
HLA Standard Library Reference
HLA Standard Library Reference Manual

1 Passing Parameters to Standard Library Routines . 1
 1.1 Parameter Passing . 1
 1.2 Passing Parameters by Reference and by Value . 2
 1.3 Passing Byte Parameters on the Stack . 3
 1.4 Passing Word Parameters on the Stack . 5
 1.5 Passing DWord Parameters on the Stack. 5
 1.6 Passing QWord Parameters on the Stack. 6
 1.7 Passing TByte Parameters on the Stack. 7
 1.8 Passing LWord Parameters on the Stack . 7

2 Command-Line Arguments (args.hhf) . 9
 2.1 The Args Module . 9
 2.2 Retrieving the Command Line. 9
 2.3 Argument Count and Item . 10
 2.4 Deleting Command Line Arguments . 11
 2.5 Argument Iterators . 12

3 Arrays Module (arrays.hhf) . 15
 3.1 The Arrays Module . 15
 3.2 Array Data Types. 15
 3.3 Array Allocation and Deallocation . 16
 3.4 Array Predicates. 17
 3.5 Array Element Access . 17
 3.6 Array Operations . 18
 3.7 Lookup Tables . 22

4 Bit Manipulation (bits.hhf) . 25
 4.1 Bit Module . 25
 4.2 Bit Counting Function . 25
 4.3 Bit Reversal Functions. 26
 4.4 Bit Merging Functions . 28
 4.5 Bit Extraction Functions . 30
 4.6 Bit Distribution Functions . 32

5 The Blobs Module (blobs.hhf) . 35
 5.1 Conversion Format Control . 35
Released to the Public Domain Page i

HLA Standard Library
 5.2 Blob Synopsis . 35
 5.3 Blob Internal Representation . 36
 5.4 Declaring Blob Variables. 36

 5.4.1 Initializing and Allocating Blob Variables . 37
 5.5 Blob Accessor Functions . 39
 5.6 Blob Assignment Functions. 42
 5.7 Blob Extraction Functions . 44
 5.8 Blob Comparison Functions . 45
 5.9 Blob Scanning Functions . 45
 5.10 Blob Concatenation Functions. 48
 5.11 Blob Conversion Functions . 51
 5.12 General Blob I/O Functions . 53
 5.13 Blob Binary I/O Routines . 55
 5.14 Blob Output Routines . 63
 5.15 Blob Input Routines . 64

6 Character Classification and Utilities Module (chars.hhf) . 65
 6.1 Conversion Functions . 65
 6.2 Predicates (Tests) . 66

7 Console Display Control (console.hhf) . 73
 7.1 The Console Module Module . 73
 7.2 Cursor Positioning Functions. 73
 7.3 Console Clearing Functions. 76
 7.4 Character Insertion/Removal Functions . 78
 7.5 Console Scrolling. 80
 7.6 Console Output Colors. 81

8 Conversions (conv.hhf). 83
 8.1 Buffer vs. String Conversions . 83
 8.2 Conversion Format Control . 84

 8.2.1 Underscore Control. 84
 8.2.2 Delimiter Control . 87

 8.3 Hexadecimal Conversions . 91
 8.3.1 Internal Routines. 92
 8.3.2 Hexadecimal Numeric Size Functions . 92

 8.3.2.1 Fixed Size Hexadecimal Size Functions . 92
 8.3.2.2 Standard Hexadecimal Size Functions . 96

 8.3.3 Hexadecimal Numeric to Buffer Conversions . 101
 8.3.3.1 Fixed Length Hexadecimal Numeric to Buffer Conversions 101
 8.3.3.2 Variable Length Hexadecimal Numeric to Buffer Conversions . . 108

 8.3.4 Hexadecimal Numeric to String Conversions . 115
 8.3.4.1 Fixed-Length Numeric to Hexadecimal String Conversions. 115
 8.3.4.2 Variable-Length Numeric to Hexadecimal String Conversions . . 130

 8.3.5 Hexadecimal Buffer to Numeric Conversions . 146
 8.3.6 Hexadecimal String to Numeric Conversions . 151

 8.4 Signed Integer Conversions . 157
 8.4.1 Internal Functions . 157
 8.4.2 Integer Size Calculations . 157
Page ii Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 8.4.3 Signed Integer Numeric to Buffer Conversions 161
 8.4.4 Integer Numeric to String Conversions . 167
 8.4.5 Signed Integer String to Numeric Conversions 182

 8.5 Unsigned Integer Conversions. 192
 8.5.1 Internal Routines. 193
 8.5.2 Unsigned Integer Size Calculations . 193
 8.5.3 Unsigned Integer Numeric to Buffer Conversions 197
 8.5.4 Unsigned Integer Numeric to String Conversions 203
 8.5.5 Unsigned Integer String to Numeric Conversions 219

 8.6 Floating Point Conversions . 229
 8.6.1 Exponential Floating-Point Conversions . 229
 8.6.2 Floating Point Numeric to Buffer Conversions, Exponential Form 230
 8.6.3 Floating Point Numeric to String Conversions, Exponential Form 232
 8.6.4 Floating Point Numeric to Character Conversions, Decimal Form 236
 8.6.5 Floating-Point Numeric to String Conversions, Decimal Form 240
 8.6.6 Floating Point String/Buffer to Numeric Conversions 244
 8.6.7 Roman Numeral Conversion . 245

9 Coroutines Module (coroutines.hhf). 247
 9.1 The Coroutine Module. 247
 9.2 The Coroutine Class Definition . 247
 9.3 Coroutine Functions. 248

10 Character Sets (cset.hhf) . 251
 10.1 Predicates (tests) . 251
 10.2 Character Set Construction and Manipulation. 259
 10.3 Set Operations . 267

11 Date Functions (datetime.hhf) . 279
 11.1 The Date Module . 279
 11.2 Date Data Types. 279
 11.3 Date Tables . 280
 11.4 Date Predicates . 281
 11.5 Date Conversions . 283
 11.6 Date Arithmetic . 286
 11.7 Reading the Current System Date . 289
 11.8 Date Output and String Conversion. 290
 11.9 Date Class Types . 291

 11.9.1 Date Class Methods/Procedures . 292
 11.9.2 Creating New Date Class Types . 293
 11.9.3 Date Class Functions . 297

12 Environment Variables Module (env.hhf) . 301
 12.1 The Env Module . 301
 12.2 Retrieving Environment Strings . 301

13 Exceptions Module (excepts.hhf) . 303
 13.1 The Exceptions Module . 303
 13.2 Exception Resource Reduction . 303
 13.3 Exception Constants . 303
Released to the Public Domain Page iii

HLA Standard Library
 13.4 Exception Messages. 310

14 File Class Module (fileclass.hhf) . 313
 14.1 File Class Methods/Procedures . 313
 14.2 A Quick Note . 314
 14.3 General File Operations . 314
 14.4 Opening and Closing Files. 315
 14.5 File Predicates . 316
 14.6 Miscellaneous Output . 317
 14.7 Character, Character Set, and String Output . 318
 14.8 Hexadecimal Numeric Output . 319
 14.9 Signed Integer Numeric Output . 323
 14.10 Unsigned Integer Numeric Output. 326
 14.11 Floating-Point Numeric Output Using Scientific Notation 329
 14.12 Floating-Point Numeric Output Using Decimal Notation 330
 14.13 Generic File Output . 332
 14.14 Generic File Input . 333
 14.15 Character and String Input . 333
 14.16 Signed Integer Input. 334
 14.17 Unsigned Integer Input . 336
 14.18 Hexadecimal Input . 337
 14.19 Floating-Point Input . 339
 14.20 Generic File Input . 339

15 The File I/O Module (fileio.hhf). 341
 15.1 Conversion Format Control . 341
 15.2 General File I/O Functions . 341
 15.3 File Output Routines . 354

 15.3.1 Miscellaneous Output Routines . 354
 15.3.2 Character, String, and Character Set Output Routines 358
 15.3.3 Hexadecimal Output Routines . 365
 15.3.4 Signed Integer Output Routines . 388
 15.3.5 Unsigned Integer Output Routines . 402
 15.3.6 Floating Point Output Routines . 416

 15.3.6.1 Real Output Using Scientific Notation . 416
 15.3.6.2 Real Output Using Decimal Notation . 420

 15.3.7 Generic File Output Routine. 424
 15.4 File Input Routines. 425

 15.4.1 General File Input Routines . 425
 15.4.2 Character and String Input Routines. 428
 15.4.3 Signed Integer Input Routines . 430
 15.4.4 Unsigned Integer Input Routines . 434
 15.4.5 Hexadecimal Input Routines. 437
 15.4.6 Floating Point Input . 442
 15.4.7 Generic File Input . 443

16 The File System Module (filesys.hhf) . 445
 16.1 Filename and Pathname String Functions . 445
 16.2 Directory and File Predicates. 461
Page iv Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 16.3 File Information Functions . 462
 16.4 Directory and File Manipulation Functions. 463

