8, 16, or 32-bit

ordinal constant. Control is (ultimately) transferred to the first (most deeply nested)
TRY..ENDTRY statement that has a corresponding exception handler (including
ANYEXCEPTION).

 If the program executes the RAISE statement within the protected block of a TRY..ENDTRY
statement, then the enclosing TRY..ENDTRY gets first shot at handling the exception. If the
RAISE statement occurs in an UNPROTECTED block, or in an exception handler (including
ANYEXCEPTION), then the next higher level (nesting) TRY..ENDTRY statement will handle the
exception. This allows cascading exceptions; that is, exceptions that the system handles in two or
more exception handlers. Consider the following example:
Public Domain Created by Randy Hyde Page 327

HLA Reference Manual 5/24/10 Chapter 14
try
<< Protected statements >>

 exception(someException)
<< Code to process this exception >>

// The following re-raises this exception, allowing
// an enclosing try..endtry statement to handle
// this exception as well as this handler.

raise(someException);

 << Additional, optional, exception handlers >>

endtry;

14.5 IF..THEN..ELSEIF..ELSE..ENDIF Statement in HLA
HLA provides a limited IF..THEN.ELSEIF..ELSE..ENDIF statement that can help make your

programs easier to read. For the most part, HLA’s if statement provides a convenient substitute for
a CMP and a conditional branch instruction pair (or chain of such instructions when employing
ELSEIF’s).

The generic syntax for the HLA if statement is the following:

if(conditional_expression) then

<< Statements to execute if expression is true >>

endif;

if(conditional_expression) then

<< Statements to execute if expression is true >>

else

<< Statements to execute if expression is false >>

endif;

if(expr1) then

<< Statements to execute if expr1 is true >>

elseif(expr2) then

<< Statements to execute if expr1 is false
 and expr2 is true >>

endif;

if(expr1) then
Public Domain Created by Randy Hyde Page 328

HLA Reference Manual 5/24/10 Chapter 14
<< Statements to execute if expr1 is true >>

elseif(expr2) then

<< Statements to execute if expr1 is false
 and expr2 is true >>

else

<< Statements to execute if both expr1 and
 expr2 are false >>

endif;

Note: HLA’s if statement allows multiple ELSEIF clauses. All ELSEIF clauses must appear
between IF clause and the ELSE clause (if present) or the ENDIF (if an ELSE clause is not
present).

See the next section for a discussion of valid boolean expressions within the IF statement (this
section appears first because the section on boolean expressions uses IF statements in its examples).

14.6 Boolean Expressions for High-Level Language Statements
The primary limitation of HLA’s IF and other HLL statements has to do with the conditional

expressions allowed in these statements. These expressions must take one of the following forms:

operand1 relop operand2

register in constant .. constant
register not in constant .. constant

memory in constant .. constant
memory not in constant .. constant

reg8 in CSet_Constant

reg8 in CSet_Variable

reg8 not in CSet_Constant

reg8 not in CSet_Variable

register
!register

memory
!memory

Flag

(boolean_expression)
!(boolean_expression)

boolean_expression && boolean_expression

boolean_expression || boolean_expression
Public Domain Created by Randy Hyde Page 329

HLA Reference Manual 5/24/10 Chapter 14
For the first form, "operand1 relop operand2", relop is one of:

= or == (either one, both are equivalent)
<> or != (either one)
<
<=
>
>=

Operand1 and operand2 must be operands that would be legal for a "cmp(operand1,
operand2);" instruction.

For the IF statement, HLA emits a CMP instruction with the two operands specified and an
appropriate conditional jump instruction that skips over the statements following the "THEN"
reserved word if the condition is false. For example, consider the following code:

if(al = ’a’) then

stdout.put("Option ’a’ was selected", nl);

endif;

Like the CMP instruction, the two operands cannot both be memory operands.

 Unlike the conditional branch instructions, the six relational operators cannot differentiate
between signed and unsigned comparisons (for example, HLA uses "<" for both signed and
unsigned less than comparisons). Since HLA must emit different instructions for signed and
unsigned comparisons, and the relational operators do not differentiate between the two, HLA must
rely upon the types of the operands to determine which conditional jump instruction to emit.

By default, HLA emits unsigned conditional jump instructions (i.e., JA, JAE, JB, JBE, etc.). If
either (or both) operands are signed values, HLA will emit signed conditional jump instructions
(i.e., JG, JGE, JL, JLE, etc.) instead.

HLA considers the 80x86 registers to be unsigned. This can create some problems when using
the HLA if statement. Consider the following code:

if(eax < 0) then

<< do something if eax is negative >>

endif;

Since neither operand is a signed value, HLA will emit the following code:

cmp(eax, 0);
jnb SkipThenPart;
<< do something if eax is negative >>

SkipThenPart:

Unfortunately, it is never the case that the value in EAX is below zero (since zero is the
minimum unsigned value), so the body of this if statement never executes. Clearly, the
programmer intended to use a signed comparison here. The solution is to ensure that at least one
operand is signed. However, as this example demonstrates, what happens when both operands are
intrinsically unsigned?

The solution is to use coercion to tell HLA that one of the operands is a signed value. In
general, it is always possible to coerce a register so that HLA treats it as a signed, rather than
unsigned, value. The IF statement above could be rewritten (correctly) as
Public Domain Created by Randy Hyde Page 330

HLA Reference Manual 5/24/10 Chapter 14
if((type int32 eax) < 0) then

<< do something if eax is negative >>

endif;

HLA will emit the JNL instruction (rather than JNB) in this example. Note that if either operand is
signed, HLA will emit a signed condition jump instruction. Therefore, it is not necessary to coerce
both unsigned operands in this example.

The second form of a conditional expression that the IF statement accepts is a register or
memory operand followed by "in" and then two constants separated by the ".." operator, e.g.,

if(al in 0..10) then ...

This code checks to see if the first operand is in the range specified by the two constants. The
constant value to the left of the ".." must be less than the constant to the right for this expression to
make any sense. The result is true if the operand is within the specified range. For this instruction,
HLA emits a pair of compare and conditional jump instructions to test the operand to see if it is in
the specified range.

HLA also allows a exclusive range test specified by an expression of the form:

if(al not in 0..10) then ...

In this case, the expression is true if the value in AL is outside the range 0..10.

In addition to integer ranges, HLA also lets you use the IN operator with CSET constants and
variables. The generic form is one of the following:

reg8 in CSetConst

reg8 not in CSetConst

reg8 in CSetVariable

reg8 not in CSetVariable

For example, a statement of the form "if(al in {’a’..’z’}) then ..." checks to see if the character
in the AL register is a lower case alphabetic character. Similarly,

if(al not in {’a’..’z’, ’A’..’Z’}) then...

checks to see if AL is not an alphabetic character.

The fifth form of a conditional expression that the IF statement accepts is a single register
name (eight, sixteen, or thiry-two bits). The IF statement will test the specified register to see if it
is zero (false) or non-zero (true) and branches accordingly. If you specify the not operator ("!")
before the register, HLA reverses the sense of this test.

The sixth form of a conditional expression that the IF staement accepts is a single memory
location. The type of the memory location must be boolean, byte, word, or dword. HLA will emit
code that compares the specified memory location against zero (false) and generate an appropriate
branch depending upon the value in the memory location. If you put the not operator ("!") before
the variable, HLA reverses the sense of the test.

The seventh form of a conditional expression that the IF statement accepts is a Flags register
bit or other condition code combination handled by the 80x86 conditional jump instructions. The
following reserved words are acceptable as IF statement expressions:

 @c, @nc, @o, @no, @z, @nz, @s, @ns, @a, @na, @ae, @nae, @b, @nb, @be,
 @nbe, @l, @nl, @g, @ne, @le, @nle, @ge, @nge, @e, @ne

These items emit an appropriate jump (of the opposite sense) around the THEN portion of the IF
statement if the condition is false.
Public Domain Created by Randy Hyde Page 331

HLA Reference Manual 5/24/10 Chapter 14
If you supply any legal boolean expression in parenthesis, HLA simply uses the value of the
internal expression for the value of the whole expression. This allows you to override default
precedence for the AND, OR, and ! operators.

The !(boolean_expression) evaluates the expression and does just the opposite. That is, if the
interior expression is false, then !(boolean_expression) is true and vice versa. This is mainly
useful with conjunction and disjunction since all of the other interesting terms already allow the not
operator in front of them. Note that in general, the "!" operator must precede some parentheses.
You cannot say "! AX < BX", for example.

Originally, HLA did not include support for the conjunction (&&) and disjunction (||)
operators. This was explicitly left out of the design so that beginning students would be forced to
rethink their logical operations in assembly language. Unfortunately, it was so inconvenient not to
have these operators that they were eventually added. So a compromise was made: these operators
were added to HLA but "The Art of Assembly Language Programming/Win32 Edition" doesn’t
bother to mention them until an advanced chapter on control structures.

The conjunction and disjunction operators are the operators && and ||. They expect two valid
HLA boolean expressions around the operator, e.g.,

eax < 5 && ebx <> ecx

Since the above forms a valid boolean expression, it, too, may appear on either side of the &&
or | operator, e.g.,

eax < 5 && ebx <> ecx || !dl

HLA gives && higher precedence than ||. Both operators are left-associative so if multiple
operators appear within the same expression, they are evaluated from left to right if the operators
have the same precedence. Note that you can use parentheses to override HLA’s default
precedence.

One wrinkle with the addition of && and || is that you need to be careful when using the flags
in a boolean expression. For example, "eax < ecx && @nz" hides the fact that HLA emits a
compare instruction that affects the Z flag. Hence, the "@nz" adds nothing to this expression since
EAX must not equal ECX if eax<ecx. So take care when using && and ||.

HLA uses short-circuit evaluation when evaluating expressions containing the conjunction and
disjunction operators. For the && operator, this means that the resulting code will not compute the
right-hand expression if the left-hand expression evaluates false. Similarly, the code will not
compute the right-hand expression of the || operator if the left-hand expression evaluates true.

Note that the evaluation of complex boolean expressions involving the !(---), &&, and ||
operators does not change any register or memory values. HLA strictly uses flow control to
implement these operations.

Note that the "&" and "|" operators are for compile-time only expression while the "&&" and
"||" operators are for run-time boolean expressions. These two groups of operators are not
synonyms and you cannot use them interchangably.

 If you would prefer to use a less abstract scheme to evaluate boolean expressions, one that lets
you see the low-level machine instructions, HLA provides a solution that allows you to write code
to evaluate complex boolean expressions within the HLL statements using low-level instructions.
Consider the following syntax:

if
(#{

<<arbitrary HLA statements >>
}#) then

<< "True" section >>

else //or elseif...

<< "False" section >>
Public Domain Created by Randy Hyde Page 332

HLA Reference Manual 5/24/10 Chapter 14
endif;

The "#{" and "}#" brackets tell HLA that an arbitrary set of HLA statements will appear
between the braces. HLA will not emit any code for the IF expression. Instead, it is the
programmer’s responsibility to provide the appropriate test code within the "#{---}#" section.
Within the sequence, HLA allows the use of the boolean constants "true" and "false" as targets
of conditional jump instructions. Jumping to the "true" label transfers control to the true section
(i.e., the code after the "THEN" reserved word). Jumping to the "false" label transfers control to
the false section. Consider the following code that checks to see if the character in AL is in the
range "a".."z":

if
(#{

cmp(al, 'a');
jb false;
cmp(al, 'z');
ja false;

}#) then

<< code to execute if AL in {’a’..’z’} goes here >>

endif;

With the inclusion of the #{---}# operand, the IF statement becomes much more powerful,
allowing you to test any condition possible in assembly language. Of course, the #{---}#
expression is legal in the ELSEIF expression as well as the IF expression.

It would be a good idea for you to write some code using the HLA if statement and study the
MASM code produced by HLA for these IF statements. By becoming familiar with the code that
HLA generates for the IF statement, you will have a better idea about when it is appropriate to use
the if statement versus standard assembly language statements.

14.7 WHILE..WELSE..ENDWHILE Statement in HLA
The while..endwhile statement allows the following syntax:

while(boolean_expression) do

<< while loop body>>

endwhile;

while(boolean_expression) do

<< while loop body>>
else

<< Code to execute when expression is false >>

endwhile;

while(#{ HLA_statements }#) do

<< while loop body>>
Public Domain Created by Randy Hyde Page 333

HLA Reference Manual 5/24/10 Chapter 14
endwhile;

while(#{ HLA_statements }#) do

<< while loop body>>

welse

<< Code to execute when expression is false >>

endwhile;

The WHILE statement allows the same boolean expressions as the HLA IF statement. Like
the HLA IF statement, HLA allows you to use the boolean constants "true" and "false" as labels
in the #{...}# form of the WHILE statement above. Jumping to the true label executes the body of
the while loop, jumping to the false label exits the while loop.

For the "while(expr) do" forms, HLA moves the test for loop termination to the bottom of the
loop and emits a jump at the top of the loop to transfer control to the termination test. For the
"while(#{stmts}#)" form, HLA compiles the termination test at the top of the emitted code for the
loop. Therefore, the standard WHILE loop may be slightly more efficient (in the typical case) than
the hybrid form.

The HLA while loop supports an optional "welse" (while-else) section. The while loop will
execute the code in this section only when then the expression evaluates false. Note that if you exit
the loop vra a "break" or "breakif" statement the welse section does not execute. This provides
logic that is sometimes useful when you want to do something different depending upon whether
you exit the loop via the expression going false or by a break statement.

14.8 REPEAT..UNTIL Statement in HLA
HLA’s REPEAT..UNTIL statement uses the following syntax:

repeat

<< statements to execute repeatedly >>

until(boolean_expression);

repeat

<< statements to execute repeatedly >>

until(#{ HLA_statements }#);

For those unfamiliar with REPEAT..UNTIL, the body of the loop always executes at least
once with the test for loop termination ocurring at the bottom of the loop. The REPEAT..UNTIL
loop (unlike C/C++’s do..while statement) terminates loop execution when the expression is true
(that is, REPEAT..UNTIL repeats while the expression is false).

As you can see, the syntax for this is very similar to the WHILE loop. About the only major
difference is the fact that jump to the "true" label in the #{---}# sequence exits the loop while
jumping to the "false" label in the #{---}# sequence transfers control back to the top of the loop.

14.9 The FOR..ENDFOR Statement in HLA
The HLA for..endfor statement is very similar to the C/C++ for loop. The FOR clause consists

of three components:
Public Domain Created by Randy Hyde Page 334

HLA Reference Manual 5/24/10 Chapter 14
for(initialize_stmt; if_boolean_expression; increment_statement) do

The initialize_statement component is a single machine instruction. This instruction
typically initializes a loop control variable. HLA emits this statement before the loop body so that
it executes only once, before the test for loop termination.

The if_boolean_expression component is a simple boolean expression (same syntax as
for the IF statement). This expression determines whether the loop body executes. Note that the
FOR statement tests for loop termination before executing the body of the loop.

The increment_statement component is a single machine instruction that HLA emits at the
bottom of the loop, just before jumping back to the top of the loop. This instruction is typically
used to modify the loop control variable.

The syntax for the HLA for statement is the following:

for(initStmt; BoolExpr; incStmt) do

<< loop body >>

endfor;

-or-

for(initStmt; BoolExpr; incStmt) do

<< loop body >>

felse

<< statements to execute when BoolExpr evaluates false >>

endfor;

Semantically, this statement is identical to the following while loop:

initStmt;
while(BoolExpr) do

<< loop body >>
incStmt;

endwhile;

-or-

initStmt;
while(BoolExpr) do

<< loop body >>
incStmt;

welse

<< statements to execute when BoolExpr evaluates false >>
endwhile;

Note that HLA does not include a form of the FOR loop that lets you bury a sequence of
statements inside the boolean expression. Use the WHILE loop if you want to do that. If this is
inconvenient, you can always create your own version of the FOR loop using HLA’s macro
facilities.
Public Domain Created by Randy Hyde Page 335

HLA Reference Manual 5/24/10 Chapter 14
The FELSE section in the FOR..FELSE..ENDFOR loop executes when the boolean expression
evaluates false. Note that the FELSE section does not execute if you break out of the FOR loop
with a BREAK or BREAKIF statement. You can use this fact to do different logic depending on
whether the code exits the loop via the boolean expression going false or via some sort of BREAK.

14.10 The FOREVER..ENDFOR Statement in HLA
The forever statement creates an infinite loop. Its syntax is

forever

<< Statements to execute repeatedly >>

endfor

This HLA statement simply emits a single JMP instruction that unconditionally transfers
control from the ENDFOR clause back up to the beginning of the loop.

In addition to creating infinite loops, the FOREVER..ENDFOR loop is very useful for creating
loops that test for loop termination somewhere in the middle of the loop’s body. For more details,
see the BREAK and BREAKIF statements, next.

14.11The BREAK and BREAKIF Statements in HLA
The BREAK and BREAKIF statements allow you to exit a loop at some point other than the

normal test for loop termination. These two statements allow the following syntax:

break;
breakif(boolean_expression);
breakif(#{ stmts }#);

There are two very important things to note about these statements. First, unlike many HLA
machine instructions, you do not follow the BREAK statement with a pair of empty parentheses.
The 80x86 machine instructions behave like compile-time functions, so it made sense to require
empty parentheses after those instructions. The HLA HLL statements do not behave like compile-
time functions; the lack of parentheses after BREAK (and other HLL statements, e.g., ELSE)
makes sense here if you think about it for a moment.

The second thing to note is that the BREAK and BREAKIF statements are legal only inside
WHILE, FOREACH, FOREVER, and REPEAT loops. HLA does not recognize loops you’ve
coded yourself using discrete assembly language instructions (of course, you can probably write a
macro to provide a BREAK function for your own loops). Note that the FOREACH loop pushes
data on the stack that the BREAK statement is unaware of. Therefore, if you break out of a
FOREACH loop, garbage will be left on the stack. The HLA BREAK statement will issue a
warning if this occurs. It is your responsibility to clean up the stack upon exiting a FOREACH
loop if you break out of it.

14.12 The CONTINUE and CONTINUEIF Statements in HLA
The continue and continueif statements allow you to restart a loop. These two statements

allow the following syntax:

continue;
continueif(boolean_expression);
continueif(#{ stmts }#);

There are two very important things to note about these statements. First, unlike many HLA
machine instructions, you do not follow the CONTINUE statement with a pair of empty
Public Domain Created by Randy Hyde Page 336

HLA Reference Manual 5/24/10 Chapter 14
parentheses. The 80x86 machine instructions behave like compile-time functions, so it made sense
to require empty parentheses after those instructions. The HLA HLL statements do not behave like
compile-time functions; the lack of parentheses after continue (and other HLL statements, e.g.,
else) makes sense here if you think about it for a moment.

The CONTINUE and CONTINUEIF statements are legal only inside WHILE, FOREACH,
FOREVER, and REPEAT loops. HLA does not recognize loops you’ve coded yourself using
discrete assembly language instructions (of course, you can probably write a macro to provide a
CONTINUE function for your own loops).

For the WHILE and REPEAT statements, the CONTINUE and CONTINUEIF statements
transfer control to the test for loop termination. For the FOREVER loop, the CONTINUE and
CONTINUEIF statements transfer control the the first statement in the loop. For the FOREACH
loop, CONTINUE and CONTINUEIF transfer control to the bottom of the loop (i.e., forces a return
from the yield() call).

14.13 The BEGIN..END, EXIT, and EXITIF Statements in
HLA

The BEGIN..END statement block provides a structured goto statement for HLA. The BEGIN
and END clauses surround a group of statements; the EXIT and EXITIF statements allow you to
exit such a block of statements in much the same way that the BREAK and BREAKIF statements
allow you to exit a loop. Unlike BREAK and BREAKIF, which can only exit the loop that
immediately contains the BREAK or BREAKIF, the exit statements allow you to specify a BEGIN
label so you can exit several nested contexts at once. The syntax for the BEGIN..END, EXIT, and
EXITIF statements is as follows:

begin contextLabel ;

<< statements within the specified context >>

end contextLabel;

exit contextLabel;
exitif(boolean_expression) contextLabel;
exitif(#{ stmts }#) contextLabel;

The BEGIN..END clauses do not generate any machine code (although END does emit a label
to the assembly output file). The EXIT statement simply emits a JMP to the first instruction
following the END clause. The EXITIF statement emits a compare and a conditional jump to the
statement following the specified end.

If you break out of a FOREACH loop using the EXIT or EXITIF statements, there will be
garbage left on the stack. It is your responsibility to be aware of this situation (i.e., HLA doesn’t
warn you about it) and clean up the stack, if necessary.

You can nest BEGIN..END blocks and EXIT out of any enclosing BEGIN..END block at any
time. The BEGIN label provides this capability. Consider the following example:

program ContextDemo;

#include("stdio.hhf");

static
i:int32;

begin ContextDemo;

stdout.put("Enter an integer:");
stdin.get(i);

begin c1;
Public Domain Created by Randy Hyde Page 337

HLA Reference Manual 5/24/10 Chapter 14
begin c2;

stdout.put("Inside c2" nl);
exitif(i < 0) c1;

end c2;
stdout.put("Inside c1" nl);
exitif(i = 0) c1;
stdout.put("Still inside c1" nl);

end c1;
stdout.put("Outside of c1" nl);

end ContextDemo;

The EXIT and EXITIF statements let you exit any BEGIN..END block; including those
associated with a program unit such as a procedure, iterator, method, or even the main program.
Consider the following (unusable) program:

program mainPgm;

procedure LexLevel1;

procedure LexLevel2;
begin LexLevel2;

exit LexLevel2; // Returns from this procedure.
exit LexLevel1; // Returns from this procedure and

// and the LexLevel1 procedure
// (including cleaning up the stack).

exit mainPgm; // Terminates the main program.

end LexLevel2;

begin LexLevel1;
.
.
.

end LexLevel1;

begin mainPgm;
.
.
.

end mainPgm;

Note: You may only exit from procedures that have a display and all nested procedures from
the procedure you wish to exit from through to the EXIT statement itself must have displays. In the
example above, both LexLevel1 and LexLevel2 must have displays if you wish to exit from the
LexLevel1 procedure from inside LexLevel2. By default, HLA emits code to build the display
unless you use the "@nodisplay" procedure option.

Note that to exit from the current procedure, you must not have specified the "@noframe"
procedure option. This applies only to the current procedure. You may exit from nesting (lower
lex level) procedures as long as the display has been built.
Public Domain Created by Randy Hyde Page 338

HLA Reference Manual 5/24/10 Chapter 14
14.14 The SWITCH/CASE/DEFAULT/ENDSWITCH
Statement in HLA

As of HLA v1.102, a multi-way switch statement is available in the HLA language (prior to
HLA v1.102, the switch statement was handled by a macro provided in the HLA Standard Library).
This statement uses syntax similar to the following:

switch(reg32)

case(constant_list)

<statements>

<< any number of additional case clauses >>

default// This is optional

<statements>

endswitch;

The case clause argument list is either a single ordinal constant, or a list of ordinal constants
separated by commas. The following is an example of a legal switch statement with multiple case
clauses:

switch(eax)

case(0)

mov(1, eax);

case(1, 2)

mov(2, eax);

case(5)

add(4, eax);

endswitch;

The switch statement, like it’s HLL counterpart, transfers control to the statements following
the case clause containing the value held in the 32-bit register passed into the switch statement.

The case constant values in a single case statement must all be unique. HLA will report an
error if two cases contain the same constant value.

During the execution of the switch statement, if the value in the 32-bit register passed as an
argument to the switch statement is not present any any of the case clauses, then control transfers to
the statements associated with the default clause (if one is present) or to the first statement
following the endswitch class if there is no default section present.

In general, HLA compiles the switch statement into a jump table and an indirect jmp
instruction that transfers control to the code associated with the specified case. However, in a
couple of special cases HLA will not compile a switch into an indirect jump instruction. To
understand when this occurs, there are a couple of terms you’ll need to understand.

Jump tables created for switch statements will have one entry for every ordinal value between
the smallest case value and the largest case value in the table. The difference between the largest
Public Domain Created by Randy Hyde Page 339

HLA Reference Manual 5/24/10 Chapter 14
and smallest case values (plus one) is called the spread. This means that a jump table’s size in
bytes will be four times the spread. Note that the spread value is independent of the number of
cases. Consider the following switch statement fragnents:

switch(eax)

case(1)

<< code to execute if EAX = 1 >>

case(10)

<< code to execute if EAX = 10 >>

endswitch;

The jump table associated with this switch entry will have ten entries, not two. This is because
the spread is 10 for this switch statement. Consider the following example:

switch(eax)

case(1)

<< code to execute if EAX = 1 >>

case(3)

<< code to execute if EAX = 3 >>

case(6)

<< code to execute if EAX = 6 >>

case(10)

<< code to execute if EAX = 10 >>

endswitch;

In this examples the spread is still 10 and the jump table will have the same number of entries
(10) as the previous example. This is true even though this latter example has twice as many cases
as the earlier example.

The case clause lets you specify multiple values in a comma-separated list. Consider the
following example:

switch(eax)

case(1)

<< code to execute if EAX = 1 >>

case(3, 6, 12)

<< code to execute if EAX = 3, 6, or 12 >>

case(10)
Public Domain Created by Randy Hyde Page 340

HLA Reference Manual 5/24/10 Chapter 14
<< code to execute if EAX = 10 >>

endswitch;

It is important to realize that this switch statement has five cases, not three. It just happens that
three of the cases (3, 6, and 12) share the same set of instructions to execute. Also note that the
spread is 12 in this example as the minimum case value is 1 and the largest is 12. Note that the
default case does not count as a case for the purposes of counting the number of case values. The
default case simply provides a sequence of instructions to execute for all the “holes” in the spread
of case values (as well as all values below and greater than the minimum and maximum case
values).

Because the jump table will have one entry for each integer value between the smallest and
largest case values, you can easily generate a huge table with a very simple switch statement.
Consider the following example:

switch(eax)

case(1)

<< code to execute if EAX = 1 >>

case(1000)

<< code to execute if EAX = 1000 >>

endswitch;

Even though this example has only two cases, the jump table will contain 1,000 entries (and be
4,000 bytes long). A set of widely spaced case values produces a sparse jump table (that is, only a
few of the entries in the jump table contain pointers to sections of code associated with the cases,
most entries contain a pointer to the default case (or the address of the first statement following the
endswitch if there isn’t a default section).

To improve efficiency and reduce the space consumed by large, sparse, jump tables, HLA
specially handles a couple of situations. First of all, if the number of cases is three or less, HLA
will not emit a jump table. Instead, it will emit a sequence of CMP and JNE instructions to test the
three or fewer case values. Second, if the spread is 256 or greater but there are 32 or fewer cases,
then HLA will emit a sequence of CMP and JNE instructions to implement the switch statement. In
all other situations, HLA will emit a jump table implementation of the switch.

If the spread is 16384 or greater (this is an implementation-dependent constant an may change
in the future), HLA will generate an error and refuse to compile the switch statement. If you really
want to generate a switch statement whose jump table consumes 64K (or more) of data, you will
have to implement the statement manually (or modify the switch macro in the “switch.hhf” header
file).

If the spread is 4096 or greater but less than 16384, HLA will generate the code but issue a
warning telling you that the jump table is going to be very large. If the spread is 16 times (or more)
the number of cases, HLA will emit a warning telling you that the jump table is going to be very
sparse.

All the case values in a particular switch statement must be unique. If there are any duplicate
case values in a particular switch statement HLA will issue an error message.

14.15 The JT and JF Medium Level Instructions in HLA
The JT (jump if true) and JF (jump if false) instructions are a cross between the 80x86

conditional jump instruction and the HLA IF statement. These two instructions use the following
syntax:
Public Domain Created by Randy Hyde Page 341

HLA Reference Manual 5/24/10 Chapter 14
JT (booleanExpression) targetLabel;
JF (booleanExpression) targetLabel;

The booleanExpression component can be any legal HLA boolean expression that you’d
use in an IF, WHILE, REPEAT..UNTIL, or other HLA HLL statement. The HLA compiler emits
code that will transfer control to the specified target label in your program if the condition is true.

These instructions are primarily intended for use in macros when creating your own HLL
control statements. For a discussion of macros and creating your own control structures, see the
HLA documentation on the compile-time language.

14.16 Iterators and the HLA Foreach Loop
HLA provides a very powerful user-defined looping control structure, the

FOREACH..ENDFOR loop. The FOREACH loop uses the following syntax:

foreach iteratorProc(parameters) do
<< foreach loop body >>

endfor;

The iteratorProc(parameters) component is a call to a special kind of procedure
known as an iterator1. Iterators have the special property that they return one of two states, success
or failure. If an iterator returns success, it generally also returns a function result. If an iterator
returns success, the foreach loop will execute the loop body and reenter the iterator (more on that
later) at the top of the loop. If an iterator returns failure, then the loop terminates.

If you’ve never used true iterators before, you may be thinking "big deal, an iterator is simply a
function that returns a boolean value." This, however, isn’t entirely true. An iterator behaves like a
value returning function when it succeeds, it behaves like a procedure when it fails. The success or
failure state of the iterator call is not the return value. To understand the difference, consider the
syntax for an iterator:

iterator iteratorName <<(optional_parameters)>>;
<< procedure options >>
<< local declarations >>
begin iteratorName;

<< iterator statements >>

end iteratorName;

Other than the use of the "ITERATOR" keyword rather than "PROCEDURE," this declaration
looks just like a procedure or method declaration. However, there are some crucial differences.
First of all, HLA emits different code for building iterator activation records than it does for
procedures and methods. Furthermore, whenever you declare an iterator, HLA automatically
creates a special thunk variable named "yield". Also, HLA will not let you call an iterator directly
by specifying the iterator’s name as an HLA statement (although you can still use the CALL
instruction to call an iterator procedure, though you’d better have set the stack up properly before
doing so).

If an iterator returns via a EXIT(iteratorname) or RET() statement, or returns by "falling
off the end of the function" (i.e., executing the "end" clause), then the iterator returns failure to the
calling FOREACH loop (hence, the loop will terminate). To return success, and return a value to
the body of the FOREACH loop, you must invoke the "yield" thunk. Yield doesn’t actually
return to the FOREACH loop, instead, it calls the body of the FOREACH loop and at the bottom of

1. HLA’s iterators are based on the similar control structure from the CLU language. CLU’s iterators are
considerably more powerful than the misnamed "iterators" found in the C/C++ language/library (which,
technically, should be called "cursors" not iterators).
Public Domain Created by Randy Hyde Page 342

HLA Reference Manual 5/24/10 Chapter 14
the FOREACH loop HLA emits a return instruction that transfers control back into the iterator (to
the first statement following the yield). This may seem counter-intuitive, but it has some
important ramifications. First of call, an iterator maintains its context until it fails. This means that
local variables maintain their values across the yield calls. Likewise, when a FOREACH loop
reenters an iterator, it picks up immediately after the yield, it does not pass new parameters and
begin execution at the top of the iterator code.

Consider the following typical iterator code:

program iteratorDemo;

#include("stdio.hhf");

iterator range(start:int32; stop:int32); @nodisplay;
begin range;

forever

mov(start, eax);
breakif(eax > stop);
yield();
inc(start);

endfor;

end range;

static
i:int32;

begin iteratorDemo;

foreach range(1, 10) do

stdout.put("eax = ", eax, nl);

endfor;

end iteratorDemo;

This example demonstrates how to create a standard "for" loop like those found in Pascal or
C++2. The range iterator is passed two parameters, a starting value and an ending value. It
returns a sequence of values between the starting and ending values (respectively) and fails once
the return value would exceed the ending value. The FOREACH loop in this example prints the
values one through ten to the display.

Warning: because the iterator’s activation is left on the stack while executing a FOREACH
loop, you should take care when breaking out of a FOREACH loop using BREAK, BREAKIF,
EXIT, EXITIF, or some sort of jump. Cavalierly jumping out of a loop in this fashion leaves the
iterator’s activation record on the stack. You will need to clean this up manually if you exit an
iterator in this fashion. Since HLA cannot determine the myriad of ways one could jump out of a
FOREACH loop body, it is up to you to make sure you don’t do this (or that you handle the garbage
on the stack in an appropriate way).

Keep in mind that the body of a FOREACH loop is actually a procedure your program calls
when it encounters the yield statement3. Therefore, any registers whose values you change will
be changed when control returns to the code following the yield. If you need to preserve any

2. Mind you, this is not a very efficient implementation of a standard for loop.
Public Domain Created by Randy Hyde Page 343

HLA Reference Manual 5/24/10 Chapter 14
registers across a yield, either push and pop them at the beginning of the FOREACH loop body or
place the PUSH and POP instructions around the yield.

3. Technically, yield is a variable of type thunk, not a statement. However, this discussion is somewhat clearly if
we think of yield as a statement rather than a variable.
Public Domain Created by Randy Hyde Page 344

HLA Reference Manual 5/24/10 Chapter 15
15 HLA Units and External Compilation

15.1 HLA Units and External Compilation
This section discusses how to create separately compilable modules in HLA and how you can

link HLA code with code written in other languages.

15.2 External Declarations
HLA provides two features to support separate compilation: units and external objects. HLA

uses a very general scheme, similar to C++ to communicate linkage information between object
modules. This scheme lets HLA programmers link to their HLA programs code written in HLA,
non-HLA assembly code (e.g., MASM), and even code written in other high level languages
(HLLs). Conversely, the HLA program can also write modules to be linked with programs written
in this other languages (as well as HLA).

Writing separate modules is quite similar to writing a single HLA program. The first thing to
note is that an executable can have only one main program. When writing HLA programs, the
program reserved word tells HLA that you are writing a module that contains a main program.
When writing other modules, you must use a unit rather than a program so as not to generate an
extra main procedure. If you wish to write a library module that contains only procedures and no
main program, you would use an HLA unit. Units have a syntax that is nearly identical to
programs, there just isn’t a begin associated with the unit, e.g.,

unit UnitName;

<< Declarations >>

end UnitName;

Since a unit does not contain a main program, it cannot compile into a stand-alone program;
therefore, you should always compile units with the "-c" command line option to avoid running the
linker on the unit code (which will always produce a link error)1.

HLA uses the external keyword to communicate names between modules in a compilation
group. If a symbol is defined to be external, HLA assumes that the symbol is declared in a separate
module and leaves it up to the linker to resolve the symbol’s address.

Only two types of symbols may be external: subroutines (procedures, methods, and iterators)
and static variables2. Variables declared in the var section cannot be external because the linker
cannot statically resolve their run-time address. Constants declared in the const or val sections
cannot be external, however this is not a limitation because most programmers place public
constants in header files and include them in the source files that require them.

Recall the syntax for an original-style procedure declaration presented in the chapter on
procedure declarations:

procedure identifier (optional_parameter_list); procedure_options
declarations

begin identifier;
statements

1. Actually, the HLA.EXE program allows you to specify several ".HLA" files on the command line. The
command line option "-c" is only necessary if none of the files on the command line contain a main program.
2. For the purposes of this discussion, variables appearing in the READONLY, and STORAGE sections are
treated as static variables along with variables declared in the STATIC section.
Public Domain Created by Randy Hyde Page 345

HLA Reference Manual 5/24/10 Chapter 15
end identifier;

There are two additional forms to consider:

procedure identifier (optional_parameter_list);
options
external;

procedure identifier (optional_parameter_list);
options
external("extname");

These two forms tell the HLA compiler that it is okay to call the specified procedure, but the
procedure itself may not otherwise appear in the current source file. It is the responsibility of the
linker to ensure that the specified external procedures actually appear within the object modules the
linker is combining.

The first form above is generally used when the external procedure is an HLA procedure that
appears in a different source module. HLA assumes that the external name is the same name as the
procedure identifier.

 The second form above is generally used when calling code written in a language other than
HLA1. This form lets you explicitly state (via the string constant "extname") the name of the
external procedure. This is especially important when calling procedures whose names contain
characters that are not "HLA-Friendly." For example, many Windows API calls have at signs
("@") in their names; to call such routines you would use the second form of the external
declaration above supplying the Windows API compatible name as the parameter to the external
reserved word.

It is legal to declare an external procedure in the same source file that the procedure’s actual
code appears. However, the external declaration must appear before the actual declaration or HLA
will generate an error. Whenever an external declaration appears in the same source file as the
actual procedure code, HLA emits code to ensure that the procedure’s name is public. Therefore,
the external declaration must appear in the same file as the procedure’s code if you wish the linker
to be able to resolve the procedure’s address at link time. This external declaration serves the same
purpose as the "public" directive in other assemblers (e.g., MASM). Note that, unlike C/C++,
procedure names are not automatically public. An external declaration must appear in the same file
as the procedure code to make the symbol public.

Also, note above that the only options an external procedure declaration supports are the
@returns, @pascal, @cdecal, and @stdcall options. You cannot use the @align, @noalignstack,
@noframe or @nodisplay options in an external declaration. Conversely, if an external (or forward,
for that matter) declaration appears in a source file, the corresponding procedure code may only
contain the @align, @noalignstadk, @noframe, and/or @nodisplay options. The @returns, @pascal,
@cdecl, and @stdcall options are not legal in a procedure declaration if a corresponding external (or
forward) declaration is present in the source code.

Note: External procedures are only legal at lex level one. You cannot declare an external
procedure that is embedded inside another procedure.

In addition to procedures, HLA also lets you declare external variables. You may reference
such variables in different source modules. The declaration of an external variable is very similar
to the declaration of an external procedure: you follow the variable’s name with the external clause.
If an optional string parameter is not present, HLA uses the variable’s name as it’s external name.
If you need to specify a specific name, to avoid conflicts with other languages or to contain
characters illegal in an HLA identifier, then provide a string with the identifier you need.

Note that HLA does not allow the external keyword after every static declaration. Instead,
only the following variable declarations allow the external keyword:

name: procedure optional_parameters; @external;
name: pointer to typename; @external;
name: typename; @external;

1. Or when the HLA procedure name is a MASM reserved word.
Public Domain Created by Randy Hyde Page 346

HLA Reference Manual 5/24/10 Chapter 15
name: typename [dimensions]; @external;

In particular, note that static variable declarations with initializers cannot be external. Also
note that enum, record, and union variables (those variables you directly create as enum, record,
or union) may not be external. This is not a serious limitation, however, since you can declare a
named type in the type section and use the third form above to create an external object of the
desired type (this is also how you would declare external class variables).

 Like the C/C++ language, you normally put all your external declarations in a header file and
include that header file using the #include directive in each of the source files that reference the
external symbols. This eases program maintenance by having to change only a single definition in
an include file rather than multiple definitions across different source files (if not using include
files). See the HLA Standard Library code for some good examples of using HLA header files.

By convention, HLA header files that contain external declarations always have an ".HHF"
suffix (HLA Header File). To help make your programs easy to read by others, you should always
use this same suffix for your HLA header files.

15.3 HLA Naming Conventions and Other Languages
If you wish to link together code written in a different language with code written in HLA, you

must be aware of the differences in naming conventions between the two languages.
With respect to names, keep in mind that HLA is a case-neutral language. To the outside

world, this means that HLA is case sensitive. Therefore, all public names that HLA exports are
case sensitive. If you are using a case insensitive language like Pascal or Delphi, you should check
with your compiler vendor to determine how the language emits public names (usually, case
insensitive languages convert all public symbols to all upper case or all lower case). Some
languages, e.g., MASM, let you choose whether public symbols are case sensitive or case
insensitive; for such languages, you should select case sensitivity as the default and spell your
names the same (with respect to case) between the HLA code and the other language.

In some cases, it might not be possible to match an HLA identifier with a public or external
identifier in another language. One possible reason for this problem is that HLA only allows
alphanumeric characters and underscores in identifiers; some other languages (e.g., MASM) allow
other characters in their names while other languages (e.g., C++) often "mangle" their names by
adding additional characters that are normally illegal within identifiers (e.g., the at sign, "@").

The HLA external directive provides an option that lets you use a standard HLA identifier
within your program, but utilize a completely different identifier as the public symbol. The
standard HLA identifier restrictions do not apply to the external name1. This variant of the external
directive takes the following forms:

External procedure declaration:

procedure ProcName; @external("ExtProcName");

External variable declaration:

varName: SomeType; @external("ExtVarName");

Within the confines of the HLA program, you would use the HLA identifiers ProcName and
varName. To the outside world, however, you would use the names ExtProcName and ExtVarName to
reference these objects.

Since the external parameter is a string constant rather than an HLA identifier, you can use
characters that would otherwise be illegal in an HLA identifier. For example, Microsoft’s Visual
C++ language and Windows often insert the "@" symbol into identifiers. Normally, this character
is illegal in (user-defined) HLA symbols. You may, however, give an identifier a legal HLA name
and then specify the VC++ compatible name within the string constant. For example, here is a
typical procedure declaration found in the HLA standard library "fileio.hla" source file:

procedure WriteFile

1. However, since HLA emits the identifier to the MASM assembly language output file, the external identifier
must be MASM compatible.
Public Domain Created by Randy Hyde Page 347

HLA Reference Manual 5/24/10 Chapter 15
(
 overlapped: dword;
 var bytesWritten: dword;
 len: dword;
 var buffer: byte;
 Handle: dword
);
 @external("_WriteFile@20");

(The "@20" suffix is a Win32 convention that indicates that there are 20 bytes of parameter data in
this external function.)

As noted above, many languages "mangle" their external names for one reason or another. In
addition to the "@20" suffix in the previous example, you will also note that VC++ added a leading
underscore to the name (this procedure calls the Win32 API WriteFile function). Once again, this
name mangling is a function of the particular compiler being used. Since Windows itself is written
in VC++, Win32 API calls follow the VC++ standards for name mangling.

In addition to giving you the ability to conform external names as needed by external
languages, the string parameter of the external directive will let you change the name for more
mundane reasons. For example, if you really don’t like the external name, perhaps it is not
descriptive of the operation, you can use the string parameter feature of the external directive to
allow the use of a different, perhaps more descriptive, name in your HLA code.

Some languages, for example C++, provide function overloading. This means that a program
can use the same name to reference two completely different procedures in the code. Within the
object file, however, all names must be unique. Once again, the compiler’s name mangling
facilities come into play to generate unique names. How a particular name is mangled is extremely
compiler sensitive (e.g., Borland’s C++ mangles names differently than Microsoft’s Visual C++,
even when compiling the same exact C++ program). When deciding on the name with which to
reference an external procedure, you may need to consult your compiler documentation or be
willing to experiment around a bit.

15.4 HLA Calling Conventions and Other Languages
Of course, HLA is an assembly language, so it is possible via the push and call instructions to

mimic any calling sequence used by any language that allows the call of external assembly
language code (which covers almost all languages). However, when using the HLA high level
language features, in particular, HLA procedure declarations and calls, there are some details you
must be aware of in order to successfully call code written in other languages or have those other
languages call your code.

By default, HLA assumes that all parameters are pushed on the stack in a left-to-right order as
the parameters appear in the formal parameter list. Some languages, like Pascal and Delphi, use
this same calling mechanism. A few languages, most notably C/C++, push their parameters in the
right-to-left order. If the language expects the parameters to be in the reverse order (right-to-left), a
simple solution is to use the @cdecl or @stdcall procedure options to specify the calling
convention.

Many languages, like HLA, Pascal, and Delphi, make it the procedure’s responsibility to clear
parameters from the stack when the procedure returns to the caller. Some languages, like C/C++
make it the caller’s responsibility to clear parameters from the stack after the procedure returns to
the caller. Procedures you declare with the @pascal and @stdcall procedure options automatically
remove their parameter data from the stack when they return. Procedures you declare with the
@cdecl option leave it up to the caller to remove the parameter data from the stack. Note that when
using the HLA high-level procedure calling syntax, HLA automatically pushes the parameters on
the stack in the correct order ("correct" as defined by the procedure’s calling convention).

HLA procedures do not support a variable number of parameters in a parameter list. If you
need this facility (e.g., to call a C/C++ function) then you will need to manually push the
parameters on the stack yourself prior to calling the function. Procedures that have a variable
number of parameters almost always using the @cdecl calling convention; since only the caller
knows how much parameter data to remove from the stack, the procedure generally cannot remove
the parameter data (as the @pascal and @stdcall conventions do).
Public Domain Created by Randy Hyde Page 348

HLA Reference Manual 5/24/10 Chapter 15
15.5 Calling Procedures Written in a Different Language
When calling a subroutine written in a different language, your code must pass the parameters

as the other language expects and clean up the parameters if the target language requires your code
to do so upon return. Generally, calling code written in other languages is relatively easy. You
have to ensure that you’re passing the parameters in the proper places (e.g., in registers or pushing
them on the stack in an appropriate order). Generally, such a call only requires that you provide a
suitable external procedure declaration (e.g., swapping the order of the parameters in the parameter
list if the language passes parameters in a right-to-left order). Some languages may require
additional data structures (e.g., static links) to be passed. It is your responsibility to determine if
such data is necessary and pass it to the subroutine you are calling.

15.6 Calling HLA Procedures From Another Language
Calling HLA procedures from another language is somewhat more complex that the converse

operation. You still have the problem of parameter ordering; though this is usually fixed by
reversing the parameters in the parameter list (e.g., using the @cdecl or @stdcall procedure
options).

A bigger problem is the responsibility of cleaning up the parameters on the stack. By default,
an HLA procedure automatically removes parameter data from the stack upon return. If the calling
code thinks that it has the responsibility to do this cleanup, the parameter data will be removed
twice, with disastrous results. Such code must use the @cdecl calling convention or you must use
the @noframe option (and probably @nodisplay as well) to disable the automatic generation of
procedure entry and exit code. Then you must manually write the code that sets up the activation
record and returns from the procedure. Upon return, you must use the ret() instruction without a
numeric parameter.

HLA external procedures must always be declared at lex level one. Since the condition of the
stack is unknown upon entry into HLA code from some externally written code, your external HLA
procedures should not depend upon the display to access non-local variables. HLA procedures that
other languages call should always have the @nodisplay option associated with them. While it is
okay to access non-local STATIC objects, you should never attempt to access non-local var objects
from a procedure that code written in a different language will call.

HLA’s @pascal, @stdcall, and @cdecl procedure options cover the calling conventions of most
modern high level languages. However, other calling conventions do exist (for example, the
METAWARE compilers give you an option of passing parameters in the left-to-right order and it is
the caller’s responsibility to clean up the stack afterwards). Some languages don’t even pass their
parameters on the stack. Some languages pass some or all of the parameters in registers. If you are
linking your HLA code with a language that uses one of these non-standard calling conventions, it
is your responsibility to write the explicit HLA code that passes these parameters and cleans up the
parameter data upon return from the procedure.

15.7 Linking in Code Written in Other Languages
When linking in code written in a different language to an HLA main program, keep in mind

that the foreign code may make calls to the standard library associated with the other language.
You may need to link in that code as well. Also keep in mind that some compilers emit code that
assumes that certain initialization has occurred when the program is loaded into memory.
Unfortunately, if the main program is not written in this other language (i.e., main is written in
HLA), this initialization might not have been done. This may very well cause the routine you’re
linking into an HLA program to fail.

Conversely, be very careful about calling HLA standard library routines in code you expect to
link into programs written in other languages. The HLA standard library routines (and the
exception handling code, in particular), rely upon initialization that the HLA main program
performs. This could create a problem, for example, if you attempt to execute some procedure that
raises an exception and the exception handling code has not been initialized.