17 HLA Related Macros and Constants (hla.hhf) . 469
 17.1 The HLA Module. 469
 17.2 Classification Macros . 469
 17.3 String to Integer Macros . 470
 17.4 Label Generation Macro . 470
 17.5 Procedure Overloading Macro. 470
 17.6 Generic PUT Macro. 473
 17.7 @class Constants . 478
 17.8 HLA pType Constants . 479
 17.9 @pclass Return Values . 481
 17.10 @section Return Values . 482

18 The Linux Module (linux.hhf) . 485
 18.1 The Linux Module . 485
 18.2 The Linux Header File . 485

19 Lists Module (lists.hhf). 487
 19.1 The Lists Module . 487

 19.1.0.1 List Data Types . 487
 19.2 List_t Class Function Types . 489
 19.3 Creating New List Class Types . 490
 19.4 List Procedures, Methods, and Iterators . 491
 19.5 List Constructor and Destructor. 492
 19.6 Accessor Functions . 493

 19.6.0.1 Adding Nodes to a List . 493
 19.7 Removing Nodes From a List . 495
 19.8 Accessing Nodes in a List . 497
 19.9 Miscellaneous List Functions . 499

20 Math Module (math.hhf). 503
 20.1 The Math Module . 503
 20.2 Math Data Types . 503
 20.3 64-Bit Arithmetic and Logical Operations . 503
 20.4 128-Bit Arithmetic and Logical Operations . 511
 20.5 Transcendental, Logarithmic, and Other Floating-Point Operations. 520

21 Memory-Mapped I/O (mmap.hhf) . 547
 21.1 MMAP Module . 547
 21.2 Class Fields . 547
 21.3 Class Procedures and Methods . 547

22 Memory (memory.hhf) . 551
 22.1 Memory Module . 551
 22.2 Deprecated Names . 551
 22.3 Generic Memory Allocation . 551
 22.4 String Memory Allocation . 558

23 OS Module (os.hhf) . 561
Released to the Public Domain Page v

HLA Standard Library
 23.1 The OS Module . 561
 23.2 Executing Shell Commands. 561
 23.3 Delaying Program Execution. 562

24 Patterns Module (patterns.hhf) . 563
 24.1 The Patterns Module . 563
 24.2 An Introduction to Pattern Matching (a tutorial) . 563
 24.3 Pattern Matching Functions Versus User Code . 567
 24.4 Register and Stack Usage in Pattern Matching Statements 568
 24.5 Nesting Pattern Matching Statements . 570
 24.6 Cleanly Nesting Patterns . 574
 24.7 Backtracking . 576
 24.8 Pattern Components . 578
 24.9 Lazy / Eager Evaluation and Pattern Matching Performance 579
 24.10 Regular Expressions . 580
 24.11 Pattern Matching Statements . 585
 24.12 Alternation . 586
 24.13 Pattern Matching Macros. 587
 24.14 Character Set Matching Functions. 590
 24.15 Character Matching Functions. 595
 24.16 Case Insensitive Character Matching Routines . 600
 24.17 String Extraction Functions . 606
 24.18 Whitespace and End of String Matching Functions 607
 24.19 Matching an Arbitrary Sequence of Characters. 608
 24.20 Writing Your Own Pattern Matching Routines . 609

25 Random Number Generator Module (rand.hhf) . 621
 25.1 The Random Module . 621
 25.2 The Random Number Generators . 621

26 Sockets Module (sockets.hhf). 625
 26.1 The SOCK Module . 625
 26.2 Socket Initialization and Cleanup . 625
 26.3 Generic Socket Functions . 625
 26.4 Low-Level BSD-Style Socket Functions. 626
 26.5 Socket Classes . 634
 26.6 A Quick Note . 635
 26.7 Client/Server Applications Using the Socket Classes 635
 26.8 A Simple Server Application . 635
 26.9 A Simple Client Application . 638
 26.10 Client/Server Communication . 638
 26.11 General Socket Class Operations. 639
 26.12 Miscellaneous Output . 642
 26.13 Character, Character Set, and String Output . 643
 26.14 Hexadecimal Numeric Output . 645
 26.15 Signed Integer Numeric Output . 649
 26.16 Unsigned Integer Numeric Output. 652
 26.17 Floating-Point Numeric Output Using Scientific Notation 654
 26.18 Floating-Point Numeric Output Using Decimal Notation 656
Page vi Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 26.19 Generic File Output . 657
 26.20 Generic File Input . 658
 26.21 Character and String Input . 659
 26.22 Signed Integer Input. 660
 26.23 Unsigned Integer Input . 661
 26.24 Hexadecimal Input . 663
 26.25 Floating-Point Input . 664
 26.26 Generic File Input . 665

27 The Standard Error Module (stderr.hhf) . 667
 27.1 Conversion Format Control . 667
 27.2 File I/O Routines and the Standard Error Handle . 667
 27.3 Standard Error Routines. 667
 27.4 Miscellaneous Output Routines . 668
 27.5 Boolean Output . 669
 27.6 Character, String, and Character Set Output Routines 670
 27.7 Hexadecimal Output Routines . 676
 27.8 Signed Integer Output Routines. 698
 27.9 Unsigned Integer Output Routines . 711
 27.10 Floating Point Output Routines . 725

 27.10.1 Real Output Using Scientific Notation . 725
 27.10.2 Real Output Using Decimal Notation . 728

 27.11 Generic Error Output Routine . 733

28 The Standard Input Module (stdin.hhf) . 735
 28.1 Conversion Format Control . 735
 28.2 File I/O Routines and the Standard Output Handle . 735
 28.3 Standard Input Routines. 735
 28.4 General Standard Input Routines . 736
 28.5 Character and String Input Routines . 738
 28.6 Hexadecimal Input Routines . 739
 28.7 Signed Integer Input Routines . 742
 28.8 Unsigned Integer Input Routines . 744
 28.9 Floating Point Input . 747
 28.10 Generic File Input . 747

29 The Standard Output Module (stdout.hhf) . 749
 29.1 Conversion Format Control . 749
 29.2 File I/O Routines and the Standard Output Handle . 749
 29.3 Standard Output Routines . 749
 29.4 Miscellaneous Output Routines . 750
 29.5 Boolean Output . 751
 29.6 Character, String, and Character Set Output Routines 752
 29.7 Hexadecimal Output Routines . 759
 29.8 Signed Integer Output Routines. 781
 29.9 Unsigned Integer Output Routines . 794
 29.10 Floating Point Output Routines . 807

 29.10.1 Real Output Using Scientific Notation . 807
 29.10.2 Real Output Using Decimal Notation . 810
Released to the Public Domain Page vii

HLA Standard Library
 29.11 Generic Standard Output Routine . 815

30 The HLA Standard Template Library. 817
 30.1 Introduction to the HLA STL . 817
 30.2 Type Declarations Created by a Template. 818
 30.3 Template Objects are Classes . 818
 30.4 Class Traits . 819

 30.4.1 isSTL_c Trait . 819
 30.4.2 Compile-Time Traits. 820
 30.4.3 Run-Time Traits . 820
 30.4.4 Trait Constants . 821

 30.4.4.1 stl.isContainer_c Trait . 821
 30.4.4.2 stl.isRandomAccess_c Trait. 822
 30.4.4.3 stl.isArray_c Trait . 822
 30.4.4.4 stl.isVector_c Trait. 822
 30.4.4.5 stl.isDeque_c Trait . 822
 30.4.4.6 stl.isList_c Trait . 822
 30.4.4.7 stl.isTable_c Trait . 822
 30.4.4.8 stl.supportsOutput_c Trait . 822
 30.4.4.9 stl.supportsCompare_c Trait . 822
 30.4.4.10 stl.supportsInsert_c Trait . 822
 30.4.4.11 stl.supportsRemove_c Trait . 822
 30.4.4.12 stl.supportsAppend_c Trait . 822
 30.4.4.13 stl.supportsPrepend_c Trait . 822
 30.4.4.14 stl.supportsForEach_c and supportsrForeach_c Traits 823
 30.4.4.15 stl.supportsCursor_c Trait . 823
 30.4.4.16 stl.supportsSearch_c Trait . 823
 30.4.4.17 stl.supportsElementSwap_c Trait . 823
 30.4.4.18 stl.supportsObjSwap_c Trait . 823
 30.4.4.19 stl.elementsAreObjects_c Trait . 823
 30.4.4.20 stl.fastInsert_c Trait . 823
 30.4.4.21 stl.fastRemove_c Trait . 823
 30.4.4.22 stl.fastAppend_c Trait . 823
 30.4.4.23 stl.fastPrepend_c Trait . 823
 30.4.4.24 stl.fastSwap_c Trait . 824
 30.4.4.25 stl.fastSearch_c Trait . 824
 30.4.4.26 stl.fastElementSwap_c Trait . 824