15.8 Calling HLA Code From Other Languages
As explained earlier, calling HLA procedures and functions from other languages is generally

easy. Just create an "external" procedure declaration (to make your procedure’s name public),
Public Domain Created by Randy Hyde Page 349

HLA Reference Manual 5/24/10 Chapter 15
compile the procedure as part of a unit, link it with your other code, and you’re in business. There is
one catch, and I quote from the chapter on Mixed Language Programming from the first edition of
"The Art of Assembly Language":

A large percentage of the HLA Standard Library routines include exception handling
statements or call other routines that use exception handling statements. Unless
you’ve set up the HLA exception handling subsystem properly, you should not call
any HLA Standard Library Routines from non-HLA programs.

Similarly, you should not use any exception handling statements in code that you call from
non-HLA code unless you’ve properly set up the exception handling subsystem.

Until now, that advice has simply meant "Don’t use exceptions and don’t call any routines that
use exceptions (e.g., HLA Standard Library routines) when calling HLA procedures from a non-
HLA main program." What is the reason for this tough restriction? Simple, other than myself and
perhaps a few hearty programmers who’ve probed the internals of HLA-generated code, very few
people have known how to set up the HLA exception handling system properly.

Properly setting up the HLA exception handling system isn’t that complex. In fact, once you
know what you’re doing, it’s actually quite easy. However, until now that knowledge hasn’t been
publically available, so the best advice has always been "don’t even try it." The purpose of this
section is to rectify this situation by describing what you need to do to initialize HLA’s exception
handling system.

Before going too much farther, I should point out that the information in this document is
specific to Windows. While the same concepts apply to Linux, Mac OS X, and FreeBSD there are a
few differences. If there is demand for such a thing, I’ll be more than happy to create a document
such as this one for those users. The principle differences have to do with the way x86 CPU
exceptions are handled. The general HLA exception handling mechanism is the same under all
OSes, it’s just a question of how the HLA exception handling subsystem taps into the OS’
exception system. If you're interested in seein a portable version of the following description, take
a look at the source code for the HLABE (HLA back engine) code in the HLA compiler source
files. HLABE is HLA code that a C/C++ program calls and it properly sets up the HLA run-time
system when called for the HLA compiler.

When an HLA program first starts running, it executes a (compiler-generated) call to an HLA
Standard Library procedure called BuildExcepts. BuildExcepts creates a Windows-compatible SEH
(Structured Exception Handling) record in the main program’s stack frame. This SEH record
becomes the "catch-all" for any exceptions that the program doesn’t specifically handle. Should an
exception wind its way down to this particular exception handling record, then the code executes
the programs default exception handler, that displays an error message and aborts the program.

The problem with calling HLA code from another language is that this default SEH record has
never been built, because there is no HLA main program executing that built this record upon
initial execution. When an unhandled exception comes along, the system generally crashes or
hangs as there exists no default exception handler to deal with the exception. To avoid this problem
(so you can use exceptions and call code that uses exceptions), what you have to do is manually
build that SEH record yourself. Actually, you don’t have to build the SEH record yourself - that’s
exactly what the HLA Standard Library BuildExcepts procedure does. What you have to do is call
this procedure so it can build the SEH record for you.

In a normal HLA main program, an application calls BuildExcepts exactly once - immediately
upon entry into the main program. This creates a single SEH exception handling record that sits
around on the stack until the program exits. Unfortunately, when you call HLA code from some
other language, you don’t get the opportunity to build this SEH record at the beginning of the main
program’s execution (and even if you did, there is no guarantee that the exception handling system
in place in that other language is compatible with HLA’s). Therefore, we won’t be able to build the
SEH record once and forget about it; instead, we’ll have to build the SEH record on each call to
some HLA procedure from external code, and we’ll have to tear down that SEH record before
leaving. Yep, this is all overhead that you’re going to execute on each call to an HLA function you
make from some other language. The good news is that setting up (and tearing down) the SEH
record takes less than a dozen instructions, so it’s not that big of a deal.

Setting up and tearing down the SEH isn’t the only work involved in supporting exceptions in
HLA code. There are a couple of routines and a couple of data structures that the HLA compiler
automatically generates whenever you write a main program. You’ll have to manually supply these
routines and data structures yourself.
Public Domain Created by Randy Hyde Page 350

HLA Reference Manual 5/24/10 Chapter 15
The data structures exist to support HLA coroutines. Though it’s unlikely you’ll use coroutines
in HLA code you call from C or some other language, you still have to create a coroutine data
structure for the "main program" because the HLA exception handling code references this data
structure. This is easily achieved with the following HLA code:
static

MainPgmVMT:dword:= &QuitMain;

// The following comprise the Main Program’s coroutine data structure.

MainPgmCoroutine: dword[5]; @external("MainPgmCoroutine__hla_");
MainPgmCoroutine: dword; @nostorage;

dword &MainPgmVMT, 0, 0;
SaveSEHPointer:dword; @nostorage;

dword 0, 0;

The important field in this structure is the SaveSEHPointer field. The exception handling
system expects a pointer to the previous SEH record in this field. The BuildExcepts stores the old
SEH pointer in this field, when your code returns it should restore the SEH pointer from this field.
You can ignore the remaining fields in these two data structures; they just exist to keep HLA
happy.

The HLA Standard Library provides three routines we’ll need to reference in the exception
handler code we’re setting up. However, the HLA Standard Library header files don’t provide
prototypes for all of these routines (because it would be unusual for user code to call them),
therefore, you’ll also have to manually supply prototypes for these routines. The prototypes are

procedure BuildExcepts; @external("BuildExcepts__hla_");
procedure HardwareException; @external("HardwareException__hla_");
procedure DefaultExceptionHandler; @external(
"DefaultExceptionHandler__hla_");

BuildExcepts we’ve already discussed. The HardwareException procedure is where the system
would normally transfer control on a hardware exception. The DefaultExceptionHandler is the
code that HLA jumps to whenever an exception occurs. The purpose behind these last two
procedures is to allow the HLA compiler to link in a separate set of exception handling routines
depending on whether you want a "compact" exception handler or the full exception handler (the
difference has to do with the size of the string data that HLA would link in). Throughout this paper,
we’ll assume you want to link in the full exception-handling package. See the details in the HLA
reference manual concerning exceptions (and look at the code HLA emits for short exceptions) if
you’re interested in linking in the shorter version of the exception handler (with a single generic
message rather than exception-specific messages).

In addition to the Standard Library routines given above, the HLA compiler also writes a
couple of procedures (and provides program termination code). These procedures take the
following form:

procedure QuitMain;
begin QuitMain;

ExitProcess(1);

end QuitMain;

procedure HWexcept;
begin HWexcept;

jmp HardwareException;

end HWexcept;
Public Domain Created by Randy Hyde Page 351

HLA Reference Manual 5/24/10 Chapter 15
procedure DfltExHndlr;
begin DfltExHndlr;

jmp DefaultExceptionHandler;

end DfltExHndlr;

QuitMain, in the HLA generated code, is really just a label, not a full procedure. HLA transfers
control to this label whenever it wants to terminate the program. As some exceptions will transfer
control to this label, you must supply this label in your code. All this procedure’s body need do is
return control to the operating system. You can actually sneak in anything else you want, but when
the procedure completes, it must return control to Windows (e.g., via the ExitProcess call).

The HWexcept label is where HLA’s initialization code points the "hardware exception
vector." Specifically, hardware exceptions like divide errors, segmentation faults, bounds
violations, etc., first jump to this procedure. This short procedure simply passes control to the
routine in the HLA Standard Library that actually handles the hardware exception.

DfltExHndlr is another procedure written by the HLA compiler. The purpose of this routine is
to allow HLA code to link with the full exception handler (DefaultExceptionHandler) or the short
exception handler (see the HLA standard library exception handling code for details). As noted
earlier, in this paper we’re going to use the full exception handling system.

To explain how to use all these functions and data types, an example is in order. Consider the
following C program that will call an HLA procedure named hlaFunc:

/*
** A demonstration of how you can call HLA code
** that calls the HLA Standard Library from code
** that is not an HLA main program (in this case, it's
** a "C" program).
**
** Note: this program was compiled with Microsoft VC++
** using the following command lines:
**
** c:>vcvars32
** c:>hla -c hlafunc.hla
** c:>cl cdemo.c hlafunc.obj hlalib.lib kernel32.lib user32.lib
*/

#include <stdio.h>

extern void hlaFunc(int value);

int
main(void)
{

printf("Calling HLA code\n");
hlaFunc(10);
printf("Returned from HLA code\n");

return 0;

}

As usual, we’ll place the code we want to call from our C function in an HLA unit and compile
this to an .OBJ file. Here’s the complete HLA procedure (discussion to follow):
Public Domain Created by Randy Hyde Page 352

HLA Reference Manual 5/24/10 Chapter 15
unit hlaFuncUnit;

// We want to demonstrate how to call HLA Standard Library
// routines from code that is called from C, so let's include
// the standard library right here.

#include("stdlib.hhf")

// Here's the sample function we're going to call from external
// code ("C" in this example) that demonstrates HLA stdlib calls
// and exception handling.

procedure hlaFunc(i:int32); @cdecl; @external("_hlaFunc");

// These are declarations for procedures that exist in the HLA
// standard library, but are "shrouded" in the sense that there
// aren't corresponding declarations in the stdlib.hhf file (these
// routines generally get called by HLA generated code, and nothing
// else; however, as we have to simulate "HLA generated code" here,
// we have to manually provide these declarations):

procedure BuildExcepts; @external("BuildExcepts__hla_");
procedure HardwareException; @external("HardwareException__hla_");
procedure DefaultExceptionHandler; @external(
"DefaultExceptionHandler__hla_");

// The following are forward/external declarations for procedures
// that are normally created by the HLA compiler when you write
// a "main program." As we are not using an HLA main program here,
// we have to manually create these procedures.

procedure HWexcept; @external("HWexcept__hla_");
procedure DfltExHndlr; @external("DfltExHndlr__hla_");
procedure QuitMain; @external("QuitMain__hla_");

// The following is a Win32 API function this code calls:

procedure ExitProcess(rtnCode:dword); @external("_ExitProcess@4");

// The following are some global, public, variables that the
// HLA exception handling run-time system expect the compiler
// to create for the HLA main program. Once again, as we are not
// writing an HLA main program here, we have to manually supply
// these objects:

static
MainPgmVMT:dword:= &QuitMain;

MainPgmCoroutine: dword[5]; @external("MainPgmCoroutine__hla_");
MainPgmCoroutine: dword; @nostorage;

dword &MainPgmVMT, 0, 0;
SaveSEHPointer:dword; @nostorage;

dword 0, 0;
Public Domain Created by Randy Hyde Page 353

HLA Reference Manual 5/24/10 Chapter 15
// HLA main programs provide a "QuitMain" external label that
// exception handling code can when the exception causes the
// program to abort. This label immediately terminates program
// execution. As we are not writing an HLA main program, the HLA
// compiler does not provide this code for us, we have to supply
// it manually. You can do anything you want here, as long as you
// cause the *whole* program to terminate execution. This particular
// example simply calls ExitProcess and returns a termination code
// of one (which you can change to anything you want; non-zero usually
// indicates successful completion of the application, but this label
// normally gets called when the application aborts because of some
// exception, so returning zero isn't typical in this particular case.

procedure QuitMain;
begin QuitMain;

ExitProcess(1);

end QuitMain;

// HWexcept is where the OS would normally transfer control
// when an x86 exception occurs. This procedure is normally
// written by the HLA compiler and simply jumps to an
// appropriate handler in the HLA Standard Library.

procedure HWexcept;
begin HWexcept;

jmp HardwareException;

end HWexcept;

// DfltExHndlr is where the exception handling code transfers
// control when an HLA exception occurs. This is normally
// written by the compiler (to allow the compiler to choose
// between the full and short forms of the default exception
// handler). NOTE: the following code invokes the *full*
// exception handler (lots of meaningful messages, at the
// expense of the space needed for all those messages).

procedure DfltExHndlr;
begin DfltExHndlr;

jmp DefaultExceptionHandler;

end DfltExHndlr;

// Here's the HLA code we're going to call from C that
// demonstrates exception handling without an HLA main program.

procedure hlaFunc(i:int32);
var

s:string;
saveSEH:dword;
Public Domain Created by Randy Hyde Page 354

HLA Reference Manual 5/24/10 Chapter 15
begin hlaFunc;

// Before doing anything else, save a copy of the SEH pointer:
#asm

mov eax, fs:[0]
#endasm
mov(eax, saveSEH);

// Upon entry into any HLA code that needs exception support,
// we have to set up the structured exception handling record
// for HLA:

call BuildExcepts;

// Because exception handling code can mess up all the registers,
// we need to preserve EBX, ESI, and EDI across this call:

push(esi);
push(edi);
push(ebx);

// Okay, here's the code we're going to execute that uses
// exceptions, calls HLA stdlib routines, etc., even though
// caller is not an HLA program:

try

stdout.put("stdout.put called from HLA code, i = ", i, nl);
raise(5);

 exception(5);
stdout.put("Exception handled by HLA code" nl);

endtry;

// One more demonstration, this time with an exception
// occurring deep down inside an HLA Standard Library routine:

try
stralloc(16);
mov(eax, s);
str.cpy("Hello World", s);
stdout.put("Successfully copied 'Hello World' to s: ", s, nl);
str.cpy("0123456789abcdefghijklmnop", s);
stdout.put("Shouldn't get here" nl);

 anyexception

stdout.put("Exception code: ", eax, nl);
ex.printExceptionError();

endtry;
strfree(s);
stdout.put("Returning to C code" nl);

// Restore the registers we saved earlier:
Public Domain Created by Randy Hyde Page 355

HLA Reference Manual 5/24/10 Chapter 15
pop(ebx);
pop(edi);
pop(esi);

// Restore the saved SEH value:

mov(saveSEH, eax);
#asm

mov fs:[0], eax
#endasm

end hlaFunc;

end hlaFuncUnit;

The hlaFunc procedure appearing at the end of this source file is of primary interest to us here.
The HLA function you call from C (or any other language) must begin by immediately saving the
SEH pointer and then calling BuildExcepts upon entry into the procedure. This constructs the HLA
SEH record and initializes the HLA exception handling system. Just as important, before the
procedure returns it must clean up the SEH record; this is accomplished with the last two mov
instructions in this code (including the one appearing in the #asm..#endasm sequence). Everything
between those two points is the normal body of your procedure. This code can use the try..endtry
statement, raise exceptions, and call external procedures that using try..end and/or raise
exceptions. The code appearing in this sample both demonstrates directly raising an exception and
calling an HLA Standard Library routine that raises an exception. Also note how this code is free to
call HLA Standard Library routines without fear of crashing the system should an exception occur.

It is important to realize that you must call BuildExcepts and clean up the SEH record in each
HLA procedure you call from some other language. Note, however, that you don’t have to do this
for HLA procedures that you only call from HLA code (that has already built the SEH record).

15.9 Exercising Complete Control with HLA
Note: This section was written with Windows and Unix (Linux/FreeBSD/Mac OS X)
programmers in mind. Most of the examples are Windows examples; this document
provides Unix-specific examples only when there is a major difference in the way the
compiler operates under Windows versus Unix.

A common complaint I get about HLA is that it "hides the machine from the user and generates
tons of code behind the programmer’s back." This is usually followed by something along the lines
of "true assemblers don’t do that." The truth is that the HLA compiler generates very little
extraneous code and there is actually only a little bit of overhead in an HLA program. Part of the
confusion stems from the fact that many users think of calls to the HLA Standard Library as part of
"the HLA language." For example, many programmers who see the ubiquitous "Hello World"
program written in HLA automatically assume that the "stdout.put" library call is part of the
language and demonstrates the "bloat" that exists in HLA. Obviously, such a belief is erroneous
since anyone could write their own I/O routines and replace the call to stdout.put with their code
and HLA would be none the wiser.

However, to say that there is no code overhead or to say that HLA doesn’t emit code behind
the programmers back isn’t true either. HLA was designed to make learning assembly language
programming easy for beginners. Therefore, HLA does automatically generate some code to help
beginners. Fortunately, it’s easy to turn this extra code generation off and have HLA only generate
code that you’ve written. The purpose of this document is to describe how to turn off all
extraneous code generation so you, the advanced assembly programmer, can exercise absolute
control over the machine code that HLA generates.

By the way, it is understood that if you intend to exercise absolute control over your machine
code, you won’t achieve this if you’re using HLA’s high-level control statements and certain other
Public Domain Created by Randy Hyde Page 356

HLA Reference Manual 5/24/10 Chapter 15
high level features that HLA provides. Fortunately, none of those high level features (that generate
code behind your back) are necessary in an HLA program. You can easily avoid the extraneous
code generation by simply not using those high-level control statements in your assembly
programs. Since HLA allows you to write "pure assembly code" without any high level features,
and there is nothing forcing you to use those statements, using high level control statements as an
example of HLA’s bloat is illogical. If you don’t want such bloat in your assembly programs, don’t
use those statements!

15.9.1 Overhead Present in an HLA Program
Many people naturally assume that the HLA compiler introduces a lot of extra code into the

assembly file it produces. They base their beliefs on several things including the sophistication of
the HLA Standard Library (the HLA compiler must call some code to do some initialization
required by the Standard Library, just like C), the sophistication of the data structures, and because
of HLA’s support for high-level control structures. This, however, is a misconception. Although
the HLA compiler does emit some initialization code when it compiles an HLA program, this code
is actually quite small; it’s probably under a hundred bytes, not thousands of bytes or even
hundreds of bytes. So let’s get that misconception out of the way real fast; to prove this issue, we’ll
compile an empty HLA program and take a look at the MASM and Gas code it produces.

15.9.1.1 The "empty" Program
Conceptually, the simplest program we can write (and execute) is the empty program. The

empty program compiles and runs, but just immediately returns to Windows without doing much of
anything else. One would hope that the empty program would produce the smallest possible
executable file size. Here’s the empty program in HLA:

program t;
begin t;
end t;

The Canonical Empty Program

Here’s the MASM code that (an early version of) HLA emitted (when using MASM as a back-end
assembler) under Windows for the above program:

; Assembly code emitted by HLA compiler
; Version 2.0 build 485 (prototype)
; HLA compiler written by Randall Hyde
; MASM compatible output

 if @Version lt 612
 .586p
 else
 .686p
 .mmx
 .xmm
 endif
 .model flat, syscall
 option noscoped
 option casemap:none

offset32 equ <offset flat:>
Public Domain Created by Randy Hyde Page 357

HLA Reference Manual 5/24/10 Chapter 15
 assume fs:nothing
ExceptionPtr__hla_ equ <(dword ptr fs:[0])>

 .code

 public QuitMain__hla_
 public DfltExHndlr__hla_
 public _HLAMain
 public HWexcept__hla_
 public start
 externdef shorthwExcept__hla_:near32
 externdef abstract__hla_:near32
 externdef BuildExcepts__hla_:near32
 externdef Raise__hla_:near32
 externdef shortDfltExcept__hla_:near32

 .data

 externdef MainPgmCoroutine__hla_:byte
 externdef __imp__MessageBoxA@16:dword
 externdef __imp__ExitProcess@4:dword

 .code

HWexcept__hla_ proc near32
 jmp shorthwExcept__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp shortDfltExcept__hla_
DfltExHndlr__hla_ endp

_HLAMain proc near32

start proc near32
start endp

 call BuildExcepts__hla_
 pushd 0
 mov ebp, esp
 push ebp

QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
Public Domain Created by Randy Hyde Page 358

HLA Reference Manual 5/24/10 Chapter 15
_HLAMain endp

 end

MASM Output Code for the Empty Program

Consider for a moment, the code appearing just before the main program (_HLAMain) in the
assembly (MASM syntax) file:
HWexcept__hla_ proc near32
 jmp shorthwExcept__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp shortDfltExcept__hla_
DfltExHndlr__hla_ endp

Obviously, these two jump instructions don’t add much code to the executable, but they do
jump to some external code, so it’s fair to ask about the code associated with shorthwExcept__hla_
and shortDefltExcept__hla_ (these are two HLA Standard Library modules). These two
procedures are actually quite small; their source code appears in the HLA Standard Library and is
duplicated here:

unit shortHWexceptionUnit;
?@nodisplay := true;
?@noframe := true;

#macro fallsThrough(procName, externalName);

procedure procName; @external(@string:externalName);
procedure procName; begin procName; end procName;

#endmacro

fallsThrough(shw1, SHORTHWEXCEPT__HLA_)
fallsThrough(shw2, shorthwExcept__hla_)

procedure shortHWexcept;
begin shortHWexcept;

mov(1, eax);
ret();

end shortHWexcept;

end shortHWexceptionUnit;
Public Domain Created by Randy Hyde Page 359

HLA Reference Manual 5/24/10 Chapter 15
The shorthwExcept___hla_ Procedure

static
messageBox:procedure
(

code:uns32;
var title:var;
var msg:var;
n:uns32

); external("__imp__MessageBoxA@16");

ExitProcess:procedure(code:uns32);
external("__imp__ExitProcess@4");

readonly
DefaultMessage:byte; @nostorage;

byte "Unhandled exception error.", 0;

HLAException: byte; @nostorage;
byte "HLA Exception Handler", 0;

#macro fallsThrough(procName, externalName);

procedure procName; @external(@string:externalName);
procedure procName; begin procName; end procName;

#endmacro

procedure defaultException; @external("SHORTDFLTEXCEPT__HLA_");

fallsThrough(defaultException2, shortDfltExcept__hla_);
fallsThrough(defaultException3, _shortDfltExcept__hla_);

procedure defaultException;
begin defaultException;

messageBox($30, HLAException, DefaultMessage, 0);
ExitProcess(0);

end defaultException;

The shortDfltExcept__hla_ Procedure (Win32 version)
Public Domain Created by Randy Hyde Page 360

HLA Reference Manual 5/24/10 Chapter 15
If you know anything about machine code, you’ll probably realize quick that these procedures
are very small. In fact, there are probably more bytes required for the two exception strings as the
actual object code requires. Although I haven’t actually counted the bytes, I’d guess that these two
procedures and their data are well under 100 bytes, total.

Returning to the empty program, the main program (_HLAMain) for this file contains the
following MASM code:

_HLAMain proc near32

start proc near32
start endp

 call BuildExcepts__hla_
 pushd 0
 mov ebp, esp
 push ebp

QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
_HLAMain endp

The call to BuildExcepts__hla_ and the three instructions that follow are the "overhead"
associated with a typical HLA program. The last two instruction return control to the operating
system; It’s hard to call these two instructions overhead as every Windows program is going to
need something like these two instructions (these would only be overhead if the program returns to
Windows somewhere else and these last two instructions never execute).

The three instructions following the call above set up the stack frame for the main program.
This provides access to the var objects found in the main program (there are none, or there would
actually be another sub instruction present above). In some respect, these instructions are pure
overhead since there are no automatic (var) objects in this program (and HLA sets up the stack
frame in order to access automatic variables from the main program). However, we are talking
about three instructions here that normally execute only once. I'm claiming that this isn’t an
incredible amount of bloat.

That leaves us with the call to the BuildExcepts__hla_ procedure. This is another HLA
Standard Library module that initializes HLA’s exception handling system. Here’s what the code
to the BuildExcepts__hla_ procedure looks like (for the non-threaded version, threaded code has
additional overhead and we won't consider that here):

pop(eax);

// Fill in the MainPgmCoroutine data structure:

lea(ebx, MainPgmCoroutineVMT);
mov(ebx, MainPgmCoroutine.theCoroutineVMT);
mov(0, MainPgmCoroutine.currentESP);
mov(0, MainPgmCoroutine.stackPointer);
mov(0, MainPgmCoroutine.pointerToLastCaller);

// Build an structured exception handler frame on the stack:

pushd(&DfltExHandlr);
push(ebp);
pushd(&MainPgmCoroutine);
pushd(&HWexcept);
Public Domain Created by Randy Hyde Page 361

HLA Reference Manual 5/24/10 Chapter 15
// push(fs:[0]);

xor(ebx, ebx);
fseg:push((type dword [ebx]));

// mov(esp, fs:[0]);

fseg:mov(esp, [ebx]);

// We need to initialize the main program's coroutine object
// with the pointer to the exception record we just created.
// Note that we must initialize the ExceptionContext field
// with this address:

mov(esp, MainPgmCoroutine.exceptionContext);

jmp(eax);

HLA Standard Library BuildExcepts__hla_ Procedure

Again, as you can see, there’s not a whole lot of code here. The vast majority of this code
simply initializes HLA’s exception handing subsystem. You’ve just seen all the "bloated" code
that HLA emits for most programs. You’ll see a little bit later than it’s even possible to remove all
this code from an HLA output file (assuming you can live without exception support or are willing
to write the code to support exceptions yourself).

15.9.2 The empty Program, Part II
Although the empty program of the previous section is the smallest program we can write that

will compile and run, it’s not the smallest program we can create with HLA, assuming we don’t
care if it doesn’t run. The smallest possible program you can write with HLA would consist of a
unit with a single procedure that has no instructions associated with it. The following is such an
empty program:

unit empty;

 procedure main; @external("_HLAMain");
 procedure main; @noframe;
 begin main;
 end main;

end empty;

The "empty2" Program

To properly link and produce an .EXE file without error, an HLA program must have a
procedure named _HLAMain. the external declaration above and the corresponding procedure
declaration for main achieves this. Note the presence of the @noframe procedure option. This tells
HLA to skip any extra code emission for the procedure. Here’s a typical MASM file that the above
produces when you tell HLA to emit a MASM-compatible assembly language source file:
Public Domain Created by Randy Hyde Page 362

HLA Reference Manual 5/24/10 Chapter 15
; Assembly code emitted by HLA compiler
; Version 2.0 build 483 (prototype)
; HLA compiler written by Randall Hyde
; MASM compatible output

 if @Version lt 612
 .586p
 else
 .686p
 .mmx
 .xmm
 endif
 .model flat, syscall
 option noscoped
 option casemap:none

offset32 equ <offset flat:>

 assume fs:nothing
ExceptionPtr__hla_ equ <(dword ptr fs:[0])>

 .code

 public _HLAMain
 externdef HWexcept__hla_:near32
 externdef abstract__hla_:near32
 externdef Raise__hla_:near32
 externdef shortDfltExcept__hla_:near32

 .data

 externdef __imp__MessageBoxA@16:dword
 externdef __imp__ExitProcess@4:dword

 .code

_HLAMain proc near32
_HLAMain endp
Public Domain Created by Randy Hyde Page 363

HLA Reference Manual 5/24/10 Chapter 15
 end

MASM Output File for the "empty2" Program

For this program, all of the include files are empty, so there’s no need to list them here. If you
compile this program to an executable, the resulting file is only 400-500 bytes long. This is
because there is no code, so we don’t need a 4K block associated with the code; there is no data, so
we don’t need a 4K block associated with the data segment; there is no Win32 API pointer data
because we don’t make any Win32 API calls. The PE/COFF header information still requires some
memory, which is why the file is 400-500 bytes long.

15.9.3 Overhead Associated With Exceptions
As you saw earlier in the "empty" example, there is a bit of overhead associated with HLA’s

exception support. The empty program requires somewhere around 100 bytes of data and code to
support exceptions. In fact, if you’re sloppy or unaware, HLA’s exception handling facilities can
require quite a bit more overhead. Consider the following program:

program empty3;
#include("stdlib.hhf")
begin empty3;
end empty3;

The "empty3" Program

Here’s the MASM code that the HLA compiler produces when you compile empty3
(specifying MASM output):

; Assembly code emitted by HLA compiler
; Version 2.0 build 483 (prototype)
; HLA compiler written by Randall Hyde
; MASM compatible output

 if @Version lt 612
 .586p
 else
 .686p
 .mmx
 .xmm
 endif
 .model flat, syscall
 option noscoped
 option casemap:none

offset32 equ <offset flat:>

 assume fs:nothing
Public Domain Created by Randy Hyde Page 364

HLA Reference Manual 5/24/10 Chapter 15
ExceptionPtr__hla_ equ <(dword ptr fs:[0])>

 .code

 public QuitMain__hla_
 public DfltExHndlr__hla_
 public _HLAMain
 public HWexcept__hla_
 public start
 externdef DefaultExceptionHandler__hla_:near32
 externdef abstract__hla_:near32
 externdef HardwareException__hla_:near32
 externdef BuildExcepts__hla_:near32
 externdef Raise__hla_:near32
 externdef shortDfltExcept__hla_:near32

 .data

 externdef MainPgmCoroutine__hla_:byte
 externdef __imp__MessageBoxA@16:dword
 externdef __imp__ExitProcess@4:dword
 align (4)

 .code

;/* HWexcept__hla_ gets called when Windows raises the exception. */

HWexcept__hla_ proc near32
 jmp HardwareException__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp DefaultExceptionHandler__hla_
DfltExHndlr__hla_ endp

_HLAMain proc near32
Public Domain Created by Randy Hyde Page 365

HLA Reference Manual 5/24/10 Chapter 15
start proc near32
start endp

 call BuildExcepts__hla_
 pushd 0
 mov ebp, esp
 push ebp

QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
_HLAMain endp

 end

The "empty3.asm" Output File

You’ll have to look close to see a difference between this MASM file and the one for the
original "empty" program. Here are the lines that changed:

HWexcept__hla_ proc near32
 jmp HardwareException__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp DefaultExceptionHandler
DfltExHndlr__hla_ endp

Here’s the original code:

HWexcept__hla_ proc near32
 jmp shorthwExcept__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp shortDfltExcept__hla_
DfltExHndlr__hla_ endp

The difference between the two is the standard library routines that they call. By the way, if
you compile this code to an .EXE file, you’ll discover that the .EXE file is exactly the same size as
the original code: 10,732 bytes (with HLA v2.0). However, it turns out that there is over 3K of
additional data in the empty3 version of this program. What is it that the #include("stdlib.hhf") has
done to this code?

Well, the stdlib.hhf header file includes the excepts.hhf header file and the excepts.hhf header
file assigns the value "true" to an HLA compile-time variable (@exceptions) that tells HLA whether
you want the full exception handling system or an abbreviated version. When the HLA compiler
Public Domain Created by Randy Hyde Page 366

HLA Reference Manual 5/24/10 Chapter 15
encounters the begin clause associated with the main program, it checks the value of this compile-
time variable. If it contains true, then HLA emits the HWexcept__hla_ and DfltExHndlr__hla_
procedures that transfer control to the full exception handler code (HardwareException__hla_ and
DefaultExceptionHandler__hla_). If the @exceptions compile-time variable contains false (the
default value), then HLA emits these procedures with jumps to the shortened versions of these
routines. Now the code for the full routines isn’t a whole lot larger than the code for the short
routines, the big difference is the amount of data. The short exception handler routines print a very
short generic message (the same message for all exceptions) if they wind up being invoked. The
full routines print a descriptive message that varies by the actual exception the system raises.
Therefore, the full version of the exception handling code has this really big string array and all the
data associated with that array is what consumes the better than 3K of additional space that the
empty3 program requires.

Since the @exceptions variable is a compile-time variable you can set during compilation, you
can force HLA to use the shortened default exception handlers, even if you’ve included stdlib.hhf
or excepts.hhf, by simply setting @exceptions to false prior to the begin clause of the main program,
e.g.,

program empty3;
#include("stdlib.hhf")
?@exceptions := false;
begin empty3;
end empty3;

Program 2.11^: Modified ’empty3’ Program That Uses the Short Exception Code

If you don’t really need, or care about, informative exception handling in your code, and
you’re including the excepts.hhf header file (or some other header file that indirectly includes
excepts.hhf, and this includes many of the Standard Library header files), then you can trim the size
of your program down a bit by setting @exceptions to false prior to the begin clause of your main
program. Note, however, that having nice descriptive messages is great when an exception actually
occurs; so it’s probably a good idea to use the full exception-handling package when you’re testing
and debugging your code. Then set @exceptions to false before creating your production code to
shave 3K off the executable’s size.

Note that you cannot trap any hardware exceptions (e.g., divide by zero) when using the short
exception handler. If you want to be able to trap hardware exceptions but you don’t want the
overhead of the exception string messages you’ve got a couple of choices: (1) implement Windows
structured exception handling yourself (difficult) or (2) grab the sources to the exception handling
library code and remove all the message strings. Generally, 3K is such a small amount that it isn’t
worth the effort to try and shave this data from your code.

Later, this document will discuss the overhead associated with HLA’s high-level control
statements. But as long as we’re on the subject of exceptions, it’s probably worthwhile to explore
the cost of the HLA raise and try..endtry statements. Here’s a sample HLA program that exercises
these statements and the corresponding MASM code:

program ExceptsDemo;
begin ExceptsDemo;

 #asm ;raise stmt #endasm
 raise(1);

 #asm ;try stmt #endasm

 try

 mov(0, al);

Public Domain Created by Randy Hyde Page 367

HLA Reference Manual 5/24/10 Chapter 15
 #asm ;unprotected stmt #endasm

 unprotected

 mov(1, al);

 #asm ;exception(1) stmt #endasm

 exception(1)

 mov(2, al);

 #asm ;exception(2) stmt #endasm

 exception(2)

 mov(3, al);

 #asm ;anyexception stmt #endasm

 anyexception

 mov(4, al);

 #asm ;endtry stmt #endasm

 endtry;
 mov(5, al);

end ExceptsDemo;

Sample HLA Program to Demonstrate Exceptions

; Assembly code emitted by HLA compiler
; Version 2.0 build 483 (prototype)
; HLA compiler written by Randall Hyde
; MASM compatible output

 if @Version lt 612
 .586p
 else
 .686p
 .mmx
 .xmm
 endif
 .model flat, syscall
 option noscoped
 option casemap:none

offset32 equ <offset flat:>

 assume fs:nothing
Public Domain Created by Randy Hyde Page 368

HLA Reference Manual 5/24/10 Chapter 15
ExceptionPtr__hla_ equ <(dword ptr fs:[0])>

 .code

 public QuitMain__hla_
 public DfltExHndlr__hla_
 public _HLAMain
 public HWexcept__hla_
 public start
 externdef shorthwExcept__hla_:near32
 externdef abstract__hla_:near32
 externdef BuildExcepts__hla_:near32
 externdef Raise__hla_:near32
 externdef shortDfltExcept__hla_:near32

exception__hla_5 equ Raise__hla_

 .data

 externdef MainPgmCoroutine__hla_:byte
 externdef __imp__MessageBoxA@16:dword
 externdef __imp__ExitProcess@4:dword

 .code

HWexcept__hla_ proc near32
 jmp shorthwExcept__hla_
HWexcept__hla_ endp

DfltExHndlr__hla_ proc near32
 jmp shortDfltExcept__hla_
DfltExHndlr__hla_ endp

_HLAMain proc near32

start proc near32
start endp

 call BuildExcepts__hla_
 pushd 0
 mov ebp, esp
 push ebp
Public Domain Created by Randy Hyde Page 369

HLA Reference Manual 5/24/10 Chapter 15
 ;raise stmt
 mov eax, 1
 jmp Raise__hla_

 ;try stmt
 pushd offset32 exception__hla_2
 push ebp
 db 064h
 mov ebp, ds:[0]
 push dword ptr [ebp+8]
 mov ebp, [esp+4]
 pushd offset32 HWexcept__hla_
 db 064h
 push dword ptr ds:[0]
 db 064h
 mov ds:[0], esp
 mov al, 0

 ;unprotected stmt
 db 064h
 mov esp, ds:[0]
 db 064h
 pop dword ptr ds:[0]
 add esp, 8
 pop ebp
 add esp, 4
 mov al, 1

 ;exception(1) stmt
 jmp endtry__hla_1
exception__hla_2:
 cmp eax, 1
 jne exception__hla_3
 mov al, 2

 ;exception(2) stmt
 jmp endtry__hla_1
exception__hla_3:
 cmp eax, 2
 jne exception__hla_4
 mov al, 3

 ;anyexception stmt
 jmp endtry__hla_1
exception__hla_4:
 mov al, 4

 ;endtry stmt
endtry__hla_1:
 mov al, 5
QuitMain__hla_::
 pushd 0
 call dword ptr __imp__ExitProcess@4
_HLAMain endp
Public Domain Created by Randy Hyde Page 370

HLA Reference Manual 5/24/10 Chapter 15
 end

MASM Output File From the Exceptions Source

The purpose of this document is not to explain how structured exception handling under
Windows works (upon which HLA’s exception handlers are based). Therefore, I’m not going to
bother explaining what any of the statements mean in the code above. Instead, the important thing
is to note the amount of code that each statement or clause produces.

The raise statement is simple. It loads the value of its argument into EAX and then transfers
control to the Raise__hla_ standard library procedure (see the standard library sources if you’re
interested, it is a fairly short routine, though). As you can see, the raise statement doesn’t generate
a whole lot of code.

The try..endtry statement is at the other extreme. This statement probably generates more code
than any other single high-level control statement that HLA provides1. To get an idea of the
amount of code generated for each clause, note that I’ve used the #asm..#endasm directive to inject
comments into the MASM output file and I’ve used instructions of the form "mov(const, al);" to
help delineate the code that HLA produces for each of the try..endtry clauses.

The try..endtry statement is very powerful and provides a sophisticated solution to the problem
of exception handling. However, as you can see, the try..endtry sequence generates quite a bit of
code (not a tremendous amount, but it add up if you place a lot of try..endtry statements in your
program). If you’re trying to write code that is as fast and as short as possible, you may produce
better quality code by simply returning an error status from your procedures and functions rather
than raising exceptions in those functions and relying on a try..endtry block to catch the exception.
There is no guarantee that the explicit return value approach is faster or shorter, but it usually
is.shorter and faster (though it’s nowhere near as convenient as raise/try..endtry and far more error
prone). Just something to keep in mind.

15.9.4 Overhead Associated with Procedures, Iterators, and
Methods

HLA was designed as a tool to teach assembly language programming to absolute beginners.
Therefore, it does a couple of things that, by default, make it easier on beginners but may produce
some excess code that an advanced assembly programmer would never write. One place where this
is especially true is in the declaration and invocation of HLA procedures. Fortunately, HLA
provides many options that let you control the extra code it emits for beginners (including turning
off the code generation). This section explores the options you can use to control code generation
for procedures and calls to procedures2.

By default, HLA automatically generates code at the beginning of a procedure to construct the
activation record for that procedure, align the stack to a double-word boundary, allocate local
variables, and build a display for that procedure3. HLA also automatically generates the code to
clean up the activation record and return from the procedure (and for the @stdcall and @pascal
calling sequences, this code also cleans up the parameters on the stack). Sometimes this code is
unnecessary (e.g., the procedure doesn’t have any stack-based parameters or local variables),

1. Technically speaking, this is not true. Using the conjunction(&&) and disjunction (||) operators, you can
generate some really large if, while, etc., statements. However, anyone who creates a really huge boolean
expression is going to expect a bit of code bloat).
2. This section will use the generic term "procedures" to mean any HLA procedure, iterator, or method, unless
otherwise noted.
3. Displays are advanced data structures that provide access to non-local automatic variables.
Public Domain Created by Randy Hyde Page 371

HLA Reference Manual 5/24/10 Chapter 15
slightly less than efficient (e.g., you can access all the parameters and locals off ESP and you don’t
need to set up a stack frame with EBP), or you want to do things a litttle differently for some
specific reason. Obviously, in these situations, HLA’s default behavior is not what you want.
Fortunately, HLA makes it easy to modify it’s behavior for a specific procedure or even change the
overall default behavior.

To begin with, it’s probably a good idea to look at the code HLA automatically generates for a
procedure. We’ll use the following example repeatedly with slight modifications in this section:

program ProcDemo;

 procedure demo(b:byte; w:word; d:dword; var refvar:dword);
 var
 localVar: dword;

 begin demo;

 nop();

 end demo;

begin ProcDemo;
end ProcDemo;

The Generic HLA Procedure

Here’s the MASM assembly output for the demo procedure above (for the sake of brevity, I’ll
not put the whole MASM output file here - it’s roughly the same code you’ll find in the empty
examples):

demo__hla_1 proc near32
 push ebp
 push dword ptr [ebp-4]
;/*Get frame ptr*/
 lea ebp, [esp+4]
 push ebp
 sub esp, 4
 and esp, -4
 nop
xdemo__hla_1__hla_:
 mov esp, ebp
 pop ebp
 ret 16
demo__hla_1 endp

HLA Code Generation (MASM assembly output) for the ’demo’ Procedure

Notice that the original procedure only had one instruction (a nop). HLA actually generates
nine additional instructions inside this procedure. While some of them (e.g., the ret instruction)
would have to be present, some fat here can be trimmed, depending on your circumstances.
Public Domain Created by Randy Hyde Page 372

HLA Reference Manual 5/24/10 Chapter 15
The first thing that you can usually trim away is the generation of the code that builds the
display. This is the second through fourth instructions above (push, lea, push). Displays are a
special data structure that provides access to non-local automatic variables in nested procedures.
99% of the time (or better), most assembly procedures won’t need a display. That’s because 98%
of all assembly language programmers will never nest their procedures and the 2% that do can
often pull other tricks to access non-local variables without using a display. Therefore, the vast
majority of the time you can eliminate these statements that set up the display from the procedure
code. This is easily accomplished by supplying the @nodisplay procedure option, e.g.,

program ProcDemo;

 procedure demo(b:byte; w:word; d:dword; var refvar:dword);
@nodisplay;
 var
 localVar: dword;

 begin demo;

 nop();

 end demo;

begin ProcDemo;
end ProcDemo;

HLA Demo Program with @nodisplay Option

Here’s the corresponding code that HLA emits for the program above:

demo__hla_1 proc near32
 push ebp
 mov ebp, esp
 sub esp, 4
 and esp, -4
 nop
xdemo__hla_1__hla_:
 mov esp, ebp
 pop ebp
 ret 16
demo__hla_1 endp

HLA Code Generation for Demo With @nodisplay Option

Well, this code looks a whole lot closer to a procedure with a standard entry/exit sequence.
About the only surprising piece of code here is the and instruction. HLA automatically emits this
code to guarantee that the stack is aligned upon a four-byte boundary upon entering the procedure.
If the caller has misaligned the value in ESP such that it is not an even multiple of four, certain
system calls may fail. The and instruction above ensures that ESP is double-word aligned. Unless
you mess with ESP’s value (or push word values on the stack), ESP is always double-word aligned.
Note that this is true even if you specify some number of local variables whose aggregate size is not
Public Domain Created by Randy Hyde Page 373

HLA Reference Manual 5/24/10 Chapter 15
an even multiple of four (the sub instruction above reduces ESP by the number of bytes of local
variables present, but HLA always rounds this value up to the next even multiple of four to keep
ESP double-word aligned). If you know that ESP is double-word aligned (because you’ve not
messed with the stack pointer), then the and instruction in the code above is superfluous. You may
eliminate this extra instruction by specifying the @noalignstack procedure option:

 procedure demo(b:byte; w:word; d:dword; var refvar:dword);
@nodisplay;
@noalignstack;

 var
 localVar: dword;

 begin demo;

 nop();

 end demo;

begin ProcDemo;
end ProcDemo;

HLA Demo Code With @noalignstack Option

Here’s the corresponding code that HLA emits for the program above:

demo__hla_1 proc near32
 push ebp
 mov ebp, esp
 sub esp, 4
 nop
xdemo__hla_1__hla_:
 mov esp, ebp
 pop ebp
 ret 16
demo__hla_1 endp

HLA Code Generation (MASM syntax) for Demo With @nodisplay Option

Now we’ve gotten down to the point where the code looks just like the standard entry/exit
sequence you’d expect for a procedure. Of course, we could make some changes still. For
example, the 80x86 CPU family supports two instructions, enter and leave, that you may use to
build and destroy activation records (including displays, if necessary). While these instructions are
typically slower than the discrete instructions that do the same job, they are certainly shorter and,
therefore, some programmers prefer to use them. By default, HLA generates discrete instructions
to build and destroy activation records. However, by using the @enter and @leave procedure
options, you can tell HLA to use these instructions rather than the discrete instruction sequences:
Public Domain Created by Randy Hyde Page 374

HLA Reference Manual 5/24/10 Chapter 15
 procedure demo(b:byte; w:word; d:dword; var refvar:dword);
@nodisplay;
@noalignstack;
@enter;
@leave;

 var
 localVar: dword;

 begin demo;

 nop();

 end demo;

begin ProcDemo;
end ProcDemo;

HLA Demo Code With @enter and @leave Options

Here’s the corresponding code that HLA emits for the program above:

demo__hla_1 proc near32
 enter 0, 4
 nop
xdemo__hla_1__hla_:
 leave
 ret 16
demo__hla_1 endp

HLA Code Generation for Demo With @enter and @leave Options

As you can see, this procedure is starting to become seriously shortened. HLA is emitting only
three extra instructions (down from the original nine or so).

Of course, ’real’ assembly language programmers want to write all their own code. If HLA is
automatically generating anything for them, no matter how convenient, they’re going to complain.
Well, HLA provides the @noframe procedure option that eliminates all code generation other than
the explicit machine instructions the programmer provides. Note that supplying @noframe
implicitly supplies @noalignstack and, to a certain extent, @nodisplay since @noframe turns off all
extra code generation in a procedure1. Here are the examples above specifying @noframe:

 procedure demo(b:byte; w:word; d:dword; var refvar:dword);

1. Note, however, that if @noframe is not present, HLA will still assume you want to allocate storage for a
display and will consider this fact when assigning offsets to local variables found in the procedure. Therefore, it’s a
good idea to go ahead and specify @nodisplay along with @noframe.
Public Domain Created by Randy Hyde Page 375

HLA Reference Manual 5/24/10 Chapter 15
@nodisplay; // Still should be here, see footnote
@noframe;

 var
 localVar: dword;

 begin demo;

 nop();

 end demo;

begin ProcDemo;
end ProcDemo;

HLA Demo Code With @noframe Option

Here’s the corresponding code that HLA emits for the program above:

demo__hla_1 proc near32
 nop
demo__hla_1 endp

HLA Code Generation for Demo With @nodisplay and @noframe Options

Now, however, we have a problem. There is no ret instruction to return from this procedure.
But that’s okay, the "macho" assembly programmer who doesn’t want HLA generating any code
for them surely wants the program to fall through this procedure to the next instruction in memory,
or they wouldn’t have left out the ret instruction in the original code. Here’s what the procedure
would normally look like when the @noframe option is present:

 procedure demo(b:byte; w:word; d:dword; var refvar:dword);
@nodisplay; // Still should be here, see footnote
@noframe;

 var
 localVar: dword;

 begin demo;

 nop();
 ret(16);

 end demo;

begin ProcDemo;
end ProcDemo;
Public Domain Created by Randy Hyde Page 376

HLA Reference Manual 5/24/10 Chapter 15

@e d

A

@n

@l)

A

@n

@d

@n

@a

@n

@f e

o

@n
HLA Demo Code With @noframe and @nodisplay Options (Part II)

For those who want to write all their own code and not have HLA generate anything extra code
in their procedures, constantly attaching @noframe and @nodisplay to every procedure declaration
can get old, fast. Fortunately, HLA provides a mechanism that lets you set the default state for all
of these procedure options.

As shipped, HLA defaults to the following options: @frame, @display, @alignstack,
@noenter, and @noleave. You can change the defaults by using these options as compile-time
variables and setting them to true or false. Here are the possible options:

: Procedure Options and Their Effect on Code Generation
Option Effect if set to true Effect if set to false

nter HLA generates ENTER instruction to build
activation records upon procedure entry.
Note that @frame must also be true for HLA
to emit this code.

HLA generates discrete instructions to buil
activation records upon procedure entry.
Note that @frame must also be true for HL
to emit this code.

oenter Same as setting @enter to false. Same as setting @enter to true.

eave HLA emits the leave instruction to clean up
the activation record upon exit. Note that
@frame must also be true for HLA to emit
this code.