 30.4.5 Other Run-Time Traits . 824
 30.5 The Vector Template . 824
 30.6 The Deque Template . 824
 30.7 The List Template . 824
 30.8 The Table Template . 824

31 The Strings Module (strings.hhf) . 825
 31.1 The HLA String Data Type . 825
 31.2 String Allocation Macros and Functions . 827
 31.3 String Length Calculations . 828
 31.4 String Assignment . 828
 31.5 Substring Functions . 830
Page viii Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 31.6 String Insertion and Deletion Functions . 836
 31.7 String Comparison Functions . 844
 31.8 String Searching Functions . 850
 31.9 Character Set Searching Functions . 863
 31.10 String Parsing Functions . 869
 31.11 String Formatting Functions . 885
 31.12 String Conversion Functions . 897
 31.13 String Concatentation Functions . 904
 31.14 String Value Concatentation Functions . 911

 31.14.1 Boolean Output . 911
 31.14.2 Character, String, and Character Set Concatenation Routines 912
 31.14.3 Hexadecimal Concatenation Routines . 917
 31.14.4 Signed Integer Concatenation Routines . 932
 31.14.5 Unsigned Integer Concatenation Routines . 942

 31.15 Floating-Point Concatenation Routines . 952
 31.15.1 Real to String Output Using Scientific Notation 953
 31.15.2 Real To String Output Using Decimal Notation. 955

 31.16 Generic String Format Output Routine . 959

32 High-Level Language Module (hll.hhf) . 961
 32.1 The HLL Module . 961
 32.2 The switch/case/default/endswitch Macro. 961

33 Tables Module (tables.hhf) . 963
 33.1 The Tables Module . 963
 33.2 The Table Class . 963

34 Threads Module (threads.hhf). 967
 34.1 Threads Module . 967
 34.2 Thread Creation . 967
 34.3 Thread Identification . 968
 34.4 Thread Local Storage. 969
 34.5 Events. 971
 34.6 Critical Sections . 972
 34.7 Semaphores . 974

35 Time Functions (datetime.hhf) . 977
 35.1 Time Module . 977
 35.2 Time Data Types . 977
 35.3 Time Predicates . 978
 35.4 Time Conversions . 980
 35.5 Time Arithmetic. 983
 35.6 Reading the Current System Time. 986
 35.7 Time String Conversions and Output . 987
 35.8 Time Class Types . 988
 35.9 Time Class Methods/Procedures . 988
 35.10 Creating New Time Class Types . 989
 35.11 Time Class Functions. 993

36 Timer Class and Module (timer.hhf) . 997
Released to the Public Domain Page ix

HLA Standard Library
 36.1 Timer Module . 997
 36.2 Timer Class/Data Structure . 997
 36.3 Timer Operation. 998
 36.4 Timer Class Fields . 998
 36.5 Timer Procedures and Methods . 998

37 Zero-terminated String Functions (zstring.hhf) . 1001
 37.1 ZStrings Module . 1002
 37.2 Zstring Functions . 1002

38 HOWL: The HLA Object Windows Library . 1007
 38.1 The HOWL Application Framework . 1007
 38.2 The HOWL Declarative Language . 1017

 38.2.1 wForm. 1018
 38.2.2 wMainMenu..endwMainMenu . 1019

 38.2.2.1 wMenuItem . 1020
 38.2.2.2 wMenuSeparator . 1020
 38.2.2.3 wSubMenu..endwSubMenu. 1020
 38.2.2.4 Menu Example . 1020

 38.2.3 wTab . 1021
 38.2.4 Check Boxes . 1022

 38.2.4.1 wCheckBox . 1023
 38.2.4.2 wCheckBox3 . 1023
 38.2.4.3 wCheckBox3LT. 1023
 38.2.4.4 wCheckBoxLT. 1023

 38.2.5 wComboBox . 1024
 38.2.6 wDragListBox. 1024
 38.2.7 wEditBox . 1025
 38.2.8 wEllipse . 1026
 38.2.9 wIcon . 1027
 38.2.10 wGroupBox..endwGroupBox . 1028
 38.2.11 wLabel . 1028
 38.2.12 wListBox. 1029
 38.2.13 wPasswdBox. 1029
 38.2.14 wPie . 1030
 38.2.15 wPolygon . 1030
 38.2.16 wBitmap . 1031
 38.2.17 wProgressBar . 1032
 38.2.18 wPushButton. 1032
 38.2.19 Radio Button Objects . 1032

 38.2.19.1 wRadioButton . 1032
 38.2.19.2 wRadioButtonLT . 1033
 38.2.19.3 wRadioSet..endwRadioSet. 1033

 38.2.19.3.1 wRadioSetButton1034
 38.2.19.3.2 wRadioSetButtonLT1034

 38.2.20 wRectangle . 1035
 38.2.21 wRoundRect . 1035
 38.2.22 wScrollBar . 1035
 38.2.23 wTextEdit . 1036
Page x Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.2.24 wTrackBar . 1037
 38.2.25 wUpDown. 1038
 38.2.26 wUpDownEditBox . 1039
 38.2.27 wTimer . 1040
 38.2.28 wWindow..endwWindow . 1040

 38.3 The HOWL Run-time Library . 1041
 38.3.1 Private Data Fields . 1043
 38.3.2 Abstract Classes . 1043

 38.3.2.1 wBase_t . 1043
 38.3.2.2 wVisual_t . 1046
 38.3.2.3 wClickable_t . 1049
 38.3.2.4 wButton_t. 1050
 38.3.2.5 wCheckable_t. 1052
 38.3.2.6 wSurface_t . 1053
 38.3.2.7 wFilledFrame_t . 1054
 38.3.2.8 wabsEditBox_t. 1055
 38.3.2.9 wContainer_t . 1059

 38.3.3 Containers . 1061
 38.3.3.1 Forms and Menus. 1061

 38.3.3.1.1 wForm_t1061
 38.3.3.1.2 wMenu_t1063
 38.3.3.1.3 wMenuItem_t1063

 38.3.3.2 Tabbed Forms . 1065
 38.3.3.2.1 wTabs_t1065

 38.3.3.3 wGroupBox_t. 1067
 38.3.4 Graphic Objects . 1068

 38.3.4.1 wBitmap_t . 1068
 38.3.4.2 wEllipse_t . 1070
 38.3.4.3 wPie_t . 1071
 38.3.4.4 wPolygon_t . 1073
 38.3.4.5 wRectangle_t . 1075
 38.3.4.6 wRoundRect_t . 1076

 38.3.5 Buttons . 1077
 38.3.6 wCheckBox_t . 1077
 38.3.7 wCheckBox3_t . 1078
 38.3.8 wCheckBox3LT_t. 1079
 38.3.9 wCheckBoxLT_t. 1080
 38.3.10 wPushButton_t . 1080
 38.3.11 wRadioButton_t . 1081
 38.3.12 wRadioButtonLT_t . 1082
 38.3.13 wRadioSet_t . 1083

 38.3.13.1 wRadioSetButton_t . 1084
 38.3.13.2 wRadioSetButtonLT_t . 1085

 38.3.14 Editors and Edit Boxes . 1086
 38.3.14.1 wEditBox_t . 1086
 38.3.14.2 wPasswdBox_t. 1087
 38.3.14.3 wTextEdit_t . 1088

 38.3.15 List, Drag, and Combo Boxes. 1090
Released to the Public Domain Page xi

HLA Standard Library
 38.3.15.1 wListBox_t. 1090
 38.3.15.2 wDragListBox_t. 1093
 38.3.15.3 wComboBox_t . 1094

 38.3.16 Progress Bars . 1096
 38.3.16.1 wProgressBar_t . 1096

 38.3.17 Scroll Bars and Track Bars . 1097
 38.3.17.1 wScrollBar_t . 1097
 38.3.17.2 wTrackBar_t . 1103

 38.3.18 Up/Down Arrows . 1106
 38.3.18.1 wUpDown_t. 1106
 38.3.18.2 wUpDownEditBox_t . 1108

 38.3.19 Icons . 1111
 38.3.19.1 wIcon_t . 1111

 38.3.20 Text . 1112
 38.3.20.1 wFont_t . 1112
 38.3.20.2 wLabel_t . 1114

 38.3.21 Views, Windows, and Tab Pages . 1116
 38.3.21.1 wTabPage_t . 1116
 38.3.21.2 wView_t. 1119
 38.3.21.3 window_t . 1119

 38.3.22 Timers . 1121
 38.3.22.1 wTimer_t . 1121
Page xii Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
1 Passing Parameters to Standard Library Routines

1.1 Parameter Passing
Standard library functions typically compute some value based on a set of input values. Understanding how

to pass these parameter values to the standard library routines is important if you want to make efficient calls to
the library routines.