HLA emits discrete instructions (mov, pop
to clean up the activation record upon exit.
Note that @frame must also be true for HL
to emit this code.

oleave Same as setting @leave to false. Same as setting @leave to true.

isplay HLA emits instructions that allocate storage
for and initialize a display structure. If
@enter is true, HLA emits an enter
instruction to accomplish this, otherwise it
emits discrete instructions. Note that
@frame must also be true for HLA to emit
this code.

HLA does not emit any instructions that
allocate or initialize the display structure.

odisplay Same as setting @display false. Same as setting @display true

lignstack HLA emits an and instruction that guarantees
ESP is double-word aligned after allocating
local variables. Note that @frame must also
be true for HLA to emit this code.

HLA does not emit the and instruction that
double-word aligns ESP.

oalignstack Same as setting @alignstack to false. Same as setting @alignstack to true.

rame HLA generates code to construct the stack
frame and other duties (e.g., align the stack if
@alignstack is true, build the display if
@display is true).

HLA does not generate any extra code for th
procedure. It is the programmer’s
responsibility to write any necessary code t
build the stack frame, if required.

oframe Same as setting @frame to false Same as setting @frame to true.
Public Domain Created by Randy Hyde Page 377

HLA Reference Manual 5/24/10 Chapter 15
The "macho" assembly language programmer will probably include the following two
statements at the beginning of every HLA program they write:

?@noframe := true;
?@nodisplay := true;

The inclusion of these two statements tells HLA that the programmer is responsible for writing all
the code that appears within the source file. Note that you may re-enable display and frame
generation on a procedure-by-procedure basis by using the @frame and @display procedure
options. See the discussion of procedure options in the HLA reference manual for more details.

Note that HLA still makes parameter names and local variable names available to your
procedures when you specify the @noframe option. However, the offsets associated with these
variables assume that you’ve built a standard stack frame and that you’re going to reference the
objects off EBP. If this is not the case, then you should not use the parameter and local variable
names in your code; you’ll have to use numeric offsets (say, from ESP) or, better yet, create TEXT
constants that provide the necessary offsets from ESP, e.g.,

program ProcDemo;

?@noframe := true;
?@nodisplay := true;

 procedure demo(_d:dword; var _refvar:dword);
 const
 d :text := "(type dword [esp+12])";
 refvar :text := "(type dword [esp+8])";
 localvar:text := "(type dword [esp])";
 begin demo;

 pushd(0); // Allocate _localVar and initialize to zero.
 mov(d, eax);
 mov(eax, localvar);
 mov(refvar, ebx);
 mov(eax, [eax]);
 add(4, esp); // Remove localvar from stack.
 ret(8); // Return and pop parameters

 end demo;

begin ProcDemo;
end ProcDemo;

Using TEXT Constants to Access Parameters and Local Variables

demo__hla_1 proc near32
 pushd 0
 mov eax, dword ptr [esp+12]
 mov dword ptr [esp], eax
 mov ebx, dword ptr [esp+8]
 mov [eax], eax
 add esp, 4
Public Domain Created by Randy Hyde Page 378

HLA Reference Manual 5/24/10 Chapter 15
 ret 8
demo__hla_1 endp

Code Generation for the Above HLA Procedure (MASM syntax output)

15.9.5 Overhead Associated with Procedure Calls
As long as you manually pass the parameters yourself and use the call instruction, HLA does

not inject any extra instructions into your code. However, if you use HLA’s high-level procedure
call syntax, HLA may very well emit some extra instructions into the code stream. If this bothers
you, well, don’t use the high level calling syntax - stick with the manual ("pure assembly") calling
syntax.

However, the high level calling syntax is very convenient, it is far more readable and
maintainable, and most of the time it generates exactly the same code you’re going to write by
hand. Therefore, it makes sense to use it as often as you can and understand the degenerate cases
(where HLA emits some bad code) so you can code those by hand when efficiency is a prime
concern.

First, HLA does a great job with "pass by value" parameters when the size of the value is four,
eight, or 16 bytes. Such parameters generally require only a single instruction per double word to
push on the stack prior to the call1. As the objects get larger, passing them by value gets very
expensive. At some point, HLA doesn’t bother trying to push the data on the stack, instead, it uses
a movsd instruction to copy the data onto the stack. The following code shows what happens when
you try to pass a 256-byte variable by value:

program ProcDemo;

type
 b256:byte[256];

 procedure demo(b:b256);
 begin demo;
 end demo;

static
 c:b256;

begin ProcDemo;

 demo(c);

end ProcDemo;

Code That Passes a 256-byte Array by Value

 lea esp, [esp-256]
 push esi
 push edi
 push ecx
 pushfd

1. Assuming of course, you’re passing the parameters on the stack and not ina register.
Public Domain Created by Randy Hyde Page 379

HLA Reference Manual 5/24/10 Chapter 15
 cld
 lea esi, c__hla_2
 mov ecx, 64
 lea edi, [esp+16]
 rep movsd
 popfd
 pop ecx
 pop edi
 pop esi
 call demo__hla_1

MASM Code HLA Emits for the Call to ’demo’ Above

This isn’t an example of HLA generating bloated code. HLA is doing a reasonable job given
the request of the source code. However, HLA makes it so easy to write code that blows up like
this that you can often make a mistake and pass a large data structure by value, causing HLA to
generate a fair amount of slowing executing code. Actually, once you get above 64 bytes, HLA
usually generates a sequence like the one above (with possibly one or two additional instructions if
the object’s size is not an even multiple of four bytes. So the size won’t change too much as the
object gets larger, but the execution time required by the rep movsd instruction goes up linearly
with the size of the object. Moral of the story: unless there are good semantic reasons for doing so,
always pass large objects by reference rather than by value. Watch out for this, because HLA will
gladly emit the code to pass it by value without complaining.

Note that for parameters up to 64 bytes in size, HLA will actually emit a series of discrete push
instructions. For parameters that are 16 bytes or less, this is no big deal (it only takes four push
instructions to pass a 16-bit parameter by value). However, it’s going to take 16 push instructions
to pass a single 64-bit parameter by value to a procedure. This can cause some serious code bloat if
you’re doing this a lot. Moral: same as before, pass large objects by reference rather than by value
(large is probably anything greater than 16 bytes in size).

HLA can go through some real gymnastics attempting to pass small parameters by value, as
well. Because most modern (32-bit) operating systems always expect the stack to be double-word
aligned, HLA (like most languages and OS API functions) always passes a parameter using a
multiple of four bytes to hold that value. So if you’re passing an object that’s one, two, or three
bytes in size, HLA will pass four bytes as the actual parameter. The procedure (generally, this is
actually up to the programmer) ignores the extra bytes. This creates a problem when attempting to
pass certain parameters on the stack; HLA solves these problems at the expense of greater code.
Consider the following HLA program that has a one byte parameter and calls the procedure several
different ways:

program smallParmDemo;

procedure byteParm(b:byte);
begin byteParm;
end byteParm;

static
 b:byte;

begin smallParmDemo;

 byteParm(b);
 byteParm(al);
 byteParm(ah);
 byteParm((type byte [eax]));
Public Domain Created by Randy Hyde Page 380

HLA Reference Manual 5/24/10 Chapter 15

end smallParmDemo;

Procedure with a One-Byte Parameter

Here’s the MASM code HLA generates for each of the calls to byteParm:

 pushd 0
 push eax
 mov al, b__hla_2
 mov [esp+4], al
 pop eax
 call byteParm__hla_1
 push eax
 call byteParm__hla_1
 sub esp, 4
 mov [esp], ah
 call byteParm__hla_1
 pushd 0
 push eax
 mov al, byte ptr [eax]
 mov [esp+4], al
 pop eax
 call byteParm__hla_1

MASM Code HLA Generates for the Calls to byteParm

Many of these calls have an incredible amount of bloat! Any mediocre assembly programmer
can probably do a better job than this! Why is HLA so bad? The reason HLA generates some ugly
code here is because HLA makes a promise that it won’t change any register values when passing
parameters to a procedure (just in case you’re passing some additional parameters in some
registers). This promise severely impacts HLA’s options when it comes to copying parameter data
to the stack1. Indeed, about the only option HLA has when it needs a register is to preserve that
register’s contents while copying the parameter data. Consider the first call to byteParm above
(passing the byte variable b). HLA first makes room for b on the stack by pushing a double word
zero value. The HLA emits code to push the value of EAX, copy b’s value into AL, store AL into
the stack location allocated earlier, and then restore EAX’s original value.

Now the clever assembly programmer might claim that this could be done far more efficiently
with a single instruction, as follows:

push((type dword b));

99.999% of the time, that programmer would be right; this is a much better way to pass a single
byte parameter in a dword slot on the stack (this instruction pushes the value of the three bytes the
follow b in memory, but since the procedure will ignore those three bytes anyway, who cares?).
Unfortunately, this trick fails spectacularly in one very special (and, admittedly, rare) case.
Consider what happens when b is allocated as the 4096th byte in a page and the next page in
memory is not read-enabled. This is cause the program to crash. Granted, it’s incredibly unlikely

1. It is interesting to note that MASM does not make this same promise. It will happily wipe out the EAX
register if it needs a scratch-pad register while passing parameter data to a procedure via the INVOKE statement. I
like to believe that HLA is a bit more "civilized" in this regard.
Public Domain Created by Randy Hyde Page 381

HLA Reference Manual 5/24/10 Chapter 15
that this will ever happen in an HLA program. However, HLA’s design can’t assume that it won’t
ever happen. So HLA has to generate safe, but ugly, code.

Of course, there’s nothing preventing you from recognizing this problem and manually
pushing b’s value as a dword yourself. E.g., either of the following will work:

push((type dword b));
call byteParm;

-or-

byteParm(#{ push((type dword b)); }#);

As long as you can ensure that there are three reasonable bytes following b, this scheme is quite a
bit more efficient than the default code HLA generates.

The second and third calls to byteParm in the example above are the ones where HLA actually
generates halfway decent code. If the byte parameter falls in the L.O. byte of a 32-bit register,
HLA will simply push the contents of that 32-bit register onto the stack. You aren’t going to do
any better than this (short of passing the parameter in a register, rather than on the stack). The
second call, passing the byte parameter in AH (or any other byte register that is not the L.O. byte of
a 32-bit register) needs two instructions: one to allocate storage on the stack (push) and another to
copy the register’s value onto the stack. An expert assembly language programmer, if they know
they’ve got a register to play around with, can, perhaps, generate slightly better code by copying the
8-bit value to the L.O. byte of that register and then pushing the full register, e.g.,

mov(al, bl);
push(ebx);

This sequence is slightly shorter, though probably not any faster, than the code that HLA generates.

The fourth example above is really just a special case of the first example. If you look at the
two code sequences, you’ll notice that they are equivalent.

HLA generates less than stellar code for some of these sequences because it assumes that all
registers are in use and it shouldn’t modify any register values. Obviously, this is not always the
case when you’re calling a procedure. However, it’s a rather difficult problem for HLA to
automatically determine if there is a free register available that it can use while passing parameters.
Fortunately, HLA provides a way for you to tell it that it can freely use one register (which is all it
needs) for processing parameters: the @use reg procedure option. Consider the following
modification of the previous program:

program smallParmDemo;

procedure byteParm(b:byte); @use ebx;
begin byteParm;
end byteParm;

static
 b:byte;

begin smallParmDemo;

 byteParm(b);
 byteParm(al);
 byteParm(ah);
 byteParm((type byte [eax]));

end smallParmDemo;
Public Domain Created by Randy Hyde Page 382

HLA Reference Manual 5/24/10 Chapter 15
byteParm and @use ebx

The @use ebx option tells HLA that it can freely use the EBX, BX, BL, and BH registers when
generating the code to pass parameters to this procedure. Here’s the (MASM-syntax) code HLA
generates when you allow it to use the EBX register in this capacity:

 mov bl, b__hla_2
 push ebx
 call byteParm__hla_1
 push eax
 call byteParm__hla_1
 sub esp, 4
 mov [esp], ah
 call byteParm__hla_1
 mov bl, byte ptr [eax]
 push ebx
 call byteParm__hla_1

HLA Generated Code for the Above Calls to byteParm

As you can see, the code is much better than before (not quite as good since it still doesn’t assume
it can push b directly onto the stack, but much better nonetheless). Of course, if you want to take
absolute control, you can always push the parameter manually.

Of course, the stack isn’t the most efficient place to pass parameters. The x86 registers are the
best place to pass parameters (subject to the constraint that they fit in the registers). Note that HLA
will allow you to pass parameters in register using a high level calling syntax as follows:
procedure parmsInRegs(a:dword in eax; var b:byte in ebx);

.

.

.

There’s nothing stopping you in HLA from simply loading a register with some value prior to a call
and referencing that register inside the procedure without declaring any formal parameters. The
nice thing about using the high level declaration and calling syntax is that HLA will automatically
move the value into the register for you if you specify an actual parameter other than the register for
that parameter. However, since there’s not much in the way of bloat here, there’s really no sense in
discussing it farther in this document. See the HLA reference manual for more details.

Reference parameters have their own special problems. As long as you’re passing a non-
indexed static address (that is, the address of a static, readonly, or storage) object by reference,
HLA generates good code (a single push instruction). However, once you throw in an index
register or specify an automatic variable (whose offsets are indexed off EBP), HLA has to emit an
LEA instruction to compute the effective address of the operand. Since the lea instruction requires
a register, we’re back to the same problem we had with the byte-sized operand earlier. Well, the
solution is the same: if you want decent code, either pass the address manually or specify an @use
procedure option to tell HLA that it can use a register for computing effective addresses.

HLA supports several other parameter passing mechanisms. This document won’t cover them
for two reasons: (1) 99% of the assembly language programmers out there have probably never
heard of these parameter passing mechanisms, and (2) the 1% of them who have, know that they’re
usually inefficient anyway (and fast/short code avoids them like the plague).
Public Domain Created by Randy Hyde Page 383

HLA Reference Manual 5/24/10 Chapter 15
15.9.6 Bloat in the HLA Standard Library

If you want to understand the purpose of every byte in your HLA programs you don’t call HLA
Standard Library routines. It’s not that they’re incredibly poorly written, but they’re "black boxes"
and unless you sit down and study their source code, you have no idea what (private) data they
declare, what routines they call, or anything else about their efficiency.

The HLA Standard Library routines were not written to be the fastest nor the shortest examples
of HLA code. They were written to be easy to read, understand, and maintain. Furthermore, many
of the routines build upon other routines. A classic example is the stdout.puti8 routine. This
procedure takes a single byte parameter. It calls the conv.i8ToStr procedure to convert the value to a
string, and then calls the fileio.puts function to actually print the string (specifying the standard
output file handle as the "file"). The conv.i8ToStr function zero extends the eight-bit value to 16 bits
and calls the conv.i16ToStr function. The conv.i16ToStr function zero extends its 16-bit value to 32
bits and calls the conv.i32ToStr function. The conv.i32ToStr function converts its 32-bit value
(include 24 bits of zeros at this point) to a string and the chain of calls pass the string back to the
original call from stdout.puti8. Each of these routines (except conv.i32ToStr, which does all the real
work) is very short and trivial. If you program winds up calling all of these routines, this is
probably the most compact representation you could devise. However, this obviously requires a lot
more code than had the standard library simply provided a conv.i8ToStr function that did the
conversion directly. Furthermore, all those extra calls, plus the fact that converting a 32-bit value
to a string is more expensive than converting an eight-bit value to a string, means the code is going
to run a bit slower. Therefore, if speed and/or space are prime considerations in your program,
avoid the HLA Standard Library (or, always start with the source code to the routine you want to
call and clean it up so avoid long call chains like the one in the above example).

There is another source of bloat that is indirectly related to the HLA Standard Library. The
HLA Standard Library was modeled after the standard libraries found in C, C++, and other high
level languages. As a result, calling these library routines causes you to "think" like a C
programmer. As any expert assembly programmer can tell you, "thinking in assembly" is the only
way to write efficient assembly programs. Even if all the routines in the HLA Standard Library
were written as efficiently as possible, the mindset they leave you in is not conducive to writing
efficient code. Therefore, take care when using the HLA Standard Library because it can cause you
to write sloppy code if you’re not carefully considering what you’re doing at each step in your
code.

15.9.7 Taking Control with HLA Units
Reading the HLA reference manual, you might get the impression that HLA applications are

written as programs and separately compiled modules that you link with HLA or applications in
other languages are written using units. HLA units are actually a bit more flexible than this, if
you’re willing to play some games. In particular, HLA units can completely free you from the yoke
of HLA compiler-generated code and give you an environment where the only instructions that
appear in your executable file are those instructions you write. This section will describe how to
use HLA units to achieve this.

Fundamentally, there are only a couple of differences between HLA units and HLA programs.
HLA programs allow you to declare automatic variables in a global var section, units do not1. The
major difference, of course, is that HLA units don’t have a "main program" associated with them as
HLA programs do. If you look at the code that HLA generates for units and programs, you see only
a couple of differences between the output files. Specifically, HLA collects all the code from the
main program and creates a procedure named _HLAMain (_start). In addition, HLA emits some
support code to initialize the exception handling system for programs, none of this code appears in
the assembly output file for a unit. Other than these two issues, HLA units and programs are
semantically equivalent.

To prove this point, the following is an HLA unit that compiles to the same exact code as the
standard Hello World program.

unit unitAsPgm;
#include("stdout.hhf")

1. Which makes sense because VAR objects are always associated with a procedure or the HLA main program.
In a unit, there is no main program with which you can associate automatic variables.
Public Domain Created by Randy Hyde Page 384

HLA Reference Manual 5/24/10 Chapter 15
?@nodisplay := true;
?@noframe := true;

// Make these names public so the library routines
// and linker can find them.

procedure _HLAMain; @external;
procedure HWexcept__hla_; @external;
procedure DfltExHndlr__hla_; @external;

// The following are HLA Standard Library procedures.
// Just make 'em labels rather than procs because we
// just JMP to these labels.

label
 shorthwExcept__hla_; @external;
 shortDfltExcept__hla_; @external;
 BuildExcepts__hla_; @external;
 QuitMain; @external("QuitMain__hla_");

static

 // The following is the link to the Win32 API ExitProcess procedure
 // address.

 __imp__ExitProcess :dword; @external("__imp__ExitProcess@4");

 // The main program needs a coroutine object for
 // use by the exception handling subsystem:

 MainPgmCoroutine__hla_: dword; @external;
 MainPgmCoroutine__hla_: dword; @nostorage;
 dword &MainPgmVMT__hla_;
 dword 0,0,0,0;

 MainPgmVMT__hla_: dword := &QuitMain;

// The following are needed to provide linkage to
// the HLA exception handling routines.

procedure HWexcept__hla_;
begin HWexcept__hla_;
 jmp shorthwExcept__hla_;
end HWexcept__hla_;

procedure DfltExHndlr__hla_;
Public Domain Created by Randy Hyde Page 385

HLA Reference Manual 5/24/10 Chapter 15
begin DfltExHndlr__hla_;
 jmp shortDfltExcept__hla_;
end DfltExHndlr__hla_;

procedure _HLAMain;
begin _HLAMain;

 call BuildExcepts__hla_;
 pushd(0); // no dynamic link (previous proc's EBP).
 mov(esp, ebp); // Set up our stack frame.
 push(ebp); // Main's display.

 // << put main program code here >>

 stdout.put("Hello World" nl);

end _HLAMain;

// Fall through from the above and return to Windows.
// (this needs to be outside _HLAMain because QuitMain__hla_
// needs to be a public name).

procedure QuitMain;
begin QuitMain;

 pushd(0);
 call(__imp__ExitProcess);

end QuitMain;

end unitAsPgm;

Hello World Program Written as a Unit

The HLA compiler instructs the linker to start program execution at the label _HLAMain. By
writing a procedure named _HLAMain and making this name public (via the external directive),
this unit provides an HLA "main program" that the OS will invoke immediately after loading the
program into memory. This main program explicitly contains the instructions that the HLA
compiler would normally emit for a program (the call to BuildExcepts__HLA_ and setting up the
activation record). Following the initialization code is the invocation of the stdout.put macro that
prints "Hello World" to the standard output. One unusual feature of this code is that the QuitMain
label has to be global and public (i.e., we can’t simply put the code that returns to Windows inside
the _HLAMain procedure because external code references this label and you can’t reference local
labels from outside a procedure). The alternative would be to duplicate the code, but then we
wouldn’t have the semantic equivalent of the original Hello World program. If you compare the
assembly output of this code with the assembly output of the standard Hello World program, you’ll
find that the code is nearly identical (about the only real difference is the extra procedure
surrounding the code that returns to the OS; of course, this does not change the executable file one
byte).
Public Domain Created by Randy Hyde Page 386

HLA Reference Manual 5/24/10 Chapter 15
Of course, it doesn’t make any sense to simply duplicate the effects of an HLA program within
a unit (other than to prove it can be done). The real reason for using units in this fashion is to gain
complete control over the code appearing in the executable file. Specifically, I’m assuming you
want to dump some of the initialization code, data structures, and support code that exist primarily
for the benefit of the HLA run-time system and exception handling subsystem. Here’s the bottom
line, if you want to take full responsibility for all the code appearing in your HLA program, write it
as a unit and create an _HLAMain procedure to serve as your main program (note: Linux users need
to name their main program _start). Here’s the template you should use:

unit barebones;

?@nodisplay := true;
?@noframe := true;

procedure _HLAMain; @external;

procedure _HLAMain;
begin _HLAMain;

// Put the code for your main program here.

end _HLAMain;

end barebones;

Bare Bones HLA Program Implemented via a Unit

If you write your code using this "barebones" unit as a template, you’re going to be in complete
control of the code in your program. Do keep in mind that unless you initialize the exception
handling system using the code given earlier (BuildExcepts__HLA_, etc.), you’ll not be able to use
HLA exceptions and that pretty much means you can’t call any HLA Standard Library routines
(since a large percentage of those can raise an exception). However, you will have completely
escaped HLA’s interference with your code and the only machine instructions that will find their
way into your programs are the ones you write (or the code associated with any external routines
you call).

I’ve made a big deal about using HLA units to give you complete control over the code HLA
emits. Throughout this document, I’ve given the impression that only hard-core, die-hard, macho,
assembly language programmers would want to do this. Actually, there are many real-world
applications where the code that HLA emits for programs would be inappropriate. A classic
example is the need to write dynamic link libraries. Such code has to be implemented as a unit,
you cannot use an HLA procedure for such code.

15.9.8 Hello World, Revisited
This document lamented about the size of a typical Hello World program and mentioned that

it’s possible to write a shorter version of the program using HLA. In this section, we’ll explore
how to write a short version of this program. Actually, let’s forget exploring and jump right into
things.

Based on what I’ve said about the HLA Standard Library, it should come as no surprise that
the smallest Hello World program is not going to call any Standard Library routines. The most
compact Hello World program is going to make direct OS API calls. Well, without further ado,
here are the compact versions of the Hello World program for Windows and Linux (different
versions are necessary since the OS APIs are different).

unit HelloWorld;
Public Domain Created by Randy Hyde Page 387

HLA Reference Manual 5/24/10 Chapter 15
?@noframe := true;

procedure main; @external("_HLAMain");

static

 WriteFile:procedure
 (
 Handle: dword;
 var buffer: var;
 len: dword;
 var bytesWritten: dword;
 overlapped: dword
);
 @use edx;
 @stdcall;
 @external("__imp__WriteFile@20");

 GetStdHandle:procedure
 (
 WhichHandle:int32
);
 @stdcall;
 @external("__imp__GetStdHandle@4");

 ExitProcess:procedure(exitcode:dword);
 @stdcall;
 @external("__imp__ExitProcess@4");

procedure main;
var
 BytesWritten :dword;
begin main;

 GetStdHandle(-11);
 WriteFile(eax, &hwString, 13, BytesWritten, 0);
 ExitProcess(0);

 hwString: byte "Hello World", $d, $a;

end main;

end HelloWorld;

Windows Version of the Short Hello World Program

Here’s the Linux version of this program:

unit hw;
Public Domain Created by Randy Hyde Page 388

HLA Reference Manual 5/24/10 Chapter 15
procedure main; @external("_start");

procedure main; @noframe;
begin main;

 // Print Hello World:

 mov(4, eax);
 mov(1, ebx);
 lea(ecx, helloWorld);
 mov(12, edx);
 int($80);

 // return to Linux:

 mov(1, eax);
 mov(0, ebx);
 int($80);

 helloWorld: byte "Hello World", $a;

end main;

end hw;

Linux Version of the Short Hello World Program
Public Domain Created by Randy Hyde Page 389

HLA Reference Manual 5/24/10 Chapter 16
16 The HLA Memory Model and Memory Addressing
Modes

This chapter describes how HLA views memory at run time and how individual instructions
can access memory.

16.1 The HLA Memory Model
HLA uses a variant of the standard a.out memory model. The a.out memory model organizes

data in an executable file into three distinct segments (or sections) and organizes run-time memory
allocation into five distinct sections. Though it is possible to create fancier memory models, the
a.out memory model is a time-proven tried-and-true memory model that supports the creation of
almost any imaginable executable file.

During compilation, HLA organizes the object code it produces into one of four sections: a
code (or text) section, a readonly data section, a static (initialized) data section, and a static
(uninitialized) bss section. (bss is an old assembly language term that stands for Block Started by
Symbol; the modern meaning of this term is any block of variables that aren't given a non-zero
initial value when loaded into memory.) When HLA writes the object file to disk, it combines the
readonly and text/code sections into a single section in the object file (the text section); therefore,
there are only three sections of interest in the object code file. The object file might also contain
other data such as symbol tables, string tables, and relocation tables, but such data is not present in
the run-time code and is of no interest to us here.

When the operating system loads an HLA executable file into memory, it loads the text, data,
and bss sections into their respective regions in memory before transferring control to the main
program (which will be in the text section). In addition to these three sections that exist in the
executable file's disk image, an HLA program generally references two other sections of memory at
run time: the stack area and the heap. These two areas are created dynamically at run time by the
operating system and the HLA run-time system.

The text and the data sections in memory correspond almost byte-for-byte with their respective
sections in the executable disk file. Indeed, the only difference between the sections in the disk
image and the sections in memory at run time is that the run-time image may have been relocated
to a new address.

The bss section disk image doesn't contain any actual data. This is just a data structure in the
disk image that tells the operating system how much storage to set aside when loading the
executable into memory. The operating system will allocate the storage, fill it with zero bytes, and
then adjust all the addresses in the text and data sections that reference the bss section. The size of
the bss section is solely determined by the number of bytes of variables declared in the storage
declaration sections of the HLA program.

Different operating systems arrange the text, data, and bss sections differently in memory;
however, all of the data in one such section usually resides in one contiguous block of run-time
memory. Multi-threaded applications can have multiple stacks, but the program generally starts
with one stack section. The number of heap sections in memory depends entirely on how the
operating system implements memory allocation.

You should realize that the HLA text/code section may contain data as well as machine
instructions. Data you declare in an HLA readonly section and any necessary constants (such as
string constants that HLA generates) are merged in with the machine instructions in the text section.

16.2 Memory Addressing Modes in HLA
HLA supports all the 32-bit addressing modes of the Intel 80x86 instruction set1. A memory

address on the 80x86 may consist of one to three different components: a displacement (also called

1. It does not support the 16-bit addressing modes since these are not very useful under Win32 or Linux.
Public Domain Created by Randy Hyde Page 390

HLA Reference Manual 5/24/10 Chapter 16
an offset), a base pointer, and a scaled index value. The following are the legal combinations of
these components:

displacement
basePointer
displacement + basePointer
displacement + scaledIndex
basePointer + scaledIndex
displacement + basePointer + scaledIndex

The following addressing modes are legal, but are mainly useful only within an lea instruction:

scaledIndex
scaledIndex + displacement

HLA’s syntax for memory addressing modes takes the following forms:

staticVarName

staticVarName [constant]

staticVarName[breg32]

staticVarName[ireg32]

staticVarName[ireg32*index]

staticVarName[breg32 + ireg32]

staticVarName[breg32 + ireg32*index]

staticVarName[breg32 + constant]

staticVarName[ireg32 + constant]

staticVarName[ireg32*index + constant]

staticVarName[breg32 + ireg32 + constant]

staticVarName[breg32 + ireg32*index + constant]

staticVarName[breg32 - constant]

staticVarName[ireg32 - constant]

staticVarName[ireg32*index - constant]

staticVarName[breg32 + ireg32 - constant]

staticVarName[breg32 + ireg32*index - constant]

localVarName

localVarName [constant]

localVarName[ireg32]

localVarName[ireg32*index]
Public Domain Created by Randy Hyde Page 391

HLA Reference Manual 5/24/10 Chapter 16

localVarName[ireg32 + constant]

localVarName[ireg32*index + constant]

localVarName[ireg32 - constant]

localVarName[ireg32*index - constant]

basereg:globalVarName

basereg:globalVarName [constant]

basereg::globalVarName[ireg32]

basereg::globalVarName[ireg32*index]

basereg::globalVarName[ireg32 + constant]

basereg::globalVarName[ireg32*index + constant]

basereg::globalVarName[ireg32 - constant]

basereg::globalVarName[ireg32*index - constant]

[breg32]

[breg32 + ireg32]

[breg32 + ireg32*index]

[breg32 + constant]

[breg32 + ireg32 + constant]

[breg32 + ireg32*index + constant]

[breg32 - constant]

[breg32 + ireg32 - constant]

[breg32 + ireg32*index - constant]

The following are legal, but are only useful within the lea instruction:

[ireg32*index]

[ireg32*index + constant]

"staticVarName" denotes any static variable currently in scope (local or global).
"localVarName" denotes a local, automatic, variable declared in the var section of the current

procedure.
"basereg" denotes any general purpose 32-bit register.
"globalVarname" denotes a non-local variable declared in the var section of some procedure

other than the current procedure.
"breg32" denotes a base register and can be any general purpose 32-bit register.

"ireg32" denotes an index register and may also be any general purpose register except ESP,
even the same register as the base register in the address expression.
Public Domain Created by Randy Hyde Page 392

HLA Reference Manual 5/24/10 Chapter 16
"index" denotes one of the four constants "1", "2", "4", or "8". In those address expression that
have an index register without an index constant, "*1" is the default index.

Those memory-addressing modes that do not have a variable name preceding them are known
as "anonymous memory locations." Anonymous memory locations do not have a data type
associated with them and in many instances you must use the type coercion operator in order to
keep HLA happy.

Those memory addressing modes that do have a variable name attached to them inherit the
base type of the variable. Read the next section for more details on data typing in HLA.

HLA allows another way to specify addition of the various addressing mode components in an
address expression - by putting the components in separate brackets and concatenating them
together. The following examples demonstrate the standard syntax and the alternate syntax:
[ebx+2] [ebx][2]
[ebx+ecx*4+8] [ebx][ecx*4][8]
lbl[ebp-2] lbl[ebp][-2]
[ebx*8 + 5] [ebx*8][5]

The reason for allowing the extended syntax is because you might want to construct these
addressing modes inside a macro from the individual pieces and it’s much easier to concatenate two
operands already surrounded by brackets than it is to pick the expressions apart and construct the
standard addressing mode.

In general, the extended syntax takes one of the following forms (braces surround optional
items):

[constExpr] { <<additional address items inside "[]">> }

[base32] { <<additional address items inside "[]">> }

[index32*1] { <<additional address items inside "[]">> }

[index32*2] { <<additional address items inside "[]">> }

[index32*4] { <<additional address items inside "[]">> }

[index32*8] { <<additional address items inside "[]">> }

[base32+index32] { <<additional address items inside "[]">> }

[base32+index32*1] { <<additional address items inside "[]">> }

[base32+index32*2] { <<additional address items inside "[]">> }

[base32+index32*4] { <<additional address items inside "[]">> }

[base32+index32*8] { <<additional address items inside "[]">> }

[base32 + constExpr] { <<additional address items inside "[]">> }

[index32*1 + constExpr] { <<additional address items inside "[]">> }

[index32*2 + constExpr] { <<additional address items inside "[]">> }

[index32*4 + constExpr] { <<additional address items inside "[]">> }

[index32*8 + constExpr] { <<additional address items inside "[]">> }

[base32+index32 + constExpr] { <<additional address items inside "[]">> }

[base32+index32*1 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*2 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*4 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*8 + constExpr] { <<additional address items inside "[]">>

}

Public Domain Created by Randy Hyde Page 393

HLA Reference Manual 5/24/10 Chapter 16
[base32 - constExpr] { <<additional address items inside "[]">> }

[index32*1 - constExpr] { <<additional address items inside "[]">> }

[index32*2 - constExpr] { <<additional address items inside "[]">> }

[index32*4 - constExpr] { <<additional address items inside "[]">> }

[index32*8 - constExpr] { <<additional address items inside "[]">> }

[base32+index32 - constExpr] { <<additional address items inside "[]">> }

[base32+index32*1 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*2 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*4 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*8 - constExpr] { <<additional address items inside "[]">>

}

The major restrictions is that there can be at most one base register (EAX, EBX, ECX, EDX,
ESI, EDI, EBP, or ESP) and at most one index register (EAX, EBX, ECX, EDX, ESI, EDI, or EBP)
in the address item. An optional static object name (static, readonly, or storage variable) or
automatic variable name (var objects) may precede the address item list; however, keep in mind
that if an automatic variable name precedes one of these bracketed expression lists, then the EBP
register (or a user-defined register if the reg32::identifier syntax is used) is already used as the base
register. Here are some examples of legal addressing modes in HLA:

staticVar[ebx][ecx*4][4]
localVar[edi*2]
localVar[8][edx*8]
[ebx][edx+2]

Note that if you specify two 32-bit registers in an address expression without specifying an
explicit scaled index value (e.g., "[ebx+ecx]") then HLA gets to choose which register is the base
register and which is the index register (either choice will produce the correct effective address).

Any number of constant expressions inside brackets may appear in an extended address
expression. HLA computes the sum of all such constant expressions and uses that sum as the single
constant value. E.g.,

localVar[8][edx*8][2] -- equivalent to -- localVar[edx*8 + 10]

16.3 Type Coercion in HLA
While an assembly language can never really be a strongly typed language, HLA is much more

strongly typed than most other assembly languages.
Strong typing in an assembly language can be very frustrating. Therefore, HLA makes certain

concessions to prevent the type system from interfering with the typical assembly language
programmer. Within an 80x86 machine instruction, the only checking that takes place is
verification that the sizes of the operands are compatible.

Despite HLA playing fast and loose with machine instructions, there are many times when you
will need to coerce the type of some operand. HLA uses the following syntax to coerce the type of
a memory location or register operand:

(type typeID memOrRegOperand)
Public Domain Created by Randy Hyde Page 394

HLA Reference Manual 5/24/10 Chapter 16
There are two instances where type coercion is especially important: (1) when you need to
assign a type other than byte, word, dword, qword, or lword to a register1; (2) when you need to
assign an anonymous memory location a type. Here are a couple of examples:

if((type int32 eax) < 0 then

inc((type dword [ebx]));

endif;

Type coercion is very useful in HLA when manipulating pointer objects, especially pointers to
classes and records. Consider the following example:
type

myRec_t: record
i:int32;
c:char;

endrecord;

mrPtr_t: pointer to myRec_t;

static
mpr: mrPtr_t;

.

.

.
malloc(@size(myRec_t));
mov(eax, mpr);

.

.

.
mov(mpr, ebx);
mov(cl, (type myRec_t [ebx]).c);
mov(0, (type myRec_t [ebx]).i);

As you can see here, whatever memory address appears inside the parentheses is treated like an
object of the specified type. So you can treat that whole entity as though it were a variable of the
specified type (myRec_t in this example) and you can apply the dot operator or any other operation
that would be legal on a variable of that type.

By default, the x86 general-purpose registers have the types byte, word, or dword (depending,
of course, on their size). Sometimes you might want to coerce these registers to a different type,
especially when outputting the value of a register or comparing a register with a constant. Coercion
of a register is legal as long as the coerced data type is the same size as the register, e.g.,

(type int32 eax)

Coercion like this last example is especially useful when using the register without an output
statement (like stdout.put) or in a run-time boolean expression. Consider the following:

if(eax < 0) then
<< do something if EAX is negative>>

endif;

1. Probably the most common case is treating a register as a signed integer in one of HLA’s high level language
statements. See the section on HLA High Level Language statements for more details.
Public Domain Created by Randy Hyde Page 395

HLA Reference Manual 5/24/10 Chapter 16
In this example, the expression is always false because EAX is a dword object (which is unsigned).
Therefore, EAX can never be less than zero (even if EAX contains something that you want
interpreted as a negative value). You can solve this problem by coerce EAX to an int32 object:

if((type int32 eax) < 0) then
<< do something if EAX is negative>>

endif;

This code example will work properly since HLA is smart enough to generate the appropriate
signed comparison/conditional jump sequence when it realizes one or more of the operands are
signed.

Type coercion fully supports HLA memory addressing modes. You can use any valid HLA
addressing mode form in place of the address object in the type coercion expression, for example:

(type dword byteVar[ebx][ecx*1][2])

In addition, you can also treat a type coercion operation as though it were a static identifier in
an extended HLA addressing mode; that is, you can follow a type coercion operator with a set of
bracketed addressing mode options:

(type qword [ebx])[ecx*8][16]
Public Domain Created by Randy Hyde Page 396

HLA Reference Manual 5/24/10 Chapter 17
17 HLA v2.x Language Reference Manual

17.1 The 80x86 Instruction Set in HLA
One of the most obvious differences between HLA and standard 80x86 assembly language is

the syntax for the machine instructions. The two primary differences are the fact that HLA uses a
functional notation for machine instructions and HLA arranges the operands in a (source, dest)
format rather than the (dest, source) format used by Intel.

 A second difference, related to the fact that HLA uses a functional notation, is that HLA
allows you to compose instructions. That is, one instruction may appear as an operand to a second
instruction, e.g.,

mov(mov(0, eax), ebx);

To decipher this instruction, all you need to do is to realize that at compile time each
instruction returns a string that HLA substitutes in place of the composed instruction. Usually, the
string an instruction returns is that instruction’s destination operand. In the example above, the
interior mov instruction’s destination operand is EAX, so that mov instruction "returns" the string
"EAX" which HLA substitutes for the interior mov instruction, producing "mov(eax, ebx);" as the
outside instruction. HLA always processes interior instructions from left-to-right interior-first.
Therefore, the above instruction is equivalent to the MASM sequence:

mov eax, 0
mov ebx, eax

Consider a second example:

add(mov(i, eax), mov(j, ebx));

This instruction is equivalent to:

mov eax, i
mov ebx, j
add ebx, eax

Although, used sparingly, instruction composition is useful and can help improve the
readability of your HLA programs in certain contexts, you should be careful when using instruction
composition because it can quickly produce unreadable code. Even this second example
(add(mov,mov)) would probably prove difficult to read by most programmers.

If you need to modify the RETURNS value of an instruction (in a macro, for example), you
may use the "returns" statement in HLA. This statement takes the following form:

returns({ statements }, "string Constant")

This statement emits the code for the statement(s) between the curly braces and then returns
the specified string constant as the "returns" value for this statement.

The following paragraphs describe each of the HLA machine instructions. They also describe
the string each instruction yields during compile time (this is called the "returns" string). Note that
some instructions return the empty string as there is no return value one could reasonably
associated with them. Such instructions cannot generally be used as operands within other
instructions.

These descriptions do not describe the purpose for each instruction; see an assembly text like
"The Art of Assembly Language Programming" for details on the operation of each instruction.
Public Domain Created by Randy Hyde Page 397

HLA Reference Manual 5/24/10 Chapter 17

I

17.2 Zero Operand Instructions (Null Operand Instructions)

Instruction Description

aaa()
ASCII adjust for addition. Returns "ax".

aad()
ASCII adjust for division. Returns "ax".

aam()
ASCII adjust for multiplication. Returns "ax".

aas()
ASCII adjust for subtraction. Returns "ax".

cbw()
Convert byte to word (sign extension). Returns "ax"

cdq()
Convert double to quadword. Returns "eax". Note: in the future, this may return
"edx:eax".

clc()
Clear carry flag. Returns "".

cld()
Clear direction flag. Returns "".

cli()
Clear interrupt flag. Returns "".

clts()
Clear task switched flag in CR0 (OS use only).

cmc()
Complement carry flag. Returns "".

cmpsb()
Compares the byte at [esi] to the byte at [edi] and increments or decrements ESI & ED
by one. Returns "".

cmpsd()
Compares the dword at [esi] to the byte at [edi] and increments or decrements ESI &
EDI by four. Returns "".

cmpsw()
Compares the word at [esi] to the byte at [edi] and increments or decrements ESI &
EDI by two. Returns "".

cpuid()
On entry, EAX contains zero, one, or two to determine how this instruction behaves.
If EAX contains zero then this instruction returns vendor information in EAX, EBX,
ECX, and EDX.
If EAX contains one upon entry, EAX returns with version information and EDX
contains feature information.
If EAX contains two upon entry, EAX..EDX return with cache information.
See the Intel documentation for more details concerning this instruction.

 cwd()
Convert word to doubleword. Returns "ax". Note: in the future, this may return
"dx:ax".

 cwde()
Convert word to dword, extended. Returns "eax".

 daa()
Decimal adjust for addition. Returns "al".

 das()
Decimal adjust for subtraction. Returns "al".

 hlt()
Halt instruction (OS and embedded use only).

 insb()
Inputs a byte from the port specified by DX and stores the byte at [EDI], then
increments or decrements EDI by one. Returns "".
Public Domain Created by Randy Hyde Page 398

HLA Reference Manual 5/24/10 Chapter 17

,

 insd()
Inputs a dword from the port specified by DX and stores the dword at [EDI], then
increments or decrements EDI by four. Returns "".

 insw()
Inputs a word from the port specified by DX and stores the word at [EDI], then
increments or decrements EDI by two. Returns "".

 into()
Interrupt on overflow. Returns "". Raises the ex.IntoInstr exception if the overflow
flag is set when you execute this instruction.

 invd()
Invalidate internal caches (OS use only).

 iret()
Interrupt return. Returns "".

 iretd()
Interrupt return poping 32-bit flags. Returns "".

 lahf()
Load AH from flags. Returns "al".

 leave()
Remove activation record from stack. Returns "".

 lodsb()
Load al from [ESI] and increment ESI by one. Returns "al".

 lodsd()
Load eax from [ESI] and increment ESI by four. Returns "eax".

 lodsw()
Load ax from [ESI] and increment ESI by two. Returns "ax".

 movsb()
Moves a byte from the location specified by [ESI] to the location specified by [EDI],
then increments or decrements ESI & EDI by one. Returns "".

 movsd()
Moves a dword from the location specified by [ESI] to the location specified by [EDI]
then increments or decrements ESI & EDI by four. Returns "".

 movsw()
Moves a word from the location specified by [ESI] to the location specified by [EDI],
then increments or decrements ESI & EDI by two. Returns "".

 nop()
No operation. Returns "".

 outsb()
Outputs the byte at address [ESI] to the port specified by DX, then increments or
decrements ESI by one. Returns "".

 outsd()
Outputs the dword at address [ESI] to the port specified by DX, then increments or
decrements ESI by four. Returns "".

 outsw()
Outputs the word at address [ESI] to the port specified by DX, then increments or
decrements ESI by two. Returns "".

 popad()
Pop all general purpose 32-bit registers from stack. Returns "".

 popa()
Pop all general purpose 16-bit registers from stack. Returns "".

 popf()
Pop 16-bit flags register from stack. Returns "".

 popfd()
Pop 32-bit flags register from stack. Returns "".

 pusha()
Push all general-purpose 16-bit registers onto the stack. Returns "".

 pushad()
Push all general-purpose 32-bit registers onto the stack. Returns "".

 pushf()
Push 16-bit flags register onto the stack. Returns "".

 pushfd()
Push 32-bit flags register onto the stack. Returns "".
Public Domain Created by Randy Hyde Page 399

HLA Reference Manual 5/24/10 Chapter 17

I

]

I
 rdmsr()
Read from model specific register specified by ECX into EDX:EAX (OS use only).

 rdpmc()
Read performance monitoring counter specified by ECX into EDX:EAX (OS use
only).

 rdtsc()
Reads the "time stamp" counter and returns the 64-bit result in edx:eax.

 rep.insb()
Transfers ECX bytes from the port specified by DX to the location specified by [EDI].
Increments or decrements EDI by one after each transfer. Returns "".

 rep.insd()
Transfers ECX dwords from the port specified by DX to the location specified by
[EDI]. Increments or decrements EDI by four after each transfer. Returns "".

 rep.insw()
Transfers ECX words from the port specified by DX to the location specified by [EDI].
Increments or decrements EDI by two after each transfer. Returns "".

 rep.movsb()
Copies ECX bytes from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by one after each transfer.
Returns "".

 rep.movsd()
Copies ECX dwords from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by four after each transfer.
Returns "".

rep.movsw()
Copies ECX words from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by two after each transfer.
Returns "".

rep.outsb()
Transfers ECX bytes from the location specified by [ESI] to the port specified by DX.
Increments or decrements EDI by one after each transfer. Returns "".

rep.outsd()
Transfers ECX dwords from the location specified by [ESI] to the port specified by
DX. Increments or decrements EDI by four after each transfer. Returns "".

rep.outsw()
Transfers ECX words from the location specified by [ESI] to the port specified by DX.
Increments or decrements EDI by two after each transfer. Returns "".

rep.stosb()
Copies CX bytes from AL to the location specified by [EDI]. Increments or
decrements EDI by one after each transfer. Returns "".

rep.stosd()
Copies ECX dwords from EAX to the location specified by [EDI]. Increments or
decrements EDI by four after each transfer. Returns "".

rep.stosw()
Copies ECX words from AX to the location specified by [EDI]. Increments or
decrements EDI by two after each transfer. Returns "".

repe.cmpsb()
Compares ECX bytes starting at location [ESI] to the set of bytes at location [EDI] as
long as the bytes are equal. The comparison stops once two unequal bytes are found.
After each successful compare, this instruction increments or decrements ESI and ED
by one (and decrements ECX). Returns "".

repe.cmpsd()
Compares ECX dwords starting at location [ESI] to the set of dwords at location [EDI
as long as the dwords are equal. The comparison stops once two unequal dwords are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by four (and decrements ECX). Returns "".

repe.cmpsw()
Compares ECX words starting at location [ESI] to the set of words at location [EDI] as
long as the words are equal. The comparison stops once two unequal words are found.
After each successful compare, this instruction increments or decrements ESI and ED
by two (and decrements ECX). Returns "".
Public Domain Created by Randy Hyde Page 400

HLA Reference Manual 5/24/10 Chapter 17

l

 l

I

]

re t

 repe.scasb()
Compares AL against ECX bytes starting at location [EDI] as long as the bytes are
equal. The comparison stops once two unequal bytes are found. After each successfu
compare, this instruction increments or decrements EDI by one (and decrements ECX).
Returns "".

 repe.scasd()
Compares EAX against ECX dwords starting at location [EDI] as long as the dwords
are equal. The comparison stops once two unequal dwords are found. After each
successful compare, this instruction increments or decrements EDI by four (and
decrements ECX). Returns "".

repe.scasw()
Compares AX against ECX words starting at location [EDI] as long as the words are
equal. The comparison stops once two unequal words are found. After each successfu
compare, this instruction increments or decrements EDI by two (and decrements ECX).
Returns "".

repne.cmpsb()
Compares ECX bytes starting at location [ESI] to the set of bytes at location [EDI] as
long as the bytes are not equal. The comparison stops once two equal bytes are found.
After each successful compare, this instruction increments or decrements ESI and ED
by one (and decrements ECX). Returns "".

repne.cmpsd()
Compares ECX dwords starting at location [ESI] to the set of dwords at location [EDI
as long as the dwords are not equal. The comparison stops once two equal dwords are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by four (and decrements ECX). Returns "".

repne.cmpsw()
Compares ECX words starting at location [ESI] to the set of words at location [EDI] as
long as the words are not equal. The comparison stops once two equal words are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by two (and decrements ECX). Returns "".

pne.scasb() Compares AL against ECX bytes starting at location [EDI] as long as the bytes are no
equal. The comparison stops once two equal bytes are found. After each successful
compare, this instruction increments or decrements EDI by one (and decrements ECX).
Returns "".

repne.scasd()
Compares EAX against ECX dwords starting at location [EDI] as long as the dwords
are not equal. The comparison stops once two equal dwords are found. After each
successful compare, this instruction increments or decrements EDI by four (and
decrements ECX). Returns "".

repne.scasw()
Compares AX against ECX words starting at location [EDI] as long as the words are
not equal. The comparison stops once two equal words are found. After each
successful compare, this instruction increments or decrements EDI by two (and
decrements ECX). Returns "".

rsm()
Resume from system management mode (OS use only).

sahf()
Store AH into the flags register. Returns "ah".

scasb()
Compares the byte in al to the location specified by [EDI], then increments or
decrements EDI by one. Returns "".

scasd()
Compares the dword in eax to the location specified by [EDI], then increments or
decrements EDI by four. Returns "".

scasw()
Compares the word in ax to the location specified by [EDI], then increments or
decrements EDI by two. Returns "".
Public Domain Created by Randy Hyde Page 401

HLA Reference Manual 5/24/10 Chapter 17

Note: if the NULL-Operand instructions appear as a stand-alone instruction (i.e., they are not
part of an instruction composition and, thus, appear as the operand to another instruction), you can
drop the "()" after the instruction as long as you terminate the instruction with a semicolon.

17.3 General Arithmetic and Logical Instructions
These instructions include adc, add, and, mov, or, sbb, sub, test, and xor. They all take the

same basic form (substitute the appropriate mnemonic for "adc" in the syntax examples below):

Generic Form:

adc(source,dest);
lock.adc(source,dest);

Specific forms allowed:

adc(Reg8, Reg8)
adc(Reg16, Reg16)
adc(Reg32, Reg32)

adc(const, Reg8)
adc(const, Reg16)
adc(const, Reg32)

adc(const, mem)

adc(Reg8, mem)
adc(Reg16, mem)
adc(Reg32, mem)

adc(mem, Reg8)
adc(mem, Reg16)
adc(mem, Reg32)

 stc()
Set the carry flag. Returns "".

 std()
Set the direction flag. Returns "".

 sti()
Set the interrupt flag. Returns "".

 stosb()
Stores the byte in al to the location specified by [EDI], then increments or decrements
EDI by one. Returns "".

stosd()
Stores the dword in eax to the location specified by [EDI], then increments or
decrements EDI by four. Returns "".

stosw()
Stores the word in ax to the location specified by [EDI], then increments or decrements
EDI by two. Returns "".

ud2()
Undefined opcode instruction. This instruction always raises an undefine opcode
exception.

wbinvd()
Write back and invalidate cache (OS use only).

wait()
Coprocessor wait instruction. Returns "".

xlat()
Translate instruction. Returns "".
Public Domain Created by Randy Hyde Page 402

HLA Reference Manual 5/24/10 Chapter 17

adc(Reg8, AnonMem)
adc(Reg16, AnonMem)
adc(Reg32, AnonMem)

adc(AnonMem, Reg8)
adc(AnonMem, Reg16)
adc(AnonMem, Reg32)

Note: for the form "adc(const, mem)", if the specified memory location does not have a size
or type associated with it, you must explicitly specify the size of the memory operand, e.g.,
"adc(5,(type byte [eax]));"

These instructions all return their destination operand as the "returns" value.
See "The Art of Assembly" for a further discussion of these instructions.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.4 The XCHG Instruction
 The xchg instruction allows the following syntactical forms:

Generic Form:

xchg(source, dest);
lock.xchg(source, dest);

Specific Forms:

xchg(Reg8, Reg8)
xchg(Reg8, mem)
xchg(Reg8, AnonMem)
xchg(mem, Reg8)
xchg(AnonMem, Reg8)

xchg(Reg16, Reg16)
xchg(Reg16, mem)
xchg(Reg16, AnonMem)
xchg(mem, Reg16)
xchg(AnonMem, Reg16)

xchg(Reg32, Reg32)
xchg(Reg32, mem)
xchg(Reg32, AnonMem)
xchg(mem, Reg32)
xchg(AnonMem, Reg32)

This instruction returns its destination operand as its "returns" value.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 403

HLA Reference Manual 5/24/10 Chapter 17
17.5 The CMP Instruction
The "cmp" instruction uses the following general forms:
Generic:

cmp(LeftOperand, RightOperand);

Specific Forms:

 cmp(Reg8, Reg8);
cmp(Reg8, mem);
cmp(Reg8, AnonMem);
cmp(mem, Reg8);
cmp(AnonMem, Reg8);
cmp(Reg8, const);

cmp(Reg16, Reg16);
cmp(Reg16, mem);
cmp(Reg16, AnonMem);
cmp(mem, Reg16);
cmp(AnonMem, Reg16);
cmp(Reg16, const);

cmp(Reg32, Reg32);
cmp(Reg32, mem);
cmp(Reg32, AnonMem);
cmp(mem, Reg32);
cmp(AnonMem, Reg32);
cmp(Reg32, const);

cmp(mem, const);

Note that the CMP instruction’s operands are ordered "dest, source" rather than the usual
"source,dest" format (that is, the operands are in the same order as MASM expects them). This is
to allow an intuitive use of the instruction mnemonic (that is, CMP normally reads as "compare
dest to source."). We will avoid this confusion by simply referring to the operands as the "left
operand" and the "right operand". Left vs. right signifies the placement of the operands around a
comparison operator like "<=" (e.g., "left <= right").

For the "cmp(mem, const)" form, the memory operand must have a type or size associated
with it. When using anonymous memory locations you must always coerce the type of the memory
location, e.g., "cmp((type word [ebp-4]), 0);".

These instructions return their dest (first) operand as their "returns" value.

17.6 The Multiply Instructions
HLA supports several variations on the 80x86 "MUL" and IMUL instructions. The supported

forms are:

Standard Syntax:
 mul(reg8)
mul(reg16)
mul(reg32)
mul(mem)

mul(reg8, al)
mul(reg16, ax)
Public Domain Created by Randy Hyde Page 404

HLA Reference Manual 5/24/10 Chapter 17
mul(reg32, eax)

mul(mem, al)
mul(mem, ax)
mul(mem, eax)

mul(AnonMem, ax)
mul(AnonMem, dx:ax)
mul(AnonMem, edx:eax)

imul(reg8)
imul(reg16)
imul(reg32)
imul(mem)

imul(reg8, al)
imul(reg16, ax)
imul(reg32, eax)

imul(mem, al)
imul(mem, ax)
imul(mem, eax)

imul(AnonMem, ax)
imul(AnonMem, dx:ax)
imul(AnonMem, edx:eax)

intmul(const, Reg16)
intmul(const, Reg16, Reg16)
intmul(const, mem, Reg16)
intmul(const, AnonMem, Reg16)

intmul(const, Reg32)
intmul(const, Reg32, Reg32)
intmul(const, mem, Reg32)
intmul(const, AnonMem, Reg32)

intmul(Reg16, Reg16)
intmul(mem, Reg16)
intmul(AnonMem, Reg16)

intmul(Reg32, Reg32)
intmul(mem, Reg32)
intmul(AnonMem, Reg32)

Extended Syntax:

 mul(const, al)
mul(const, ax)
mul(const, eax)

imul(const, al)
imul(const, ax)
imul(const, eax)
Public Domain Created by Randy Hyde Page 405

HLA Reference Manual 5/24/10 Chapter 17
The first, and probably most important, thing to note about HLA’s multiply instructions is that
HLA uses a different mnemonic for the extended-precision integer multiply versus the single-
precision integer multiply (i.e., IMUL vs. INTMUL). Standard MASM syntax uses the same
mnemonic for both instructions. There are two reasons for this change of syntax in HLA. First,
there needed to be some way to differentiate the "mul(const, al)" and the "intmul(const, al)"
instructions (likewise for the instructions involving AX and EAX). Second, the behavior of the
INTMUL instruction is substantially different from the IMUL instruction, so it makes sense to use
different mnemonics for these instructions.

The extended syntax instructions create a static data variable, initialized with the specified
constant, and then specify the address of this variable as the source operand of the MUL or IMUL
instruction.

These instructions return their destination operand (AX, DX:AX, or EDX:EAX for the
extended precision MUL and IMUL instructions) as their "returns" value.

See "The Art of Assembly Language Programming" for more details on these instructions.

17.7 The Divide Instructions
HLA support several variations on the 80x86 DIV and IDIV instructions. The supported forms

are:

Generic Forms:

div(source);
div(source, dest);

mod(source);
mod(source, dest);

idiv(source);
idiv(source, dest);

imod(source);
imod(source, dest);

Specific Forms:

div(reg8)
div(reg16)
div(reg32)
div(mem)

div(reg8, ax)
div(reg16, dx:ax)
div(reg32, edx:eax)

div(mem, ax)
div(mem, dx:ax)
div(mem, edx:eax)

div(AnonMem, ax)
div(AnonMem, dx:ax)
div(AnonMem, edx:eax)

mod(reg8)
mod(reg16)
mod(reg32)
Public Domain Created by Randy Hyde Page 406

HLA Reference Manual 5/24/10 Chapter 17
mod(mem)

mod(reg8, ax)
mod(reg16, dx:ax)
mod(reg32, edx:eax)

mod(mem, ax)
mod(mem, dx:ax)
mod(mem, edx:eax)

mod(AnonMem, ax)
mod(AnonMem, dx:ax)
mod(AnonMem, edx:eax)

idiv(reg8)
idiv(reg16)
idiv(reg32)
idiv(mem)

idiv(reg8, ax)
idiv(reg16, dx:ax)
idiv(reg32, edx:eax)

idiv(mem, ax)
idiv(mem, dx:ax)
idiv(mem, edx:eax)

idiv(AnonMem, ax)
idiv(AnonMem, dx:ax)
idiv(AnonMem, edx:eax)

imod(reg8)
imod(reg16)
imod(reg32)
imod(mem)

imod(reg8, ax)
imod(reg16, dx:ax)
imod(reg32, edx:eax)

imod(mem, ax)
imod(mem, dx:ax)
imod(mem, edx:eax)

imod(AnonMem, ax)
imod(AnonMem, dx:ax)
imod(AnonMem, edx:eax)

Extended Syntax:

div(const, ax)
div(const, dx:ax)
div(const, edx:eax)
Public Domain Created by Randy Hyde Page 407

HLA Reference Manual 5/24/10 Chapter 17

mod(const, ax)
mod(const, dx:ax)
mod(const, edx:eax)

idiv(const, ax)
idiv(const, dx:ax)
idiv(const, edx:eax)

imod(const, ax)
imod(const, dx:ax)
imod(const, edx:eax)

The destination operand is always implied by the 80x86 "div" and "idiv" instructions (AX,
DX:AX, or EDX:EAX). HLA allows the specification of the destination operand in order to make
your programs easier to read (although the use of the destination operand is optional).

The HLA divide instructions support an extended syntax that allows you to specify a constant
as the divisor (source operand). HLA allocates storage in the static data segment and initializes the
storage with the specified constant, and then divides the accumulator by this newly specified
memory location.

The DIV and IDIV instructions return "AL", "AX", or "EAX" as their "returns" value (the
quotient is left in the accumulator register). The MOD and IMOD instructions return "AH", "DX",
or "EDX" as their "returns" value. Indeed, the "returns" value is the only difference between these
instructions. The DIV and MOD instructions compile into the 80x86 DIV instruction; the IDIV
and IMOD instructions compile into the 80x86 IDIV instruction.

See the "Art of Assembly" for a further discussion of these instructions.

17.8 Single Operand Arithmetic and Logical Instructions
These instructions include dec, inc, neg, and not. They take the following general forms

(substituting the specific mnemonic as appropriate):

Generic Form:

dec(dest);;
lock.dec(dest);

Specific forms allowed:

dec(Reg8);
dec(Reg16);
dec(Reg32);
dec(mem);

Note: if mem is an untyped or unsized memory location (i.e., an anonymous memory location),
you must explicitly provide a size; e.g., "dec((type word [edi]));"

These instructions all return their destination operand as the "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 408

HLA Reference Manual 5/24/10 Chapter 17
17.9 Shift and Rotate Instructions
These instructions include RCL, RCR, ROL, ROR, SAL, SAR, SHL, and SHR. These

instructions support the following generic syntax, making the appropriate mnemonic substitution.

Generic Form:

shl(count, dest);

Specific Forms:

shl(const, Reg8);
shl(const, Reg16);
shl(const, Reg32);

shl(const, mem);

shl(cl, Reg8);
shl(cl, Reg16);
shl(cl, Reg32);

shl(cl, mem);

The "const" operand is an unsigned integer constant between zero and the maximum number
of bits in the destination operand. The forms with a memory operand must have a type or size
associated with the operand; e.g., when using anonymous memory locations, you must coerce the
type,

"shl(2, (type dword [esi]));"

These instructions return their destination operand as their "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.10The Double Precision Shift Instructions
These instruction use the following general form (you can substitute SHRD for SHLD below):

Generic Form:

shld(count, source, dest)

Specific Forms:

shld(const, Reg16, Reg16)
shld(const, Reg16, mem)
shld(const, Reg16, AnonMem)

shld(cl, Reg16, Reg16)
shld(cl, Reg16, mem)
shld(cl, Reg16, AnonMem)

Public Domain Created by Randy Hyde Page 409

HLA Reference Manual 5/24/10 Chapter 17
shld(const, Reg32, Reg32)
shld(const, Reg32, mem)
shld(const, Reg32, AnonMem)

shld(cl, Reg32, Reg32)
shld(cl, Reg32, mem)
shld(cl, Reg32, AnonMem)

These instructions return their destination operand as the "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.11The Lea Instruction
These instructions use the following syntax:

lea(Reg32, memory)
lea(Reg32, AnonMem)
lea(Reg32, ProcID)
lea(Reg32, LabelID)

Extended Syntax:

lea(Reg32, StringConstant)
lea(Reg32, const ConstExpr)

lea(memory, Reg32)
lea(AnonMem, Reg32)
lea(ProcID, Reg32)
lea(LabelID, Reg32)
lea(StringConstant, Reg32)
lea(const ConstExpr, Reg32)

 The "lea" instruction loads the specified 32-bit register with the address of the specified
memory operand, procedure, or statement label. Note that in the extended syntax you can reverse
the order of the operands. Since exactly one operand must be a register, there is no ambiguity
between the two forms (this syntax was added to satisfy those who complained about the
(reg,memory) syntax). Of course, good programming style suggests that you use only one form
(either reg,memory or memory, reg) within your programs.

The extended syntax form lets you specify a constant rather than a memory address. There is
no such thing as the address of a constant, but HLA will create a memory variable in the constants
data segment and initialize that variable with the value of the specified memory constant and then
load the address of this variable into the specified register (or push it onto the stack).

There is a subtle difference between the following two instructions:

lea(eax, "String");
lea(eax, const "String");

The first instruction loads EAX with the address of the first character of the literal string
constant. The second form loads the EAX register with the address of a string variable (which is a
pointer containing the address of the first character of the string literal).

The LEA instructions return the 32-bit register as their "returns" value.
See "The Art of Assembly" for a further discussion of the LEA instruction.
Note: HLA does not support an LEA instruction that loads a 16-bit address into a 16-bit

register. That form of the LEA instruction is not very useful in 32-bit programs running on 32-bit
operating systems.
Public Domain Created by Randy Hyde Page 410

HLA Reference Manual 5/24/10 Chapter 17
17.12The Sign and Zero Extension Instructions
The HLA MOVSX and MOVZX instructions use the following syntax:

Generic Forms:

movsx(source,dest);
movzx(source,dest);

Specific Forms:

movsx(Reg8, Reg16)
movsx(Reg8, Reg32)
movsx(Reg16, Reg32)
movsx(mem8, Reg16)
movsx(mem8, Reg32)
movsx(mem16, Reg32)

movzx(Reg8, Reg16)
movzx(Reg8, Reg32)
movzx(Reg16, Reg32)
movzx(mem8, Reg16)
movzx(mem8, Reg32)
movzx(mem16, Reg32)

These instructions sign- (MOVSX) or zero- (MOVZX) extend their source operand into the
destination operand. They return their destination operand as their "returns" value.

See the "Art of Assembly" for a further discussion of these instructions.

17.13The Push and Pop Instructions
These instructions take the following general forms:
pop(reg16);
pop(reg32);
pop(mem);

push(Reg16)
push(Reg32)
push(memory)

pushw(Reg16)
pushw(memory)
pushw(AnonMem)
pushw(Const)

 pushd(Reg32)
pushd(memory)
pushd(AnonMem)
pushd(Const)

These instructions push or pop their specified operand. They all return their operand as their
"returns" value.
Public Domain Created by Randy Hyde Page 411

HLA Reference Manual 5/24/10 Chapter 17
17.14Procedure Calls
 HLA provides several different ways to call a procedure. Given a procedure named

"MyProc", any of the following syntaxes are legal:

MyProc(parameter_list);
call(MyProc);
call MyProc;

If MyProc has a set of declared parameters, the number and types of actual parameters must
match the number and types of the formal parameters. HLA will emit the code needed to push the
parameter list on the stack. In the two call statements above, it is the programmer’s responsibility
to pass any needed parameters. For more details, see the section on procedure declarations.

In the examples above, MyProc can either be the name of an actual procedure or a procedure
variable (that is a pointer to a procedure declared as "myproc:procedure(parameters);" in the VAR
or a static section). If you need to call a procedure using an anonymous memory variable (i.e., an
addressing mode like [ebx]), an untyped dword value, or via a register, you must use the syntax of
the second call above, e.g., "call(ebx);". Of course, any legal HLA/80x86 address mode would be
legal here.

When declaring a standard procedure, the procedure declaration syntax allows you to specify a
"returns" value for that procedure, e.g.,

procedure MyProc; returns("eax");

HLA substitutes the string that appears as the "returns" argument for the call when using the
first syntax above. For example, supposing that MyProc is a function returning its result in EAX,
you could use the following to call MyProc and save the return value in the "Result" variable:

mov(MyProc(), Result);

For more details, see the section on procedure declarations.
To call a class procedure, one would use one of the following syntaxes:

className.ProcName(parameters);
call(className.ProcName);
call ClassName.ProcName;

objectName.ProcName(parameters);
call(objectName.ProcName);
call objectName.ProcName;

The difference between "className" and "objectName" is that "className" represents the
actual name of the class data type whereas "objectName" represents the name of an instance of
this class (i.e., a variable of type "className" declared in the VAR or a static section).

 When calling a class procedure, HLA loads the ESI register with the address of the object
before calling the specified procedure. Since there is no instance variable (object) associated with
the className form, HLA loads ESI with zero (NULL). Inside the class procedure, you can test
the value of ESI to determine if the procedure was called via the class name or an object name.
This is quite useful, for example when writing constructors, to determine whether the procedure
needs to allocate storage for an object. Consider the following program that demonstrates the use
of an object constructor (create):

program demo;

#include("memory.hhf");
#include("stdio.hhf");
Public Domain Created by Randy Hyde Page 412

HLA Reference Manual 5/24/10 Chapter 17

type

cc: class

var
i:int32;

procedure create; returns("esi");

endclass;

var
ccVar: cc;
ccPtr: pointer to cc;

static
ccStat:cc;

procedure cc.create; @nodisplay;
begin create;

push(eax);
if(esi = 0) then

stdout.put("Allocating" nl);
malloc(@size(cc));
mov(eax, esi);

else

stdout.put("Already allocated" nl);

endif;
mov(&cc._VMT_, this._pVMT_);
mov(0, this.i);
pop(eax);

end create;

begin demo;

// This first call to create allocates storage.

mov(cc.create(), ccPtr);

// In all the remaining calls, ESI is loaded with
// the address of the object and no storage is
// created.

ccPtr.create();
ccVar.create();
ccStat.create();

end demo;
Public Domain Created by Randy Hyde Page 413

HLA Reference Manual 5/24/10 Chapter 17
The call() statement allows any one of the following syntaxes:

call ProcID;
call(ProcID);
call(dwordvar);
call(anonmem); // Addressing mode like [ebx].
call(Reg32);

The second form above returns the string (if any) specified by ProcID’s "returns" option. The
remaining call instructions return the empty string as their "returns" value.

You may also call an iterator procedure via the CALL instruction. However, it is your
responsibility to set up the parameters and other state information prior to the call (see the section
on iterators for more details).

17.15The Ret Instruction
The RET() statement allows two syntactical forms:

ret();
ret(integer_constant_expression);

The first form emits a simple 80x86 RET instruction, the second form emits the 80x86 RET
instruction with the specified numeric constant expression value (used to remove parameters from
the stack).

Normally, you would use these instructions in a procedure that has the "@noframe" option.
Unless you know exactly what you are doing, you should never use the "RET" instruction inside a
standard HLA procedure without this option since doing so almost always produces disastrous
results. If you do use this instruction within such a procedure, it is your responsibility to deallocate
local variables and the display (if any), restore EBP, and remove any parameters from the stack.

17.16The Jmp Instructions
The HLA "jmp" instruction supports the following syntax:

jmp Label;
jmp ProcedureName;
jmp(dwordMemPtr);
jmp(anonMemPtr);
jmp(reg32);

"Label" represents a statement label in the current procedure. (You are not allowed to jump to
labels in other procedures in the current version of HLA. This restriction may be relaxed somewhat
in future versions.) A statement label is a unique (within the current procedure) identifier with a
colon after the identifier, e.g.,

InfiniteLoop:
<< Code inside the infinite loop>>
jmp InfiniteLoop;

Jumping to a procedure transfers control to the first instruction in the specified procedure. You
are responsible for explicitly pushing any parameters and the return address for that procedure.

These instructions all return the empty string as their "returns" value.
Public Domain Created by Randy Hyde Page 414

HLA Reference Manual 5/24/10 Chapter 17
17.17The Conditional Jump Instructions
 These instructions include JA, JAE, JB, JBE, JC, JE, JG, JGE, JL, JLE, JO, JP, JPE, JPO, JS,

JZ, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JCXZ,
JECXZ, LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ. They all take the following generic
form (substituting the appropriate instruction for "JA").

ja LocalLabel;

"LocalLabel" must be a statement label defined in the current procedure (or a globally
visible label declared in a label section or a global label defined with the "::" symbol).

These instructions all return the empty string as their "returns" value.
 Note: due to the nature of the HLA compilation process, you should avoid the use of the

JCXZ, JECXZ, LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions if you are emitting
assembly language source (rather than directly emitting object code). Unlike the other conditional
jump instructions, these instructions have a very limited +/- 128-byte range. Unfortunately, HLA
cannot detect if the branch is out of range (this task is handled by back-end assembler when
producing assembly language source code), so if a range error occurs, HLA cannot warn you about
this. The assembly will fail, but the result will be hard to decipher. Fortunately, these instructions
are easily, and usually more efficiently, implemented using other 80x86 instructions so this should
not prove to be a problem.

In a few special cases, the boolean constants "true" and "false" are legal labels. See the
discussion of HLA’s high-level language features for more details.

17.18The Conditional Set Instructions
These instructions include: SETA, SETAE, SETB, SETBE, SETC, SETE, SETG, SETGE,

SETL, SETLE, SETO, SETP, SETPE, SETPO, SETS, SETZ, SETNA, SETNAE, SETNB,
SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE, SETNO, SETNP, SETNS, and
SETNZ. They take the following generic forms (substituting the appropriate mnemonic for seta):

seta(Reg8)
seta(mem)
seta(AnonMem)

See the "Art of Assembly" for a further discussion of these instructions.

17.19The Conditional Move Instructions
These instructions include CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE,

CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVO, CMOVP, CMOVPE, CMOVPO, CMOVS,
CMOVZ, CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG,
CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, and CMOVNZ. They
use the following general syntax:

CMOVcc(src, dest);

Allowable operands:

CMOVcc(reg16, reg16);

CMOVcc(reg32, reg32);

CMOVcc(mem16, reg16);

CMOVcc(mem32, reg32);
Public Domain Created by Randy Hyde Page 415

HLA Reference Manual 5/24/10 Chapter 17
These instructions move the data if the specified condition is true (specified by the cc
condition). If the condition is false, these instructions behave like a no-operation.

17.20The Input and Output Instructions
The "in" and "out" instructions use the following syntax:

in(port, al)
in(port, ax)
in(port, eax)

in(dx, al)
in(dx, ax)
in(dx, eax)

out(al, port)
out(ax, port)
out(eax, port)

out(al, dx)
out(ax, dx)
out(eax, dx)

The "port" parameter must be an unsigned integer constant in the range 0..255. The IN
instructions return the accumulator register (AL, AX, or EAX) as their "returns" value. The OUT
instructions return the port number (or DX) as their "returns" value.

Note that these instructions may be privileged instructions when running under Win32 or
*NIX. Their use may generate a fault in certain instances or when accessing certain ports.

See the "Art of Assembly" for a further discussion of these instructions.

17.21The Interrupt Instruction
This instruction uses the syntax "int(constant)" where the constant operand is an unsigned

integer value in the range 0..255.
This instruction returns the empty string as its "returns" value.

See Chapter Six in "Art of Assembly" (DOS version) for a further discussion of this
instruction. Note, however, that one generally does not use "int" under Win32 to make OS or BIOS
calls. The "int $80" instruction is what you’d normally use to make very low-level *NIX calls.

17.22Bound Instruction
 This instruction takes the following forms:

bound(Reg16, mem)
bound(Reg16, AnonMem)

bound(Reg32, mem)
bound(Reg32, AnonMem)

Extended Syntax Form:

bound(Reg16, constL, constH)
bound(Reg32, ConstL, ConstH)

These instructions return the register as their "returns" value.
Public Domain Created by Randy Hyde Page 416

HLA Reference Manual 5/24/10 Chapter 17
The extended syntax forms emit the two constants to the static data segment and substitute the
address of the first constant (ConstL) as their memory operand.

The BOUND instruction compares the register operand against the two constants (or the two
consecutive memory locations at the specified address). If the register value is outside the range
specified by the operand(s), then the 80x86 CPU raises an ex.BoundInstr exception. You can
handle this exception using the TRY..ENDTRY HLL statement in HLA.

Because the BOUND instruction tends to be slow, and of course it consumes memory, many
programmers don’t use it as often as they should for fear it will make their programs less efficient.
HLA solves this problem using the "@bound" compile-time pseudo-variable. If @bound contains
true (the default value) then HLA will compile the BOUND instruction and it will behave normally.
If @bound contains false, then HLA will not emit any code for the bound instruction (this is similar
to "asserts" in C/C++). You can set the value of @bound in the VAL section or with the "?"
operator, e.g.,

?@bound := false;

// Code that ignores BOUND instructions
.
.
.

?@bound := true;

// BOUND instructions are active again.

17.23The Enter Instruction
The ENTER instruction uses the syntax: "enter(const, const);". The first constant operand is

the number of bytes of local variables in a procedure; the second constant operand is the lex level of
the procedure. As a rule, you should not use this instruction (and the corresponding LEAVE
instruction). HLA procedures automatically construct the display and activation record for you
(more efficiently than when using ENTER).

See the "Art of Assembly" for a further discussion of this instruction and the LEAVE
instruction.

17.24CMPXCHG Instruction
This instruction uses the following syntax:

Generic Form:

cmpxchg(reg/mem, reg);
lock.cmpxchg(reg/mem, reg);

Specific Forms:

cmpxchg(Reg8, Reg8)
cmpxchg(Reg8, Memory)
cmpxchg(Reg8, AnonMem)

cmpxchg(Reg16, Reg16)
cmpxchg(Reg16, Memory)
cmpxchg(Reg16, AnonMem)

cmpxchg(Reg32, Reg32)
Public Domain Created by Randy Hyde Page 417

HLA Reference Manual 5/24/10 Chapter 17
cmpxchg(Reg32, Memory)
cmpxchg(Reg32, AnonMem)

This instruction returns the empty string as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.25CMPXCHG8B Instruction
This instruction uses the following syntax:

Generic Form:

cmpxchg(mem64);
lock.cmpxchg8b(mem64);

This instruction compares edx:eax with the specified qword operand. If the values are equal,
this instruction stores the value in ECX:EBX into the destination operand; otherwise it loads the
memory operand into EDX:EAX.

This instruction returns the empty string as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.26The XADD Instruction
The XADD instruction uses the following syntax:

Generic Form:

xadd(source, dest);
lock.xadd(source, dest);

Specific Forms:

xadd(Reg8, Reg8)
xadd(mem, Reg8)
xadd(AnonMem, Reg8)

xadd(Reg16, Reg16)
xadd(mem, Reg16)
xadd(AnonMem, Reg16)

xadd(Reg32, Reg32)
xadd(mem, Reg32)
xadd(AnonMem, Reg32)

This instruction returns its destination operand as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 418

HLA Reference Manual 5/24/10 Chapter 17
17.27BSF and BSR Instructions
The bit scan instructions use the following syntax (substitute BSR for BSF as appropriate):

Generic Form:

 bsr(source, dest);

Specific Forms Allowed:

bsf(Reg16, Reg16);
bsf(mem, Reg16);
bsf(AnonMem, Reg16);

bsf(Reg32, Reg32);
bsf(mem, Reg32);
bsf(AnonMem, Reg32);

These instructions return the destination register as their "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.28The BSWAP Instruction
This instruction takes the form "bswap(reg32)". It converts between little endian and big

endian data formats in the specified 32-bit register.
It returns the 32-bit register as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.

17.29Bit Test Instructions
This group of instructions includes BT, BTC, BTR, and BTS. They allow the following

generic forms:

Generic Form:

bt(BitNumber, Dest);

Specific Forms:

bt(const, Reg16);
bt(const, Reg32);

bt(const, mem);

bt(Reg16, Reg16);
bt(Reg16, mem);
bt(Reg16, AnonMem);

bt(Reg32, Reg32);
bt(Reg32, mem);
bt(Reg32, AnonMem);

bt(Reg16, CharacterSetVariable);
Public Domain Created by Randy Hyde Page 419

HLA Reference Manual 5/24/10 Chapter 17
bt(Reg32, CharacterSetVariable);

Substitute the BTC, BTR, or BTS mnemonic for BT in the examples above for these other
instructions. The BTC, BTR, and BTS instructions also allow a "lock." prefix, e.g., "lock.btc(
reg32, mem);" If the "lock." prefix is present, the instruction asserts the bus lock signal during
execution. The "lock." prefix is valid only on instructions that reference memory.

These instructions return the destination operand as their "returns" value.
Notice the two special forms that allow character set variables. HLA actually casts these 16-

byte objects as word or dword memory variables, but they otherwise work just fine with cset
objects.

Special forms available only with the BT instruction:

bt(reg16, CharacterSetConstant);
bt(reg32, CharacterSetConstant);

These two forms return the source register (BitNumber) as their "returns" value. Note that
HLA will create a phantom variable that contains the character set constant and then supplies the
name of this constant, effectively making these two instruction equivalent to "bt(reg,
CharacterSetVariable);".

See the "Art of Assembly" for a further discussion of these instructions.

17.30Floating Point Instructions

HLA supports the following FPU instructions. Note: all FPU instructions have a "returns"
value of "st0" unless otherwise noted.

fld(FPreg);
fst(FPreg);

fld(FPmem); // Returns operand.
fst(FPmem); // 32 and 64-bits only! Returns operand.
fstp(FPmem); // Returns operand.

fxch(FPreg);

fild(FPmem); // Returns operand.
fist(FPmem); // 32 and 64-bits only! Returns operand.
fistp(FPmem); // Returns operand.

fbld(FPmem); // Returns operand.
fbstp(FPmem); // Returns operand.

fadd();
fadd(FPreg, st0);
fadd(st0, FPreg);
fadd(FPmem); // Returns operand.
fadd(FPconst); // Returns operand.

faddp();
faddp(st0, FPreg);

fmul();
Public Domain Created by Randy Hyde Page 420

HLA Reference Manual 5/24/10 Chapter 17
fmul(FPreg, st0);
fmul(st0, FPreg);
fmul(FPmem); // Returns operand.
fmul(FPconst); // Returns operand.

fmulp();
fmulp(st0, FPreg);

fsub();
fsub(FPreg, st0);
fsub(st0, FPreg);
fsub(FPmem); // Returns operand.
fsub(FPconst); // Returns operand.

fsubp();
fsubp(st0, FPreg);

fsubr();
fsubr(FPreg, st0);
fsubr(st0, FPreg);
fsubr(FPmem); // Returns operand.
fsubr(FPconst); // Returns operand.

fsubrp();
fsubrp(st0, FPreg);

fdiv();
fdiv(FPreg, st0);
fdiv(st0, FPreg);
fdiv(FPmem); // Returns operand.
fdiv(FPconst); // Returns operand.

fdivp();
fdivp(st0, FPreg);

fdivr();
fdivr(FPreg, st0);
fdivr(st0, FPreg);
fdivr(FPmem); // Returns operand.
fdivr(FPconst); // Returns operand.

fdivrp();
fdivrp(st0, FPreg);

fiadd(mem16); // Returns operand.
fiadd(mem32); // Returns operand.
fiadd(const); // Returns operand.

fimul(mem16); // Returns operand.
fimul(mem32); // Returns operand.
fimul(const); // Returns operand.

fidiv(mem16); // Returns operand.
fidiv(mem32); // Returns operand.
fidiv(mem32); // Returns operand.
fidiv(const); // Returns operand.

Public Domain Created by Randy Hyde Page 421

HLA Reference Manual 5/24/10 Chapter 17
fidivr(mem16); // Returns operand.
fidivr(mem32); // Returns operand.
fidivr(const); // Returns operand.

fcom();
fcom(FPreg);
fccom(FPmem); // Returns operand.

fcomp();
fcomp(FPreg);
fcomp(FPmem); // Returns operand.

fucom();
fucom(FPreg);

fucomp();
fucomp(FPreg);

fcompp();
fucompp();

ficom(mem16); // Returns operand.
ficom(mem32); // Returns operand.
ficom(const); // Returns operand.

ficomp(mem16); // Returns operand.
ficomp(mem32); // Returns operand.
ficomp(const); // Returns operand.

fsqrt(); // The following all return "st0"
fscale();
fprem();
fprem1();
frndint();
fxtract();
fabs();
fchs();
ftst();
fxam();

 fldz();
fld1();
fldpi();
fldl2t();
fldl2e();
fldlg2();
fldln2();
f2xm1();
fsin();
fcos();
fsincos();
fptan();
fpatan();
fyl2x();
fyl2xp1();

Public Domain Created by Randy Hyde Page 422

HLA Reference Manual 5/24/10 Chapter 17
finit(); // Returns ""
fwait();
fclex();
fincstp();
fdecstp();
fnop();
ffree(FPreg);
fldcw(mem);
fstcw(mem);
fstsw(mem);

See the chapter on real arithmetic in "The Art of Assembly Language Programming" for
details on these instructions. Note that HLA does not support the entire FPU instruction set. HLA
v2.0 actually supports the entire FPU instruction set. See the Intel documentation for more details.

17.31Additional Floating-Point Instructions for Pentium Pro and
Later Processors

The FCMOVcc instructions (cc= a, ae, b, be, na, nae, nb, nbe, e, ne, u, nu) use the following
basic syntax:

FCMOVcc(stn, st0); // n=0..7

They move the specified floating point register to ST0 if the specified condition is true.

The FCOMI and FCOMIP instructions use the following syntax:

fcomi(st0, stn);

fcomip(st0, stn);

These instructions behave like their (syntactical equivalent) FCOM and FCOMP brethren
except they store the status in the EFLAGs register directly rather than in the floating point status
register.

17.32MMX Instructions
HLA supports the following MMX instructions found on the Pentium and later processors

(note that some instructions are only available on Pentium III and later processors; see the Intel
reference manuals for details):

HLA uses the symbols mm0, mm1, ..., mm7 for the MMX register set.
The following MMX instructions all use the same syntax. The syntax is

mmxInstr(mmxReg, mmxReg);
mmxInstr(mem64, mmxReg);

mmxInstrs:

 paddb
 paddw
 paddd
 paddsb
 paddsw
 paddusb
 paddusw

 psubb
 psubw
Public Domain Created by Randy Hyde Page 423

HLA Reference Manual 5/24/10 Chapter 17
 psubd
 psubsb
 psubsw
 psubusb
 psubusw

 pmulhuw
 pmulhw
 pmullw
 pmaddwd

 pavgb
 pavgw

 pcmpeqb
 pcmpeqw
 pcmpeqd
 pcmpgtb
 pcmpgtw
 pcmpgtd

 packsswb
 packuswb
 packssdw

 punpcklbw
 punpcklwd
 punpckldq
 punpckhbw
 punpckhwd
 punpckhdq

 pand
 pandn
 por
 pxor

 pmaxsw
 pmaxub

 pminsw
 pminub

 psadbw

The following MMX instructions require a special syntax. The syntax is listed for each
instruction.

 pextrw(constant, mmxReg, Reg32);
 pinsrw(constant, Reg32, mmxReg);
 pmovmskb(mmxReg, Reg32);
 pshufw(constant, mmxReg, mmxReg);
 pshufw(constant, mem64, mmxReg);

 movd(mem32, mmxReg);
 movd(mmxReg, mem32);
Public Domain Created by Randy Hyde Page 424

HLA Reference Manual 5/24/10 Chapter 17
 movq(mem64, mmxReg);
 movq(mmxReg, mem64);

 emms();

The following MMX shift instructions also require a special syntax. They allow the following
two forms:
mmxshift(immConst, mmxReg);
mmxshift(mmxReg, mmxReg);

 psllw
 pslld
 psllq
 psrlw
 psrld
 psrlq
 psraw
 psrad

Note that the psllw, psrlw, and psraw instructions only allow an immediate constant in the
range 0..15, the pslld, psrld, and psrad instructions only allow constants in the range 0..31,
the psllq and psrlq instructions only allow immediate constants in the range 0..63.

Please see the appropriate Intel documentation or "The Art of Assembly Language" for a
discussion of the behavior of these instructions.

17.33SSE Instructions
HLA supports the following SSE and SSE/2 instructions found on the Pentium III, IV, and

later processors (note that some instructions are only available on Pentium IV and later processors;
see the Intel reference manuals for details):

HLA uses the symbols xmm0, xmm1, ..., xmm7 for the SSE register set.

SSE Instrs:

addsd(sseReg/mem128, sseReg);
addpd(sseReg/mem128, sseReg);
addps(sseReg/mem128, sseReg);
addss(sseReg/mem128, sseReg);
andnpd(sseReg/mem128, sseReg);
andnps(sseReg/mem128, sseReg);
andpd(sseReg/mem128, sseReg);
andps(sseReg/mem128, sseReg);

clflush(mem8);

cmppd(imm8, sseReg/mem128, sseReg);
cmpps(imm8, sseReg/mem128, sseReg);
cmpsdp(imm8, sseReg/mem64, sseReg);
cmpss(imm8, sseReg/mem32, sseReg);
cmpeqss(sseReg, sseReg);
cmpltss(sseReg, sseReg);
cmpless(sseReg, sseReg);
cmpneqss(sseReg, sseReg);
cmpnlts(sseReg, sseReg);
cmpnles(sseReg, sseReg);
Public Domain Created by Randy Hyde Page 425

HLA Reference Manual 5/24/10 Chapter 17
cmpords(sseReg, sseReg);
cmpunordss(sseReg, sseReg);
cmpeqsd(sseReg, sseReg);
cmpltsd(sseReg, sseReg);
cmplesd(sseReg, sseReg);
cmpneqsd(sseReg, sseReg);
cmpnlts(sseReg, sseReg);
cmpnles(sseReg, sseReg);
cmpords(sseReg, sseReg);
cmpunords(sseReg, sseReg);

cmpeqps(sseReg, sseReg);
cmpltps(sseReg, sseReg);
cmpleps(sseReg, sseReg);
cmpneqps(sseReg, sseReg);
cmpnltp(sseReg, sseReg);
cmpnleps(sseReg, sseReg);
cmpordps(sseReg, sseReg);
cmpunordps(sseReg, sseReg);

cmpeqpd(sseReg, sseReg);
cmpltpd(sseReg, sseReg);
cmplepd(sseReg, sseReg);
cmpneqpd(sseReg, sseReg);
cmpnltpd(sseReg, sseReg);
cmpnlepd(sseReg, sseReg);
cmpordpd(sseReg, sseReg);
cmpunordpd(sseReg, sseReg);

comisd(sseReg/mem64, sseReg);
comiss(sseReg/mem32, sseReg);
cvtdq2pd(sseReg/mem64, sseReg);
cvtdq2pq
cvtdq2ps(sseReg/mem128, sseReg);
cvtpd2dq(sseReg/mem128, sseReg);
cvtpd2pi(sseReg/mem128, mmxReg);
cvtpd2ps(sseReg/mem128, sseReg);
cvtpi2pd(sseReg/mem64, sseReg);
cvtpi2ps(sseReg/mem64, sseReg);
cvtpi2ss
cvtps2dq(sseReg/mem128, sseReg);
cvtps2pd(sseReg/mem64, sseReg);
cvtps2pi(sseReg/mem64, sseReg);
cvtsd2si(sseReg/mem64, Reg32);
cvtsi2sd(Reg32/mem32, sseReg);
cvtsi2ss(sseReg/mem64, sseReg);
cvtss2sd(sseReg/mem32, sseReg);
cvtsd2ss(Reg32/mem32, sseReg);
cvtss2si(sseReg/mem32, Reg32);
cvttpd2pi(sseReg/mem128, mmxReg);
cvttpd2dq(sseReg/mem128, sseReg);
cvttps2dq(sseReg/mem128, sseReg);
cvttps2pi(sseReg/mem64, mmxReg);
cvttsd2si(sseReg/mem64, Reg32);
cvttss2si(sseReg/mem32, Reg32);

divpd(sseReg/mem128, sseReg);
Public Domain Created by Randy Hyde Page 426

HLA Reference Manual 5/24/10 Chapter 17
divps(sseReg/mem128, sseReg);
divsd(sseReg/mem64, sseReg);
divss(sseReg/mem32, sseReg);
fxsave(mem512);
fxrstor(mem512);
ldmxcsr(mem32);
lfence

maskmovdqu(sseReg, sseReg);
maskmovq(mmxReg, mmxReg);
maxpd(sseReg/mem128, sseReg);
maxps(sseReg/mem128, sseReg);
maxsd(sseReg/mem64, sseReg);
maxss(sseReg/mem32, sseReg);

mfence

minpd(sseReg/mem128, sseReg);
minps(sseReg/mem128, sseReg);
minsd(sseReg/mem64, sseReg);
minss(sseReg/mem32, sseReg);

movapd(sseReg/mem128, sseReg);
movapd(sseReg, sseReg/mem128);
movaps(sseReg/mem128, sseReg);
movaps(sseReg, sseReg/mem128);
movdqa(sseReg/mem128, sseReg);
movdqa(sseReg, sseReg/mem128);
movdqu(sseReg/mem128, sseReg);
movdqu(sseReg, sseReg/mem128);
movdq2q(sseReg, mmxReg);
movhlps(sseReg, sseReg);
movhpd(mem64, sseReg);
movhpd(sseReg, mem64);
movhps(mem64, sseReg);
movhps(sseReg, mem64);
movlpd(mem64, sseReg);
movlpd(sseReg, mem64);
movlps(mem64, sseReg);
movlps(sseReg, mem64);
movlhps(sseReg, sseReg);
movmskpd(sseReg, Reg32);
movmskps(sseReg, Reg32);
movnti(Reg32, mem32);
movntpd(sseReg, mem128);
movntps(sseReg, mem128);
movntq(mmxReg, mem64);
movntdq(sseReg, mem128);
movq2dq(mmxReg, sseReg);
movsdp(sseReg, sseReg);
movsdp(mem64, sseReg);
movsdp(sseReg, mem64);
movss(sseReg, sseReg);
movss(mem32, sseReg);
movss(sseReg, mem32);
movupd(sseReg, sseReg);
movupd(sseReg, mem128);
Public Domain Created by Randy Hyde Page 427

HLA Reference Manual 5/24/10 Chapter 17
movupd(mem128, sseReg);
movups(sseReg, sseReg);
movups(sseReg, mem128);
movups(mem128, sseReg);

mulpd(sseReg/mem128, sseReg);
mulps(sseReg/mem128, sseReg);
mulss(sseReg/mem32, sseReg);
mulsd(sseReg/mem64, sseReg);

orpd(sseReg/mem128, sseReg);
orps(sseReg/mem128, sseReg);

pause

pmuludq(mmxReg/mem64, mmxReg);
pmuludq(sseReg/mem128, sseReg);

prefetcht0(mem8);
prefetcht1(mem8);
prefetcht2(mem8);
prefetchnta(mem8);

pshufd(imm8, sseReg/mem128, sseReg);
pslldq(imm8, sseReg);
psrldq(imm8, sseReg);
punpckhqdq(sseReg/mem128, sseReg);
punpcklqdq(sseReg/mem128, sseReg);

rcpps(sseReg/mem128, sseReg);
rcpss(sseReg/mem128, sseReg);
rsqrtps(sseReg/mem128, sseReg);
rsqrtss(sseReg/mem32, sseReg);

sfence;

shufpd(imm8, sseReg/mem128, sseReg);
shufps(imm8, sseReg/mem128, sseReg);
sqrtpd(sseReg/mem128, sseReg);
sqrtps(sseReg/mem128, sseReg);
sqrtsd(sseReg/mem64, sseReg);
sqrtss(sseReg/mem32, sseReg);

stmxcsr(mem32);

subps(sseReg/mem128, sseReg);
subpd(sseReg/mem128, sseReg);
subsd(sseReg/mem64, sseReg);
subss(sseReg/mem32, sseReg);

ucomisd(sseReg/mem64, sseReg);
ucomiss(sseReg/mem32, sseReg);

unpckhpd(sseReg/mem128, sseReg);
unpckhps(sseReg/mem128, sseReg);
unpcklpd(sseReg/mem128, sseReg);
unpcklps(sseReg/mem128, sseReg);
Public Domain Created by Randy Hyde Page 428

HLA Reference Manual 5/24/10 Chapter 17
xorpd(sseReg/mem128, sseReg);
xorps(sseReg/mem128, sseReg);

17.34OS/Priviledged Mode Instructions
Although HLA was originally intended for writing 32-bit flat model user mode applications,

some HLA users may wish to write an operaing system kernel or device drivers within HLA.
Therefore, HLA provides support for various priviledged instructions and instructions that
manipulate segment registers on the 80x86 processor. This section describes those instructions.
Normal application programs should not use these instructions (most will cause a "General
Protection Fault" if you attempt to execute them).