Most standard library functions expect their parameters in one of two locations – in one or more registers or
on the stack (or both). Generally, standard library functions preserve all the general-purpose register values
across a call, with the exception of those functions that explicitly return a value in a register (or multiple
registers, if needed). Therefore, the standard library functions are careful about passing values to a function in a
register because such semantics might require the caller to use a register to hold a parameter value that it is
already using for a different purpose. However, if a function returns some result in a register, then the standard
library routines assume that the register’s contents are fair game on input and may specify the use of that register
as an input parameter. In almost every other case, the standard library routines expect the caller to pass
parameters on the stack, though there are a few exceptions to this rule.

In most cases, the standard library routines only use a register to pass a parameter when there is exactly one input
parameter and one function return result. Typically, the functions will use the EAX register as both the input and
output value. In a few rare cases, a function may have two or more parameters with one parameter being passed
in a register and the remaining parameters being passed on the stack.

If you are using a high-level calling syntax, you should take care when calling routines that pass multiple
parameters in registers. Consider the conv.bToBuf (byte/hex string conversion to buffer) function:
procedure conv.bToBuf(b:byte in al; var buffer:var in edi);

HLA will automatically emit code that loads the registers when you call this function. E.g., the following

conv.bToBuf(b, myBuffer);

will emit the following code:
mov(b, al);
lea(edi, buffer);
call conv.bToBuf;

Suppose, however, that you write code like the following:
conv.bToBuf(b, [eax]); // EAX points at the buffer

In this case, HLA will generate the following code, which will probably not do what you want:

mov(bl, al); // Load b parameter into AL, as before
mov(eax, edi); // EAX’s value was munged by the instruction above
call conv.bToBuf;

While the problem is obvious when writing low-level code, the high-level invocation hides the problem. This is
one drawback to using a high-level invocation of the library code: it tends to hide what’s going on and problems
like this, though they are very rare, are more easily spotted using low-level code. In defense of the high-level
invocation style, it catches far more common errors than it misses, so this isn’t sufficient reason to avoid using
high-level invocations.

The correct solution, by the way, is to always be aware of where the standard library routines pass their
parameters. When the standard library passes a given parameter in a register, you should attempt to have that
value sitting in the register when you call the function. This is safest and generates the most efficient code. For
example, consider the following call to the conv.btoBuf library routine:
conv.bToBuf(al, [edi]);

Because the parameter data is already sitting in the registers where conv.bToBuf expects them, this generates the
following (very efficient) code:
Released to the Public Domain Page 1

HLA Standard Library
call bToBuf;

1.2 Passing Parameters by Reference and by Value
The standard library routines generally employ one of two different parameter passing mechanisms – pass

by value and pass by reference. Pass by value, as its name implies, passes the value of a parameter to a function.
For small objects (say, less than 16 bytes or so), pass by value is very efficient. For large objects (e.g., arrays or
records larger than 16 bytes or so) the caller must make a copy of the data when passing it to a subroutine, this
data copy operation can be very slow if the data object is large. Therefore, the standard library does not use pass
by value when passing arrays, records, or other large data structures to a library routine.

Note that the decision to use pass by reference or pass by value is entirely up to the routine’s designer. If
you’re calling a standard library routine you must use the same parameter passing mechanism the designer used
when writing the function. The function’s documentation will tell you whether a parameter is passed by
reference or by value (or you can read the HLA prototype for a function which will also tell you the parameter
passing mechanism).

Pass by reference parameters pass the 32-bit address of the actual parameter to their corresponding function.
Because an address is always 32 bits, regardless of the actual parameter data size, passing a large parameter by
reference can be far more efficient than passing that same parameter by value. Another benefit (or drawback, in
certain cases) to using pass by reference parameters is that the function can modify the value of the actual
parameter object because it has the memory address of that object. For more details on the semantics of pass by
reference versus pass by value, check out the chapter on procedures and functions in The Art of Assembly
Language.

When passing a parameter by reference to a function, you must first compute the address of that object and
pass the address to the function. For example, consider the following function prototype:
procedure someFunction(var refParm:byte);

(for those unfamiliar with HLA syntax, the "var" prefix tells HLA that refParm is a pass by reference parameter.)
To call someFunction, you must push the address of the actual parameter onto the stack. If the parameter is a
static object (e.g., an HLA STATIC, READONLY, or STORAGE variable), then you can compute the address
using the HLA "&" (address-of operator), thusly:
pushd(&actualByteParameter);
call someFunction;

If the actual parameter is an automatic variable, or you reference it using some complex addressing mode (other
than displacement-only), then you’d use code like the following to pass actualByteParameter to someFunction:
lea(eax, actualByteParameter);
push(eax);
call someFunction;

Note that this scheme, unfortunately, makes use of a general-purpose 32-bit register.

Of course, you can use the HLA high-level function invocation syntax to automatically generate the calling
sequence for you:

someFunction(actualByteParameter);

HLA is smart enough to determine the storage class of the actualByteParameter object and generate appropriate
code to pass that parameter’s address on the stack. Note that, unlike the example given earlier, HLA does not
wipe out the value in the EAX register if it needs to compute the parameter’s address with an LEA instruction;
HLA will always preserve all register values unless you explicitly state that you’re passing the parameter in a 32-
bit register. For simple local variables or other variables allocated on the stack (e.g., parameters passed into the
current function), HLA will actually generate code like the following:
push(ebp); // Assumes EBP points at the current stack frame
add(@offset(actualByteParameter), (type dword [esp]));

This pushes the address of a local variable or parameter onto the stack without affecting any general-purpose
register values (other than ESP, which we expect).

Note that registers do not have addresses. Therefore, you cannot pass a register by reference to a function;
i.e., the following is always illegal:
someFunction(edi);
Page 2 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Of course, what most programmer’s mean when they attempt something like this is that EDI contains the address
of the variable to pass to the function. However, HLA assumes that you’re trying to take the address of EDI,
which is always illegal. The quick and dirty way to handle this issue is to explicitly tell HLA that EDI is a pointer
to the data using an invocation like this:
someFunction([edi]);

This approach works great when the 32-bit address appears in a register. In the more general case, the 32- bit
value could appear in any 32-bit object (e.g., in a pointer variable). You can use HLA’s VAL prefix to explicitly
tell HLA to treat a 32-bit value as an address to be passed as a reference parameter, e.g.,
someFunction(val edi);
someFunction(val dwordVar);

HLA is actually smart enough to recognize certain special cases where you’re trying to pass the contents of
a pointer variable as a reference parameter. Consider the following HLA code fragment:
static

ptrVar :pointer to byte := &someStaticByteVar;
.
.
.

someFunction(ptrVar);

HLA realizes that ptrVar is a pointer to a byte object and will automatically push ptrVar’s value onto the
stack rather than generating an error. No explicit VAL will be necessary. Note that the base type of the pointer
variable must match the reference parameter’s type for this call to be successful.

HLA supports a special "untyped pass by reference parameter" syntax. The following example demonstrates
this:
procedure untypedRefParm(var anyMemoryType: var);

Note that the parameter does not have an explicit type. The keyword "var" tells the compiler that the parameter is
an untyped reference parameter and any memory variable can be passed to this function.

If you pass a variable name as an actual parameter for an untyped reference parameter, HLA will always
take the address of that object, regardless of it’s type. If you want to pass the value of a pointer variable, rather
than the address of that pointer variable, then you must explicitly supply the VAL prefix, e.g.,
untypedRefParm(val ptrVal);

HLA string objects are hybrid pointer/value objects. An HLA string variable is a dword object that contains
a pointer to the actual string data. Consider, though, the following HLA procedure declaration:
procedure someStrFunction(s:string);

This function has a single pass-by-value parameter. It might seem confusing that this is a pass-by-value
object as it passes the address of the actual character data that makes up the string to the function. However, keep
in mind that a string object is a pointer and what you’re really passing by value is the value of that pointer
variable. If you were to pass a string object by reference, what you would be passing is the address of the string
variable (that is, the address of the address of the actual character data). For this reason, if a 32-bit register
contains the value of a string variable (that is, the register contains the address of the actual character data), then
the following call to someStrFunction is perfectly legitimate:
someStrFunction(eax);

1.3 Passing Byte Parameters on the Stack
For efficiency reasons, standard library routines always pass all parameters as a multiple of four bytes.

When passing a byte-sized parameter on the stack by value, the actual parameter value consumes the L.O. byte of
the double word passed on the stack. The function ignores the H.O. three bytes of the value passed for this
parameter, though by convention (to make debugging a little easier) you should try to pass zeros in the H.O. three
bytes if it is not inconvenient to do so.

When passing a byte-sized constant, you should simply push the dword containing the 8-bit value, e.g,
Released to the Public Domain Page 3

HLA Standard Library
pushd(5);
call someLibraryRoutine;

When passing the 8-bit value of the 8-bit registers AL, BL, CL or DL onto the stack, you should simply push
the 32-bit register that holds the 8-bit register, e.g.,
push(eax); // Pushes AL onto the stack
call someLibraryRoutine;
push(ebx); // Pushes BL onto the stack
call someOtherLibraryRoutine;

Note that this trick does not apply to the AH, BH, CH, or DH registers. The best code to use when you need to
push these registers is to drop the stack down by four bytes and then move the desired register into the memory
location you’ve just created on the stack, e.g.,
sub(4, esp);
mov(AH, [esp]); // Pushes AH onto the stack
call someLibraryRoutine;
sub(4, esp);
mov(BH, [esp]); // Pushes BH onto the stack
call anotherLibraryRoutine;

Here’s another way you can accomplish this (a little slower, but leaves zeros in the H.O. three bytes):
pushd(0);
mov(CH, [esp]); // Pushes CH onto the stack
call someLibraryRoutine;

When passing a byte-sized variable, you should try to push the variable’s value and the following three
bytes, using code like the following (HLA syntax):
pushd((type dword eightBitVar));
call someLibraryroutine;

There is one drawback to the approach above. In three very rare cases the code above could cause a segmentation
fault. If the 8-bit variable is located on the last three bytes of a page in memory (4,096 bytes) and the next
memory page is not readable, the system will generate a fault if you attempt to push all four bytes. In such a
case, the next best solution, if a register is available, is to move the 8-bit value into AL, BL, CL, or DL and push
the corresponding 32-bit register. If no registers are available, then you can write code like the following:
push(eax);
push(eax);
mov(byteVar, al);
mov(al, [esp+4]);
pop(eax);
call someLibraryRoutine;

This code is ugly and slightly inefficient, but it will always work (assuming, of course, you don’t get a stack
overflow).

The HLA compiler will generate code similar to this last example if you pass a byte variable as the actual
parameter to a library function expecting an 8-bit value parameter:
someLibraryRoutine(byteVar);

Therefore, if efficiency is a concern to you, you should try to load the byte variable (byteVar in this example)
into AL, BL, CL, or DL prior to calling someLibraryRoutine, e.g.,
mov(boolVar, al);
someLibraryRoutine(al);

Another solution, if you want to use an HLA high-level-like calling sequence, is to use a hybrid calling sequence
and explicitly specify the instruction(s) to use to pass a byte-sized parameter on the stack. For example,
someLibraryRoutine(#{ push((type dword boolVar)); }#);
Page 4 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Unfortunately, you lose the benefit of type checking and other semantic checks the compiler would normally do
for you when using this hyrbrid syntax. Nevertheless, this scheme does have the advantage of encapsulating the
parameter pushing code into a single sequence, so that it’s obvious which instruction(s) go with the particular
parameter. This is not the case when you manually push the parameters onto the stack as in the earlier examples.

1.4 Passing Word Parameters on the Stack
For efficiency reasons, standard library routines always pass all parameters as a multiple of four bytes.

When passing a word-sized parameter on the stack by value, the actual parameter value consumes the L.O. two
bytes of the double word passed on the stack. The function ignores the H.O. word of the value passed for this
parameter, though by convention (to make debugging a little easier) you should try to pass zeros in the H.O.
word if it is not inconvenient to do so.

When passing a word-sized constant, you should simply push the double word containing the 16-bit value,
e.g,
pushd(5);
call someLibraryRoutine;

When passing the 16-bit value of a 16-bit register (AX, BX, CX, DX, SI, DI, BP, or SP) onto the stack, you
should simply push the 32-bit register that holds the 16-bit register, e.g.,
push(eax); // Pushes AX onto the stack
call someLibraryRoutine;
push(ebx); // Pushes BX onto the stack
call someOtherLibraryRoutine;

When passing a word-sized variable, you should try to push the variable’s value and the following two
bytes, using code like the following (HLA syntax):
pushd((type dword sixteenBitVar));
call someLibraryroutine;

There is one drawback to the approach above. In three very rare cases the code above could cause a segmentation
fault. If the 16-bit variable is located on the last three bytes of a page in memory (4,096 bytes) and the next
memory page is not readable, the system will generate a fault if you attempt to push all four bytes. In such a
case, the next best solution, is to use two consecutive pushes:
pushw(0);// H.O. word is zeros
push(sixteenBitVar);
call someLibraryRoutine;

The HLA compiler will generate code similar to this last example if you pass a word variable as the actual
parameter to a library function expecting a 16-bit value parameter:
someLibraryRoutine(wordVar);

1.5 Passing DWord Parameters on the Stack
Because 32-bit dword objects are the native x86 data type, there are only a few issues with passing 32-bit

parameters on the stack to a standard library routine.
First of all, and this applies to all stack operations not just 32-bit pushes and pops, you should always keep

the stack 32-bit aligned. That is, the value in ESP should always contain a value that is a multiple of four (i.e., the
L.O. two bits of ESP must always contain zeros). If this is not the case, many standard library routines will fail.

When passing a 32-bit value onto the stack, just about any mechanism you can use to push that value is
perfectly valid. You can efficiently push constants, registers, and memory locations using a single push
instruction, e.g.,
pushd(12345); // Passing a 32-bit constant
push(mem32); // Passing a dword variable
push(eax); // Passing a 32-bit register
call someLibraryRoutine;
Released to the Public Domain Page 5

HLA Standard Library
One type of double word parameter deserves special mention – a reference parameter. Reference parameters
pass the address of their object on the stack rather than the value of the object (that is, they pass a pointer to the
actual object). HLA actually supports several different reference parameter types including pass by reference
(VAR) parameters, pass by result (RESULT) parameters, and pass by value/returned (VALRES) parameters. Of
these three parameter types, the standard library only uses the VAR (pass by reference) type, though if you ever
see a function that uses one of these other parameter mechanisms the calling sequence is exactly the same.

When passing a parameter by reference, you must push the address of the actual parameter (rather than its
value) onto the stack. For static objects, you can use the push immediate instruction, e.g., (in HLA syntax):
pushd(&staticVar);
call someLibraryRoutine;

For automatic variables, or objects whose address is not a simple static offset (e.g., a complex pointer address
involving registers and what-not), you’ll have to use the LEA instruction to first compute the address and then
push that register’s value, e.g.,
lea(eax, anAutomaticVar); // Variable allocated on the stack
push(eax);
call someLibraryRoutine;

If the variable’s address is a simple offset from a single register (such as automatic variables declared in the stack
frame and referenced off of the EBP register), you can push the address of the variable by pushing the base
register and adding the offset of that variable to the value left on the stack, thusly:
push(ebp); // anAutoVar is found at EPB+@offset(anAutoVar)
add(@offset(anAutoVar), (type dword [esp]));
call someLibraryRoutine;

If the address you want to pass in a reference parameter is a complex address, you’ll have to use the LEA
instruction to compute that address and push it onto the stack. This, unfortunately, requires a free 32-bit register.
If no 32-bit registers are free, you can use code like the following to achieve this:
sub(4, esp);// Reserve space for parameter on stack
push(eax); // Preserve EAX
lea(eax, [ebp+@offset(autoVar)][ecx*4+3]);
mov(eax, [esp+4]); // Store in parameter location
pop(eax); // Restore EAX
call someLibraryRoutine;

Of course, it’s much nicer to use the HLA high-level syntax for calls like this as the HLA compiler will
automatically handle all the messy code generation details for you.

1.6 Passing QWord Parameters on the Stack
Because qword (64-bit) objects are a multiple of 32 bits in size, manually passing qword objects on the stack

is very easy. All you need do is push two dword values. Because the stack grows downward in memory and the
x86 is a little endian machine, you must push the H.O. dword first and the L.O. dword second.

If the qword value is held in a register pair, then push the register containing the H.O. dword first and the
L.O. dword second. For example, if EDX:EAX contains the 64-bit value, then you’d push the qword as follows:

push(edx); // Push H.O. dword
push(eax); // Push L.O. dword
call someLibraryRoutine;

If the qword value is held in a qword variable, then you must first push the H.O. dword of that variable
followed by the L.O. dword, e.g.,
push((type dword qwordVar[4])); // Push H.O. dword first
push((type dword qwordVar)); // Push L.O. dword second
call someLibraryRoutine;

If the qword value you wish to pass is a constant, then you’ve got to compute the L.O. and H.O. dword
values for that constant and push those. When using HLA, you can use the compile-time computational
capabilities of HLA to do this for you, e.g.,
Page 6 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd(((some64bitConst) >> 32);
pushd(((some64bitConst) & $FFFF_FFFF);
call someLibraryRoutine;

If this is something you do frequently, you might want to create a macro to break up the 64-bit value and push it
for you.

Of course, you can always use the HLA high-level syntax to pass a 64-bit object to a standard library
routine. HLA automatically generates the appropriate code to pass the qword object as a parameter on the stack.

1.7 Passing TByte Parameters on the Stack
For efficiency reasons, standard library routines always pass all parameters as a multiple of four bytes.

When passing a tbyte-sized parameter on the stack by value, the actual parameter value consumes the L.O. ten
bytes of the three double words passed on the stack. The function ignores the H.O. word of the value passed for
this parameter, though by convention (to make debugging a little easier) you should try to pass zeros in the H.O.
word if it is not inconvenient to do so.