For additional information on these instructions, please see the Intel documentation for the
Pentia processors.
arpl(r16, r/m16);

Adjusts the RPL field of a segment descriptor.

clts();

Clears the task switched flag in CR0.

hlt();

Halts the processor until an interrupt or reset comes along.

invd();

Invalidates the internal cache.

invlpg(mem);

Invalidates the TLB entry associated with the memory address specified as the source operand.

lar(r/m16, r16);
lar(r/m32, r32);

Load access rights from the segment descriptor specified by the first operand into the second
operand.

lds(r32, m48);
les(r32, m48);
lfs(r32, m48);
lgs(r32, m48);
lss(r32, m48);

Load a far (48-bit) segmented pointer into ds, es, fs, gs, or ss, and some other 32-bit register.
Note that HLA does not support an fword data type. These instructions require a 48-bit memory
operand, nonetheless. You may create your own 48-bit fword data type using a record declaration
like the following:
type

fword: record
offset: dword;
Public Domain Created by Randy Hyde Page 429

HLA Reference Manual 5/24/10 Chapter 17
selector: word;
endrecord;

lgdt(mem48);
lidt(mem48);
sgdt(mem48);
sidt(mem48);

Loads or stores the global descriptor table pointer (lgdt/sgdt) or interrupt descriptor table
pointer (lidt/sidt) via the specified 48-bit memory operand. HLA does not support a 48-bit data
type specifically for these instructions, but you can easily create one as follows:

type
descPtr: record

lowerLimit: word;
baseAdrs: dword;

endrecord

lldt(r/m16);
sldt(r/m16)

These instructions copy the specified source operand to/from the local descriptor table.

lsl(r/m16, r16);
lsl(r/m32, r32);

Load segment limit instruction;

ltreg(r/m16);
streg(r/m16);

Load and store the task register. Note that Intel uses the mnemonics "ltr" and "str" for these
instructions. HLA changes these mnemonics to avoid conflicts with the commonly used "str"
namespace (the HLA strings module).

mov(r/m16, segreg);
mov(segreg, r/m16);

Copies data between an 80x86 segment register and a 16-bit register or memory location. Note
that HLA uses the following register names for the segment registers:
cseg The 80x86 CS register.

dseg The 80x86 DS register

eseg The 80x86 ES register

fseg The 80x86 FS register

gseg The 80x86 GS register

sseg The 80x86 SS register

HLA uses these names rather than the Intel standard register names to avoid conflicts with the
"cs" (cset) namespace identifier and other commonly used application identifiers. Note that CSEG
may not be a destination register for the MOV instruction.
Public Domain Created by Randy Hyde Page 430

HLA Reference Manual 5/24/10 Chapter 17
mov(r32, crx); // note: x= 0, 2, 3, or 4.
mov(crx, r32);

These instructions move data between one of the 32-bit registers and one of the x86’s control
registers. Note that HLA reserves names cr0..cr7 even though Intel doesn’t currently define all
eight control registers.

mov(r32, drx); // note: x=0, 1, 2, 3, 6, 7
mov(drx, r32);

These instructions move data between the general-purpose 32-bit registers the the x86 debug
registers. Note that HLA reserves names dr0..dr7 even though the assembler doesn’t currently
support the user of the dr4 and dr5 registers.

push(segreg);
pop(segreg);

These instructions push and pop the x86 segment registers (cseg, dseg, eseg, fseg, gseg, and
sseg). Note, however, that you cannot pop the cseg register. (see the comment earlier about HLA
segment register names).

rdmsr();
rdpmc();

These instructions read model-specific registers or performance monitoring registers on the
x86. The ECX register specifies the register to read, these instructions copy the data to EDX:EAX.

rsm();

Resumes from system management mode.

verr(r/m16);
verw(r/m16);

Verifies whether the specified code segment is readable (verr) or writable (verw) from the
current priviledge level.

wbinvd();

Write-back and invalidate cache.

17.35Other Instructions and features
Currently, HLA does not support 3DNow, or certain other SIMD instructions found on later

x86 processors. The intent is to add support in the near future.
Note that HLA does not support the LMSW and SMSW instructions (old, obsolete 286

instructions). Use MOV with CR0 instead.
In the meantime, if you need to use any of these instructions you can use the

#ASM..#ENDASM and #EMIT directives to insert them into your programs. You can also use
macros to implement any desired instructions or syntaxes you desire.

Segment overrides are possible using the segment names (cseg, dseg, eseg, fseg, gseg, and
sseg) as a label before an instruction, e.g.,

fseg: mov([eax], eax); // Fetches from fs:[eax].
Public Domain Created by Randy Hyde Page 431

HLA Reference Manual 5/24/10 Chapter 17
Generally, you don't need segment overrides in flat-model 32-bit OS environments. However, the
operating system kernel (even flat-model OSes) sometimes need to apply a segment override, for
example to support Structured Exception Handling under Windows, hence this discussion.
Public Domain Created by Randy Hyde Page 432

HLA Reference Manual 5/24/10 Chapter 18
18 Advanced HLA Programming

18.1 Writing a DLL in HLA
Dynamic link libraries provide an efficient mechanism for sharing code and cross-language

linkage. The HLA language does not require any specific syntax to create a DLL; most of the
work is done by the linker. However, to successfully write and call DLLs with HLA, you must
follow some standard conventions.

Acknowledgement: I learned much of the material needed to write DLLs in HLA by visiting
the following web page and looking at the CRCDemo file (which demonstrates how to write DLLs
in assembly language). For more information on DLLs in assembly, you might want to take a look
at this page yourself:

http://www.geocities.com/SiliconValley/Heights/7394/index.html

I certainly acknowledge stealing lots of information and ideas from this CRC code and
documentation.

18.1.1 Creating a Dynamic Link Library

Win32 Dynamic Link Libraries provide a mechanism whereby two or more programs can
share the same set of library object modules on the disk. At the very least, DLLs save space on the
disk; if properly written and loaded into memory, DLLs can also share run-time memory and
reduce swap space usage on the hard disk.

Perhaps even more important that saving space, DLLs provide a mechanism whereby two
different programming languages may communicate with one another. Although there is usually
no problems calling an assembly language (i.e., HLA) module from any given high level language,
DLLs do provide one higher level of generality. In order to achieve this generality, Microsoft had
to carefully describe the calling mechanism between DLLs and other modules. In order to
communicate data, all languages that support DLLs need to agree on the calling and parameter
passing mechanisms.

Microsoft has laid down the following rules for DLLs (among others):

• Procedures/functions with a fixed parameter list use the stdcall calling mechanism.

• Procedures/functions with a variable number of parameters use the C calling mechanism.

• Parameters can be bytes, words, doublewords, pointers, or strings. Pointers are machine
addresses; strings are pointers to a zero-terminated sequence of characters, and it is up to
the two modules to agree on how to interpret byte, word, or dword data (e.g., char, int16,
uns32, etc.)

Stdcall procedures push their parameters from left to right as they are encountered in the
parameter list. In stdcall procedures, it is the procedure’s responsibility to clean up the parameters
pushed on the stack.

HLA uses the stdcall calling mechanism for the HLL-style procedure calls, so this simplifies
the interface to DLL code when using fixed parameter lists (variable parameter lists are rare in
DLLs, but should they be necessary, one can always drop down into “pure” assembly in HLA and
accomodate the DLL).

The only other issue, with respect to stdcall conventions, is the naming convention. The
stdcall mechanism mangles procedure names. In particular, a procedure name like “XXXX” is
Public Domain Created by Randy Hyde Page 433

HLA Reference Manual 5/24/10 Chapter 18
translated to “_XXX@nn” where “nn” is the number of bytes of parameters passed to the
procedure. HLA does not automatically mangle procedure names, but using the “external”
directive you can easily specify the mangled name.

DLLs must provide a special procedure that Windows calls to initialize the procedure. This
DLL entry point must use an HLA definition like the following:

procedure dll(instance:dword; reason:dword; reserved:dword); external("_dll@12");

This function must return true in AL if the DLL can be successfully initialized; it returns false
if it cannot properly initialize the DLL. Note that “dll” and “_dll@12” are example names; you
may use any reasonable identifiers you choose here.

The DLL initialization function always has three parameters. The second parameter is the only
one of real interest to the DLL initialization code. This parameter contains the reason for calling
this code, which is one of the following constants defined in the w.hhf header file:

• w.DLL_PROCESS_ATTACH

• w.DLL_PROCESS_DETACH

• w.DLL_THREAD_ATTACH

• w.DLL_THREAD_DETACH

The w.DLL_XXXXX_ATTACH values indicate that some program is linking in the DLL.
During these calls, you should open any files, initialize any variables, and execute any other
initialization code that may be necessary for the proper operation of the DLL. Note that, by default,
all processes that attach to a DLL get their own copy of any data defined in the DLL. Therefore,
you do not have to worry about disturbing previous links to the DLL during the current
initialization process.

The w.DLL_XXXXX_DETACH values indicate that a process or thread is shutting down.
During these calls, you should close any files and perform any other necessary cleanup (e.g.,
freeing memory) that you would normally do before a program ends.

The following code demonstrates a short DLL:

unit dllExample;
#include("w.hhf");

static
 ThisInstance: dword;

procedure dll(instance:dword; reason:dword; reserved:dword);
 @stdcall; @external("_dll@12");

procedure dllFunc1(dw:dword); @stdcall; @external("_dllFunc1@4");
procedure dllFunc2(dw2:dword); @stdcall; @external("_dllFunc2@4");

procedure dll(instance:dword; reason:dword; reserved:dword); @nodisplay;
begin dll;

 // Save the instance value.

 mov(instance, eax);
Public Domain Created by Randy Hyde Page 434

HLA Reference Manual 5/24/10 Chapter 18
 mov(eax, ThisInstance);

 if(reason = w.DLL_PROCESS_ATTACH) then

 // Do this code if we're attaching this DLL to a process...

 endif;

 // Return true if successful, false if unsuccessful.

 mov(true, eax);

end dll;

procedure dllFunc1(dw:dword); @nodisplay;
begin dllFunc1;

 mov(dw, eax);

end dllFunc1;

procedure dllFunc2(dw2:dword); @nodisplay;
begin dllFunc2;

 push(edx);
 mov(dw2, eax);
 mul(dw2, eax);
 pop(edx);

end dllFunc2;

end dllExample;

As you can see here, there is very little difference between a standard unit and an HLA unit
intended to become a DLL. The name mangling is one difference, placing the external declarations
directly in the file (rather than in an include file) is another difference. The only functional
difference is the presence of the DLL initialization procedure (“dll” in this example).

The real work in creating a DLL occurs during the link phase. You cannot compile a DLL the
same way you compile a standard HLA program - some additional steps are necessary. Creating a
DLL requires lots of command line parameters, so it is best to create a makefile and a “linker” file
to avoid excess typing at the command line. Consider the following make file for the module
above:

dll.dll: dll.obj
link dll.obj @dll.linkresp

dll.obj: dll.hla
hla -@ -c dll.hla

This makefile generates the dll.dll file (it will also produce several other files, dll.lib being the
most important one). The real work appears in the “dll.linkresp” linker file. This file contains the
following text:
Public Domain Created by Randy Hyde Page 435

HLA Reference Manual 5/24/10 Chapter 18
-DLL
-entry:dll
-base:0x40000000
-out:dll.dll
-export:dll
-export:dllFunc1
-export:dllFunc2

The “-DLL” option tells the linker to produce a “dll.dll” and a “dll.lib” file rather than just a
“dll.exe” file (note: the linker will also produce some other files, but these two are the ones
important to us).

The “-entry:dll” option tells the linker that the name of the DLL initialization code is the
procedure “dll”. If you change the name of your DLL initialization code, you should also change
this option.

The “-base:0x40000000” option tells the linker that this DLL has a base address of 1GByte.
For efficiency reasons, you should try to specify a unique value here. If two active DLLs specify
the same base address, different processes cannot concurrently share the two DLLs. The programs
will still operate, but they will not share the code, wasting some memory and requiring longer load
times.

The “-out:dll.dll” command specifies the output name for the DLL. The suffix should be “.dll”
and the base filename should be an appropriate name for your DLL (“dll” was appropriate in this
case, it would not be appropriate in other cases).

The “-export” options specify the names of the external procedures you wish to make available
to other modules. Alternately, you may create a “.DEF” file and use the “-DEF:deffilename.def”
option to pass the exported file names on to the linker (see the Microsoft documentation for a
description of DEF files).

If you run this make file, it will compile the dll.hla source file producing the dll.dll and dll.lib
object modules.

18.1.2 Linking and Calling Procedures in a Dynamic Link Library

Creating a DLL in HLA is only half the battle. The other half is calling a procedure in a DLL
from an HLA program. Here is a sample program that calls the DLL procedures in the previous
section:

// Sample program that calls routines in dll.dll.
//
// Compile this with the command line option:
//
// hla dllmain dll.lib
//
// Of course, you must build the DLL first.

program callDLL;
#include("stdlib.hhf");

procedure dllFunc1(dw:dword); @stdcall; @external("_dllFunc1@4");
procedure dllFunc2(dw:dword); @stdcall; @external("_dllFunc2@4");

begin callDLL;

 xor(eax, eax);
 dllFunc1(12345);
 stdout.put("After dllFunc1, eax = ", (type uns32 eax), nl);
Public Domain Created by Randy Hyde Page 436

HLA Reference Manual 5/24/10 Chapter 18
 dllFunc2(100);
 stdout.put("After dllFunc2, eax = ", (type uns32 eax), nl);

end callDLL;

To compile this main program, you would use the following HLA command
line:

hla dllmain dll.lib

The “dll.lib” file contains the linkages necessary to load and link in the
dll module at run-time.

18.1.3 Going Farther
This document only explains “implicitly loaded” DLLs. Implicitly loaded DLLs are always

loaded into memory when the main module loads into memory. If you want to control the loading
of the DLL module into memory, you will want to take a look at “explicitly loaded” DLLs. Such
DLLs, however, will have to be the subject of a different example.
Public Domain Created by Randy Hyde Page 437

HLA Reference Manual 5/24/10 Chapter 18
18.2 Compiling HLA
Source code has been shipped with the HLA releases since HLA v1.18. However, until Bison

1.875 became available, compiling HLA required a special, hacked, version of Bison that ran under
Linux. This made development of HLA (particularly under Linux) a bit painful. Fortunately, as of
Bison 1.875, it is now possible to compile the HLA source code using standard versions of Flex and
Bison available from the Free Software Foundation (the GNU folks). You must, however, have
Bison 1.875 or later to successfully translate the HLAPARSE.BSN file. Under Windows, the
CYGWIN package containing Flex and Bison works great. I (Randy Hyde) have never actually
built HLAPARSE.BSN under Linux, so I don’t have any experience with this process. It may be
trivial, it may be impossible. I’ve never tried it. I always generate HLAPARSE.C under Windows
using Bison and then I copy the C file over to Linux for compilation there.

First, a couple of comments about the source code: HLA v1.x and v2.x are prototype systems.
This means that there are massive kludges in the code. The whole system evolved over time rather
than being designed properly in the first place (no apologies for this, that’s the whole purpose of a
prototype). So if you looking for wonderfully structured code that’s easy to follow, HLA will
disappoint you. I learned quite a bit about FLEX and BISON while writing HLA and,
unfortunately, it shows. There are many ways I’ve done things that someone who was more
familiar with FLEX/Bison would have done differently (heck, there are a lot of things I would do
differently, in hindsight). None of this is worth fixing since such work is better put to writing v2.x
of HLA.

The HLA source code is almost 200,000 lines long. The Bison file alone is about 100,000
lines of code. Messing with HLA source code is not an undertaking for the weak of heart.
Although much of the code is commented, there is very little “high level documentation” (i.e.,
design documentation) available that would explain why I’ve done certain things or to provide the
general philosophy behind the code. I offer the source code in this form; it is up to you to decide
whether you want to spend the time needed to figure it all out.

One note about support: I will be more than happy to answer questions about HLA in the
Yahoo AoA/HLA Programming newsgroup. However, I do not have time to answer individual
questions asked via email concerning the source code. I apologize ahead of time, but releasing a
program of this magnitude to the public could wind up burying me with questions. Because of the
possible volume of emails this product could produce, I must ignore all requests for help that arrive
via email. Of course, bug reports are always welcome via email. Send everything else to one of the
two aforementioned newsgroups.

I have developed HLA with the following tools:

• CodeWright Editor (it takes a decent editor to handle files in excess of 100,000 lines of
code).

• Microsoft Visual C++ (v9)

• Flex

• Bison (must be 1.875 or later)

• Microsoft nmake

• GCC 2.9x (Linux, FreeBSD, and Mac OS X versions)

• HLA (a couple of modules are written in HLA itself).

• MASM v9.

• Gas (Linux, FreeBSD, Mac OSX)
I have supplied a makefile that should automatically build the HLA system for you. See the

makefile in the main source directory for details. For Linux, there is a “makefile.linux” file that you
should use. For FreeBSD use “makefile.freebsd” and for the Macintosh, use “makefile.mac”,

HLA is probably not portable. I have made no attempt to ensure that the code compiles with
anything other than GCC and MSVC++, so undoubtedly it won’t compile on anything else without
some effort. I have eliminated *most* of the compiler warnings, so porting to some other
compilers shouldn’t be too difficult.

Porting HLA to generate assembly code for an assembler other than MASM, NASM, FASM,
Gas,or TASM is a major undertaking. TASM took a couple of weeks to pull off and TASM is
mostly compatible with MASM. Gas took about a month of evenings and FASM took several
weekends. Fortunately, if you choose to do this, I’ve made the process easier and easier with each
new back-end assembler I added. Porting HLA to generate object code other than PE/COFF, ELF,
Public Domain Created by Randy Hyde Page 438

HLA Reference Manual 5/24/10 Chapter 18
or Mach-o is a serious undertaking. I spent a couple of months on each of the three object formats
that HLA currently supports.

Porting to other operating systems (other than Windows, Mac OSX, FreeBSD and Linux) is
certainly possible. The compiler should be fairly easy to port. The real work is in porting the
Standard Library. I’ve looked into porting HLA to QNX, but haven’t pursued this for a couple of
reasons: (1) QNX’s version of GCC is older and has problems compiling the source code, (2) QNX
doesn’t really support assembly level calls to the OS so I’d have to port the HLA standard library
on top of the C standard library code (which is ugly). NetBSD and OpenBSD should be easy - just
a simple modification of the FreeBSD port. At one time I looked into a BeOS port, but then BeOS
died, so I gave up. Solaris/Sun OS is a possibility, but now that Oracle has bought out Sun, who
knows where that OS is going?
Public Domain Created by Randy Hyde Page 439

HLA Reference Manual 5/24/10 Chapter 18
18.3 Code Generation for HLA HLL Control Structures
Note: This is a very old and incomplete document. It was written back in the early days of HLA

v1.x. While the general principles still apply, the specific examples of code generated by
HLA have changed quite a bit. Nevertheless, the information is still useful to some people
so I’ve included this document here. If there is sufficient interest, I can be convinced to
update and finish this document.

One of the principal advantages of using assembly language over high level languages is the
control that assembly provides. High level languages (HLLs) represent an abstraction of the
underlying hardware. Those who write HLL code give up this control in exchange for the
engineering efficiencies enjoyed by HLL programmers. Some advanced HLL programmers (who
have a good mastery of the underlying machine architecture) are capable of writing fairly efficient
programs by recognizing what the compiler does with various high level control constructs and
choosing the appropriate construct to emit the machine code they want. While this “low-level
programming in a high level language” does leave the programmer at the mercy of the compiler-
writer, it does provide a mechanism whereby HLL programmers can write more efficient code by
chosing those HLL constructs that compile into efficient machine code.

Although the High Level Assembler (HLA) allows a programmer to work at a very low level,
HLA also provides structured high-level control constructs that let assembly programmers use
higher-level code to help make their assembly code more readable. Those assembly language
programmers who need (or want) to exercise maximum control over their programs will probably
want to avoid using these statements since they tend to obscure what is happening at a really low
level. At the other extreme, those who would always use these high-level control structures might
question if they really want to use assembly language in their applications; after all, if they’re
writing high level code, perhaps they should use a high level language and take advantage of
optimizing technology and other fancy features found in modern compilers. Between these two
extremes lies the typical assembly language programmer. The one who realizes that most code
doesn’t need to be super-efficient and is more interested in productively producing lots of software
rather than worrying about how many CPU cycles the one-time initialization code is going to
consume. HLA is perfect for this type of programmer because it lets you work at a high level of
abstraction when writing code whose performance isn’t an issue and it lets you work at a low level
of abstraction when working on code that requires special attention.

Between code whose performance doesn’t matter and code whose performance is critical lies a
big gray region: code that should be reasonably fast but speed isn’t the number one priority. Such
code needs to be reasonably readable, maintainable, and as free of defects as possible. In other
words, code that is a good candidate for using high level control and data structures if their use is
reasonably efficient.

Unlike various HLL compilers, HLA does not (yet!) attempt to optimize the code that you
write. This puts HLA at a disadvantage: it relies on the optimizer between your ears rather than the
one supplied with the compiler. If you write sloppy high level code in HLA then a HLL version of
the same program will probably be more efficient if it is compiled with a decent HLL compiler.
For code where performance matters, this can be a disturbing revelation (you took the time and
bother to write the code in assembly but an equivalent C/C++ program is faster). The purpose of
this article is to describe HLA’s code generation in detail so you can intelligently choose when to
use HLA’s high level features and when you should stick with low-level assembly language.

18.3.1 The HLA Standard Library
The HLA Standard Library was designed to make learning assembly language programming

easy for beginning programmers. Although the code in the library isn’t terrible, very little effort
was made to write top-performing code in the library. At some point in the future this may change
as work on the library progresses, but if you’re looking to write very high-performance code you
should probably avoid calling routines in the HLA Standard Library from (speed) critical sections
of your program.

Don’t get the impression from the previous paragraph that HLA’s Standard Library contains a
bunch of slow-poke routines, however. Many of the HLA Standard Library routines use decent
algorithms and data structures so they perform quite well in typical situations. For example, the
HLA string format is far more efficient than strings in C/C++. The world’s best C/C++ strlen
routine is almost always going to be slower than HLA str.len function. This is because HLA uses a
better definition for string data than C/C++, it has little to do with the actual implementation of the
str.len code. This is not to say that HLA’s str.len routine cannot be improved; but the routine is
very fast already.
Public Domain Created by Randy Hyde Page 440

HLA Reference Manual 5/24/10 Chapter 18
One problem with using the HLA Standard Library is the frame of mind it fosters during the
development of a program. The HLA Standard Library is strongly influenced by the C/C++
Standard Library and libraries common in other high level languages. While the HLA Standard
Library is a wonderful tool that can help you write assembly code faster than ever before, it also
encourages you to think at a higher level. As any expert assembly language programmer can tell
you, the real benefits of using assembly language occur only when you “think in assembly” rather
than in a high level language. No matter how efficient the routines in the Standard Library happen
to be, if you’re “writing C++ programs with MOV instructions” the result is going to be little better
than writing the code in C++ to begin with.

One unfortunate aspect of the HLA Standard Library is that it encourages you to think at a
higher level and you’ll often miss a far more efficient low-level solution as a result. A good
example is the set of string routines in the HLA Standard Library. If you use those routines, even if
they were written as efficiently as possible, you may not be writing the fastest possible program
you can because you’ve limited your thinking to string objects which are a higher level abstraction.
If you did not have the HLA Standard Library laying around and you had to do all the character
string manipulation yourself, you might choose to treat the objects as character arrays in memory.
This change of perspective can produce dramatic performance improvement under certain
circumstances.

The bottom line is this: the HLA Standard Library is a wonderful collection of routines and
they’re not particularly inefficient. They’re very easy and convenient to use. However, don’t let
the HLA Standard Library lull you into choosing data structures or algorithms that are not the most
appropriate for a given section of your program.

18.3.2 Compiling to MASM Code -- The Final Word
The remainder of this document will discuss, in general, how HLA translates various HLL-

style statements into assembly code. Sometimes a general discussion may not provide specific
answers you need about HLA’s code generation capabilities. Should you have a specific question
about how HLA generates code with respect to a given code sequence, you can always run the
compiler and observe the output it produces. To do this, it is best to create a simple program that
contains only the construct you wish to study and compile that program to assembly code. For
example, consider the following very simple HLA program:

program t;

begin t;

 if(eax = 0) then

 mov(1, eax);

 endif;

end t;

If you compile this program using the command window prompt “hla -s t.hla” then HLA
produces the following (MASM) assembly code output (in the “t.asm” output file)1:

 if @Version lt 612
 .586
 else
 .686
 .mmx
 .xmm
 endif
 .model flat, syscall

1. This code is from an older version of HLA. The actual code HLA generates today is different. But the
concepts this document covers still apply.
Public Domain Created by Randy Hyde Page 441

HLA Reference Manual 5/24/10 Chapter 18
offset32 equ <offset flat:>
 assume fs:nothing
?ExceptionPtr equ <(dword ptr fs:[0])>
 externdef ??HWexcept:near32
 externdef ??Raise:near32

std_output_hndl equ -11

 externdef __imp__ExitProcess@4:dword
 externdef __imp__GetStdHandle@4:dword
 externdef __imp__WriteFile@20:dword

cseg segment page public 'code'
cseg ends
readonly segment page public 'data'
readonly ends
strings segment page public 'data'
strings ends
dseg segment page public 'data'
dseg ends
bssseg segment page public 'data'
bssseg ends

strings segment page public 'data'

?dfltmsg byte "Unhandled exception error.",13,10
?dfltmsgsize equ 34
?absmsg byte "Attempted call of abstract procedure or
method.",13,10
?absmsgsize equ 55
strings ends
dseg segment page public 'data'
?dfmwritten word 0
?dfmStdOut dword 0

 public ?MainPgmCoroutine
?MainPgmCoroutine byte 0 dup (?)
 dword ?MainPgmVMT
 dword 0 ;CurrentSP
 dword 0 ;Pointer to stack
 dword 0 ;ExceptionContext
 dword 0 ;Pointer to last caller
?MainPgmVMT dword ?QuitMain
dseg ends
cseg segment page public 'code'

?QuitMain proc near32
 pushd 1
 call dword ptr __imp__ExitProcess@4

?QuitMain endp

cseg ends

cseg segment page public 'code'
Public Domain Created by Randy Hyde Page 442

HLA Reference Manual 5/24/10 Chapter 18

??DfltExHndlr proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?dfltmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?dfltmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

??DfltExHndlr endp

 public ??Raise
??Raise proc near32
 jmp ??DfltExHndlr
??Raise endp

 public ??HWexcept
??HWexcept proc near32
 mov eax, 1
 ret
??HWexcept endp

?abstract proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?absmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?absmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

?abstract endp

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
 push offset32 ?MainPgmCoroutine
Public Domain Created by Randy Hyde Page 443

HLA Reference Manual 5/24/10 Chapter 18
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp
 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:
 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

The code of interest in this example is at the very end, after the comment “;Main’s display”
appears in the text. The actual code sequence that corresponds to the IF statement in the main
program is the following:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Note: you can verify that this is the code emitted by the IF statement by simply removing the
IF, recompiling, and comparing the two assembly outputs. You’ll find that the only difference
between the two assembly output files is the four lines above. Another way to “prove” that this is
the code sequence emitted by the HLA IF statement is to insert some comments into the assembly
output file using HLA’s #ASM..#ENDASM directives. Consider the following modification to the
“t.hla” source file:

program t;

begin t;

 #asm
 ; Start of IF statement:
 #endasm

 if(eax = 0) then

 mov(1, eax);

 endif;

 #asm
 ; End if IF statement.
 #endasm

end t;

Public Domain Created by Randy Hyde Page 444

HLA Reference Manual 5/24/10 Chapter 18
HLA’s #asm directive tells the compiler to simply emit everything between the #asm and
#endasm keywords directly to the assembly output file. In this example the HLA program uses
these directives to emit a pair of comments that will bracket the code of interest in the output file.
Compiling this to assembly code (and stripping out the irrelevant stuff before the HLA main
program) yields the following:

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
 push offset32 ?MainPgmCoroutine
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp

;#asm

 ; Start of IF statement:
 ;#endasm

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

;#asm

 ; End if IF statement.
 ;#endasm

 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

This technique (embedding bracketing comments into the assembly output file) is very useful
if it is not possible to isolate a specific statement in its own source file when you want to see what
HLA does during compilation.
Public Domain Created by Randy Hyde Page 445

HLA Reference Manual 5/24/10 Chapter 18
18.3.3 The HLA if..then..endif Statement, Part I
Although the HLA IF statement is actually one of the more complex statements the compiler

has to deal with (in terms of how it generates code), the IF statement is probably the first statement
that comes to mind when something thinks about high level control structures. Furthermore, you
can implement most of the other control structures if you have an IF and a GOTO (JMP) statement,
so it makes sense to discuss the IF statement first. Nevertheless, there is a bit of complexity that is
unnecessary at this point, so we’ll begin our discussion with a simplified version of the IF
statement; for this simplified version we’ll not consider the ELSEIF and ELSE clauses of the IF
statement.

The basic HLA IF statement uses the following syntax:

if(simple_boolean_expression) then

 << statements to execute if the expression evaluates true >>

endif;

At the machine language level, what the compiler needs to generate is code that does the
following:

<< Evaluate the boolean expression >>

<< Jump around the following statements if the expression was false >>

<< statements to execute if the expression evaluates true >>

<< Jump to this point if the expression was false >>

The example in the previous section is a good demonstration of what HLA does with a simple
IF statement. As a reminder, the HLA program contained

 if(eax = 0) then

 mov(1, eax);

 endif;

and the HLA compiler generated the following assembly language code:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Evaluation of the boolean expression was accomplished with the single “cmp eax, 0”
instruction. The “jne ?1_false” instruction jumps around the “mov eax, 1” instruction (which is the
statement to execute if the expression evaluates true) if the expression evaluates false. Conversely,
if EAX is equal to zero, then the code falls through to the MOV instruction. Hence the semantics
are exactly what we want for this high level control structure.

HLA automatically generates a unique label to branch to for each IF statement. It does this
properly even if you nest IF statements. Consider the following code:

program t;

Public Domain Created by Randy Hyde Page 446

HLA Reference Manual 5/24/10 Chapter 18
begin t;

 if(eax > 0) then

 if(eax < 10) then

 inc(eax);

 endif;

 endif;

end t;

The code above generates the following assembly output:

 cmp eax, 0
 jna ?1_false
 cmp eax, 10
 jnb ?2_false
 inc eax
?2_false:
?1_false:

As you can tell by studying this code, the INC instruction only executes if the value in EAX is
greater than zero and less than ten.

Thus far, you can see that HLA’s code generation isn’t too bad. The code it generates for the
two examples above is roughly what a good assembly language programmer would write for
approximately the same semantics.

18.3.4 Boolean Expressions in HLA Control Structures
The HLA IF statement and, indeed, most of the HLA control structures rely upon the

evaluation of a boolean expression in order to direct the flow of the program. Unlike high level
languages, HLA restricts boolean expressions in control structures to some very simple forms.
This was done for two reasons: (1) HLA’s design frowns upon side effects like register
modification in the compiled code, and (2) HLA is intended for use by beginning assembly
language students; the restricted boolean expression model is closer to the low level machine
architecture and it forces them to start thinking in these terms right away.

With just a few exceptions, HLA’s boolean expressions are limited to what HLA can easily
compile to a CMP and a condition jump instruction pair or some other simple instruction sequence.
Specifically, HLA allows the following boolean expressions:

operand1 relop operand2

relop is one of:

= or == (either one, both are equivalent)
<> or != (either one, both are equivalent)
<
<=
>

Public Domain Created by Randy Hyde Page 447

HLA Reference Manual 5/24/10 Chapter 18
>=

A CPU flag specification.
A CPU register.
A boolean or byte variable.

In the expressions above operand1 and operand2 are restricted to those operands that are legal
in a CMP instruction. This is because HLA translates expressions of this form to the two
instruction sequence:

cmp(operand1, operand2);

jXX someLabel;

where “jXX” represents some condition jump whose sense is the opposite of that of the
expression (e.g., “eax > ebx” generates a “JNA” instruction since “NA” is the opposite of “>”).

Assuming you want to compare the two operands and jump around some sequence of
instructions if the relationship does not hold, HLA will generate fairly efficient code for this type of
expression. One thing you should watch out for, though, is that HLA’s high level statements (e.g.,
IF) make it very easy to write code like the following:

if(i = 0) then

 ...

elseif(i = 1) then

 ...

elseif(i = 2) then

 ...
.
.
.
endif;

This code looks fairly innocuous, but the programmer who is aware of the fact that HLA emits
the following would probably not use the code above:

 cmp(i, 0);
 jne lbl;
 .
 .
 .
lbl: cmp(i, 1);
 jne lbl2;
 .
 .
 .
lbl2: cmp(i, 2);
 .
 .
 .

A good assembly language programmer would realize that it’s much better to load the variable
“i” into a register and compare the register in the chain of CMP instructions rather than compare the
Public Domain Created by Randy Hyde Page 448

HLA Reference Manual 5/24/10 Chapter 18
variable each time. The high level syntax slightly obscures this problem; just one thing to be
aware of.

HLA’s boolean expressions do not support conjunction (logical AND) and disjunction (logical
OR). The HLA programmer must manually synthesize expressions involving these operators.
Doing so forces the programmer to link in lower level terms, which is usually more efficient.
However, there are many common expressions involving conjunction that HLA could efficiently
compile into assembly language. Perhaps the most common example is a test to see if an operand
is within (or outside) a range specified by two constants. In a HLL like C/C++ you would typically
use an expression like “(value >= low_constant && value <= high_constant)” to test this condition.
HLA allows four special boolean expressions that check to see if a register or a memory location is
within a specified range. The allowable expressions take the following forms:

register in constant .. constant
register not in constant .. constant

memory in constant .. constant
memory not in constant .. constant

Here is a simple example of the first form with the code that HLA generates for the expression:

 if(eax in 1..10) then

 mov(1, ebx);

 endif;

Resulting (MASM) assembly code:

 cmp eax, 1
 jb ?1_false
 cmp eax, 10
 ja ?1_false
 mov ebx, 1
?1_false:

Once again, you can see that HLA generates reasonable assembly code without modifying any
register values. Note that if modifying the EAX register is okay, you can write slightly better code
by using the following sequence:

 dec eax
 cmp eax, 9
 ja ?1_false
 mov ebx, 1
?1_false:

While, in general, a simplification like this is not possible you should always remember how
HLA generates code for the range comparisons and decide if it is appropriate for the situation.

By the way, the “not in” form of the range comparison does generate slightly different code
that the form above. Consider the following:

 if(eax not in 1..10) then

 mov(1, eax);

Public Domain Created by Randy Hyde Page 449

HLA Reference Manual 5/24/10 Chapter 18
 endif;

HLA generates the following (MASM) assembly language code for the sequence above:

 cmp eax, 1
 jb ?2_true
 cmp eax, 10
 jna ?1_false
?2_true:
 mov eax, 1
?1_false:

As you can see, though the code is slightly different it is still exactly what you would probably
write if you were writing the low level code yourself.

HLA also allows a limited form of the boolean expression that checks to see if a character
value in an eight-bit register is a member of a character set constant or variable. These expressions
use the following general syntax:

reg8 in CSet_Constant

reg8 in CSet_Variable

reg8 not in CSet_Constant

reg8 not in CSet_Variable

These forms were included in HLA because they are so similar to the range comparison
syntax. However, the code they generate may not be particularly efficient so you should avoid
using these expression forms if code speed and size need to be optimal. Consider the following:

 if(al in {'A'..'Z','a'..'z', '0'..'9'}) then

 mov(1, eax);

 endif;

This generates the following (MASM) assembly code:

strings segment page public 'data'
?1_cset byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 push eax
 movzx eax, al
 bt dword ptr ?1_cset, eax
 pop eax
 jnc ?1_false
 mov eax, 1
?1_false:

This code is rather lengthy because HLA never assumes that it can disturb the values in the
CPU registers. So right off the bat this code has to push and pop EAX since it disturbs the value in
EAX. Next, HLA doesn’t assume that the upper three bytes of EAX already contain zero, so it
zero fills them. Finally, as you can see above, HLA has to create a 16-byte character set in memory
in order to test the value in the AL register. While this is convenient, HLA does generate a lot of
Public Domain Created by Randy Hyde Page 450

HLA Reference Manual 5/24/10 Chapter 18
code and data for such a simple looking expression. Hence, you should be careful about using
boolean expressions involving character sets if speed and space is important. At the very least, you
could probably reduce the code above to something like:

 movzx(charToTest, eax);
 bt(eax, {'A'..'Z','a'..'z', '0'..'9'});
 jnc SkipMov;
 mov(1, eax);
SkipMov:

This generates code like the following:

strings segment page public 'data'
?cset_3 byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 movzx eax, byte ptr ?1_charToTest[0] ;charToTest
 bt dword ptr ?cset_3, eax
 jnc ?4_SkipMov
 mov eax, 1

?4_SkipMov:

As you can see, this is slightly more efficient. Fortunately, testing an eight-bit register to see if
it is within some character set (other than a simple range, which the previous syntax handles quite
well) is a fairly rare operation, so you generally don’t have to worry about the code HLA generates
for this type of boolean expression.

HLA lets you specify a register name or a memory location as the only operand of a boolean
expression. For registers, HLA will use the TEST instruction to see if the register is zero or non-
zero. For memory locations, HLA will use the CMP instruction to compare the memory location’s
value against zero. In either case, HLA will emit a JNE or JE instruction to branch around the code
to skip (e.g., in an IF statement) if the result is zero or non-zero (depending on the form of the
expression).

register
!register

memory
!memory

You should not use this trick as an efficient way to test for zero or not zero in your code. The
resulting code is very confusing and difficult to follow. If a register or memory location appears as
the sole operand of a boolean expression, that register or memory location should hold a boolean
value (true or false). Do not think that “if(eax) then...” is any more efficient than
“if(eax<>0) then...” because HLA will actually emit the same exact code for both statements (i.e., a
TEST instruction). The second is a lot easier to understand if you’re really checking to see if EAX
is not zero (rather than it contains the boolean value true), hence it is always preferable even if it
involves a little extra typing.

Example:

 if(eax != 0) then

 mov(1, ebx);

Public Domain Created by Randy Hyde Page 451

HLA Reference Manual 5/24/10 Chapter 18
 endif;

 if(eax) then

 mov(2, ebx);

 endif;

The code above generates the following assembly instruction sequence:

 test eax,eax ;Test for zero/false.
 je ?2_false
 mov ebx, 1
?2_false:
 test eax,eax ;Test for zero/false.
 je ?3_false
 mov ebx, 2
?3_false:

Note that the pertinent code for both sequences is identical. Hence there is never a reason to
sacrifice readability for efficiency in this particular case.

The last form of boolean expression that HLA allows is a flag designation. HLA uses symbols
like @c, @nc, @z, and @nz to denote the use of one of the flag settings in the CPU FLAGS
register. HLA supports the use of the following flag names in a boolean expression:

@c, @nc, @o, @no, @z, @nz, @s, @ns, @a, @na, @ae, @nae, @b, @nb, @be,
@nbe, @l, @nl, @g, @ne, @le, @nle, @ge, @nge, @e, @ne

Whenever HLA encounters a flag name in a boolean expression, it efficiently compiles the
expression into a single conditional jump instruction. So the following IF statement’s expression
compiles to a single instruction:

if(@c) then

 << do this if the carry flag is set >>

endif;

The above code is completely equivalent to the sequence:

 jnc SkipStmts;

 << do this if the carry flag is set >>

SkipStmts:

The former version, however, is more readable so you should use the IF form wherever
practical.
Public Domain Created by Randy Hyde Page 452

HLA Reference Manual 5/24/10 Chapter 18
18.3.5 The JT/JF Pseudo-Instructions
The JT (jump if true) and JF (jump if false) pseudo-instructions take a boolean expression and

a label. These instructions compile into a conditional jump instruction (or sequence of instructions)
that jump to the target label if the specified boolean expression evaluates false. The compilation of
these two statements is almost exactly as described for boolean expressions in the previous section.
The principle difference is that HLA sneaks in a (MASM) macro declaration because of technical
issues involving code generation. Other than this one minor issue in the MASM source code, the
code generation is exactly as described above.

The following are a couple of examples that show the usage and code generation for these two
statements.

lbl2:
 jt(eax > 10) label;
label:
 jf(ebx = 10) lbl2;

; Translated Code:

?2_lbl2:
?3_BoolExpr macro target
 cmp eax, 10
 ja target
 endm
 ?3_BoolExpr ?4_label

?4_label:
?5_BoolExpr macro target
 cmp ebx, 10
 jne target
 endm
 ?5_BoolExpr ?2_lbl2

18.3.6 The HLA if..then..elseif..else..endif Statement, Part II
With the discussion of boolean expressions out of the way, we can return to the discussion of

the HLA IF statement and expand on the material presented earlier. There are two main topics to
consider: the inclusion of the ELSEIF and ELSE clauses and the HLA hybrid IF statement. This
section will discuss these additions.

The ELSE clause is the easiest option to describe, so we’ll start there. Consider the following
short HLA code fragment:

 if(eax < 10) then

 mov(1, ebx);

 else

 mov(0, ebx);

 endif;

HLA’s code generation algorithm emits a JMP instruction upon encountering the ELSE clause;
this JMP transfers control to the first statement following the ENDIF clause. The other difference
Public Domain Created by Randy Hyde Page 453

HLA Reference Manual 5/24/10 Chapter 18
between the IF/ELSE/ENDIF and the IF/ENDIF statement is the fact that a false expression
evaluation transfers control to the ELSE clause rather than to the first statement following the
ENDIF. When HLA compiles the code above, it generates machine code like the following:

 cmp eax, 10
 jnb ?2_false ;Branch to ELSE section if false

 mov ebx, 1
 jmp ?2_endif ;Skip over ELSE section

; This is the else section:

?2_false:
 mov ebx, 0
?2_endif:

About the only way you can improve upon HLA’s code generation sequence for an IF/ELSE
statement is with knowledge of how the program will operate. In some rare cases you can generate
slightly better performing code by moving the ELSE section somewhere else in the program and
letting the THEN section fall straight through to the statement following the ENDIF (of course, the
ELSE section must jump back to the first statement after the ENDIF if you do this). This scheme
will be slightly faster if the boolean expression evaluates true most of the time. Generally, though,
this technique is a bit extreme.

The ELSEIF clause, just as its name suggests, has many of the attributes of an ELSE and and
IF clause in the IF statement. Like the ELSE clause, the IF statement will jump to an ELSEIF
clause (or the previous ELSEIF clause will jump to the current ELSEIF clause) if the previous
boolean expression evaluates false. Like the IF clause, the ELSEIF clause will evaluate a boolean
expression and transfer control to the following ELSEIF, ELSE, or ENDIF clause if the expression
evaluates false; the code falls through to the THEN section of the ELSEIF clause if the expression
evaluates true. The following examples demonstrate how HLA generates code for various forms of
the IF..ELSEIF.. statement:

Single ELSEIF clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
?3_false:
?2_endif:

Public Domain Created by Randy Hyde Page 454

HLA Reference Manual 5/24/10 Chapter 18

Single ELSEIF clause with an ELSE clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 else

 mov(2, ebx);

 endif;

; Converted code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
Public Domain Created by Randy Hyde Page 455

HLA Reference Manual 5/24/10 Chapter 18
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses and an ELSE clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 else

 mov(3, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 cmp eax, 5
 jne ?4_false
 mov ebx, 2
 jmp ?2_endif
?4_false:
 mov ebx, 3
?2_endif:

Public Domain Created by Randy Hyde Page 456

HLA Reference Manual 5/24/10 Chapter 18
This code generation algorithm generalizes to any number of ELSEIF clauses. If you need to
see an example of an IF statement with more than two ELSEIF clauses, feel free to run a short
example through the HLA compiler to see the result.

In addition to processing boolean expressions, the HLA IF statement supports a hybrid syntax
that lets you combine the structured nature of the IF statement with the unstructured nature of
typical assembly language control flow. The hybrid form gives you almost complete control over
the code generation process without completely sacrificing the readability of an IF statement. The
following is a typical example of this form of the IF statement:

 if
 {
 cmp(eax, 10);
 jna false;
 }

 mov(0, eax);

 endif;

; The above generates the following assembly code:

 cmp eax, 10
 jna ?2_false
?2_true:
 mov eax, 0
?2_false:

Of course, the hybrid IF statement fully supports ELSE and ELSEIF clauses (in fact, the IF and
ELSEIF clauses can have a potpourri of hybrid or traditional boolean expression forms). The
hybrid forms, since they let you specify the sequence of instructions to compile, put the issue of
efficiency squarely in your lap. About the only contribution that HLA makes to the inefficiency of
the program is the insertion of a JMP instruction to skip over ELSEIF and ELSE clauses.

Although the hybrid form of the IF statement lets you write very efficient code that is more
readable than the traditional “compare and jump” sequence, you should keep in mind that the
hybrid form is definitely more difficult to read and comprehend than the IF statement with boolean
expressions. Therefore, if the HLA compiler generates reasonable code with a boolean expression
then by all means use the boolean expression form; it will probably be easier to read.

18.3.7 The While Statement
The only difference between an IF statement and a WHILE loop is a single JMP instruction.

Of course, with an IF and a JMP you can simulate most control structures, the WHILE loop is
probably the most typical example of this. The typical translation from WHILE to IF/JMP takes
the following form:

while(expr) do

 << statements >>

endwhile;

// The above translates to:
Public Domain Created by Randy Hyde Page 457

HLA Reference Manual 5/24/10 Chapter 18
label:
 if(expr) then

 << statements >>
 jmp label;

 endif;

Experienced assembly language programmers know that there is a slightly more efficient
implementation if it is likely that the boolean expression is true the first time the program
encounters the loop. That translation takes the following form:

 jmp testlabel;
label:

 << statements >>

testlabel:
 JT(expr) label; // Note: JT means jump if expression is true.

This form contains exactly the same number of instructions as the previous translation. The
difference is that a JMP instruction was moved out of the loop so that it executes only once (rather
than on each iteration of the loop). So this is slightly more efficient than the previous translation.
HLA uses this conversion algorithm for WHILE loops with standard boolean expressions.

If you look at HLA’s output code, you’ll discover that it is really complex and messy. The
reason has to do with HLA’s code generation algorithm. In order to move code around in the
program (required in order to move the test of the boolean expression below the statements that
comprise the body of the loop) HLA writes a MASM macro at the top of the loop and then expands
that macro at the bottom of the loop. The following short example demonstrates how HLA
transforms WHILE statements:

 while(eax > 0) do

 mov(0, eax);

 endwhile;

; Translated code:

 jmp ?2_continue

?2_true:
?2_while:

?2_macro macro
?2_continue:
 cmp eax, 0
 ja ?2_while
 endm

 mov eax, 0
 ?2_macro
Public Domain Created by Randy Hyde Page 458

HLA Reference Manual 5/24/10 Chapter 18
?2_exitloop:

As you’ll find by carefully studying this code, HLA emits a macro definition at the point it
encounters the WHILE statement. Then it emits an expansion of that macro at the bottom of the
loop. This effectively moves the code associated with the computation of the boolean expression to
the bottom of the loop.

Because of this code motion, there is very little overhead associated with a WHILE loop that
you haven’t already seen (i.e., the IF statement). Therefore, with one exception, the WHILE and IF
statements share the same efficiency concerns. The single exception is the hybrid WHILE
statement. For technical reasons, HLA cannot move the code associated with the termination check
of a hybrid WHILE loop to the bottom of the loop. Therefore, whenever you use the hybrid form of
the WHILE statement HLA compiles the code you supply at the top of the loop, it adds a JMP
instruction to the bottom of the loop, and that JMP instruction executes on each iteration. If this is
a problem for your code, you should probably consider a different implementation of the loop.