The following code demonstrates how to pass a ten-byte object to a standard library routine:
pushw(0); // Dummy H.O. word of zero
push((type word tbyteVar[8])); // Push H.O. byte of tbyte object
push((type dword tbyteVar[4])); // Push bytes 4-7 of tbyte object
push((type dword tbyteVar[0])); // Push L.O. dword of tbyte object
call someLibraryRoutine;

If your tbyte object is not at the very end of allocated memory, you could probably combine the first two
instructions in this sequence to produce the following (slightly more efficient) code:
push((type dword tbyteVar[8])); // Pushes two extra bytes.

This pushes the two bytes beyond tbyteVar onto the stack, but presumably the function will ignore all bytes
beyond the tenth byte passed on the stack, so the actual values in those H.O. two bytes are irrelevant. Note the
earlier discussion (in the section on pushing byte parameters) about the rare possibility of a memory access error
when using this trick.

Of course, you can always use the HLA high-level syntax to pass an 80-bit object to a standard library
routine. HLA automatically generates the appropriate code to pass the tbyte object as a parameter on the stack.

1.8 Passing LWord Parameters on the Stack
Because lword (128-bit) objects are a multiple of 32 bits in size, manually passing lword objects on the stack

is very easy. All you need do is push four dword values. Because the stack grows downward in memory and the
x86 is a little endian machine, you must push the H.O. dword first and the L.O. dword last.

If the lword value is held in an lword variable, then you must first push the H.O. dword of that variable
followed by the lower-order dwords, down to the L.O. dword, e.g.,
push((type dword qwordVar[12])); // Push H.O. dword first
push((type dword qwordVar[8])); // Push bytes 8-11 second
push((type dword qwordVar[4])); // Push bytes 4-7 third
push((type dword qwordVar)); // Push L.O. dword last
call someLibraryRoutine;

If the lword value you wish to pass is a constant, then you’ve got to compute the four dword values for that
constant and push those. When using HLA, you can use the compile-time computational capabilities of HLA to
do this for you, e.g.,

pushd(((some128bitConst) >> 96);
pushd(((some128bitConst) >> 64 & $FFFF_FFFF);
pushd(((some128bitConst) >> 32 & $FFFF_FFFF);
pushd(((some128bitConst) & $FFFF_FFFF);
call someLibraryRoutine;
Released to the Public Domain Page 7

HLA Standard Library
If this is something you do frequently, you might want to create a macro to break up the 128-bit value and push it
for you.

Of course, you can always use the HLA high-level syntax to pass a 128-bit object to a standard library
routine. HLA automatically generates the appropriate code to pass the lword object as a parameter on the stack.
Page 8 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
2 Command-Line Arguments (args.hhf)

The HLA args module provides access to, and support for, Windows Command Line Interpreter or Linux/
*nix shell command line parameters.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf)
before reading this chapter.

A Note About Thread Safety: The args module maintains a couple of static global variables that maintain
the command-line values. Currently, these values apply to all threads in a process. You should take care when
changing these values in threads. The command-line is a resource that must be shared amongst all threads in an
application. If you write multi-threaded applications, it is your responsibility to serialize access to the command-
line functions.

2.1 The Args Module
To use the args functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:

#include("args.hhf")
or
#include("stdlib.hhf")

2.2 Retrieving the Command Line
The arg.cmdLn and arg.a_cmdLn functions retrieve the entire command-line as a string. This string

typically consists of the list of command-line parameters, each parameter separated by a single space. Note that
on some operating systems, the HLA standard library command-line functions might actually synthesize this
string by concatenating the command-line arguments together, so you can not expect this string to be an exact
representation of the command line that the user typed (that is, the user may have typed extra spaces or other
delimiter characters that the OS’ shell discarded before passing the command line text to the program). Also, the
command-line string will not contain I/O redirection or other process-related items (e.g., pipes) found on the
command line.

procedure arg.cmdLn();

arg.cmdLn returns a pointer to a static string held inside the stdlib code. This function returns the string
pointer in EAX. The caller must not modify any data in this string (use arg.a_cmdLn if you need a malleable
string).

HLA high-level calling sequence examples:

arg.cmdLn();
stdout.put("Command line: ", (type string eax), nl);

HLA low-level calling sequence examples:

call arg.cmdLn;
push(eax);
call stdout.puts;

procedure arg.a_cmdLn();

arg.a_cmdLn returns, in EAX, a string containing a copy of the command-line parameter text. This is a
pointer to a string allocated on the heap. It is the caller’s responsibility to free this storage (via a call to str.free)
when it is done using the string.
Released to the Public Domain Page 9

HLA Standard Library
HLA high-level calling sequence examples:

arg.a_cmdLn();
stdout.put("Command line: ", (type string eax), nl);
str.free(eax);

HLA low-level calling sequence examples:

call arg.cmdLn;
push(eax);
call stdout.puts;
push(eax);
call str.free;

2.3 Argument Count and Item
The functions in this category are the standard argument functions that most programs use: arg.c, arg.v, and

arg.a_v. The arg.c function returns the number of command-line parameters and arg.v/arg.a_v return a pointer to
a string that corresponds to an individual parameter.

procedure arg.c();

arg.c returns the number of command-line parameters in EAX. This count includes the program name on the
command line.

HLA high-level calling sequence examples:

arg.c();
stdout.put("Number of arguments: ", (type uns32 eax), nl);

HLA low-level calling sequence examples:

call arg.c;
mov(eax, argCount);

procedure arg.v(whichArg:dword);

arg.v returns a pointer to the string that corresponds to the specified command-line argument. Argument
indexes are in the range 0..arg.c()-1. This function will raise an exception if you pass it an argument value
outside this range. This function returns a pointer to a string whose storage is internal to the standard library.
You must treat this data as read-only data and not modify this data.

HLA high-level calling sequence examples:

arg.c();
mov(eax, edx);
for(mov(0, ecx); ecx < edx; inc(ecx)) do

arg.v(ecx);
stdout.put("arg[", (type uns32 ecx), "]=", (type string eax), nl);

endfor;

HLA low-level calling sequence examples:

pushd(0);
call arg.v;
mov(eax, firstArg);
Page 10 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure arg.a_v(whichArg:dword);

arg.a_v returns a pointer to the string that corresponds to the specified command-line argument. Argument
indexes are in the range 0..arg.c()-1. This function will raise an exception if you pass it an argument value
outside this range. This function returns a pointer to a string it allocates on the heap. The caller must free this
storage (via a call to str.free) when it is done using the string.

HLA high-level calling sequence examples:

arg.c();
mov(eax, edx);
for(mov(0, ecx); ecx < edx; inc(ecx)) do

arg.a_v(ecx);
stdout.put("arg[", (type uns32 ecx), "]=", (type string eax), nl);
str.free(eax);

endfor;

HLA low-level calling sequence examples:

pushd(0);
call arg.a_v;
mov(eax, firstArg);

.

.

.
str.free(firstArg);

2.4 Deleting Command Line Arguments
The functions in this category delete command-line arguments from the internal array or deallocate all the

command-line arguments from the internal array. When an individual command-line parameter is deleted, the
indexes of the following command-line arguments are reduced by one (that is, argument n+1 becomes argument
n, argument n+2 becomes argument n+1, etc., up to the number of command-line arguments). Also note that
deleting a command-line argument reduces the value that arg.c returns by one.

procedure arg.delete(index:uns32);

arg.delete removes the specified command-line parameter from the internal argv array. The index parameter
must be in the range 0..argc, where argc is the current value that arg.c() returns. If the index parameter is outside
this range, this function will raise an ex.BoundsError exception. This function decrements the value that arg.c
returns by one. Note that this function does not affect the value that arg.cmdLn returns.

HLA high-level calling sequence examples:

arg.c();
stdout.put("Number of arguments: ", (type uns32 eax), nl);
arg.delete(0);
arg.c();
stdout.put
(

"Number of arguments after delete: ",
(type uns32 eax),
nl

);

HLA low-level calling sequence examples:
Released to the Public Domain Page 11

HLA Standard Library
pushd(2);
call arg.delete;

procedure arg.destroy();

arg.destroy deletes all of the command line parameters from internal storage and resets the command-line
processor. The next function that requests a command line parameter value will force the run-time system to
regenerate the command-line argument list.

HLA high-level calling sequence examples:

arg.destroy();
arg.c(); // Regenerates original command-line
mov(eax, originalArgc);

HLA low-level calling sequence examples:

call arg.destroy;
call arg.c;
mov(eax, originalArgc);

2.5 Argument Iterators
The iterators in this category process command-line arguments within a foreach loop.

iterator arg.args();

arg.args is an iterator (used in an HLA foreach loop) that returns successive command line parameters on
each iteration of the foreach loop. This iterator returns a pointer to a newly allocated string in the EAX register. It
is the caller’s responsibility (usually in the body of the foreach loop) to free the allocated storage with a call to
str.free.

HLA high-level calling sequence examples:

foreach arg.args() do

stdout.put("current Arg: ", (type string eax), nl);
str.free(eax);

endfor;

HLA low-level calling sequence examples:

(You really should only use the high-level calling sequence
for a foreach loop that calls an iterator.)

iterator arg.globalOptions(options:cset);

arg.globalOptions is an iterator (i.e., you use it in a FOREACH loop) that yields a sequence of command
line parameter options. A command line parameter option is a command line parameter that begins with a ’-’ or
’/’ character. arg.globalOptions only returns those command line parameters whose first character is a member of
the "options" character set.

A typical command line might be something like the following:
Page 12 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
c:> pgmName -o2 -warn filename1 -c filename2 -d filename3 -x

The command line options in this example are "-o2", "-warn", "-c", "-d", and "-x". The arg.globalOptions iterator
only considers those command line parameters that begin with "-" and whose first character is a member of the
options parameter. Assuming options contains at least {’c’, ’d’, ’o’, ’w’, ’x’} then the arg.globalOptions iterator
will return the strings "o2", "warn", "c", "d", and "x", in that order (that is, in the order they appear on the
command line). If the first character of a command line option is not in the options character set, then
arg.globalOptions does not return that particular command line parameter.

Note that arg.globalOptions does not remove the command line parameters from the command line string or
from the arg.v array. If you want to remove them, you must explicitly do so using the arg.delete function. Note,
however, that you must not delete command line arguments while scanning through the arguments in a
FOREACH loop using the arg.globalOptions iterator.

Note that this iterator allocates storage for each string it returns on the heap. It is the caller’s responsibility to
free the storage when the caller is done using the string.

HLA high-level calling sequence examples:

foreach arg.globalOptions({‘a’, ‘b’, ‘c’ }) do

stdout.put("current option: ", (type string eax), nl);
str.free(eax);

endfor;

HLA low-level calling sequence examples:

(You really should only use the high-level calling
sequence for a foreach loop that calls an iterator.)

iterator arg.localOptions(options:cset);

arg.localOption is an iterator that yields the sequence of command line options begining at parameter
"index". This iterator only yields strings as long as successive parameters begin with a "-". It fails upon
encountering a command line parameter that is not an option (that is, begins with "-"). Note that this iterator only
yields those command line options whose first character beyond the "-" character is a member of the options
character set.

Typically, you would use the arg.localOption iterator inside a FOREACH loop to obtain the command line
parameters for a specific filename on the command line. That is, some programs process multiple files and let
you associate command line parameters with a single filename. Consider the following simple example:

c:> pgm -o2 -c file1 -o5 file2 -c file3

In this example, the "pgm" program (presumably) associates "-o2" and "-c" with file1, "-o5" with file2, and "-c"
with file3.

Were you to call arg.localOption as follows:

foreach arg.localOption(1, {’o’, ’c’}) do ... endfor;

then the arg.localOption iterator would return two strings: the first would be "o2" and the second would be "c".
Within that iterator your code should save these options and count the number of command line parameters
processed so it will know the index of the associated filename command line parameter once it is done
processing the options. Typically, you would bury this FOREACH loop (with some minor modifications) inside
some other loop that processes each filename (or other command line parameter preceded by command line
options).

Note that this iterator allocates storage for each string it returns on the heap. It is the caller’s responsibility to
free the storage when the caller is done using the string.
Released to the Public Domain Page 13

HLA Standard Library
See the CmdLnDemo.hla file in the Examples directory of the HLA distribution for an example of each of
these routines.

HLA high-level calling sequence examples:

foreach arg.localOptions(4, {‘a’, ‘b’, ‘c’ }) do

stdout.put("current option: ", (type string eax), nl);
str.free(eax);

endfor;

HLA low-level calling sequence examples:

(You really should only use the high-level calling
sequence for a foreach loop that calls an iterator.)
Page 14 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
3 Arrays Module (arrays.hhf)

The HLA Arrays module provides a set of datatypes, macros, and procedures that simplify array access in
assembly language (especially multidimensional array access). In addition to supporting standard HLA arrays
with static size declarations, the HLA arrays module also supports dynamic arrays that let you specify the array
size at run-time.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf)
before reading this chapter.

3.1 The Arrays Module
To use the array macros in your application, you will need to include one of the following statements at the

beginning of your HLA application:

#include("arrays.hhf")
or
#include("stdlib.hhf")

3.2 Array Data Types
The array namespace defines the following useful data types:

#macro array.dArray(type, dimensions);

The first feature in the array package to consider is the support for dynamic arrays. HLA provides a macro/
data type that lets you tell HLA that you want to specify the array size under program control. This macro/data
type is array.dArray (dArray stands for dynamic array). You use this macro invocation in place of a standard
data type identifier in an HLA variable declaration.

The first macro parameter is the desired data type; this would typically be an HLA primitive data type like
int32 or char, although any data type identifier is legal.

The second parameter is the number of dimensions for this array data type Generally this value is two or
greater (since creating dynamic single dimensional arrays using only malloc is trivial). Because of the way array
indicies are computed by HLA, it is not possible to specify the number of dimensions dynamically.

Note: since array.dArray is not a data type identifier (it’s a macro), you cannot directly create a dynamic
array of dynamic arrays. I.e., the following is not legal:

static
DAofDAs: array.dArray(array.dArray(uns32, 2), 2);

However, you can achieve exactly the same thing by using the following code:

type
DAs: array.dArray(uns32, 2);

static
DAofDAs: array.dArray(DAs, 2);

The TYPE declaration creates a type identifier that is a dynamic array. The STATIC variable declaration
uses this type identifier in the array.dArray invocation to create a dynamic array of dynamic arrays.
Released to the Public Domain Page 15

HLA Standard Library
3.3 Array Allocation and Deallocation
#macro array.daAlloc(dynamicArrayName, <<list of dimension bounds>>);

 The array.dArray macro allocates storage for a dynamic array variable. It does not, however, allocate
storage for the dynamic array itself; that happens at run-time. You must use the array.daAlloc macro to actually
allocate storage for your array while the program is running. The first parameter must be the name of the
dynamic array variable you’ve declared via the array.dArray macro. The remaining parameters are the number
of elements for each dimension of the array. This list of dimension bounds must contain the same number of
values as specified by the second parameter in the array.dArray declaration. The dimension list can be constants
or memory locations (note, specifically, that registers are not currently allowed here; this may be fixed in a
future version).

The following code demonstrates how to declare a dynamic array and allocate storage for it at run-time:

program main;
static

i:uns32;
j:uns32;
k:uns32;
MyArray: array.dArray(uns32, 3);

begin main;

stdout.put("Enter size of first dimension: ");
stdin.get(i);
stdout.put("Enter size of second dimension: ");
stdin.get(j);
stdout.put("Enter size of third dimension: ");
stdin.get(k);

// Allocate storage for the array:

array.daAlloc(MyArray, i, j, k);

<< Code that manipulates the 3-D dynamic array >>

end main;

#macro array.daFree(dynamicArrayName);

Use the array.daFree macro to free up storage you’ve allocated via the array.daAlloc call. This returns the
array data storage to the system so it can be reused later. Warning: do not continue to access the array’s data
after calling array.daFree. The system may be using the storage for other purposes after you release the storage
back to the system with array.daFree.

Note: You should only call array.daFree for arrays you’ve allocated via array.daAlloc.

Example:

// Allocate storage for the array:

array.daAlloc(MyArray, i, j, k);

<< Code that manipulates the 3-D dynamic array >>

array.daFree(MyArray);
Page 16 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
3.4 Array Predicates
#macro array.IsItVar(objectName)

This is a macro that evaluates to a compile-time expression yielding true if the object is a variable identifier.
Variable identifiers are those IDs you declare in a VAR, STATIC, READONLY, or STORAGE declaration
section, or IDs you declare as parameters to a procedure. This macro returns false for all other parameters.

#macro array.IsItDynamic(arrayName)

This is a macro that expands to a compile-time expression yielding true or false depending upon whether the
parameter was declared with the array.dArray data type. If so, this function returns true; else it returns false.
Note that a return value of false does not necessarily indicate that the specified parameter is a static array.
Anything except a dynamic array object returns false. For example, if you pass the name of a scalar variable, an
undefined variable, or something that is not a variable, this macro evaluates false. Note that you can use the
HLA @type function to test to see if an object is a static array; however, @type will not return hla.ptArray for
dynamic array objects since array.dArray objects are actually records. Hence the array.IsItDynamic function to
handle this chore.

3.5 Array Element Access
#macro array.index(reg32, arrayName, <<list of indicies>>);

This macro computes a row-major order index into a multidimensional array. The array can be a static or
dynamic array. The list of indicies is a comma separate list of constants, 32-bit memory locations, or 32-bit
registers. You should not, however, specify the register appearing as the first parameter in the list of indicies.