Example of the compilation of a hybrid WHILE loop:

 while
 {
 cmp(eax, 0);
 jne false;

 }

 mov(0, eax);

 endwhile;

; Translated code:

?2_while:
?2_continue:
 cmp eax, 0
 jne ?2_false
?2_true:
 mov eax, 0
 jmp ?2_while
?2_exitloop:
?2_false:

18.3.8 repeat..until
To Be Written...

18.3.9 for..endfor
To Be Written...

18.3.10 forever..endfor
To Be Written...

18.3.11 break, breakif
To Be Written...
Public Domain Created by Randy Hyde Page 459

HLA Reference Manual 5/24/10 Chapter 18
18.3.12 continue, continueif
To Be Written...

18.3.13 begin..end, exit, exitif
To Be Written...

18.3.14 foreach..endfor
To Be Written...

18.3.15 try..unprotect..exception..anyexception..endtry, raise
To Be Written...
Public Domain Created by Randy Hyde Page 460

HLA Reference Manual 5/24/10 Chapter 18
18.4 A Modified IF..ELSE..ENDIF Statement
The IF statement is another statement that doesn’t always do exactly what you want. Like the

_while.._onbreak.._endwhile example above, it’s quite possible to redefine the IF statement so that
it behaves the way we want it to. In this section you’ll see how to implement a variant of the
IF..ELSE..ENDIF statement that nests differently than the standard IF statement.

HLA’s particular variant of the IF statement has several limitations. One of the major
limitations is the inability to combine logical sub-expressions using logical conjunction (and) and
logical disjunction (or). It is possible to simulate conjunction and disjunction if you carefully
structure your code. Consider the following example:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< statements >>
}

// Equivalent HLA version:

if(expr1) then

if(expr2) then

<< statements >>

endif;

endif;

In both cases ("C" and HLA) the << statements>> block executes only if both expr1 and
expr2 evaluate true. So other than the extra typing involved, it is often very easy to simulate logical
conjunction by using two IF statements in HLA.

There is one very big problem with this scheme. Consider what happens if you modify the "C"
code to be the following:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

The only way to convert this to HLA (using the standard HLA high level control constructs) is
by duplicating the ’false’ statements. This introduces a bit of inefficiency into your code. As a
result, many HLA programmers will switch to low-level control constructs or HLA’s hybrid
control structures in order to avoid duplicating code. Unfortunately, dropping down into low-level
code may make your program harder to read. It would be nice if you could efficiently handle this
situation without making your code unreadable. Fortunately, you can do exactly this by creating a
new version of the IF statement using HLA’s multi-part macro facilities.
Public Domain Created by Randy Hyde Page 461

HLA Reference Manual 5/24/10 Chapter 18
Before describing how to create this new type of IF statement, we must digress for a moment
and explore an interesting feature of HLA’s multi-part macro expansion: KEYWORD macros do
not have to use unique names. Whenever you declare an HLA KEYWORD macro, HLA accepts
whatever name you choose. If that name happens to be already defined, then the KEYWORD
macro name takes precedence as long as the macro is active (that is, from the point you invoke the
macro name until HLA encounters the TERMINATOR macro). Therefore, the KEYWORD macro
name hides the previous definition of that name until the termination of the macro. This feature
applies even to the original macro name; that is, it is possible to define a KEYWORD macro with
the same name as the original macro to which the KEYWORD macro belongs. This is a very
useful feature because it allows you to change the definition of the macro within the scope of the
opening and terminating invocations of the macro.

Although not pertinent to the IF statement we are construction, you should note that parameter
and local symbols in a macro also override any previously defined symbols of the same name. So
if you use that symbol between the opening macro and the terminating macro, you will get the
value of the local symbol, not the global symbol. E.g.,

var
i:int32;
j:int32;

.

.

.
macro abc:i;

?i:text := "j";
.
.
.

terminator xyz;
.
.
.

endmacro
.
.
.

mov(25, i);
mov(10, j);
abc

mov(i, eax); // Loads j’s value (10), not 25 into eax.
xyz;

The code above loads 10 into EAX because the "mov(i, eax);" instruction appears between the
opening and terminating macros abc..xyz. Between those two macros the local definition of i takes
precedence over the global definition. Since i is a text constant that expands to j, the
aforementioned MOV statement is really equivalent to "mov(j, eax);" That statement, of course,
loads 10 into EAX. Since this problem is difficult to see while reading your code, you should
choose local symbols in multi-part macros very carefully. A good convention to adopt is to
combine your local symbol name with the macro name, e.g.,
macro abc : i_abc;

You may wonder why HLA allows something to crazy to happen in your source code, in a
moment you’ll see why this behavior is useful (and now, with this brief message out of the way,
back to our regularly scheduled discussion).

Before we digressed to discuss this interesting feature in HLA multi-part macros, we were
trying to figure out how to efficiently simulate the conjunction and disjunction operators in an IF
statement without resorting to low-level code. The problem in the example appearing earlier in this
Public Domain Created by Randy Hyde Page 462

HLA Reference Manual 5/24/10 Chapter 18
section is that you would have to duplicate some code in order to convert the IF..ELSE statement
properly. The following code shows this problem:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

// Corresponding HLA code using the "nested-IF" algorithm:

if(expr1) then

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

else

<< ’false’ statements >>

endif;

Note that this code must duplicate the "<< ’false’ statements >>" section if the logic is to
exactly match the original "C" code. This means that the program will be larger and harder to read
than is absolutely necessary.

One solution to this problem is to create a new kind of IF statement that doesn’t nest the same
way standard IF statements nest. In particular, if we define the statement such that all IF clauses
nested with an outer IF..ENDIF block share the same ELSE and ENDIF clauses. If this were the
case, then you could implement the code above as follows:

if(expr1) then

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;
Public Domain Created by Randy Hyde Page 463

HLA Reference Manual 5/24/10 Chapter 18
If expr1 is false, control immediately transfers to the ELSE clause. If the value of expr1 is
true, the control falls through to the next IF statement.

If expr2 evaluates false, then the program jumps to the single ELSE clause that all IFs share in
this statement. Notice that a single ELSE clause (and corresponding ’false’ statements) appear in
this code; hence the code does not necessarily expand in size. If expr2 evaluates true, then control
falls through to the ’true’ statements, exactly like a standard IF statement.

Notice that the nested IF statement above does not have a corresponding ENDIF. Like the
ELSE clause, all nested IFs in this structure share the same ENDIF. Syntactically, there is no need
to end the nested IF statement; the end of the THEN section ends with the ELSE clause, just as the
outer IF statement’s THEN block ends.

Of course, we can’t actually define a new macro named "if" because you cannot redefine HLA
reserved words. Nor would it be a good idea to do so even if these were legal (since it would make
your programs very difficult to comprehend if the IF keyword had different semantics in different
parts of the program. The following program uses the identifiers "_if", "_then", "_else", and
"_endif" instead. It is questionable if these are good identifiers in production code (perhaps
something a little more different would be appropriate). The following code example uses these
particular identifiers so you can easily correlate them with the corresponding high level statements.

/***/
/* */
/* if.hla */
/* */
/* This program demonstrates a modification of */
/* the IF..ELSE..ENDIF statement using HLA's */
/* multi-part macros. */
/* */
/***/

program newIF;
#include("stdlib.hhf")

// Macro implementation of new form of if..then..else..endif.
//
// In this version, all nested IF statements transfer control
// to the same ELSE clause if any one of them have a false
// boolean expression. Syntax:
//
// _if(expression) _then
//
// <<statements including nested _if clauses>>
//
// _else // this is optional
//
// <<statements, but _if clauses are not allowed here>>
//
// _endif
//
//
// Note that nested _if clauses do not have a corresponding
// _endif clause. This is because the single _else and/or
// _endif clauses terminate all the nested _if clauses
Public Domain Created by Randy Hyde Page 464

HLA Reference Manual 5/24/10 Chapter 18
// including the first one. Of course, once the code
// encounters an _endif another _if statement may begin.

// Macro to handle the main "_if" clause.
// This code just tests the expression and jumps to the _else
// clause if the expression evaluates false.

macro _if(ifExpr):elseLbl, hasElse, ifDone;

 ?hasElse := false;
 jf(ifExpr) elseLbl;

// Just ignore the _then keyword.

keyword _then;

// Nested _if clause (yes, HLA lets you replace the main
// macro name with a keyword macro). Identical to the
// above _if implementation except this one does not
// require a matching _endif clause. The single _endif
// (matching the first _if clause) terminates all nested
// _if clauses as well as the main _if clause.

keyword _if(nestedIfExpr);
 jf(nestedIfExpr) elseLbl;

 // If this appears within the _else section, report
 // an error (we don't allow _if clauses nested in
 // the else section, that would create a loop).

 #if(hasElse)

 #error("All _if clauses must appear before the _else clause")

 #endif

// Handle the _else clause here. All we need to is check to
// see if this is the only _else clause and then emit the
// jmp over the else section and output the elseLbl target.

keyword _else;
 #if(hasElse)

 #error("Only one _else clause is legal per _if.._endif")

 #else

 // Set hasElse true so we know that we've seen an _else
 // clause in this statement.

 ?hasElse := true;
 jmp ifDone;
 elseLbl:
Public Domain Created by Randy Hyde Page 465

HLA Reference Manual 5/24/10 Chapter 18

 #endif

// _endif has two tasks. First, it outputs the "ifDone" label
// that _else uses as the target of its jump to skip over the
// else section. Second, if there was no else section, this
// code must emit the "elseLbl" label so that the false conditional(s)
// in the _if clause(s) have a legal target label.

terminator _endif;

 ifDone:
 #if(!hasElse)

 elseLbl:

 #endif

endmacro;

static
 tr:boolean := true;
 f:boolean := false;

begin newIF;

 // Real quick demo of the _if statement:

 _if(tr) _then

 _if(tr) _then
 _if(f) _then

 stdout.put("error" nl);

 _else

 stdout.put("Success");

 _endif

end newIF;

Just in case you’re wondering, this program prints "Success" and then quits. This is because
the nested "_if" statements are equivalent to the expression "true && true && false" which, of
course, is false. Therefore, the "_else" portion of this code should execute.

The only surprise in this macro is the fact that it redefines the _if macro as a keyword macro
upon invocation of the main _if macro. The reason this code does this is so that any nested _if
clauses do not require a corresponding _endif and don’t support an _else clause.

Implementing an ELSEIF clause introduces some difficulties, hence its absence in this
example. The design and implementation of an ELSEIF clause is left to the more serious reader1.

1. I.e., I don’t even want to have to think about this problem!
Public Domain Created by Randy Hyde Page 466

HLA Reference Manual 5/24/10 Chapter 18
Public Domain Created by Randy Hyde Page 467

HLA Reference Manual 5/24/10 Chapter 18
18.5 Object Oriented Programming in Assembly

18.5.1 Hoopla and Hyperbole
Before discussing object-oriented programming (OOP) in assembly language, it is probably a

good idea to take a step back and explore the general benefits of using OOP. After all, without such
knowledge, the question of "why bother to use OOP in assembly" is unanswerable.

First of all, despite what some OOP proponents claim, object-oriented programming is not an
all-encompassing facility that replaces whatever programming paradigm you currently use. Object-
oriented programming techniques are a tool. When used in an appropriate fashion, that tool can
save you considerable effort. When misapplied, it can make your programs considerably worse. In
some sense, OOP techniques are like recursion: incredibly valuable where it’s called for, but
inefficient and kludgy when you attempt to use it to solve a problem for which it is not well suited.
Fortunately, OOP is well suited for many applications, hence its popularity among high-level
language (HLL) programmers.

One of the main benefits to object-oriented programming is that it makes it easier to reuse
code.Traditionally, to reuse code you would create huge libraries of different functions and call
those functions to perform common tasks. The only problem with the library approach is that in
order to effectively reuse your code, you had to write very generic library routines. The result was
bloated and slow code (that often handled lots of special cases that would never occur in a specific
application); attempts to produce "lean and mean" library routines often meant writing dozens or
even hundreds of minor variations of the same functions. It often wasn’t possible to easily extend
such routines to handle new requirements. This was especially difficult if the source code for the
original library routines was not available.

Object-oriented programming techniques provid a solution to this problem. Through OOP-
oriented features such as inheritence and polymorphism, it is possible to extend a simplified library
function to handle the specific requirements of a given application without having to rewrite the
entire code base.

Because OOP techniques allow you to extend a given set of library routines in ways specific to
an application, you would get the impression that this programming paradigm is perfect for
assembly language programmers (who want "lean and mean" code that doesn’t carry around a lot
of bloat). Unfortunately, there are two problems with this idea. First of all, you’ll find that
traditional OOP languages tend to have huge class libraries associated with them. And because of
the "layered" approach that OOP fosters, including one, seemingly small, function can wind up
including half of the library in your application (ever wondered why a "Hello World" program in
Delphi is 256K?). Another problem with the OOP is that it does require a small amount of overhead
to implement. This reason alone has scared many assembly language programmers away from
using object-oriented programming techniques.

Despite the drawbacks and overblown expectations of OOP (that never seem to be met), OOP
techniques are useful for solving many problems. The object-oriented programming paradigm is a
handy tool that should appear in your programmer’s toolbox - ready to use when the need arises.
Just as you wouldn’t use a hammer for a job that requires a screwdriver, you shouldn’t use OOP in
an inappropriate situation. However, when the job calls for a screwdriver, it’s nice to have one
handy; likewise, when OOP techniques are appropriate, they can provide a fast and efficient
solution to a given programming problem.

18.5.2 Some Basic Definitions
To begin with, it’s probably a good idea to define a few terms this paper will use. Without

further ado:

• CLASS: a class is a data type template (i.e., record or structure) that specifies the data and
procedure components of a "class object".

• INSTANCE: an instance is a block of memory with enough storage to hold the data
associated with a class variable (see OBJECT).

• OBJECT: a variable of some class type. While there is a subtle difference between objects
and instances (having to do with the lifetime of the storage bound to an object), we’ll treat
the two terms as synonyms for our purposes.

• METHOD: a procedure or function associated with a class.

• INHERITENCE: the ability to reuse fields from another base (or ancestor) class.
Public Domain Created by Randy Hyde Page 468

HLA Reference Manual 5/24/10 Chapter 18
• POLYMORPHISM: an attribute of classes whereby different (types of) objects can be
manipulated by the same method calls. For example, a "print" method could display the
value of several different object types without requiring a single function that handles
every possible data type one could dream up.

• INFORMATION HIDING: the use of private data fields and procedures/methods to
control the access of an object’s internal representation, with the hope of keeping the
implementation of a data type independent from its use. This allows easy modification to
the data structure without breaking any code that uses the data structure.

• ABSTRACT DATA TYPE (ADT): An abstract data type is a collection of data objects
and the functions (which we’ll call methods) that operate on the data. In a pure abstract
data type, the ADT’s methods are the only code that has access to the data fields of the
ADT; external code may only access the data using function calls to get or set data field
values (these are the ADT’s accessor methods).

18.5.3 OOP Language Facilities
As any die-hard C programmer can tell you, you don’t need an "object-oriented programming

language" in order to write object-oriented code. Then again, as any C++ programmer will tell you,
it’s far easier to write the code and the resulting code is far easier to read and maintain if you do use
an object-oriented programming language when writing object-oriented applications. The same is
true in assembly language - you don’t need an assembler that supports object-oriented
programming facilities to write object-oriented assembly code, but it’s not very effective to do so.

Today, there are two and a half 80x86 assemblers that provide reasonable support for object-
oriented programming in assembly language: HLA (the High-Level Assembler), TASM, and
MASM. HLA and TASM directly support classes, objects, and other object-oriented programming
facilities. MASM does not, but its STRUCT directive is sufficiently flexible that you can easily
create macros to simulate most of the object-oriented programming facilities provided HLA and
TASM. Arguably, HLA provides the most complete set of object-oriented programming facilities,
so this article will use HLA in its examples. The basic concepts, however, apply to both TASM and
MASM as well as HLA.

18.5.4 Classes in HLA
HLA’s classes provide a good mechanism for creating abstract data types. Fundamentally, a

class is little more than a RECORD declaration that allows the definition of fields other than data
fields (e.g., procedures, constants, and macros). The inclusion of other program declaration objects
in the class definition dramatically expands the capabilities of a class over that of a record. For
example, with a class it is now possible to easily define an ADT since classes may include data and
methods that operate on that data (procedures).

The principle way to create an abstract data type in HLA is to declare a class data type.
Classes in HLA always appear in the TYPE section and use the following syntax:
classname : class

<< Class declaration section >>

endclass;

The class declaration section is very similar to the local declaration section for a procedure
insofar as it allows CONST, VAL, VAR, and STATIC variable declaration sections. Classes also
let you define macros and specify procedure, iterator, and method prototypes (method declarations
are legal only in classes). Conspicuously absent from this list is the TYPE declaration section.
You cannot declare new types within a class.

A method is a special type of procedure that appears only within a class. A little later you will
see the difference between procedures and methods, for now you can treat them as being one and
the same. Other than a few subtle details regarding class initialization and the use of pointers to
Public Domain Created by Randy Hyde Page 469

HLA Reference Manual 5/24/10 Chapter 18
classes, their semantics are identical1. Generally, if you don’t know whether to use a procedure or
method in a class, the safest bet is to use a method.

You do not place procedure/iterator/method code within a class. Instead you simply supply
prototypes for these routines. A routine prototype consists of the PROCEDURE, ITERATOR, or
METHOD reserved word, the routine name, any parameters, and a couple of optional procedure
attributes (@USE, RETURNS, and EXTERNAL). The actual routine definition (i.e., the body of
the routine and any local declarations it needs) appears outside the class.

The following example demonstrates a typical class declaration appearing in the TYPE
section:

TYPE
TypicalClass: class

const
TCconst := 5;

val
TCval := 6;

var
TCvar : uns32; // Private field used only by TCproc.

static
TCstatic : int32;

procedure TCproc(u:uns32); returns("eax");
iterator TCiter(i:int32); external;
method TCmethod(c:char);

endclass;

As you can see, classes are very similar to records in HLA. Indeed, you can think of a record
as being a class that only allows VAR declarations. HLA implements classes in a fashion quite
similar to records insofar as it allocates sequential data fields in sequential memory locations. In
fact, with only one minor exception, there is almost no difference between a RECORD declaration
and a CLASS declaration that only has a VAR declaration section. Later you’ll see exactly how
HLA implements classes, but for now you can assume that HLA implements them the same as it
does records and you won’t be too far off the mark.

You can access the TCvar and TCstatic fields (in the class above) just like a record’s fields.
You access the CONST and VAL fields in a similar manner. If a variable of type TypicalClass has
the name obj, you can access the fields of obj as follows:

mov (obj.TCconst, eax);
mov(obj.TCval, ebx);
add(obj.TCvar, eax);
add(obj.TCstatic, ebx);
obj.TCproc(20); // Calls the TCproc procedure in

TypicalClass.
etc.

If an application program includes the class declaration above, it can create variables using the
TypicalClass type and perform operations using the above methods. Unfortunately, the application
program can also access the fields of the ADT data type with impunity. For example, if a program
created a variable MyClass of type TypicalClass, then it could easily execute instructions like

1. Note, however, that the difference between procedures and methods makes all the difference in the world to
the object-oriented programming paradigm. Hence the inclusion of methods in HLA’s class definitions.
Public Domain Created by Randy Hyde Page 470

HLA Reference Manual 5/24/10 Chapter 18
“MOV(MyClass.TCvar, eax);” even though this field might be private to the implementation
section. Unfortunately, if you are going to allow an application to declare a variable of type
TypicalClass, the field names will have to be visible. While there are some tricks we could play
with HLA’s class definitions to help hide the private fields, the best solution is to thoroughly
comment the private fields and then exercise some restraint when accessing the fields of that class.
Specifically, this means that ADTs you create using HLA’s classes cannot be “pure” ADTs since
HLA allows direct access to the data fields. However, with a little discipline, you can simulate a
pure ADT by simply electing not to access such fields outside the class’ methods, procedures, and
iterators.

Prototypes appearing in a class are effectively FORWARD declarations. Like normal forward
declarations, all procedures, iterators, and methods you define in a class must have an actual
implementation later in the code. Alternately, you may attach the EXTERNAL keyword to the end
of a procedure, iterator, or method declaration within a class to inform HLA that the actual code
appears in a separate module. As a general rule, class declarations appear in header files and
represent the interface section of an ADT. The procedure, iterator, and method bodies appear in the
implementation section which is usually a separate source file that you compile separately and link
with the modules that use the class.

The following is an example of a sample class procedure implementation:

procedure TypicalClass.TCproc(u:uns32); nodisplay;
<< Local declarations for this procedure >>

begin TCproc;

<< Code to implement whatever this procedure does >>

end TCProc;

There are several differences between a standard procedure declaration and a class procedure
declaration. First, and most obvious, the procedure name includes the class name (e.g.,
TypicalClass.TCproc). This differentiates this class procedure definition from a regular procedure
that just happens to have the name TCproc. Note, however, that you do not have to repeat the class
name before the procedure name in the BEGIN and END clauses of the procedure (this is similar to
procedures you define in HLA NAMESPACEs).

A second difference between class procedures and non-class procedures is not obvious. Some
procedure attributes (@USE, EXTERNAL, RETURNS, @CDECL, @PASCAL, and
@STDCALL) are legal only in the prototype declaration appearing within the class while other
attributes (@NOFRAME, @NODISPLAY, @NOALIGNSTACK, and ALIGN) are legal only
within the procedure definition and not within the class. Fortunately, HLA provides helpful error
messages if you stick the option in the wrong place, so you don’t have to memorize this rule.

If a class routine’s prototype does not have the EXTERNAL option, the compilation unit (that
is, the PROGRAM or UNIT) containing the class declaration must also contain the routine’s
definition or HLA will generate an error at the end of the compilation. For small, local, classes
(i.e., when you’re embedding the class declaration and routine definitions in the same compilation
unit) the convention is to place the class’ procedure, iterator, and method definitions in the source
file shortly after the class declaration. For larger systems (i.e., when separately compiling a class’
routines), the convention is to place the class declaration in a header file by itself and place all the
procedure, iterator, and method definitions in a separate HLA unit and compile them by
themselves.

18.5.5 Objects
Remember, a class definition is just a type. Therefore, when you declare a class type you

haven’t created a variable whose fields you can manipulate. An object is an instance of a class;
that is, an object is a variable that is some class type. You declare objects (i.e., class variables) the
same way you declare other variables: in a VAR, STATIC, or STORAGE section1. A pair of
sample object declarations follow:

1. Technically, you could also declare an object in a READONLY section, but HLA does not allow you to define
class constants, so there is little utility in declaring class objects in the READONLY section.
Public Domain Created by Randy Hyde Page 471

HLA Reference Manual 5/24/10 Chapter 18
var
T1: TypicalClass;
T2: TypicalClass;

For a given class object, HLA allocates storage for each variable appearing in the VAR section
of the class declaration. If you have two objects, T1 and T2, of type TypicalClass then T1.TCvar is
unique as is T2.TCvar. This is the intuitive result (similar to RECORD declarations); most data
fields you define in a class will appear in the VAR declaration section.

Static data objects (e.g., those you declare in the STATIC section of a class declaration) are not
unique among the objects of that class; that is, HLA allocates only a single static variable that all
variables of that class share. For example, consider the following (partial) class declaration and
object declarations:

type
sc: class

var
i:int32;

static
s:int32;
.
.
.

endclass;

var
s1: sc;
s2: sc;

In this example, s1.i and s2.i are different variables. However, s1.s and s2.s are aliases of one
another Therefore, an instruction like “mov(5, s1.s);” also stores five into s2.s. Generally you use
static class variables to maintain information about the whole class while you use class VAR
objects to maintain information about the specific object. Since keeping track of class information
is relatively rare, you will probably declare most class data fields in a VAR section.

You can also create dynamic instances of a class and refer to those dynamic objects via
pointers. In fact, this is probably the most common form of object storage and access. The
following code shows how to create pointers to objects and how you can dynamically allocate
storage for an object:

var
pSC: pointer to sc;

.

.

.
malloc(@size(sc));
mov(eax, pSC);

.

.

.
mov(pSC, ebx);
mov((type sc [ebx]).i, eax);

Note the use of type coercion to cast the pointer in EBX as type sc.
Public Domain Created by Randy Hyde Page 472

HLA Reference Manual 5/24/10 Chapter 18
18.5.6 Inheritance
Inheritance is one of the most fundamental ideas behind object-oriented programming. The

basic idea behind inheritance is that a class inherits, or copies, all the fields from some class and
then possibly expands the number of fields in the new data type. For example, suppose you created
a data type point which describes a point in the planar (two dimensional) space. The class for this
point might look like the following:

type
point: class

var
x:int32;
y:int32;

method distance;

endclass;

Suppose you want to create a point in 3D space rather than 2D space. You can easily build
such a data type as follows:

type
point3D: class inherits(point);

var
z:int32;

endclass;

The INHERITS option on the CLASS declaration tells HLA to insert the fields of point at the
beginning of the class. In this case, point3D inherits the fields of point. HLA always places the
inherited fields at the beginning of a class object. The reason for this will become clear a little later.
If you have an instance of point3D which you call P3, then the following 80x86 instructions are all
legal:

mov(P3.x, eax);
add(P3.y, eax);
mov(eax, P3.z);
P3.distance();

Note that the P3.distance method invocation in this example calls the point.distance method.
You do not have to write a separate distance method for the point3D class unless you really want to
do so (see the next section for details). Just like the x and y fields, point3D objects inherit point’s
methods.

18.5.7 Overriding
Overriding is the process of replacing an existing method in an inherited class with one more

suitable for the new class. In the point and point3D examples appearing in the previous section, the
distance method (presumably) computes the distance from the origin to the specified point. For a
point on a two-dimensional plane, you can compute the distance using the function:

However, the distance for a point in 3D space is given by the equation:

dist = x2+y2

dist = x2+y2+z2
Public Domain Created by Randy Hyde Page 473

HLA Reference Manual 5/24/10 Chapter 18
Clearly, if you call the distance function for point for a point3D object you will get an incorrect
answer. In the previous section, however, you saw that the P3 object calls the distance function
inherited from the point class. Therefore, this would produce an incorrect result.

In this situation the point3D data type must override the distance method with one that
computes the correct value. You cannot simply redefine the point3D class by adding a distance
method prototype:

type
point3D: class inherits(point)

var
z:int32;

method distance; // This doesn’t work!

endclass;

The problem with the distance method declaration above is that point3D already has a distance
method – the one that it inherits from the point class. HLA will complain because it doesn’t like
two methods with the same name in a single class.

To solve this problem, we need some mechanism by which we can override the declaration of
point.distance and replace it with a declaration for point3D.distance. To do this, you use the
OVERRIDE keyword before the method declaration:

type
point3D: class inherits(point)

var
z:int32;

override method distance; // This will work!

endclass;

The OVERRIDE prefix tells HLA to ignore the fact that point3D inherits a method named
distance from the point class. Now, any call to the distance method via a point3D object will call
the point3D.distance method rather than point.distance. Of course, once you override a method
using the OVERRIDE prefix, you must supply the method in the implementation section of your
code, e.g.,

method point3D.distance; nodisplay;

<< local declarations for the distance function>>

begin distance;

<< Code to implement the distance function >>

end distance;

18.5.8 Virtual Methods vs. Static Procedures
A little earlier, this chapter suggested that you could treat class methods and class procedures

the same. There are, in fact, some major differences between the two (after all, why have methods
if they’re the same as procedures?). As it turns out, the differences between methods and
procedures is crucial if you want to develop object-oriented programs. Methods provide the second
feature necessary to support true polymorphism: virtual procedure calls1. A virtual procedure call
is just a fancy name for an indirect procedure call (using a pointer associated with the object). The
Public Domain Created by Randy Hyde Page 474

HLA Reference Manual 5/24/10 Chapter 18
key benefit of virtual procedures is that the system automatically calls the right method when using
pointers to generic objects.

Consider the following declarations using the point class from the previous sections:

var
P2: point;
P: pointer to point;

Given the declarations above, the following assembly statements are all
legal:

mov(P2.x, eax);
mov(P2.y, ecx);
P2.distance(); // Calls point3D.distance.

lea(ebx, P2); // Store address of P2 into P.
mov(ebx, P);
P.distance(); // Calls point.distance.

Note that HLA lets you call a method via a pointer to an object rather than directly via an
object variable. This is a crucial feature of objects in HLA and a key to implementing virtual
method calls.

The magic behind polymorphism and inheritance is that object pointers are generic. In
general, when your program references data indirectly through a pointer, the value of the pointer
should be the address of the underlying data type associated with that pointer. For example, if you
have a pointer to a 16-bit unsigned integer, you wouldn’t normally use that pointer to access a 32-
bit signed integer value. Similarly, if you have a pointer to some record, you would not normally
cast that pointer to some other record type and access the fields of that other type1. With pointers to
class objects, however, we can lift this restriction a bit. Pointers to objects may legally contain the
address of the object’s type or the address of any object that inherits the fields of that type.
Consider the following declarations that use the point and point3D types from the previous
examples:

var
P2: point;
P3: point3D;
p: pointer to point;

.

.

.
lea(ebx, P2);
mov(ebx, p);
p.distance(); // Calls the point.distance method.

.

.

.
lea(ebx, P3);
mov(ebx, p); // Yes, this is semantically legal.
p.distance(); // Surprise, this calls point3D.distance.

Since p is a pointer to a point object, it might seem intuitive for p.distance to call the
point.distance method. However, methods are polymorphic. If you’ve got a pointer to an object

1. Polymorphism literally means “many-faced.” In the context of object-oriented programming polymorphism
means that the same method name, e.g., distance, and refer to one of several different methods.
1. Of course, assembly language programmers break rules like this all the time. For now, let’s assume we’re
playing by the rules and only access the data using the data type associated with the pointer.
Public Domain Created by Randy Hyde Page 475

HLA Reference Manual 5/24/10 Chapter 18
and you call a method associated with that object, the system will call the actual (overridden)
method associated with the object, not the method specifically associated with the pointer’s class
type.

Class procedures behave differently than methods with respect to overridden procedures.
When you call a class procedure indirectly through an object pointer, the system will always call
the procedure associated with the underlying class associated with the pointer. So had distance
been a procedure rather than a method in the previous examples, the “p.distance();” invocation
would always call point.distance, even if p is pointing at a point3D object. The section on Object
Initialization, later in this chapter, explains why methods and procedures are different (see “Object
Implementation” on page 479).

Note that iterators are also virtual; so like methods an object iterator invocation will always
call the (overridden) iterator associated with the actual object whose address the pointer contains.
To differentiate the semantics of methods and iterators from procedures, we will refer to the
method/iterator calling semantics as virtual procedures and the calling semantics of a class
procedure as a static procedure.

18.5.9 Writing Class Methods, Iterators, and Procedures
For each class procedure, method, and iterator prototype appearing in a class definition, there

must be a corresponding procedure, method, or iterator appearing within the program (for the sake
of brevity, this section will use the term routine to mean procedure, method, or iterator from this
point forward). If the prototype does not contain the EXTERNAL option, then the code must
appear in the same compilation unit as the class declaration. If the EXTERNAL option does follow
the prototype, then the code may appear in the same compilation unit or a different compilation unit
(as long as you link the resulting object file with the code containing the class declaration). Like
external (non-class) procedures and iterators, if you fail to provide the code the linker will complain
when you attempt to create an executable file. To reduce the size of the following examples, they
will all define their routines in the same source file as the class declaration.

HLA class routines must always follow the class declaration in a compilation unit. If you are
compiling your routines in a separate unit, the class declarations must still precede the code with
the class declaration (usually via an #INCLUDE file). If you haven’t defined the class by the time
you define a routine like point.distance, HLA doesn’t know that point is a class and, therefore,
doesn’t know how to handle the routine’s definition.

Consider the following declarations for a point2D class:

type
point2D: class

const
UnitDistance: real32 := 1.0;

var
x: real32;
y: real32;

static
LastDistance: real32;

method distance(fromX: real32; fromY:real32); returns("st0");
procedure InitLastDistance;

endclass;

The distance function for this class should compute the distance from the object’s point to
(fromX,fromY). The following formula describes this computation:

A first pass at writing the distance method might produce the following code:

x fromX– 2 y fromY– 2+
Public Domain Created by Randy Hyde Page 476

HLA Reference Manual 5/24/10 Chapter 18
method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(x); // Note: this doesn’t work!
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(y); // This doesn’t work either.
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

This code probably looks like it should work to someone who is familiar with an object-
oriented programming language like C++ or Delphi. However, as the comments indicate, the
instructions that push the x and y variables onto the FPU stack don’t work – HLA doesn’t
automatically define the symbols associated with the data fields of a class within that class’
routines.

To learn how to access the data fields of a class within that class’ routines, we need to back up
a moment and discover some very important implementation details concerning HLA’s classes. To
do this, consider the following variable declarations:

var
Origin: point2D;
PtInSpace: point2D;

Remember, whenever you create two objects like Origin and PtInSpace, HLA reserves storage
for the x and y data fields for both of these objects. However, there is only one copy of the
point2D.distance method in memory. Therefore, were you to call Origin.distance and
PtInSpace.distance, the system would call the same routine for both method invocations. Once
inside that method, one has to wonder what an instruction like “fld(x);” would do. How does it
associate x with Origin.x or PtInSpace.x? Worse still, how would this code differentiate between
the data field x and a global object x? In HLA, the answer is “it doesn’t.” You do not specify the
data field names within a class routine by simply using their names as though they were common
variables.

To differentiate Origin.x from PtInSpace.x within class routines, HLA automatically passes a
pointer to an object’s data fields whenever you call a class routine. Therefore, you can reference
the data fields indirectly off this pointer. HLA passes this object pointer in the ESI register. This is
one of the few places where HLA-generated code will modify one of the 80x86 registers behind
your back: anytime you call a class routine, HLA automatically loads the ESI register with
the object’s address. Obviously, you cannot count on ESI’s value being preserved across class
routine class nor can you pass parameters to the class routine in the ESI register (though it is
perfectly reasonable to specify "@USE ESI;" to allow HLA to use the ESI register when setting up
other parameters). For class methods and iterators (but not procedures), HLA will also load the
EDI register with the address of the class’ virtual method table (see “Virtual Method Tables” on
page 482). While the virtual method table address isn’t as interesting as the object address, keep in
mind that HLA-generated code will overwrite any value in the EDI register when you call a
method or an iterator. Again, "EDI" is a good choice for the @USE operand for methods since
HLA will wipe out the value in EDI anyway.

Upon entry into a class routine, ESI contains a pointer to the (non-static) data fields associated
with the class. Therefore, to access fields like x and y (in our point2D example), you could use an
address expression like the following:
Public Domain Created by Randy Hyde Page 477

HLA Reference Manual 5/24/10 Chapter 18
(type point2D [esi].x

Since you use ESI as the base address of the object’s data fields, it’s a good idea not to disturb
ESI’s value within the class routines (or, at least, preserve ESI’s value if you need to access the
objects data fields after some point where you must use ESI for some other purpose). Note that if
you call an iterator or a method you do not have to preserve EDI (unless, for some reason, you need
access to the virtual method table, which is unlikely).

Accessing the fields of a data object within a class’ routines is such a common operation that
HLA provides a shorthand notation for casting ESI as a pointer to the class object: THIS. Within a
class in HLA, the reserved word THIS automatically expands to a string of the form “(type
classname [esi])” substituting, of course, the appropriate class name for classname. Using the
THIS keyword, we can (correctly) rewrite the previous distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

Don’t forget that calling a class routine wipes out the value in the ESI register. This isn’t
obvious from the syntax of the routine’s invocation. It is especially easy to forget this when calling
some class routine from inside some other class routine; don’t forget that if you do this the internal
call wipes out the value in ESI and on return from that call ESI no longer points at the original
object. Always push and pop ESI (or otherwise preserve ESI’s value) in this situation, e.g.,

.

.

.
fld(this.x); // ESI points at current object.
.
.
.
push(esi); // Preserve ESI across this method call.
SomeObject.SomeMethod();
pop(esi);
.
.
.
lea(ebx, this.x); // ESI points at original object here.

The THIS keyword provides access to the class variables you declare in the VAR section of a
class. You can also use THIS to call other class routines associated with the current object, e.g.,

this.distance(5.0, 6.0);
Public Domain Created by Randy Hyde Page 478

HLA Reference Manual 5/24/10 Chapter 18
To access class constants and STATIC data fields you generally do not use the THIS pointer.
HLA associates constant and static data fields with the whole class, not a specific object. To access
these class members, just use the class name in place of the object name. For example, to access
the UnitDistance constant in the point2D class you could use a statement like the following:

fld(point2D.UnitDistance);

As another example, if you wanted to update the LastDistance field in the point2D class each
time you computed a distance, you could rewrite the point2D.distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

fst(point2D.LastDistance); // Update shared (STATIC) field.

end distance;

To understand why you use the class name when referring to constants and static objects but
you use THIS to access VAR objects, check out the next section.

Class procedures are also static objects, so it is possible to call a class procedure by specifying
the class name rather than an object name in the procedure invocation, e.g., both of the following
are legal:

Origin.InitLastDistance();
point2D.InitLastDistance();

There is, however, a subtle difference between these two class procedure calls. The first call
above loads ESI with the address of the Origin object prior to actually calling the InitLastDistance
procedure. The second call, however, is a direct call to the class procedure without referencing an
object; therefore, HLA doesn’t know what object address to load into the ESI register. In this case,
HLA loads NULL (zero) into ESI prior to calling the InitLastDistance procedure. Because you can
call class procedures in this manner, it’s always a good idea to check the value in ESI within your
class procedures to verify that HLA contains an object address. Checking the value in ESI is a
good way to determine which calling mechanism is in use. Later, this chapter will discuss
constructors and object initialization; there you will see a good use for static procedures and
calling those procedures directly (rather than through the use of an object).

18.5.10 Object Implementation
In a high level object-oriented language like C++ or Delphi, it is quite possible to master the

use of objects without really understanding how the machine implements them. One of the reasons
for learning assembly language programming is to fully comprehend low-level implementation
details so one can make educated decisions concerning the use of programming constructs like
Public Domain Created by Randy Hyde Page 479

HLA Reference Manual 5/24/10 Chapter 18
objects. Further, since assembly language allows you to poke around with data structures at a very
low-level, knowing how HLA implements objects can help you create certain algorithms that
would not be possible without a detailed knowledge of object implementation. Therefore, this
section, and its corresponding subsections, explains the low-level implementation details you will
need to know in order to write object-oriented HLA programs.

HLA implements objects in a manner quite similar to records. In particular, HLA allocates
storage for all VAR objects in a class in a sequential fashion, just like records. Indeed, if a class
consists of only VAR data fields, the memory representation of that class is nearly identical to that
of a corresponding RECORD declaration. Consider the following Student record declaration and
the corresponding class:

type
student: record

Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endrecord;

student2: class
Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endclass;

Student RECORD Implementation in Memory
Public Domain Created by Randy Hyde Page 480

HLA Reference Manual 5/24/10 Chapter 18
Student CLASS Implementation in Memory

If you look carefully at these two figures, you’ll discover that the only difference between the
class and the record implementations is the inclusion of the VMT (virtual method table) pointer
field at the beginning of the class object. This field, which is always present in a class, contains the
address of the class’ virtual method table which, in turn, contains the addresses of all the class’
methods and iterators. The VMT field, by the way, is present even if a class doesn’t contain any
methods or iterators.

As pointed out in previous sections, HLA does not allocate storage for STATIC objects within
the object’s storage. Instead, HLA allocates a single instance of each static data field that all
objects share. As an example, consider the following class and object declarations:

type
tHasStatic: class

var
i:int32;
j:int32;
r:real32;

static
c:char[2];
b:byte;

endclass;

var
hs1: tHasStatic;
hs2: tHasStatic;

 shows the storage allocation for these two objects in memory.

VMT

i

j

r

hs1

VMT

i

j

r

hs2

c[0]
c[1]

tHasStatic.c

tHasStatic.b
Public Domain Created by Randy Hyde Page 481

HLA Reference Manual 5/24/10 Chapter 18
Object Allocation with Static Data Fields

Of course, CONST, VAL, and #MACRO objects do not have any run-time memory
requirements associated with them, so HLA does not allocate any storage for these fields. Like the
STATIC data fields, you may access CONST, VAL, and #MACRO fields using the class name as
well as an object name. Hence, even if tHasStatic has these types of fields, the memory
organization for tHasStatic objects would still be the same as shown in .

Other than the presence of the virtual method table pointer (VMT), the presence of methods,
iterators, and procedures has no impact on the storage allocation of an object. Of course, the
machine instructions associated with these routines does appear somewhere in memory. So in a
sense the code for the routines is quite similar to static data fields insofar as all the objects share a
single instance of the routine.

18.5.10.1 Virtual Method Tables
When HLA calls a class procedure, it directly calls that procedure using a CALL instruction,

just like any normal non-class procedure call. Methods and iterators are another story altogether.
Each object in the system carries a pointer to a virtual method table which is an array of pointers to
all the methods and iterators appearing within the object’s class.

Virtual Method Table Organization

Each iterator or method you declare in a class has a corresponding entry in the virtual method
table. That dword entry contains the address of the first instruction of that iterator or method. To
call a class method or iterator is a bit more work than calling a class procedure (it requires one
additional instruction plus the use of the EDI register). Here is a typical calling sequence for a
method:

mov(ObjectAdrs, ESI); // All class routines do this.
mov([esi], edi); // Get the address of the VMT into

EDI
call((type dword [edi+n])); // "n" is the offset of the method’s

entry
// in the VMT.

For a given class there is only one copy of the VMT in memory. This is a static object so all
objects of a given class type share the same VMT. This is reasonable since all objects of the same
class type have exactly the same methods and iterators (see).

VMT

field1

field2

...

SomeObject

Method/ Iterator #1

Method/ Iterator #2

...

Method/ Iterator #n

fieldn
Public Domain Created by Randy Hyde Page 482

HLA Reference Manual 5/24/10 Chapter 18
All Objects That are the Same Class Type Share the Same VMT

Although HLA builds the VMT record structure as it encounters methods and iterators within a
class, HLA does not automatically create the actual run-time virtual method table for you. You
must explicitly declare this table in your program. To do this, you include a statement like the
following in a STATIC or READONLY declaration section of your program, e.g.,

readonly
VMT(classname);

Since the addresses in a virtual method table should never change during program execution,
the READONLY section is probably the best choice for declaring VMTs. It should go without
saying that changing the pointers in a VMT is, in general, a really bad idea. So putting VMTs in a
STATIC section is usually not a good idea.

A declaration like the one above defines the variable classname._VMT_. In section 18.5.11
(see “Constructors and Object Initialization” on page 487) you see that you’ll need this name when
initializing object variables. The class declaration automatically defines the classname._VMT_
symbol as an external static variable. The declaration above just provides the actual definition of
this external symbol.

The declaration of a VMT uses a somewhat strange syntax because you aren’t actually
declaring a new symbol with this declaration, you’re simply supplying the data for a symbol that
you previously declared implicitly by defining a class. That is, the class declaration defines the
static table variable classname._VMT_, all you’re doing with the VMT declaration is telling HLA
to emit the actual data for the table. If, for some reason, you would like to refer to this table using a
name other than classname._VMT_, HLA does allow you to prefix the declaration above with a
variable name, e.g.,

readonly
myVMT: VMT(classname);

In this declaration, myVMT is an alias of classname._VMT_. As a general rule, you should
avoid aliases in a program because they make the program more difficult to read and understand.
Therefore, it is unlikely that you would ever really need to use this type of declaration.

Like any other global static variable, there should be only one instance of a VMT for a given
class in a program. The best place to put the VMT declaration is in the same source file as the

Object1

Object2

Object3

VMT

Note:Objects are all the same class type
Public Domain Created by Randy Hyde Page 483

HLA Reference Manual 5/24/10 Chapter 18
class’ method, iterator, and procedure code (assuming they all appear in a single file). This way
you will automatically link in the VMT whenever you link in the routines for a given class.

18.5.10.2 Object Representation with Inheritance
Up to this point, the discussion of the implementation of class objects has ignored the

possibility of inheritance. Inheritance only affects the memory representation of an object by
adding fields that are not explicitly stated in the class declaration.

Adding inherited fields from a base class to another class must be done carefully. Remember,
an important attribute of a class that inherits fields from a base class is that you can use a pointer to
the base class to access the inherited fields from that base class in another class. As an example,
consider the following classes:

type
tBaseClass: class

var
i:uns32;
j:uns32;
r:real32;

method mBase;
endclass;

tChildClassA: class inherits(tBaseClass);
var

c:char;
b:boolean;
w:word;

method mA;
endclass;

tChildClassB: class inherits(tBaseClass);
var

d:dword;
c:char;
a:byte[3];

endclass;

Since both tChildClassA and tChildClassB inherit the fields of tBaseClass, these two child
classes include the i, j, and r fields as well as their own specific fields. Furthermore, whenever you
have a pointer variable whose base type is tBaseClass, it is legal to load this pointer with the
address of any child class of tBaseClass; therefore, it is perfectly reasonable to load such a pointer
with the address of a tChildClassA or tChildClassB variable, e.g.,

var
B1: tBaseClass;
CA: tChildClassA;
CB: tChildClassB;
ptr: pointer to tBaseClass;

.

.

.
lea(ebx, B1);
mov(ebx, ptr);
<< Use ptr >>

.

.

Public Domain Created by Randy Hyde Page 484

HLA Reference Manual 5/24/10 Chapter 18
.
lea(eax, CA);
mov(ebx, ptr);
<< Use ptr >>

.

.

.
lea(eax, CB);
mov(eax, ptr);
<< Use ptr >>

Since ptr points at an object of tBaseClass, you may legally (from a semantic sense) access the
i, j, and r fields of the object where ptr is pointing. It is not legal to access the c, b, w, or d fields of
the tChildClassA or tChildClassB objects since at any one given moment the program may not
know exactly what object type ptr references.

In order for inheritance to work properly, the i, j, and r fields must appear at the same offsets
all child classes as they do in tBaseClass. This way, an instruction of the form “mov((type
tBaseClass [ebx]).i, eax);” will correct access the i field even if EBX points at an object of type
tChildClassA or tChildClassB. shows the layout of the child and base classes:

Layout of Base and Child Class Objects in Memory

Note that the new fields in the two child classes bear no relation to one another, even if they
have the same name (e.g., field c in the two child classes does not lie at the same offset). Although
the two child classes share the fields they inherit from their common base class, any new fields they
add are unique and separate. Two fields in different classes share the same offset only by
coincidence.

All classes (even those that aren’t related to one another) place the pointer to the virtual
method table at offset zero within the object. There is a single VMT associated with each class in a
program; even classes that inherit fields from some base class have a VMT that is (generally)
different than the base class’ VMT. shows how objects of type tBaseClass, tChildClassA and
tChildClassB point at their specific VMTs:
Public Domain Created by Randy Hyde Page 485

HLA Reference Manual 5/24/10 Chapter 18
Virtual Method Table References from Objects

A virtual method table is nothing more than an array of pointers to the methods and iterators
associated with a class. The address of the first method or iterator appearing in a class is at offset
zero, the address of the second appears at offset four, etc. You can determine the offset value for a
given iterator or method by using the @offset function. If you want to call a method or iterator
directly (using 80x86 syntax rather than HLA’s high level syntax), you code use code like the
following:

var
sc: tBaseClass;

.

.

.
lea(esi, sc); // Get the address of the object (& VMT).
mov([esi], edi); // Put address of VMT into EDI.
call((type dword [edi+@offset(tBaseClass.mBase)]);

Of course, if the method has any parameters, you must push them onto the stack before
executing the code above. Don’t forget, when making direct calls to a method, that you must load
ESI with the address of the object. Any field references within the method will probably depend
upon ESI containing this address. The choice of EDI to contain the VMT address is nearly
arbitrary. Unless you’re doing something tricky (like using EDI to obtain run-time type
information), you could use any register you please here. As a general rule, you should use EDI

B1
tBaseClass :VMT

CA

tChildClassA :VMT

tChildClassB :VMT

CB

var
 B1: tBaseClass ;
 CA: tChildClassA ;
 CB: tChildClassB ;
 CB2: tChildClassB ;
 CA2: tChildClassA ;

CA2

CB2

VMT Pointer
Public Domain Created by Randy Hyde Page 486

HLA Reference Manual 5/24/10 Chapter 18
when simulating class iterator/method calls because this is the convention that HLA employs and
most programmers will expect this.

Whenever a child class inherits fields from some base class, the child class’ VMT also inherits
entries from the base class’ VMT. For example, the VMT for class tBaseClass contains only a
single entry – a pointer to method tBaseClass.mBase. The VMT for class tChildClassA contains
two entries: a pointer to tBaseClass.mBase and tChildClassA.mA. Since tChildClassB doesn’t
define any new methods or iterators, tChildClassB’s VMT contains only a single entry, a pointer to
the tBaseClass.mBase method. Note that tChildClassB’s VMT is identical to tBaseClass’ VMT.
Nevertheless, HLA produces two distinct VMTs. This is a critical fact that we will make use of a
little later. shows the relationship between these VMTs:

Virtual Method Tables for Inherited Classes

Although the VMT always appears at offset zero in an object (and, therefore, you can access
the VMT using the address expression “[ESI]” if ESI points at an object), HLA actually inserts a
symbol into the symbol table so you may refer to the VMT symbolically. The symbol _pVMT_
(pointer to Virtual Method Table) provides this capability. So a more readable way to access the
VMT pointer (as in the previous code example) is

lea(esi, sc);
mov((type tBaseClass [esi])._pVMT_, edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

If you need to access the VMT directly, there are a couple ways to do this. Whenever you
declare a class object, HLA automatically includes a field named _VMT_ as part of that class.
VMT is a static array of double word objects. Therefore, you may refer to the VMT using an
identifier of the form classname._VMT_. Generally, you shouldn’t access the VMT directly, but as
you’ll see shortly, there are some good reasons why you need to know the address of this object in
memory.

18.5.11 Constructors and Object Initialization
If you’ve tried to get a little ahead of the game and write a program that uses objects prior to

this point, you’ve probably discovered that the program inexplicably crashes whenever you attempt
to run it. We’ve covered a lot of material in this chapter thus far, but you are still missing one
crucial piece of information – how to properly initialize objects prior to use. This section will put
the final piece into the puzzle and allow you to begin writing programs that use classes.

Consider the following object declaration and code fragment:

var
bc: tBaseClass;

.

.

.
bc.mBase();

mBase mBase

mA

mBase

tBaseClass tChildClassA tChildClassB

Virtual Method Tables for Derived (inherited) Classes

Offset Zero

Offset Four
Public Domain Created by Randy Hyde Page 487

HLA Reference Manual 5/24/10 Chapter 18
Remember that variables you declare in the VAR section are uninitialized at run-time.
Therefore, when the program containing these statements gets around to executing bc.mBase, it
executes the three-statement sequence you’ve seen several times already:

lea(esi, bc);
mov([esi], edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

The problem with this sequence is that it loads EDI with an undefined value assuming you
haven’t previously initialized the bc object. Since EDI contains a garbage value, attempting to call
a subroutine at address “[EDI+@offset(tBaseClass.mBase)]” will likely crash the system.
Therefore, before using an object, you must initialize the _pVMT_ field with the address of that
object’s VMT. One easy way to do this is with the following statement:

mov(&tBaseClass._VMT_, bc._pVMT_);

Always remember, before using an object, be sure to initialize the virtual method table
pointer for that field.

Although you must initialize the virtual method table pointer for all objects you use, this may
not be the only field you need to initialize in those objects. Each specific class may have its own
application-specific initialization that is necessary. Although the initialization may vary by class,
you need to perform the same initialization on each object of a specific class that you use. If you
ever create more than a single object from a given class, it is probably a good idea to create a
procedure to do this initialization for you. This is such a common operation that object-oriented
programmers have given these initialization procedures a special name: constructors.

Some object-oriented languages (e.g., C++) use a special syntax to declare a constructor.
Others (e.g., Delphi) simply use existing procedure declarations to define a constructor. One
advantage to employing a special syntax is that the language knows when you define a constructor
and can automatically generate code to call that constructor for you (whenever you declare an
object). Languages, like Delphi, require that you explicitly call the constructor; this can be a minor
inconvenience and a source of defects in your programs. HLA does not use a special syntax to
declare constructors – you define constructors using standard class procedures. As such, you will
need to explicitly call the constructors in your program; however, you’ll see an easy method for
automating this in a later section of this chapter.

Perhaps the most important fact you must remember is that constructors must be class
procedures. You must not define constructors as methods (or iterators). The reason is quite
simple: one of the tasks of the constructor is to initialize the pointer to the virtual method table and
you cannot call a class method or iterator until after you’ve initialized the VMT pointer. Since
class procedures don’t use the virtual method table, you can call a class procedure prior to
initializing the VMT pointer for an object.

By convention, HLA programmers use the name Create for the class constructor. There is no
requirement that you use this name, but by doing so you will make your programs easier to read
and follow by other programmers.

As you may recall, you can call a class procedure via an object reference or a class reference.
E.g., if clsProc is a class procedure of class tClass and Obj is an object of type tClass, then the
following two class procedure invocations are both legal:

tClass.clsProc();
Obj.clsProc();

There is a big difference between these two calls. The first one calls clsProc with ESI
containing zero (NULL) while the second invocation loads the address of Obj into ESI before the
call. We can use this fact to determine within a method the particular calling mechanism.

18.5.12 Dynamic Object Allocation Within the Constructor
As it turns out, most programs allocate objects dynamically using malloc and refer to those

objects indirectly using pointers. This adds one more step to the initialization process – allocating
storage for the object. The constructor is the perfect place to allocate this storage. Since you
probably won’t need to allocate all objects dynamically, you’ll need two types of constructors: one
Public Domain Created by Randy Hyde Page 488

HLA Reference Manual 5/24/10 Chapter 18
that allocates storage and then initializes the object, and another that simply initializes an object
that already has storage.

Another constructor convention is to merge these two constructors into a single constructor
and differentiate the type of constructor call by the value in ESI. On entry into the class’ Create
procedure, the program checks the value in ESI to see if it contains NULL (zero). If so, the
constructor calls malloc to allocate storage for the object and returns a pointer to the object in ESI.
If ESI does not contain NULL upon entry into the procedure, then the constructor assumes that ESI
points at a valid object and skips over the memory allocation statements. At the very least, a
constructor initializes the pointer to the VMT; therefore, the minimalist constructor will look like
the following:

procedure tBaseClass.mBase; nodisplay;
begin mBase;

if(ESI = 0) then

push(eax); // Malloc returns its result here, so save it.
malloc(@size(tBaseClass));
mov(eax, esi); // Put pointer into ESI;
pop(eax);

endif;

// Initialize the pointer to the VMT:
// (remember, "this" is shorthand for (type tBaseClass [esi])"

mov(&tBaseClass._VMT_, this._pVMT_);

// Other class initialization would go here.

end mBase;

After you write a constructor like the one above, you choose an appropriate calling mechanism
based on whether your object’s storage is already allocated. For pre-allocated objects (i.e., those
you’ve declared in VAR, STATIC, or STORAGE sections1 or those you’ve previously allocated
storage for via malloc) you simply load the address of the object into ESI and call the constructor.
For those objects you declare as a variable, this is very easy – just call the appropriate Create
constructor:

var
bc0: tBaseClass;
bcp: pointer to tBaseClass;

.

.

.
bc0.Create(); // Initializes pre-allocated bc0 object.

.

.

.
malloc(@size(tBaseClass)); // Allocate storage for bcp object.
mov(eax, bcp);

.

.

.
bcp.Create(); // Initializes pre-allocated bcp object.

1. You generally do not declare objects in READONLY sections because you cannot initialize them.
Public Domain Created by Randy Hyde Page 489

HLA Reference Manual 5/24/10 Chapter 18
Note that although bcp is a pointer to a tBaseClass object, the Create method does not
automatically allocate storage for this object. The program already allocates the storage earlier.
Therefore, when the program calls bcp.Create it loads ESI with the address contained within bcp;
since this is not NULL, the tBaseClass.Create procedure does not allocate storage for a new object.
By the way, the call to bcp.Create emits the following sequence of machine instructions:

mov(bcp, esi);
call tBaseClass.Create;

Until now, the code examples for a class procedure call always began with an LEA instruction.
This is because all the examples to this point have used object variables rather than pointers to
object variables. Remember, a class procedure (method/iterator) call passes the address of the
object in the ESI register. For object variables HLA emits an LEA instruction to obtain this
address. For pointers to objects, however, the actual object address is the value of the pointer
variable; therefore, to load the address of the object into ESI, HLA emits a MOV instruction that
copies the value of the pointer into the ESI register.

In the example above, the program preallocates the storage for an object prior to calling the
object constructor. While there are several reasons for preallocating object storage (e.g., you’re
creating a dynamic array of objects), you can achieve most simple object allocations like the one
above by calling a standard Create method (i.e., one that allocates storage for an object if ESI
contains NULL). The following example demonstrates this:

var
bcp2: pointer to tBaseClass;

.

.

.
tBaseClass.Create(); // Calls Create with ESI=NULL.
mov(esi, bcp2); // Save pointer to new class object in bcp2.

Remember, a call to a tBaseClass.Create constructor returns a pointer to the new object in the
ESI register. It is the caller’s responsibility to save the pointer this function returns into the
appropriate pointer variable; the constructor does not automatically do this for you.
Public Domain Created by Randy Hyde Page 490

HLA Reference Manual 5/24/10 Chapter 18
18.6 Compiling Resource Scripts Using HLA
HLA’s compile-time language facilities provide the ability to embed domain-specific

languages directly in an HLA source file. This paper discusses how to create a domain-specific
embedded language that handles Windows Resources. This mini-language not only provides access
to these resources in your HLA source files, but it also creates a resource script file (.rc file) that
you may compile with the Microsoft Resource Compiler (RC.EXE).

18.6.1 The Motivation
Working with resources when writing Wi32 assembly language programs is usually a two-step

process. First, you write some assembly code that requests a resource object from the executable
file; then you write a resource script file that matches the resources, via some numeric identifier,
with the actual resource file on the disk. The problem with this approach is that you have to
maintain (and keep consistent) two sets of source files - an HLA/assembly source file and a
resource script (.rc) file. The reason you have to maintain two files is because the assembler
associates names with numeric values in a different way than Microsoft’s resource compiler. The
resource compiler uses C’s “#define” syntax, which is not compatible with constant declarations in
assembly language. Therefore, you have to create a set of definitions like the following for the
resource compiler:

#define resource_1 101
#define resource_2 102
#define resource_3 2005

When working in assembly language (e.g., HLA), you need to use statements like the following to
declare these symbolic names with these values:

const
resource_1 := 101;
resource_2 := 102;
resource_3 := 2005;

Although entering these two sets of constant defintions twice is a big pain, the real problem
comes when you modify either set of definitions and find that you need to edit the other set to keep
them consistent. At the very least, we’d like to be able to maintain one set of declarations to avoid
consistency problems.

Another problem with using resource scripts is that you have to maintain two separate files - an
assembly language source file and a resource script file. While breaking up programs into multiple
files isn’t always a bad idea, the resource file often contains common things (like strings) that
you’d like to find easily when working on small assembly projects. Sometimes, it’s just more
convenient to put the resources in the same soure file as your assembly source code. One final
problem with using a separate resource file is that the resource scripting language is radically
different from assembly syntax. It would be nice to be able to declare resources in an assembly
language source file like any other object and have the assembler handle the details of creating the
resource script (or compiling the resource) for you.

18.6.2 The HLA Solution
Although processing script files is a pipe dream within most assemblers, HLA’s compile-time

language provides sufficient capability to achieve this. Here are some of the HLA features that give
us the capability to create our own language within HLA:

• Context-free macros

• The ability to create (user-defined) output files during assembly

• The ability to execute system commands during assembly

• Conditional assembly and compile-time loops

• Powerful compile-time string processing facilities
The approach we will take here is to define a new “HLA declaration section” using a context-

free macro. Within this section a programmer will declare Win32 resource objects. HLA will create
Public Domain Created by Randy Hyde Page 491

HLA Reference Manual 5/24/10 Chapter 18
a resource script (.rc) file on the basis of the data appearing in this section, and will define a set of
symbolic constants by which the rest of the HLA program can refer to those objects. The basic
syntax for this new section will be the following:

resource(“filename.rc”)
<<resource definitions>>

endresource;

Between the resource and endresource statements, this code will construct the resource
script file using the filename you specify in the resource statement. Upon encountering the
endresource statement, HLA will close the script file and then execute Microsoft’s “rc.exe”
program to compile the resource code. The declarations between these two statements will also
generate symbols that the HLA code can use. In general, there will only be a single resource
declaration section in any one given HLA source file; the design of the macros that handle this
declaration section will assume that this is the case. In particular, you should avoid nesting
resource/endresource declaration sections. Though HLA allows this syntax, the efficiency
of the macros’ execution (at compile-time) is based on the assumption that you’ve only got one
resource/endresource declaration section in an HLA program.

18.6.3 The Resource..Endresource Declaration Section
To Be Written....
Public Domain Created by Randy Hyde Page 492

HLA Reference Manual 5/24/10 Chapter 18
18.7 Structures in Assembly Language Programs
Structures, or records, are an abstract data type that allows a programmer to collect different

objects together into a single, composite, object. Structures can help make programs easier to read,
write, modify, and maintain. Used appropriately, they can also help your programs run faster.
Despite the advantages that structures offer, their appearance in assembly language is a relatively
recent phenomenon (in the past two decades, or so), and many assemblers still do not support this
facility. Furthermore, many "old-timer" assembly language programmers attempt to argue that the
appearance of records violates the whole principle of "assembly language programming." This
article will certain refute such arguments and describe the benefits of using structures in an
assembly language program.

Despite the fact that records have been available in various assembly languages for years (e.g.,
Microsoft’s MASM assembler introduced structures in 80x86 assembly language in the 1980s), the
"lack of support for structures" is a common argument against assembly language by HLL
programmers who don’t know much about assembly. In some respects, their ignorance is justified -
- many assemblers don’t support structures or records. A second goal of this article is to educate
assembly language programmers to counter claims like "assembly language doesn’t support
structures." Hopefully, that same education will convince those assembly language programmers
who’ve never bothered to use structures, to consider their use.

This article will use the term "record" to denote a structure/record to avoid confusion with the
more general term "data structure". Note, however, that the terms "record" and "structure" are
synonymous in this article.

18.7.1 What is a Record (Structure)?
The whole purpose of a record is to let you encapsulate different, but logically related, data

into a single package. Here is a typical record declaration, in HLA using the RECORD /
ENDRECORD declaration:

type
 student:
 record
 Name: string;
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

The field names within the record must be unique. That is, the same name may not appear two
or more times in the same record. However, in reasonable assemblers (like HLA) that support true
structures, all the field names are local to that record. With such assemblers, you may reuse those
field names elsewhere in the program.

The RECORD/ENDRECORD type declaration may appear in a variable declaration section
(e.g., an HLA STATIC or VAR section) or in a TYPE declaration section. In the previous
example the Student declaration appears in an HLA TYPE section, so this does not actually allocate
any storage for a Student variable. Instead, you have to explicitly declare a variable of type
Student. The following example demonstrates how to do this:

var
John: Student;

This allocates 28 bytes of storage: four bytes for the Name field (HLA strings are four-byte
pointers to character data found elsewhere in memory), 12 bytes for the SSN field, and two bytes
for each of the other six fields.

If the label John corresponds to the base address of this record, then the Name field is at offset
John+0, the Major field is at offset John+4, the SSN field is at offset John+6, etc.
Public Domain Created by Randy Hyde Page 493

HLA Reference Manual 5/24/10 Chapter 18
To access an element of a structure you need to know the offset from the beginning of the
structure to the desired field. For example, the Major field in the variable John is at offset 4 from
the base address of John. Therefore, you could store the value in AX into this field using the
instruction

mov(ax, (type word John[4]));

Unfortunately, memorizing all the offsets to fields in a record defeats the whole purpose of
using them in the first place. After all, if you’ve got to deal with these numeric offsets why not just
use an array of bytes instead of a record?

Well, as it turns out, assemblers like HLA that support true records commonly let you refer to
field names in a record using the same mechanism C/C++ and Pascal use: the dot operator. To store
AX into the Major field, you could use “mov(ax, John.Major);” instead of the previous
instruction. This is much more readable and certainly easier to use.

18.7.2 Record Constants
HLA lets you define record constants. In fact, HLA is probably unique among x86 assemblers

insofar as it supports both symbolic record constants and literal record constants. Record constants
are useful as initializers for static record variables. They are also quite useful as compile-time data
structures when using the HLA compile-time language (that is, the macro processor language).
This section discusses how to create record constants.

A record literal constant takes the following form:

RecordTypeName:[List_of_comma_separated_constants]

The RecordTypeName is the name of a record data type you’ve defined in an HLA TYPE
section prior to this point. To create a record constant you must have previously defined the record
type in a TYPE section of your program.

The constant list appearing between the brackets are the data items for each of the fields in the
specified record. The first item in the list corresponds to the first field of the record, the second
item in the list corresponds to the second field, etc. The data types of each of the constants
appearing in this list must match their respective field types. The following example demonstrates
how to use a literal record constant to initialize a record variable:

type
 point:
 record
 x:int32;
 y:int32;
 z:int32;
 endrecord;

static
 Vector: point := point:[1, -2, 3];

This declaration initializes Vector.x with 1, Vector.y with -2, and Vector.z with 3.
You can also create symbolic record constants by declaring record objects in the CONST or

VAL sections of an HLA program. You access fields of these symbolic record constants just as
you would access the field of a record variable, using the dot operator. Since the object is a
constant, you can specify the field of a record constant anywhere a constant of that field’s type is
legal. You can also employ symbolic record constants as record variable initializers. The
following example demonstrates this:

type
 point:
 record
 x:int32;
Public Domain Created by Randy Hyde Page 494

HLA Reference Manual 5/24/10 Chapter 18
 y:int32;
 z:int32;
 endrecord;

const
 PointInSpace: point := point:[1, 2, 3];

static
 Vector: point := PointInSpace;
 XCoord: int32 := PointInSpace.x;

18.7.3 Arrays of Records
It is a perfectly reasonable operation to create an array of records. To do so, you simply create

a record type and then use the standard array declaration syntax when declaring an array of that
record type. The following example demonstrates how you could do this:

type
 recElement:
 record
 << fields for this record >>
 endrecord;
 .
 .
 .
static
 recArray: recElement[4];

Naturally, you can create multidimensional arrays of records as well. You would use the
standard row or column major order functions to compute the address of an element within such
records. The only thing that really changes (from the discussion of arrays) is that the size of each
element is the size of the record object.

static
 rec2D: recElement[4, 6];

18.7.4 Arrays and Records as Record Fields
Records may contain other records or arrays as fields. Consider the following definition:

type
 Pixel:
 record
 Pt: point;
 color: dword;
 endrecord;

The definition above defines a single point with a 32 bit color component. When initializing an
object of type Pixel, the first initializer corresponds to the Pt field, not the x-coordinate field. The
following definition is incorrect:

static
 ThisPt: Pixel := Pixel:[5, 10]; // Syntactically incorrect!

The value of the first field (“5”) is not an object of type point. Therefore, the assembler
generates an error when encountering this statement. HLA will allow you to initialize the fields of
Pixel using declarations like the following:
Public Domain Created by Randy Hyde Page 495

HLA Reference Manual 5/24/10 Chapter 18
static
 ThisPt: Pixel := Pixel:[point:[1, 2, 3], 10];
 ThatPt: Pixel := Pixel:[point:[0, 0, 0], 5];

Accessing Pixel fields is very easy. Like a high level language you use a single period to
reference the Pt field and a second period to access the x, y, and z fields of point:

 stdout.put(“ThisPt.Pt.x = “, ThisPt.Pt.x, nl);
 stdout.put(“ThisPt.Pt.y = “, ThisPt.Pt.y, nl);
 stdout.put(“ThisPt.Pt.z = “, ThisPt.Pt.z, nl);
 .
 .
 .
 mov(eax, ThisPt.Color);

You can also declare arrays as record fields. The following record creates a data type capable
of representing an object with eight points (e.g., a cube):

type
 Object8:
 record
 Pts: point[8];
 Color: dword;
 endrecord;

There are two common ways to nest record definitions. As noted earlier in this section, you
can create a record type in a TYPE section and then use that type name as the data type of some
field within a record (e.g., the Pt:point field in the Pixel data type above). It is also possible to
declare a record directly within another record without creating a separate data type for that record;
the following example demonstrates this:

type
 NestedRecs:
 record
 iField: int32;
 sField: string;
 rField:
 record
 i:int32;
 u:uns32;
 endrecord;
 cField:char;
 endrecord;

Generally, it’s a better idea to create a separate type rather than embed records directly in other
records, but nesting them is perfectly legal and a reasonable thing to do on occasion.

18.7.5 Controlling Field Offsets Within a Record
By default, whenever you create a record, most assemblers automatically assign the offset zero

to the first field of that record. This corresponds to records in a high level language and is the
intuitive default condition. In some instances, however, you may want to assign a different starting
offset to the first field of the record. The HLA assembler provides a mechanism that lets you set
the starting offset of the first field in the record.

The syntax to set the first offset is
Public Domain Created by Randy Hyde Page 496

HLA Reference Manual 5/24/10 Chapter 18
name:
 record := startingOffset;
 << Record Field Declarations >>
 endrecord;

Using the syntax above, the first field will have the starting offset specified by the
startingOffset int32 constant expression. Since this is an int32 value, the starting offset value can
be positive, zero, or negative.

One circumstance where this feature is invaluable is when you have a record whose base
address is actually somewhere within the data structure. The classic example is an HLA string. An
HLA string uses a record declaration similar to the following:

 record
 MaxStrLen: dword;
 length: dword;
 charData: char[xxxx];
 endrecord;

However, HLA string pointers do not contain the address of the MaxStrLen field; they point at
the charData field. The str.strRec record type found in the HLA Standard Library Strings module
uses a record declaration similar to the following:

type
 strRec:
 record := -8;
 MaxStrLen: dword;
 length: dword;
 charData: char;
 endrecord;

The starting offset for the MaxStrLen field is -8. Therefore, the offset for the length field is -4
(four bytes later) and the offset for the charData field is zero. Therefore, if EBX points at some
string data, then “(type str.strRec [ebx]).length” is equivalent to “[ebx-4]” since the length field has
an offset of -4.

18.7.6 Aligning Fields Within a Record
To achieve maximum performance in your programs, or to ensure that your records properly

map to records or structures in some high level language, you will often need to be able to control
the alignment of fields within a record. For example, you might want to ensure that a dword field’s
offset is an even multiple of four. You use the ALIGN directive in a record declaration to do this.
The following example shows how to align some fields on important boundaries:

type
 PaddedRecord:
 record
 c: char;
 align(4);
 d: dword;
 b: boolean;
 align(2);
 w: word;
 endrecord;

Whenever HLA encounters the ALIGN directive within a record declaration, it automatically
adjusts the following field’s offset so that it is an even multiple of the value the ALIGN directive
specifies. It accomplishes this by increasing the offset of that field, if necessary. In the example
above, the fields would have the following offsets: c:0, d:4, b:8, w:10.
Public Domain Created by Randy Hyde Page 497

HLA Reference Manual 5/24/10 Chapter 18
If you want to ensure that the record’s size is a multiple of some value, then simply stick an
ALIGN directive as the last item in the record declaration. HLA will emit an appropriate number
of bytes of padding at the end of the record to fill it in to the appropriate size. The following
example demonstrates how to ensure that the record’s size is a multiple of four bytes:

type
 PaddedRec:
 record
 << some field declarations >>

 align(4);

 endrecord;

Be aware of the fact that the ALIGN directive in a RECORD only aligns fields in memory if
the record object itself is aligned on an appropriate boundary. Therefore, you must ensure
appropriate alignment of any record variable whose fields you’re assuming are aligned.

If you want to ensure that all fields are appropriately aligned on some boundary within a
record, but you don’t want to have to manually insert ALIGN directives throughout the record,
HLA provides a second alignment option to solve your problem. Consider the following syntax:

type
 alignedRecord3 :
 record[4]
 << Set of fields >>
 endrecord;

The "[4]" immediately following the RECORD reserved word tells HLA to start all fields in
the record at offsets that are multiples of four, regardless of the object’s size (and the size of the
objects preceeding the field). HLA allows any integer expression that produces a value in the range
1..4096 inside these parenthesis. If you specify the value one (which is the default), then all fields
are packed (aligned on a byte boundary). For values greater than one, HLA will align each field of
the record on the specified boundary. For arrays, HLA will align the field on a boundary that is a
multiple of the array element’s size. The maximum boundary HLA will round any field to is a
multiple of 4096 bytes.

Note that if you set the record alignment using this syntactical form, any ALIGN directive you
supply in the record may not produce the desired results. When HLA sees an ALIGN directive in a
record that is using field alignment, HLA will first align the current offset to the value specified by
ALIGN and then align the next field’s offset to the global record align value.

Nested record declarations may specify a different alignment value than the enclosing record,
e.g.,

type
 alignedRecord4 : record[4]
 a:byte;
 b:byte;
 c:record[8]
 d:byte;
 e:byte;
 endrecord;
 f:byte;
 g:byte;
 endrecord;

In this example, HLA aligns fields a, b, f, and g on dword boundaries, it aligns d and e (within c)
on eight-byte boundaries. Note that the alignment of the fields in the nested record is true only
within that nested record. That is, if c turns out to be aligned on some boundary other than an eight-
Public Domain Created by Randy Hyde Page 498

HLA Reference Manual 5/24/10 Chapter 18
byte boundary, then d and e will not actually be on eight-byte boundaries; they will, however be on
eight-byte boundaries relative to the start of c.

In addition to letting you specify a fixed alignment value, HLA also lets you specify a
minimum and maximum alignment value for a record. The syntax for this is the following:

type
 recordname : record[maximum : minimum]
 << fields >>
 endrecord;

Whenever you specify a maximum and minimum value as above, HLA will align all fields on
a boundary that is at least the minimum alignment value. However, if the object’s size is greater
than the minimum value but less than or equal to the maximum value, then HLA will align that
particular field on a boundary that is a multiple of the object’s size. If the object’s size is greater
than the maximum size, then HLA will align the object on a boundary that is a multiple of the
maximum size. As an example, consider the following record:

type
 r: record[4:1];
 a:byte; // offset 0
 b:word; // offset 2
 c:byte; // offset 4
 d:dword[2]; // offset 8
 e:byte; // offset 16
 f:byte; // offset 17
 g:qword; // offset 20
 endrecord;

Note that HLA aligns g on a dword boundary (not qword, which would be offset 24) since the
maximum alignment size is four. Note that since the minimum size is one, HLA allows the f field
to be aligned on an odd boundary (since it’s a byte).

If an array, record, or union field appears within a record, then HLA uses the size of an array
element or the largest field of the record or union to determine the alignment size. That is, HLA
will align the field without the outermost record on a boundary that is compatible with the size of
the largest element of the nested array, union, or record.

HLA sophisticated record alignment facilities let you specify record field alignments that
match that used by most major high level language compilers. This lets you easily access data
types used in those HLLs without resorting to inserting lots of ALIGN directives inside the record.

18.7.7 Using Records/Structures in an Assembly Language
Program

In the "good old days" assembly language programmers typically ignored records. Records and
structures were treated as unwanted stepchildren from high-level languages, that weren’t necessary
in "real" assembly language programs. Manually counting offsets and hand-coding literal constant
offsets from a base address was the way "real" programmers wrote code in early PC applications.
Unfortunately for those "real programmers", the advent of sophisticated operating systems like
Windows and Linux put an end to that nonsense. Today, it is very difficult to avoid using records in
modern applications because too many API functions require their use. If you look at typical
Windows and Linux include files for C or assembly language, you’ll find hundreds of different
structure declarations, many of which have dozens of different members. Attempting to keep track
of all the field offsets in all of these structures is out of the question. Worse, between various
releases of an operating system (e.g., Linux), some structures have been known to change, thus
exacerbating the problem. Today, it’s unreasonable to expect an assembly language programmer to
manually track such offsets - most programmers have the reasonable expectation that the assembler
will provide this facility for them.
Public Domain Created by Randy Hyde Page 499

HLA Reference Manual 5/24/10 Chapter 18
18.7.8 Implementing Structures in an Assembler
Unfortunately, properly implementing structures in an assembler takes considerable effort. A

large number of the "hobby" (i.e., non-commercial) assemblers were not designed from the start to
support sophisticated features such as records/structures. The symbol table management routines in
most assemblers use a "flat" layout, with all of the symbols appearing at the same level in the
symbol table database. To properly support structures or records, you need a hierarchical structure
in your symbol table database. The bad news is that it’s quite difficult to retrofit a hierarchical
structure over the top of a flat database (i.e., the symbol "hobby assembler" symbol table).
Therefore, unless the assembler was originally designed to handle structures properly, the result is
usually a major hacked-up kludge.

Four assemblers I’m aware of, MASM, TASM, OPTASM, and HLA, handle structures well.
Most other assemblers are still trying to simulate structures using a flat symbol table database, with
varying results.

Probably the first attempt people make at records, when their assembler doesn’t support them
properly, is to create a list of constant symbols that specify the offsets into the record. Returning to
our first example (in HLA):
type
 student:
 record
 Name: string;
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

One attempt might be the following:

const
 Name := 0;
 Major := 4;
 SSN := 6;
 Midterm1 := 18;
 Midterm2 := 20;
 Final := 22;
 Homework := 24;
 Projects := 26;
 size_student := 28;

With such a set of declarations, you could reserve space for a student "record" by reserving
"size_student" bytes of storage (which almost all assemblers handle okay) and then you can access
fields of the record by adding the constant offset to your base address, e.g.,

static
 John : byte[size_student];
 .
 .
 .
 mov(John[Midterm1], ax);

There are several problems with this approach. First of all, the field names are global and must
be globally unique. That is, you cannot have two record types that have the same fieldname (as is
possible with the assembler supports true records). The second problem, which is fundamentally
more problematic, is the fact that you can attach these constant offsets to any object, not just a
Public Domain Created by Randy Hyde Page 500

HLA Reference Manual 5/24/10 Chapter 18
"student record" type object. For example, suppose "ClassAverage" is an array of words, there is
nothing stopping you from writing the following when using constant equate values to simulate
record offsets:

mov(ClassAverage[Midterm1], ax);

Finally, and probably the most damning criticism of this approach, is that it is very difficult to
maintain code that accesses structures in this manner. Inserting fields into the middle of a record,
changing data types, and coming up with globally unique names can create all sorts of problems.
Many high-level language programmers who’ve tried to learn assembly language have given up
after discovering that they had to maintain records in this fashion in an assembly language program
(too bad they didn’t start off with a reasonable assembler that properly supports structures).

Manually maintaining all the constant offsets is a maintenance nightmare. So somewhere
along the way, some assembly language programmers figured out that they could write macros to
handle the declaration of constant offsets for them. For example, here’s how you could do this in an
HLA program:

program t;

#macro struct(_structName_, _dcls_[]):
 dcl, _id_, _type_, _colon_, _offset_;

 ?_offset_ := 0;
 ?_dcl_:string;
 #for(_dcl_ in _dcls_)

 ?_colon_ := @index(_dcl_ , 0, ":");
 #if(_colon_ = -1)

 #error
 (
 "Expected <id>:<type> in struct definition, encountered: ",
 dcl
)

 #else

 ?_id_ := @substr(_dcl_, 0, _colon_);
 ?_type_ := @substr(_dcl_, _colon_+1, @length(_dcl_) -
colon);
 ?@text(_id_) := _offset_;
 ?_offset_ := _offset_ + @size(@text(_type_));

 #endif;

 #endfor
 ?_structName_:text := "byte[" + @string(_offset_) + "]";

#endmacro

struct(threeItems, i:byte, j:word, k:dword)

static
 aStruct: threeItems;

Public Domain Created by Randy Hyde Page 501

HLA Reference Manual 5/24/10 Chapter 18
begin t;

 mov((type byte aStruct[i]), al);
 mov((type word aStruct[j]), ax);
 mov((type dword aStruct[k]), eax);

end t;

The "struct" macro expects a set of valid HLA variable declarations supplied as macro
arguments. It generates a set of constants using the supplied variable names whose offsets are
adjusted according to the size of the objects previously appearing in the list. In this example, HLA
creates the following equates:

 i = 0
 j = 1
 k = 3

This declaration also creates a "data type" named "threeItems" which is equivalent to "byte[7]"
(since there are seven bytes in this record) that you may use to create variables of type "threeItems",
as is done in this example.

Creating structures with macros solves one of the three major problems: it makes it easier to
maintain the constant equates list, as you do not have to manually adjust all the constants when
inserting and removing fields in a record. This does not, however, solve the other problems
(particularly, the global identifier problem).

While fancier macros could be written, macros that generate identifiers like
"objectname_fieldName" that help solve the globally unique problem, the bottom line is that these
hacks begin to fail when you attempt to declare nested records, arrays within records, and arrays of
records (possibly containing nested records and arrays of records). The bottom line is this:
assemblers that don’t properly support structures are going to have problems when you’ve got to
work with data structures from high-level languages (e.g., OS API calls, where the OS is written in
C, such as Windows and Linux). You’re much better off using an assembler that fully supports
structures (and other advanced data types) if you need to use structures in your programs.
Public Domain Created by Randy Hyde Page 502

HLA Reference Manual Index 5/24/10
Index

- (negation) operator in constant expres-
sions 127

- operator (subtraction, set difference) in
constant expressions 130

 operator in constant expressions 30,
131

 or != operator 330

Symbols

 31, 130, 131, 330
^ operator in constant expressions 31,

131
! (not operator) in constant expressions

30, 126
!(boolean_expression) operator 329,

332
!= operator in constant expressions 131
!memory operator 329
!register operator 329
? command-line option 87
@ command-line option 86
@@ command-line option 86
@a 331
@abs function 261
@addofs1st function 277
@ae 331
@align 186
@Align procedure option 172
@alignstack 186
@alignstack procedure option 172,

184, 185
@arity function 275
@b 331
@baseptype function 273
@basetype function 272
@be 331
@bound function 278
@bound pseudo-variable 417
@byte compile-time function 261
@byte function 262
@c 331
@Cdecl procedure option 346
@cdecl procedure option 172, 173
@ceil function 262

@char compile-time function 261
@class function 274
@cos function 262
@cset compile-time function 261
@curdir function 277
@curlex function 277
@curobject function 277
@curoffset function 277
@date function 262
@defined function 275
@delete function 265
@dim function 275
@display 185
@display procedure option 172, 184,

185
@dword compile-time function 261
@e 331
@elements function 275
@elementsize function 274
@enter 186
@enter procedure option 174
@enumsize function 278
@env function 262
@EOS function 271
@errorprefix pseudo variable 277
@eval function 258
@exactlynChar function 268
@exactlynCset function 267
@exactlyniChar function 269
@exactlyntomChar function 269
@exactlyntomCset function 267
@exactlyntomiChar function 269
@exceptions function 278
@exp function 262
@External option (in variable declara-

tions) 33
@External procedures 183
@extract function 262
@firstnChar function 268
@firstnCset function 267
@firstniChar function 269
@floor function 263
@FORWARD declarations 184
@frame 186
@g 331
@ge 331
Released to the Public Domain by Randall Hyde 1

HLA Reference Manual Index 5/24/10
@index function 265
@insert function 265
@int8/@int16/@int32/@int64/@int128

compile-time functions 261
@into function 278
@isalpha function 263
@isalphanum function 263
@isclass function 276
@isconst function 276
@isdigit function 263
@IsExternal function 275
@isfreg function 276
@islower function 263
@ismem function 276
@isreg function 276
@isreg16 function 276
@isreg32 function 276
@isreg8 function 276
@isspace function 263
@istype function 276
@isupper function 263
@isxdigit function 263
@l 331
@lastobject function 277
@le 331
@leave 186
@leave procedure option 174
@length function 265
@lex function 274
@linenumber function 259, 276, 277
@localoffset function 277, 278
@locals function 275
@log function 263
@log10 function 263
@lowercase function 265
@lword compile-time function 261
@match compile-time function 282,

296
@match2 compile-time function 296
@matchChar compile-time function

285
@matchID function 270
@matchIntConst function 270
@matchiStr function 269
@matchNumericConst function 270
@matchRealConst function 270

@matchStr function 269
@matchStrConst function 271
@matchToiStr function 270
@matchToStr function 270
@max function 263
@min function 263
@minparmsize function 278
@na 331
@nae 331
@name function 272
@nb 331
@nbe 331
@nc 331
@ne 331
@nge 331
@nl 331
@nle 331
@no 331
@noalignstack 186
@noalignstack procedure option 172
@nodisplay 185
@Nodisplay option 221
@nodisplay procedure option 172
@noenter 186
@noenter procedure option 174, 184,

185
@noframe 186
@noframe procedure option 172
@noleave 186
@noleave procedure option 174, 184,

185
@nOrLessChar function 268
@nOrLessCset function 267
@nOrLessiChar function 269
@nOrMoreChar function 269
@nOrMoreCset function 267
@nOrMoreiChar function 269
@NOSTORAGE 33
@ns 331
@ntomChar function 269
@ntomCset function 267
@ntomiChar function 269
@nz 331
@o, 331
@odd function 263
@offset function 274
Released to the Public Domain by Randall Hyde 2

HLA Reference Manual Index 5/24/10
@oneChar compile-time function 285
@oneChar function 268
@oneCset function 266
@oneiChar function 269
@oneOrMoreChar function 268
@oneOrMoreCset function 267
@oneOrMoreiChar function 269
@oneOrMoreWS function 271
@optstring function 279
@parmoffset function 277
@Pascal procedure option 346
@pascal procedure option 172, 173
@pclass function 275
@peekChar function 268
@peekCset function 266
@peekiChar function 269
@peekWS function 271
@ptype function 272
@qword compile-time function 261
@random function 263
@randomize function 264
@read compile-time function 302
@real32/@real64/@real80 compile-time

functions 261
@REG function 271, 272
@REG32 function 272
@REG8 function 271
@Returns procedure option 172, 346
@returns procedure option 173
@rindex function 265
@s 331
@section function 280
@sin function 264
@size function 274
@sort function 264
@sqrt function 264
@staticname function 274
@Stdcall procedure option 346
@stdcall procedure option 172, 173
@strbrk function 265
@string

operator 280
@string compile-time function 261
@strset function 265
@strspan function 265
@substr function 265

@tan function 264
@text function 280
@text operator 250
@time function 264
@tokenize function 265
@tostring

operator 280
@tostring operator 257
@trace function 279
@trim function 266
@type function 272
@typename function 272
@uns8/@uns16/@uns32/@uns64/

@uns128 compile-time functions
261

@uppercase function 266
@uptoChar function 268
@uptoCset function 266
@uptoiChar function 269
@uptoiStr function 270
@uptoStr function 270
@use procedure option 173
@use reg32 procedure option 172
@word compile-time function 261
@WSorEOS function 271
@WSthenEOS function 271
@z 331
@zeroOrMoreChar function 268
@zeroOrMoreCset function 267
@zeroOrMoreiChar function 269
@zeroOrMoreWS function 271
@zeroOrOneChar function 268
@zeroOrOneCset function 266
@zeroOrOneiChar function 269
* (multiplication) operator in constant

expressions 128
*NIX 54
/ (division) operator in constant expres-

sions 129
& operator in constant expressions 31,

131
&& operator 329, 332
#(...)# in macro parameters 250
#{ ... }# sequence for manually passing

parameters 215
#{...}# parameter quoting mechanism
Released to the Public Domain by Randall Hyde 3

HLA Reference Manual Index 5/24/10
198
#{...}# sequence (to create thunks) 213
#{...}#" code brackets in boolean expres-

sions 333
#append 301
#asm..#endasm directives 299
#closeread compile-time statement 302
#closewrite statement 301
#else clause 36, 303
#elseif clause in #if statement 36, 303
#emit directive 299
#endif clause 36, 303
#endwhile 150
#ERROR directive 301
#for..#endfor statement 303
#if statement 35, 302
#Include directive 35, 245, 246
#include directive 347
#IncludeOnce directive 247
#KEYWORD reserved word 252
#linker directive 246
#match..#endmatch 298
#openread compile-time statement 302
#openwrite statement 301
#PRINT directive 301
#regex..#endregex statement 283
#return clause 283
#system directive 300
#TERMINATOR keyword 252
#text..#endtext statement 281
#while 150
#while..#endwhile statement 303
#write statement 301
+ (addition, set union, string concatena-

tion) operator in constant expres-
sions 130

= operator in constant expressions 30,
131

= or == operator 330
== operator in constant expressions 131
> operator 330
> operator in constant expressions 31,

131
>= operator 330
>= operator in constant expressions 31,

 131

>> operator (shift right) in constant ex-
pressions 130

| operator in constant expressions 31,
131

|| operator 329, 332

Numerics

80x86 instruction set 36, 397

A

aaa instruction 398
aad instruction 398
aam instruction 398
aas instruction 398
ABSTRACT keyword 232
Abstract methods and abstract base class-

es 232
Accessing fields of a structure 494
Accessing the fields of a class 478
Accessor methods 469
Activation record 112
adc instruction 36, 402
add instruction 36, 402
Addition operator (+) in constant expres-

sions 130
Address of a class procedure 239
Address of a memory object (calculation)

 410
Address of a method 239
Address of an iterator 239
Address-of operator 239
align directive 154
align directive (in records) 108
align procedure option 173
Aligning fields within a record 497
Allocating objects dynamically 488
always exception handling clause 326
and instruction 36, 402
AND operator in boolean expressions

332
Anonymous records 106
Anonymous unions 107
ANYEXCEPTION clause in the

TRY..ENDTRY statement 325
Arithmetic and logical instructions 36,

402
Released to the Public Domain by Randall Hyde 4

HLA Reference Manual Index 5/24/10
Arithmetic instructions 38, 408
Array constants 118
Array data types 28, 105
Arrays as structure fields 495
Arrays of records 495
Art of Assembly Language Program-

ming 5, 7
Assembler control compile-time func-

tions 272
Automatic code generation in procedures

 186

B

b
name command-line option 86

Back-end assembler command line pa-
rameters 86

Back-end assemblers 59
Backtracking 294
Base classes 484
begin..end block 337
Big endian data format 42, 419
Binary constants 29, 116, 151, 152,

153
Binary object file output name (com-

mand-line option) 86
Bit scan instructions 42, 419
Bit test instructions 42, 419
Bitwise type transfer functions 261
Block-structured language 218
Boolean constants 29, 117
Boolean data type 102
Boolean expressions for high-level lan-

guage statements 329
bound instruction 41, 416
Branch out of range errors 415
break and breakif statements 336
bsf instruction 419
bsr instruction 42, 419
bswap instruction 42, 419
bt instruction 42, 419
btc instruction 42, 419
btr instruction 42, 419
bts instruction 42, 419
Built-in types 151
Byte data type 102

C

c command-line option 86
Call instruction 192
call instruction 412
Calling a class procedure 412
Calling a procedure 39, 412
Calling conventions 348
Calling HLA Procedures 192
Calling HLA procedures from another

language 349
Calling methods and class procedures

234
Calling procedures written in a different

language 349
Cascading exceptions 327
case clause in switch statement 339
Case neutrality 27, 100, 347
Case-insensitive character matching

(compile-time function) 286
cbw instruction 398
cd 50
CDecl procedure option 348
cdq instruction 398
Changing the Location of HLA 58
char compile-time function 260
Character constants 29, 117
Character data type 102
Character set constants 118
Character set data type 102
Character set union operator (+) in con-

stant expressions 130
Class data types 222
Class Methods, Iterators, and Procedures

 476
Class procedure address 239
Class procedures 235
Classes 469
clc instruction 398
cld instruction 398
cli instruction 398
clts instruction 398
cmc instruction 398
cmova instruction 40, 415
cmovae instruction 40, 415
cmovb instruction 40, 415
cmovbe instruction 40, 415
Released to the Public Domain by Randall Hyde 5

HLA Reference Manual Index 5/24/10
cmovc instruction 40, 415
cmove instruction 40, 415
cmovg instruction 40, 415
cmovge instruction 40, 415
cmovl instruction 40, 415
cmovle instruction 40, 415
cmovna instruction 40, 415
cmovnae instruction 40, 415
cmovnb instruction 40, 415
cmovnbe instruction 40, 415
cmovnc instruction 40, 415
cmovne instruction 40, 415
cmovng instruction 40, 415
cmovnge instruction 40, 415
cmovnl instruction 40, 415
cmovnle instruction 40, 415
cmovno instruction 40, 415
cmovnp instruction 40, 415
cmovns instruction 40, 415
cmovnz instruction 40, 415
cmovo instruction 40, 415
cmovp instruction 40, 415
cmovpe instruction 40, 415
cmovpo instruction 40, 415
cmovs instruction 40, 415
cmovz instruction 40, 415
cmp instruction 37, 404
cmpsb instruction 398
cmpsd instruction 398
cmpsw instruction 398
cmpxchg instruction 41, 417, 418
Command line parameters 86
Comments 26, 93
Comparison operators in constant ex-

pressions 131
Compile only (command-line option) 86
Compile-time "?" statement

? compile-time statement 146
Compile-time language 245
Compiling simple programs with HIDE

4
Composing instructions 397
Composite data types 28, 105
Computing the address of a memory op-

erand 410
Conditional compilation statements 35,

302
Conditional jump instructions 40, 415
Conditional move instructions 40, 415
Conditional set instructions 40, 415
Conjunction in boolean expressions 332
const declaration section 142
const keyword 142
Const sections 33
Constant expressions 30, 124
Constants

array 118
binary 29, 116
boolean 29, 117
character 29, 117
character set 118
decimal 29, 115
display 182
floating-point 29, 116
hexadecimal 29, 115
literal 29, 115
numeric 29, 115
parms 182
pointer 30, 123
record 119
regular expression 123
string 30, 117
structured 30, 118
Unicode character 117
Unicode string 117
union 120

Constructors 233, 487, 489
Context free macros 252
continue and continueif statements 336
Controlling field offsets within a record

496
Conversion functions (compile-time lan-

guage) 260
cpuid instruction 398
Create procedure for an object 489
Creating a New Project in RadASM 41
Creating a Virtual Method Table 234
cset compile-time function 260
Cset data type 102, 152
Customizing HLA 57
cwd instruction 398
cwde instruction 398
Released to the Public Domain by Randall Hyde 6

HLA Reference Manual Index 5/24/10
D

daa instruction 398
das instruction 398
Data Types 27, 102
Data types

array 28, 105
composite 28
enumerated 103
pointer 111
record 28, 106
thunks 112
union 105

dec instruction 38, 408
Decimal constants 29, 115
Declaration section in an HLA program

135
Declarations 32

array 105
const 142
constants 33
enum 103
external procedure 183
forward procedure 184
label 135
macros 34
namespace 167
overloaded procedure, iterator, and

method 177
proc 167
procedure 31, 171, 175
readonly 165
record 106
static 33, 160
storage 164
type 32, 150
union 105
var 153

default clause in switch statement 339
Default include file directory 86
Deferred macro parameter expansion

258
Defining symbols on the HLA command

line 86
dir 50
Disjunction in boolean expressions 332
Display (accessing non-local variables)

220
display array constant 182
display variable 183, 220
Displaying messages during compilation

 301
div instruction 38, 406
Div operator in constant expressions

129
Divide instructions 38, 406
Division operator in constant expressions

 129
Dot operator 494
Dot operator (field name selection) 132
Double precision shift instructions 38,

409
DUP operator (array constants) 119
Dword data type 102
dxx command-line option 86
dxx=yy command-line option 86
Dynamic Object Allocation 488

E

e
name command-line option 86

Eager evaluation of macro parameters
258

Editing HLA source files within Ra-
dASM 55

Effective address calculations 410
ELF code generation for FreeBSD 87
ELF code generation for Linux OS 87
ELSE 328
ELSEIF statement 328
emms instruction 425
endconst keyword 142
ENDIF 328
endlabel keyword 136
endswitch clause in switch statement

339
endval keyword 147
endvar keyword 154
enter instruction 41, 417
enum 103
Enumerated data types 102, 103
Errors 301
Exception handling in HLA 321
Released to the Public Domain by Randall Hyde 7

HLA Reference Manual Index 5/24/10
Exception numbers 323
Executable output filename (command-

line parameter) 86
exit and exitif statements 337, 338
EXIT statement 191
External compilation units 345
External declarations 345
External identifiers 27, 100, 101
External procedure declarations 183
External symbol names (non-HLA iden-

tifiers) 346
External symbols 27, 100

F

f2xm1 instruction 422
fabs instruction 422
fadd instruction 420
faddp instruction 420
FASM as back-end assembler (com-

mand-line option) 86
fasm command-line option 86
fbld instruction 420
fbstp instruction 420
fchs instruction 422
fclex instruction 423
FCMOVcc instructions 423
fcom instruction 422
fcomi instruction 423
fcomip instruction 423
fcomp instruction 422
fcompp instruction 422
fcos instruction 422
fdecstp instruction 423
fdiv instruction 421
fdivp instruction 421
fdivr instruction 421
fdivrp instruction 421
ffree instruction 423
fiadd instruction 421
ficom instruction 422
ficomp instruction 422
fidiv instruction 421
fidivr instruction 422
Field alignment within a record 497
Field Offsets Within a Record 496
fild instruction 420

fimul instruction 421
finalize string 240
Finalizers 240
fincstp instruction 423
finit instruction 422
fist instruction 420
fistp instruction 420
fld instruction 420
fld1 instruction 422
fldcw instruction 423
fldl2e instruction 422
fldl2t instruction 422
fldlg2 instruction 422
fldln2 instruction 422
fldpi instruction 422
fldz instruction 422
Floating point constants 116
Floating point instructions 42, 420
Floating-point constants 29
fmul instruction 420
fmulp instruction 421
fnop instruction 423
for..endfor statement 334
foreach..endfor statement 342
forever..endfor statement 336
FORWARD declarations 241
Forward procedure declarations 184
fpatan instruction 422
fprem instruction 422
fprem1 instruction 422
fptan instruction 422
frame procedure option 172, 184, 185
freebsd command-line option 87
FreeBSD OS ELF code generation 87
frndint instruction 422
fscale instruction 422
fsin instruction 422
fsincos instruction 422
fsqrt instruction 422
fst instruction 420
fstcw instruction 423
fstp instruction 420
fstsw instruction 423
fsub instruction 421
fsubp instruction 421
fsubr instruction 421
Released to the Public Domain by Randall Hyde 8

HLA Reference Manual Index 5/24/10
fsubrp instruction 421
ftst instruction 422
fucom instruction 422
fucomp instruction 422
fucompp instruction 422
Function overloading 348
fwait instruction 423
fxam instruction 422
fxch instruction 420
fxtract instruction 422
fyl2x instruction 422
fyl2xp1 instruction 422

G

Gas 1
Gas as back-end assembler (command-

line option) 86
gas command-line option 86
gasx command-line option 86
Generating a linker response file 86
greedy evaluation 295

H

Header files 347
Hello World 49
Hexadecimal constants 29, 115
HIDE 1

auto completion 17
compiling simple programs 4
global settings 11
menus 4
project file format 18
project manager 14
project panel 3
settings 10

High level language statements 321
HLA command line options 86
hla command-line option 87
HLA Compile-Time Language 245
HLA customization 57
HLA Design Goals 5
HLA environment variables 46
HLA installation under Windows 45
HLA Integrated Development Environ-

ment 1
HLA internal operation 84

HLA language elements 93
HLA program format 31
HLA source file output (command-line

option) 87
HLA Standard Library 45, 54
HLA type compatibility 104
HLA.INI initialization file 77
hlabe command-line option 87
HLAINC environment variable 48
HLALIB environment variable 48
hlt instruction 398
Human readable source file format (com-

mand-line option) 86
Hybrid high level boolean expressions

332
Hybrid parameter passing in HLA 215,

216

I

i
path command-line option 86

IDE 24
Identifiers 27, 100
idiv instruction 38, 406
IF statement 328
imod instruction 406
imul instruction 37, 405
in instruction 41, 416
IN operator 331
in operator 329, 331
in operator in constant expressions 131
IN reg parameter specification 171
inc instruction 38, 408
Include file directory 86
Include files 35, 246
Index operator (selecting an array ele-

ment) 133
Infinite loops 336
Inheritance 473, 484
Inherited fields in records 107
Inheritence 228
inherits keyword 107
INHERITS keyword (classes) 473
INHERITS reserved word 228
initialize string 240
Initializers 240
Released to the Public Domain by Randall Hyde 9

HLA Reference Manual Index 5/24/10
Input and output instructions 41, 416
insb instruction 398
insd instruction 399
Installation under Windows 45
Installing HLA 45
Installing HLA under FreeBSD 54
Installing HLA under Linux 54
Installing HLA under Mac OSX 54
Installing RadASM 31
Instances (of a class) 471
Instruction composition 397
insw instruction 399
int instruction 41, 416
Int128 data type 102
Int16 data type 102
Int32 data type 102
Int64 data type 102
Int8 data type 102
int8/int16/int32/int64/int128 compile-

time functions 260
Integrated Development Environments

24
Internal name of the HLA main program

 86
intmul instruction 37, 405
into instruction 399
invd instruction 399
iret instruction 399
iretd instruction 399
Iterator address 239
Iterator declarations (overloaded) 177
Iterators 342

J

ja instruction 40, 415
jae instruction 40, 415
jb instruction 40, 415
jbe instruction 40, 415
jc instruction 40, 415
jcxz instruction 40, 415
je instruction 40, 415
jecxz instruction 40, 415
jg instruction 40, 415
jge instruction 40, 415
jl instruction 40, 415
jle instruction 40, 415

jmp instruction 40, 414
jna instruction 40, 415
jnae instruction 40, 415
jnb instruction 40, 415
jnbe instruction 40, 415
jnc instruction 40, 415
jne instruction 40, 415
jng instruction 40, 415
jnge instruction 40, 415
jnl instruction 40, 415
jnle instruction 40, 415
jno instruction 40, 415
jnp instruction 40, 415
jns instruction 40, 415
jnz instruction 40, 415
jo instruction 40, 415
jp instruction 40, 415
jpe instruction 40, 415
jpo instruction 40, 415
js instruction 40, 415
JT and JF medium level statements 341
jz instruction 40, 415

K

Kleene Plus 284
Kleene Star 284

L

label declaration section 135
label keyword 135
lahf instruction 399
Lazy (pass by lazy evaluation) parameter

option 171
Lazy bersus greedy evaluation 295
Lazy evaluation parameters 213
lea instruction 39, 410
leave instruction 399, 417
level=h command-line option 87
level=l command-line option 87
level=m command-line option 87
level=v command-line option 87
Lex level 219
Lexical analysis 309
Lexical Scope 218
lib

path command-line option 86
Released to the Public Domain by Randall Hyde 10

HLA Reference Manual Index 5/24/10
license command-line option 86
Linker command-line parameters 86
Linker response file 86
Linking HLA code with other languages

347
linux command-line option 87
Linux OS ELF code generation 87
Literal constants 29, 115
Literal record constants 494
Little endian data format 42, 419
Local symbols in macros 34, 249
Local symbols in multi-part macros 255
lodsb instruction 399
lodsd instruction 399
lodsw instruction 399
Logical AND operator in constant ex-

pressions 131
Logical instructions 36, 38, 402, 408
Logical OR operator in constant expres-

sions 131
Logical XOR operation in constant ex-

pressions 131
Lookahead 292
loop instruction 40, 415
loope instruction 40, 415
loopn instruction 40, 415
loopz instruction 40, 415
LWord data type 102
lxxxxx command-line option 86

M

m command-line option 86
Mac OSX/Mach-o code generation 87
Mach-o code generation for Mac OS X

87
macos command-line option 87
Macro invocations 256
Macro parameters 256, 257
Macros 34, 248
Macros as compile-time functions 305
main

name command-line option 86
Make files in RadASM 25
Make menu in RadASM 79
Mangled names 347
Map files 86

MASM 1
MASM as back-end assembler (com-

mand-line option) 87
masm command-line option 87
Memory addressing modes 42, 390
Method address 239
Method declarations (overloaded) 177
Methods 235, 469
mkdir 50
MMX instructions 42, 423
mod instruction 406
MOD operator (remainder) in constant

expressions 129
mov instruction 36, 402
movd instruction 424
movq instruction 425
movsb instruction 399
movsd instruction 399
movsw instruction 399
movsx instruction 39, 411
movzx instruction 39, 411
mul instruction 37, 404
Multidimensional arrays 28, 105
Multi-part macros 252
Multiplication operator (*) in constant

expressions 128
Multiply instructions 37, 404

N

Name (pass by name) parameter option
171

Name mangling 347
Name parameters 213
namespace declaration section 167
Naming conventions 347
NASM 1
NASM as back-end assembler (com-

mand-line option) 87
nasm command-line option 87
neg instruction 38, 408
Negated String Matching 287
Negation operator in constant expres-

sions 127
Nesting record definitions 496
New style procedure declarations 175
Non-object calls of class procedures 236
Released to the Public Domain by Randall Hyde 11

HLA Reference Manual Index 5/24/10
nop instruction 399
not in operator 329, 331
not instruction 38, 408
Not operator (constant expressions) 30,

 126
Null operand instructions 36
Number data types 103
Numeric constants 29, 115
Numeric data types 103
Numeric Set Constants 116

O

obj
path command-line option 86

Object file placement during compilation
(command-line option) 86

Object Initialization 487
Object-oriented programming 222
Objects 471
operator in constant expressions 133
OR operator in boolean expressions 332
Ordinal data types 103
out instruction 41, 416
outsb instruction 399
outsd instruction 399
outsw instruction 399
overload macro 177
Overloaded procedure declarations 177
overloads keyword 177
OVERRIDE keyword 229
overrides keyword 108
Overriding a method 473
Overriding precedence in constant ex-

pressions 132

P

p
path command-line option 86

packssdw instruction 424
packsswbv 424
packuswb instruction 424
paddb instruction 423
paddd instruction 423
Padding a record to some number of

bytes 498
paddsb instruction 423

paddsw instruction 423
paddusb instruction 423
paddusw instruction 423
paddw instruction 423
pand instruction 424
pandn instruction 424
Parameters 191
Parameters passed on the stack 348
Parenthesis in macro parameters 35,

250
parms constant 182
Pass by lazy evaluation 213
Pass by name parameters 213
Pass by reference 203
Pass by result parameters 203
Pass by value 193
Pass by value/result 203
Passing by value

Byte-Sized Parameters 194
Passing byte value

Double-word-sized parameters 200
Large parameters 202
Lword-sized parameters 201
Quad-word-sized parameters 200
Tbyte-sized parameters 201
Word-sized parameters 198

Passing parameters in registers 171,
216

Path specifications in RadASM 77
pavgb instruction 424
pavgw instruction 424
pcmpeqb instruction 424
pcmpeqd instruction 424
pcmpeqw instruction 424
pcmpgtb instruction 424
pcmpgtd instruction 424
pcmpgtw instruction 424
PE/COFF object code generation 87
pextrw instruction 424
pinsrw instruction 424
PL/360 1
PL/M 1
pmaddwd instruction 424
pmaxsw instruction 424
pmaxub instruction 424
pminsw instruction 424
Released to the Public Domain by Randall Hyde 12

HLA Reference Manual Index 5/24/10
pminub instruction 424
pmovmskb instruction 424
pmulhuw instruction 424
pmulhw instruction 424
pmullw instruction 424
Pointer constants 30, 123
Pointer types 111
polymorphism 475
pop instruction 39, 411
popa instruction 399
popad instruction 399
popf instruction 399
popfd instruction 399
por instruction 424
Precompiling regular expressions 297
Primitive data types 27, 102
Private fields in a class 100
Private fieldsd in a class 471
proc declaration section 167
Procedure calls 39, 191, 412
Procedure declarations 31, 171
procedure declarations 175
Procedure declarations (overloaded)

177
Procedure options 185
Program Structure 31
Program structure 134
Project organization in RadASM 24
Project Panel in HIDE 3
Project types in RadASM 78
Prototype software 7
psadbw instruction 424
Pseudo-variables 277
pshufw instruction 424
pslld instruction 425
psllq instruction 425
psllw instruction 425
psrad instruction 425
psraw instruction 425
psrld instruction 425
psrlq instruction 425
psrlw instruction 425
psubb instruction 423
psubd instruction 424
psubsb instruction 424
psubsw instruction 424

psubusb instruction 424
psubusw instruction 424
psubw instruction 423
punpckhbw instruction 424
punpckhdq instruction 424
punpckhwd instruction 424
punpcklbw instruction 424
punpckldq instruction 424
punpcklwd instruction 424
push and pop instructions 39, 411
pusha instruction 399
pushad instruction 399
pushd instruction 39, 411
pushf instruction 399
pushfd instruction 399
pushw instruction 39, 411
pVMT 233, 488
pxor instruction 424

Q

QWord data type 102

R

r
name command-line option 86

RadASM execution 31
RadASM installation 31
RadASM project management 32
RADASM.INI file 74
RadASM/HLA Integrated Development

Environment 24
RAISE statement 321
raise statement 327
Range checking 41, 416
rcl instruction 38, 409
rcr instruction 409
rdmsr instruction 400
rdpmc instruction 400
rdtsc instruction 400
readonly declaration section 165
Real (Floating Point) Constants 29
Real constants 116
Real128 102
Real32 data type 102
real32/real64/real80 compile-time func-

tions 260
Released to the Public Domain by Randall Hyde 13

HLA Reference Manual Index 5/24/10
Real64 data type 102
Real80 data type 102
Record constants 119, 494
Record data types 28, 106
Record field alignment 497
Record offsets 111, 496
Records as record fields 495
Recursive file inclusion (prevention)

247
Reference parameters 203
Register parameters 216
Regular expression constants 123
Regular expression macros 281
rep.insb instruction 400
rep.insd instruction 400
rep.insw instruction 400
rep.movsb instruction 400
rep.movsd instruction 400
rep.movsw instruction 400
rep.outsb instruction 400
rep.outsd instruction 400
rep.outsw instruction 400
rep.stosb instruction 400
rep.stosd instruction 400
rep.stosw instruction 400
repe.cmpsb instruction 400
repe.cmpsd instruction 400
repe.cmpsw instruction 400
repe.scasb instruction 401
repe.scasd instruction 401
repe.scasw instruction 401
repeat..until statement 334
repne.cmpsb instruction 401
repne.cmpsd instruction 401
repne.cmpsw instruction 401
repne.scasd instruction 401
repne.scasw instruction 401
Reraising an exception 327
Reserved words 27, 93
Result (pass by result) parameter option

171
Result parameters 203
ret instruction 40, 414
RET with NOFRAME option 189
RETURNS statement 397
returns statement 217

rol instruction 38, 409
ror instruction 409
Rotate instructions 38, 409
rsm instruction 401
Running HLA 49
Running RadASM 31

S

s command-line option 86
sahf instruction 401
sal instruction 38, 409
sar instruction 409
sbb instruction 36, 402
scasb instruction 401
scasd instruction 401
scasw instruction 401
Scoping rules 218
Selecting field names 132
Set intersection operator (*) in constant

expressions 128
Set union operator (+) in constant expres-

sions 130
seta instruction 40, 415
setae instruction 40, 415
setb instruction 40, 415
setbe instruction 40, 415
setc instruction 40, 415
sete instruction 40, 415
setg instruction 40, 415
setge instruction 40, 415
setl instruction 40, 415
setle instruction 40, 415
setna instruction 40, 415
setnae instruction 40, 415
setnb instruction 40, 415
setnbe instruction 40, 415
setnc instruction 40, 415
setne instruction 40, 415
setng instruction 40, 415
setnge instruction 40, 415
setnl instruction 40, 415
setnle instruction 40, 415
setno instruction 40, 415
setnp instruction 40, 415
setns instruction 40, 415
setnz instruction 40, 415
Released to the Public Domain by Randall Hyde 14

HLA Reference Manual Index 5/24/10
seto instruction 40, 415
setp instruction 40, 415
setpe instruction 40, 415
setpo instruction 40, 415
sets instruction 40, 415
Setting auxiliary paths for HLA files 59
Setting default procedure options 185
setz instruction 40, 415
Sevag Krikorian 1
Shift and rotate instructions 38, 409
Shift left operator (130
Shift right operator (>>) in constant ex-

pressions 130
shl instruction 38, 409
shld instruction 409
shr instruction 409
shrd instruction 409
Sign and zero extension instructions 39,

 411
Signed data types 103
Signed vs. unsigned comparisons in

boolean expressions 330
source command-line option 86
Source file format output from HLA 86
Special symbols and punctuation 26,

93
Specifying an external symbols name

346
Static class fields 237
Static data objects in a class 472
static declaration section 160
Static member functions 235
Static Procedures (in a class) 474
Static section 33
stc instruction 402
std instruction 402
Stdcall procedure option 348
sti instruction 402
storage declaration section 164
stosb instruction 402
stosd instruction 402
stosw instruction 402
str.strRec definition 497
string compile-time function 260
String concatenation operator (+) in con-

stant expressions 130

String Constants 30
String constants 117
String data type 102
String representation 497
String/Pattern matching compile-time

function 266
Structure, accessing fields of... 494
Structured constants 30, 118
Structured goto statement 337
Structures as structure fields 495
sub instruction 36, 402
Subtraction operator (-) in constant ex-

pressions 130
super keyword 224
switch..case..default..endswitch state-

ment 339
sym command-line option 87
Symbol related compile-time functions

272
Symbol table display 90
symbol table dump after compile (com-

mand-line option) 87

T

TASM 1
TASM as back-end assembler (com-

mand-line option) 87
tasm command-line option 87
TByte data type 102
Temporary working file directory (com-

mand-line option) 86
test command-line option 87
test instruction 36, 402
Text data type 103
THEN 328
THIS 478
This (reference to class object) 233
thread command-line option 86
Thread-safe code generation 86
THUNK constants (pass by name/lazy

parameters) 213
Thunk data type 103
Thunks 112
try..always..endtry statement 326
TRY..EXCEPTION..ENDTRY state-

ment 321
Released to the Public Domain by Randall Hyde 15

HLA Reference Manual Index 5/24/10
Type checking 124
Type coercion 44, 125, 394
Type compatibility 104
type declaration section 150
Type promotion 124
Type sections 32

U

UCR Standard Library for 80x86 Pro-
grammers 5

ud2 instruction 402
Unicode Character Constants 117
Unicode data type 102
Unicode String Constants 117
Union constants 120
Union data types 105
Units 345
UNPROTECTED clause in the

TRY..ENDTRY statement 324
Uns128 data type 102
Uns16 data type 102
Uns32 data type 102
Uns64 data type 102
Uns8 data type 102
Unsigned data types 103
until clause in repeat..until statement

334
Untyped reference parameters 172,

207, 208
User-defined compilation errors 301
User-defined exceptions 323

V

v command-line option 87
Val (pass by value) parameter option

171
val keyword 146
Valres (pass by value/result) parameter

option 171
Value parameters 193
Value/Result parameters 203
Var (pass by reference) parameter option

 171
VAR (untyped reference parameters)

172
var declaration section 153

var keyword 153
Var type (untyped reference parameters)

208
Variable parameter lists in macros 248
vars constant 182

Constants
vars 182

Verbose compile switch (command-line
option) 87

Virtual member functions 235
Virtual method calls 475
Virtual method table 481
Virtual Method Table pointer 233
Virtual Method Tables 482
Virtual method tables 233
Virtual Methods 474
VMT 233, 483
VMT 233, 481, 483

W

w command-line option 87
wait instruction 402
wbinvd instruction 402
WChar data type 102
Webster 7
WHILE..ENDWHILE statement 333
win32 command-line option 87
Win32 OS PE/COFF object code genera-

tion 87
Windows (GUI) applications 90
Windows API external names 346
Windows installation of HLA 45
Windows Structured Exception Handler

323
Word data type 102
Working files directory (command-line

option) 86

X

x
name command-line option 86

xadd instruction 42, 418
XCHG instruction 37, 403
xlat instruction 402
xor instruction 36, 402
Released to the Public Domain by Randall Hyde 16

HLA Reference Manual Index 5/24/10
Y

Yield 112

Z

Zero extension instruction 39, 411
Zero operand instructions 36
ZString data type 102
Released to the Public Domain by Randall Hyde 17

	HLA Reference Manual
	1 HLA Overview
	1.1 What is a "High Level Assembler"?
	1.2 What is an "Assembler"
	1.3 Is HLA a True Assembly Language?
	1.4 HLA Design Goals
	1.5 How to Learn Assembly Programming Using HLA
	1.6 Legal Notice
	1.7 Teaching Assembly Language using HLA

	2 The Quick Guide to HLA
	2.1 Overview
	2.2 Running HLA
	2.3 HLA Language Elements
	2.3.1 Comments
	2.3.2 Special Symbols
	2.3.3 Reserved Words
	2.3.4 External Symbols and Assembler Reserved Words
	2.3.5 HLA Identifiers
	2.3.6 External Identifiers

	2.4 Data Types in HLA
	2.4.1 Native (Primitive) Data Types in HLA
	2.4.2 Composite Data Types
	2.4.3 Array Data Types
	2.4.4 Record Data Types

	2.5 Literal Constants
	2.5.1 Numeric Constants
	2.5.1.1 Decimal Constants
	2.5.1.2 Hexadecimal Constants
	2.5.1.3 Binary Constants
	2.5.1.4 Real (Floating Point) Constants
	2.5.1.5 Boolean Constants
	2.5.1.6 Character Constants
	2.5.1.7 String Constants
	2.5.1.8 Pointer Constants
	2.5.1.9 Structured Constants

	2.6 Constant Expressions in HLA
	2.7 Program Structure
	2.8 Procedure Declarations
	2.8.1 Declarations
	2.8.2 Type Section
	2.8.3 Const Section
	2.8.4 Static Section
	2.8.4.1 The @NOSTORAGE Option
	2.8.4.2 The EXTERNAL Option

	2.8.5 Macros

	2.9 The #Include Directive
	2.10 The Conditional Compilation Statements (#if)
	2.11 The 80x86 Instruction Set in HLA
	2.11.1 Zero Operand Instructions (Null Operand Instructions)
	2.11.2 General Arithmetic and Logical Instructions
	2.11.3 The XCHG Instruction
	2.11.4 The CMP Instruction
	2.11.5 The Multiply Instructions
	2.11.6 The Divide Instructions
	2.11.7 Single Operand Arithmetic and Logical Instructions
	2.11.8 Shift and Rotate Instructions
	2.11.9 The Double Precision Shift Instructions
	2.11.10 The Lea Instruction
	2.11.11 The Sign and Zero Extension Instructions
	2.11.12 The Push and Pop Instructions
	2.11.13 Procedure Calls
	2.11.14 The Ret Instruction
	2.11.15 The Jmp Instructions
	2.11.16 The Conditional Jump Instructions
	2.11.17 The Conditional Set Instructions
	2.11.18 The Input and Output Instructions
	2.11.19 The Interrupt Instruction
	2.11.20 Bound Instruction
	2.11.21 The Enter Instruction
	2.11.22 CMPXCHG Instruction
	2.11.23 The XADD Instruction
	2.11.24 BSF and BSR Instructions
	2.11.25 The BSWAP Instruction
	2.11.26 Bit Test Instructions
	2.11.27 Floating Point Instructions
	2.11.28 MMX and SSE Instructions

	2.12 Memory Addressing Modes in HLA
	2.13 Type Coercion in HLA

	3 Installing HLA
	3.1 Installing HLA Under Windows
	3.1.1 New Easy Installation:
	3.1.2 Manual Installation under Windows
	3.1.2.1 What You’ve Just Done
	3.1.2.2 Running HLA

	3.1.3 Standard Configurations Under Windows

	3.2 Installing HLA Under Linux, Mac OSX, or FreeBSD (*NIX)
	3.2.1 Standard Configurations under Linux/FreeBSD/Mac OSX

	3.3 Non-Standard Configurations under Windows and Linux
	3.4 Customizing HLA
	3.4.1 Changing the Location of HLA
	3.4.2 Setting Auxiliary Paths
	3.4.3 Setting the Default Back-End Assembler

	4 Using HLA with the HIDE Integrated Development Environment
	4.1 The HLA Integrated Development Environment (HIDE)
	4.1.1 Description
	4.1.2 Operation
	4.1.3 First Execution
	4.1.4 The Windows
	4.1.4.1 Editor
	4.1.4.2 Output
	4.1.4.3 Tool Bar
	4.1.4.4 Tab Bar
	4.1.4.5 Status Bar
	4.1.4.6 Panel
	4.1.4.7 Project Panel
	4.1.4.8 Properties

	4.1.5 Compiling Simple Programs
	4.1.6 Menus
	4.1.6.1 Edit
	4.1.6.2 View
	4.1.6.3 Project
	4.1.6.4 Make
	4.1.6.5 Tools
	4.1.6.5.1 Debug Window
	4.1.6.5.2 Resource Editor
	4.1.6.5.3 ASCII Table
	4.1.6.5.4 Calculator
	4.1.6.5.5 Color Picker
	4.1.6.5.6 Open Console
	4.1.6.5.7 Run Program

	4.1.6.6 Options
	4.1.6.6.1 Code Editor Font
	4.1.6.6.2 Line Number Font
	4.1.6.6.3 Colors & Keywords

	4.1.6.7 HIDE Settings
	4.1.6.7.1 Tabs:
	4.1.6.7.2 Backups:
	4.1.6.7.3 Options
	4.1.6.7.4 HIDE Global Settings
	4.1.6.7.5 HLA Level:
	4.1.6.7.6 Global Link Settings

	4.1.6.8 SetPaths
	4.1.6.8.1 User Paths
	4.1.6.8.2 Project Folder
	4.1.6.8.3 Debugger
	4.1.6.8.4 Help (F1)
	4.1.6.8.5 hlalib
	4.1.6.8.6 hlainc
	4.1.6.8.7 hlaopt

	4.1.6.9 User
	4.1.6.10 Help

	4.1.7 HIDE Macros
	4.1.8 Project Manager
	4.1.9 Auto Completion
	4.1.10 CommandLine Tools
	4.1.10.1 kMake

	4.1.11 Project File Format
	4.1.12 Licences
	4.1.12.1 HIDE
	4.1.12.2 PellesC
	4.1.12.3 HLA

	4.2 The RadASM/HLA Integrated Development Environment
	4.2.1 Integrated Development Environments
	4.2.2 HLA Project Organization
	4.2.3 Using Makefiles
	4.2.4 Installing RadASM
	4.2.5 Running RadASM
	4.2.6 The RadASM Project Management Window
	4.2.7 Compiling and Executing an Existing RadASM Project
	4.2.8 Creating a New Project in RadASM

	RadASM/HLA Templates
	Table 1:
	Template Selection
	Available if this project type is selected
	Result
	4.2.9 Working With RadASM Projects
	4.2.10 Build Options with RadASM/HLA
	4.2.11 Editing HLA Source Files Within RadASM
	4.2.12 Managing Complex Projects with RadASM
	4.2.13 Project Maintenance with Batch Files

	RadASM/HLA Make Menu/Batch File Correspondence
	Table 2:
	Make Menu Item
	Corresponding Batch File
	4.2.14 Project Maintenance with Make Files
	4.2.15 RadASM Menus
	4.2.15.1 The RadASM File Menu
	4.2.15.1.1 File>New Project
	4.2.15.1.2 File>Open Project
	4.2.15.1.3 File>Close Project
	4.2.15.1.4 File>Delete Project
	4.2.15.1.5 File>New File
	4.2.15.1.6 File>Open
	4.2.15.1.7 File>Open as Hex
	4.2.15.1.8 File>Close File
	4.2.15.1.9 File>Save File
	4.2.15.1.10 File>Save File As
	4.2.15.1.11 File>Save All Files
	4.2.15.1.12 File>Recent Files
	4.2.15.1.13 File>Page Setup
	4.2.15.1.14 File>Print
	4.2.15.1.15 File>Exit

	4.2.15.2 Edit Menu Items
	4.2.15.2.1 Edit>Undo, Redo, Cut, Copy, Paste, Delete, Select All
	4.2.15.2.2 Edit>Find, Find Next, Find Previous, Replace, Find Word
	4.2.15.2.3 Edit>Goto Line
	4.2.15.2.4 Edit>Expand Block
	4.2.15.2.5 Edit> Next/Previous/Got/Toggle/Clear Bookmark

	4.2.15.3 The View Menu
	4.2.15.4 Format Menu
	4.2.15.4.1 Format>Indent
	4.2.15.4.2 Format>Outdent
	4.2.15.4.3 Format>Comment
	4.2.15.4.4 Format>Uncomment

	4.2.15.5 The Project Menu
	4.2.15.5.1 Project>Add New
	4.2.15.5.2 Project>Add Existing
	4.2.15.5.3 Project>Resource
	4.2.15.5.4 Project>Stringtable
	4.2.15.5.5 Project>Versioninfo
	4.2.15.5.6 Project>Set Assembler
	4.2.15.5.7 Project>Remove From Project
	4.2.15.5.8 Project>Create Template
	4.2.15.5.9 Project>Project Options
	4.2.15.5.10 Project>Main Project Files

	4.2.15.6 Make Menu
	4.2.15.7 The Tools Menu
	4.2.15.8 The Window Menu
	4.2.15.9 The Option Menu
	4.2.15.9.1 Option>Code Editor Options
	4.2.15.9.2 Options>Colors & Keywords
	4.2.15.9.3 Options>Code Editor Font
	4.2.15.9.4 Options>Line Number Font
	4.2.15.9.5 Options>Text Editor Font
	4.2.15.9.6 Options>Printer Options, Printer Font
	4.2.15.9.7 Options>File Browser
	4.2.15.9.8 Options>External File Types
	4.2.15.9.9 Options>Sniplets
	4.2.15.9.10 Options>Set Paths

	4.2.16 Customizing RadASM
	4.2.16.1 The RADASM.INI Initialization File

	Path Shortcuts for Use in RadASM “.INI” Files
	Table 3:
	Shortcut
	Meaning
	4.2.16.2 The HLA.INI Initialization File

	5 HLA Internal Operation
	6 Using the HLA Command-Line Compiler
	7 HLA v2.x Language Reference Manual
	7.1 HLA Language Elements
	7.2 Comments
	7.3 Special Symbols
	7.4 Reserved Words
	7.5 External Symbols and Assembler Reserved Words
	7.6 HLA Identifiers
	7.7 External Identifiers
	7.8 HLA Literal Constants

	8 HLA Data Types
	8.1 Data Types in HLA
	8.2 Native (Primitive) Data Types in HLA
	8.2.1 Enumerated Data Types
	8.2.2 HLA Type Compatibility

	8.3 Composite Data Types
	8.4 Array Data Types
	8.5 Union Data Types
	8.6 Record Data Types
	8.7 Pointer Types
	8.8 Thunks
	8.9 Class Types
	8.10 Regular Expression Types

	9 HLA Literal Constants and Constant Expressions
	9.1 HLA Literal Constants
	9.1.1 Numeric Constants
	9.1.1.1 Decimal Constants
	9.1.1.2 Hexadecimal Constants
	9.1.1.3 Binary Constants
	9.1.1.4 Numeric Set Constants
	9.1.1.5 Real (Floating-Point) Constants

	9.1.2 Boolean Constants
	9.1.3 Character Constants
	9.1.4 Unicode Character Constants
	9.1.5 String Constants
	9.1.6 Unicode String Constants
	9.1.7 Character Set Constants

	9.2 Structured Constants
	9.2.1 Array Constants
	9.2.2 Record Constants
	9.2.3 Union Constants
	9.2.4 Pointer Constants
	9.2.5 Regular Expression Constants

	9.3 Constant Expressions in HLA
	9.3.1 Type Checking and Type Promotion
	9.3.2 Type Coercion in HLA
	9.3.3 !expr
	9.3.4 - expr (unary negation operator)
	9.3.5 expr1 * expr2
	9.3.6 expr1 div expr2
	9.3.7 expr1 mod expr2
	9.3.8 expr1 / expr2
	9.3.9 expr1 << expr2
	9.3.10 expr1 >> expr2
	9.3.11 expr1 + expr2
	9.3.12 expr1 - expr2
	9.3.13 Comparisons (=, ==, <>, !=, <, <=, >, and >=)
	9.3.14 expr1 & expr2
	9.3.15 expr1 in expr2
	9.3.16 expr1 | expr2
	9.3.17 expr1 ^ expr2
	9.3.18 (expr)
	9.3.19 [comma_separated_list_of_expressions]
	9.3.20 record_type_name : [comma separated list of field expressions]
	9.3.21 identifier
	9.3.22 identifier1.identifier2 {...}
	9.3.23 identifier [index_list]

	10 HLA Program Structure and Organization
	10.1 HLA Program Structure
	10.2 The HLA Declaration Section
	10.2.1 The HLA LABEL Declaration Section
	10.2.2 The HLA CONST Declaration Section
	10.2.3 The HLA VAL Declaration Section and the Compile-Time "?" Statement
	10.2.4 The HLA TYPE Declaration Section
	10.2.4.1 typeID
	10.2.4.2 newTypeID : typeID;
	10.2.4.3 newTypeID : typeID [list_of_array_bounds];
	10.2.4.4 newTypeID : procedure (<<optional_parameter_list>>);
	10.2.4.5 newTypeID : record <<record_field_declarations>> endrecord;
	10.2.4.6 newTypeID : union <<union_field_declarations>> endunion;
	10.2.4.7 newTypeID : class <<class_field_declarations>> endclass;
	10.2.4.8 newTypeID : pointer to typeID;
	10.2.4.9 newTypeID : enum{ <<list_of_enumeration_identifiers>> };

	10.2.5 The HLA VAR Declaration Section
	10.2.6 The HLA STATIC Declaration Section
	10.2.7 The HLA STORAGE Declaration Section
	10.2.8 The HLA READONLY Declaration Section
	10.2.9 The HLA PROC Declaration Section
	10.2.10 THE HLA NAMESPACE Declaration Section

	11 HLA Procedure Declarations and Procedure Calls
	11.1 Procedure Declarations
	11.1.1 Original Style Procedure Declarations

	Option
	Description
	11.1.2 "New Style" Procedure Declarations
	11.2 Overloaded Procedure/Iterator/Method Declarations
	11.3 The _vars_ and _parms_ Constants and the _display_ Array
	11.4 External Procedure Declarations
	11.5 Forward Procedure Declarations
	11.6 Setting Default Procedure Options
	11.7 Disabling HLA’s Automatic Code Generation for Procedures
	11.8 Procedure Calls and Parameters in HLA
	11.9 Calling HLA Procedures
	11.10 Parameter Passing in HLA, Value Parameters
	11.10.1 Passing Byte-Sized Parameters by Value
	11.10.2 Passing Word-Sized Parameters by Value
	11.10.3 Passing Double-Word-Sized Parameters by Value
	11.10.4 Passing Quad-Word-Sized Parameters by Value
	11.10.5 Passing Tbyte-Sized Parameters by Value
	11.10.6 Passing Lword-Sized Parameters by Value
	11.10.7 Passing Large Parameters by Value

	11.11 Parameter Passing in HLA, Reference, Value/Result, and Result Parameters
	11.12 Untyped Reference Parameters
	11.13 Pass by Value/Result and Pass by Result Parameters
	11.14 Parameter Passing in HLA, Name and Lazy Evaluation Parameters
	11.15 Hybrid Parameter Passing in HLA
	11.16 Parameter Passing in HLA, Register Parameters
	11.17 Instruction Composition and Parameter Passing in HLA
	11.18 Lexical Scope

	12 HLA Classes and Object-Oriented Programming
	12.1 Class Data Types
	12.2 Classes, Objects, and Object-Oriented Programming in HLA
	12.3 The THIS and SUPER Reserved Words
	12.4 Class Procedure and Method Prototypes
	12.5 Inheritance
	12.6 Abstract Methods
	12.7 Classes versus Objects
	12.8 Initializing the Virtual Method Table Pointer
	12.9 Creating the Virtual Method Table
	12.10 Calling Methods and Class Procedures
	12.11 Accessing VMT Fields
	12.12 Non-object Calls of Class Procedures
	12.13 Static Class Fields
	12.14 Taking the Address of Class Procedures, Iterators, and Methods
	12.15 Program Unit Initializers and Finalizers

	13 The HLA Compile-Time Language
	13.1 HLA Compile-Time Language, Macros, and Pragmas
	13.2 Viewing the Output of the HLA Compile-Time Language
	13.3 #linker Directive
	13.4 The #Include Directive
	13.5 The #IncludeOnce Directive
	13.6 Macros
	13.6.1 Standard Macros
	13.6.2 Where You Declare a Macro Affects its Visibility
	13.6.3 Multi-part (Context Free) Macro Invocations:
	13.6.4 Macro Invocations and Macro Parameters:
	13.6.5 Processing Macro Parameters

	13.7 Built-in Functions:
	13.8 Constant Type Conversion Functions
	13.8.1 Bitwise Type Transfer Functions
	13.8.2 General functions
	13.8.3 String functions:
	13.8.4 String/Pattern matching functions
	13.8.5 Symbol and constant related functions and assembler control functions
	13.8.6 Pseudo-Variables
	13.8.7 Text emission functions
	13.8.8 Miscellaneous Functions

	13.9 #Text and #endtext Text Collection Directives
	13.10 #String and #endstring Text Collection Directives
	13.11 Regular Expression Macros and the @match/@match2 Functions
	13.11.1 #regex..#endregex
	13.11.2 The #return Clause
	13.11.3 Regular Expression Elements
	13.11.4 Kleene Star, Plus, and Numeric Range Specifications

	Suffix
	Meaning
	13.11.5 Matching Characters in a Regular Expression
	13.11.6 Case-insensitive Character Matching in a Regular Expression
	13.11.7 Negated Character Matching
	13.11.8 String Matching in Regular Expressions
	13.11.9 Case-insenstive String Matching in Regular Expressions
	13.11.10 Negated String Matching
	13.11.11 String List Matching
	13.11.12 Character Set Matching in a Regular Expression
	13.11.13 Negated Character Set Matching
	13.11.14 Matching Arbitrary Characters
	13.11.15 Sequences (Concatenation) - The ‘,’ Operator
	13.11.16 Alternation - The "|" Operator
	13.11.17 Subexpressions - The "()" operator
	13.11.18 Extracting Substrings - The Extraction Operator "<>:"
	13.11.19 Invoking Other #regex Macros in a Regular Expression
	13.11.20 Lookahead (peeking)
	13.11.21 Utility Matching Functions

	Name
	Parameters
	Supports Repetition
	Description
	Description
	13.11.22 Backtracking
	13.11.23 Lazy Versus Greedy Evaluation
	13.11.24 The @match and @match2 Functions
	13.11.25 Compiling and Precompiling Regular Expressions
	13.11.26 The #match..#endmatch Block
	13.11.27 Using Regular Expressions in Your Assembly Programs
	13.12 The #asm..#endasm and #emit Directives
	13.13 The #system Directive
	13.14 The #print and #error Directives
	13.15 Compile-Time File Output (#openwrite, #append, #write, #closewrite)
	13.16 Compile-time File Input (#openread, @read, #closeread)
	13.17 The Conditional Compilation Statements (#if)
	13.18 The Compile-Time Loop Statements (#while and #for)
	13.19 Compile-Time Functions (macros)
	13.20 Sample Macro: A Modified IF..ELSE..ENDIF Statement
	13.21 Text Processing, Lexical Analysis and the #text..#endtext Block
	@PeekCset(CurrentInput, {’a’..’z’, ’A’..’Z’, ’_’})

	14 HLA Language Reference and User Manual
	14.1 High Level Language Statements
	14.2 Exception Handling in HLA:try..exception..endtry
	14.3 Exception Handling in HLA:try..always..endtry
	14.4 Exception Handling in HLA:raise
	14.5 IF..THEN..ELSEIF..ELSE..ENDIF Statement in HLA
	14.6 Boolean Expressions for High-Level Language Statements
	14.7 WHILE..WELSE..ENDWHILE Statement in HLA
	14.8 REPEAT..UNTIL Statement in HLA
	14.9 The FOR..ENDFOR Statement in HLA
	14.10 The FOREVER..ENDFOR Statement in HLA
	14.11 The BREAK and BREAKIF Statements in HLA
	14.12 The CONTINUE and CONTINUEIF Statements in HLA
	14.13 The BEGIN..END, EXIT, and EXITIF Statements in HLA
	14.14 The SWITCH/CASE/DEFAULT/ENDSWITCH Statement in HLA
	14.15 The JT and JF Medium Level Instructions in HLA
	14.16 Iterators and the HLA Foreach Loop

	15 HLA Units and External Compilation
	15.1 HLA Units and External Compilation
	15.2 External Declarations
	15.3 HLA Naming Conventions and Other Languages
	15.4 HLA Calling Conventions and Other Languages
	15.5 Calling Procedures Written in a Different Language
	15.6 Calling HLA Procedures From Another Language
	15.7 Linking in Code Written in Other Languages
	15.8 Calling HLA Code From Other Languages
	15.9 Exercising Complete Control with HLA
	15.9.1 Overhead Present in an HLA Program
	15.9.1.1 The "empty" Program

	15.9.2 The empty Program, Part II
	15.9.3 Overhead Associated With Exceptions
	15.9.4 Overhead Associated with Procedures, Iterators, and Methods

	: Procedure Options and Their Effect on Code Generation
	Option
	Effect if set to true
	Effect if set to false
	15.9.5 Overhead Associated with Procedure Calls
	15.9.6 Bloat in the HLA Standard Library
	15.9.7 Taking Control with HLA Units
	15.9.8 Hello World, Revisited

	16 The HLA Memory Model and Memory Addressing Modes
	16.1 The HLA Memory Model
	16.2 Memory Addressing Modes in HLA
	16.3 Type Coercion in HLA

	17 HLA v2.x Language Reference Manual
	17.1 The 80x86 Instruction Set in HLA
	17.2 Zero Operand Instructions (Null Operand Instructions)
	Instruction
	Description
	17.3 General Arithmetic and Logical Instructions
	17.4 The XCHG Instruction
	17.5 The CMP Instruction
	17.6 The Multiply Instructions
	17.7 The Divide Instructions
	17.8 Single Operand Arithmetic and Logical Instructions
	17.9 Shift and Rotate Instructions
	17.10 The Double Precision Shift Instructions
	17.11 The Lea Instruction
	17.12 The Sign and Zero Extension Instructions
	17.13 The Push and Pop Instructions
	17.14 Procedure Calls
	17.15 The Ret Instruction
	17.16 The Jmp Instructions
	17.17 The Conditional Jump Instructions
	17.18 The Conditional Set Instructions
	17.19 The Conditional Move Instructions
	17.20 The Input and Output Instructions
	17.21 The Interrupt Instruction
	17.22 Bound Instruction
	17.23 The Enter Instruction
	17.24 CMPXCHG Instruction
	17.25 CMPXCHG8B Instruction
	17.26 The XADD Instruction
	17.27 BSF and BSR Instructions
	17.28 The BSWAP Instruction
	17.29 Bit Test Instructions
	17.30 Floating Point Instructions
	17.31 Additional Floating-Point Instructions for Pentium Pro and Later Processors
	17.32 MMX Instructions
	17.33 SSE Instructions
	17.34 OS/Priviledged Mode Instructions
	17.35 Other Instructions and features

	18 Advanced HLA Programming
	18.1 Writing a DLL in HLA
	18.1.1 Creating a Dynamic Link Library
	18.1.2 Linking and Calling Procedures in a Dynamic Link Library
	18.1.3 Going Farther

	18.2 Compiling HLA
	18.3 Code Generation for HLA HLL Control Structures
	18.3.1 The HLA Standard Library
	18.3.2 Compiling to MASM Code -- The Final Word
	18.3.3 The HLA if..then..endif Statement, Part I
	18.3.4 Boolean Expressions in HLA Control Structures
	18.3.5 The JT/JF Pseudo-Instructions
	18.3.6 The HLA if..then..elseif..else..endif Statement, Part II
	18.3.7 The While Statement
	18.3.8 repeat..until
	18.3.9 for..endfor
	18.3.10 forever..endfor
	18.3.11 break, breakif
	18.3.12 continue, continueif
	18.3.13 begin..end, exit, exitif
	18.3.14 foreach..endfor
	18.3.15 try..unprotect..exception..anyexception..endtry, raise

	18.4 A Modified IF..ELSE..ENDIF Statement
	18.5 Object Oriented Programming in Assembly
	18.5.1 Hoopla and Hyperbole
	18.5.2 Some Basic Definitions
	18.5.3 OOP Language Facilities
	18.5.4 Classes in HLA
	18.5.5 Objects
	18.5.6 Inheritance
	18.5.7 Overriding
	18.5.8 Virtual Methods vs. Static Procedures
	18.5.9 Writing Class Methods, Iterators, and Procedures
	18.5.10 Object Implementation
	18.5.10.1 Virtual Method Tables
	18.5.10.2 Object Representation with Inheritance

	18.5.11 Constructors and Object Initialization
	18.5.12 Dynamic Object Allocation Within the Constructor

	18.6 Compiling Resource Scripts Using HLA
	18.6.1 The Motivation
	18.6.2 The HLA Solution
	18.6.3 The Resource..Endresource Declaration Section

	18.7 Structures in Assembly Language Programs
	18.7.1 What is a Record (Structure)?
	18.7.2 Record Constants
	18.7.3 Arrays of Records
	18.7.4 Arrays and Records as Record Fields
	18.7.5 Controlling Field Offsets Within a Record
	18.7.6 Aligning Fields Within a Record
	18.7.7 Using Records/Structures in an Assembly Language Program
	18.7.8 Implementing Structures in an Assembler

	Index
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