If the VAL constant array.BoundsChk is true, this macro will emit code that checks the bounds of the array
indicies to ensure that they are valid. The code will raise an ex.ArrayBounds exception if any index is out of
bounds. You may disable the code generation for the bounds checking by setting the array.BoundsChk VAL
object to false using a statement like the following:

?array.BoundsChk := false;

 You can turn the bounds checking on and off in segments of your code by using statements like the above
that set array.BoundsChk to true or false.

This macro leaves pointer into the array sitting in the specified 32-bit register.
Example:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.
// copy arrayS[i, j, k] to arrayD[m,n,p]:

array.index(ebx, arrayS, i, j, k);
mov([ebx], eax);// EAX := arrayS[I,j,k];
array.index(ebx, arrayD, m, n, p);
mov(eax, [ebx]);// EAX := arrayD[m,n,p];

iterator array.element(arrayName);

This iterator returns each successive element of the specified array. It returns the elements in row major
order (that is, the last dimension increments the fastest and the first dimension increments the slowest when
returning elements of a multidimensional array). This iterator returns byte objects in the AL register; it returns
word objects in the AX register; it returns dword objects in the EAX register; it returns 64-bit (non-real) objects
in the EDX:EAX register pair. This routine returns all floating point (real) objects on the top of the FPU stack.
Released to the Public Domain Page 17

HLA Standard Library
Note that array.element is actually a macro, not an iterator. The macro, however, simply provides
overloading to call one of seven different iterators depending on the size and type of the operand. However, this
macro implementation is transparent to you. You would use this macro exactly like any other iterator.

Note that array.element works with both statically declared arrays and dynamic arrays you’ve declared with
array.dArray and you’ve allocated via array.daAlloc.

Examples:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.

foreach array.element(arrayS) do

stdout.put("Current arrayS element = ", eax, nl);

endfor;
.
.
.

foreach array.element(arrayD) do

stdout.put("Current arrayD element = ", eax, nl);

endfor;
.
.
.

3.6 Array Operations
#macro array.cpy(srcArray, destArray);

 This macro copies a source array to a destination array. Both arrays must be the same size and shape (shape
means that they have the same number of dimensions and the bounds on all the dimensions correspond between
the source and destination arrays). Both static and dynamic array variables are acceptable for either parameter.

Example:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.

// note: for the following to be legal at run-time,
// the arrayD dynamic array must have storage allocated
// for it with a statement like
// "array.daAlloc(arrayD, 2, 3, 4);"

array.cpy(arrayS, arrayD);
Page 18 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
#macro array.reduce(srcArray, destArray);

#keyword array.beforeRow;

#keyword array.reduction;

#keyword array.afterRow;

#terminator array.endreduce;

The array.reduce macro emits code to do a "row-reduction" on an array. A row reduction is a function that
compresses all the rows (that is, the elements selected by running through all the legal values of the last
dimension) to a single element. Effectively, this macro reduces an array of arity n to an array of arity n-1 by
eliminating the last dimension.

Reduction is not accomplished by simply throwing away the data in the last dimension (although it’s
possible to do this). Instead, you’ve got to supply some code that the array.reduce macro will use to compress
each row in the array.

A very common reduction function, for example, is addition. Reduction by addition produces a new array
that contains the sums of the rows in the previous array. For example, consider the following matrix:

1 2 3 4
6 5 4 1
5 9 8 0

This is a 3x4 array. Reducing it produces a one dimensional array with three elements containing the value
10, 16, 22 (the sums of each of the above rows).

The best way to understand how the array.reduce macro works is to manual implement addition reduction
manually. To reduce the 3x4 array above to a single array with three elements, you could use the following code:

// (a) Any initialization required before loops
// (this example requires no such initialization.)

for(mov(0, i); i < 3; inc(i)) do

mov(0, eax);// (b) Initialize sum for each row.

for(mov(0, j); j < 4; inc(j)) do

// (c) Sum up each element in this row into EAX:

index(ebx, array3x4, i, j);
add([ebx], eax);

endfor;

// (d) At the end of each row, store the sum away
// into the destination array.

mov(i, ebx);
mov(eax, array3[ebx*4]);

endfor;

The array.reduce macro is an example of an HLA context-free macro construct. This means that the call to
array.reduce consists of multiple parts, just like the REPEAT..UNTIL and SWITCH..CASE..ENDSWITCH
control structures. Specifically, an array.reduce invocation consists of the following sequence of macro
invocations:

array.reduce(srcArray, destArray);

<< Initialization statements needed before
Released to the Public Domain Page 19

HLA Standard Library
loops,(a) in the code above >>

array.beforeRow;

<< Initialization before each row, (b) in the
 code above. Note that edi contains the row

number times the size of an element and esi contains
an index into the array to the current element. >>

array.reduction;

<< Code that compresses the data for each
 row, to be executed for each element
 in the row. Corresponds to (c) in the
 the code above. Note that ecx contains

the index into the current row. >>

array.afterRow;

<< Code to process the compressed data at
 the end of each row. Corresponds to (d)
 in the code above. >>

array.endreduce;

A conversion of the previous code to use the array.reduce macro set looks like the following:

array.reduce(array3x4, array3)

// No pre-reduction initialization...

array.beforeRow

mov(0, eax);// Initialize the sum for each row.

array.reduction

add(array3x4[esi], eax);

array.afterRow

mov(i, edx);
mov(eax, array3[edx*4]);

array.endreduce;

Note that the array.reduce macro set makes extensive use of the 80x86 register set. The EAX and EDX
registers are the only free registers you can use (without restoring) within the macro. Of course, array.reduce
will preserve all the regsiters is uses, but within the macro itself it assumes it can use all registers except EAX
and EDX for its own purposes.

#macro array.transpose(srcArray, destArray, optionalDimension);

 The array.transpose macro copies the source array to the destination array transposing the elements of the
last dimension with the dimension specified as the last parameter. For the purposes of this macro, the array
dimensions of an n-dimensional array are numbered as follows:

SomeArray[n-1, n-2, ..., 3, 2, 1, 0];
Page 20 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Therefore, array.transpose will transpose dimension zero with some other dimension (1..n-1) in the source
array when copying the data to the destination array. By default (if you don’t supply the optional, third
parameter), array.transpose will transpose dimensions zero and one when copying the source array to the
destination array.

The source and destination arrays must have at least two dimensions. They can be static or dynamic arrays.
Note that array.transpose emits special, efficient, code when transposing dimensions zero and one.

The source and destination arrays must have compatible shapes. The shapes are compatible if the arrays
have the same number of dimensions and all the dimensions have the same bounds except dimension zero and
the transpose dimension (which must be swapped). For example, the following two arrays are transpose-
compatible when transposing dimensions zero and two:

static
s: uns32[2, 2, 3];
d: uns32[3, 2, 2];

Generally, one uses array.transpose to transpose a two-dimensional matrix. However, the transposition
operation is defined for any number of dimensions. To understand how array.transpose works, it is instructive
to look at the code you’d write to manually transpose the data in an array. Consider the transposition of the data
in the s and d arrays above:

for(mov(0, i); i<2; inc(i)) do

for(mov(0,j); j<2; inc(j)) do

for(mov(0,k); k<3; inc(k)) do

index(edx, s, i, j, k);
mov([edx], eax);
index(edx, d, k, j, i);
mov(eax, [edx]);

endfor;

endfor;

endfor;

Note that when storing away the value into the destination array, the i and k indicies were swapped. The
following example demonstrates the use of array.transpose:

static
s: uns32[2,3] := [1,2,3,4,5,6];
d: uns32[3,2];

.

.

.
array.transpose(s, d);

.

.

.

note: The code above copies s, as

1 2 3
4 5 6

to d, as

1 4
2 5
Released to the Public Domain Page 21

HLA Standard Library
3 6

3.7 Lookup Tables
The array.lookupTable macro lets you easily construct a standard lookup table. This macro invocation must

appear within a STATIC or a READONLY declaration section in your program. A lookup table declaration takes
the following form:

readonly
tableName:

array.lookupTable
(

element_data_type,
default_table_value,
value: list_of_indexes,
value: list_of_indexes,

.

.

.
value: list_of_indexes,
value: list_of_indexes

);

where:

element_data_type is the data type for each element of the array, for example, byte.

default_table_value is a value to use for "holes" in the table for which you do not supply an explicit index/value.

value is some value that you want to use to initialize a sequence of one or more table entries with.

list_of_indexes is a list of values that specify indexes into the lookup table. Each entry in a specific list is
separated from the other entries with a space (not commas!). Note that each index value you specify must be
unique across all lists of indexes in this table (that is, you cannot put two values into the array element specified
by a single index). The array.lookupTable macro will report an error if you specify a non-unique index value in
one of the lists.

Here is a concrete example:

static
tableName:

array.lookupTable
(

int32,
-1,
0: 1 2 3 4,
1: 5 6 7 8,
2: 9 10 11 12,
3: 13 14 15,
4: 20 22 24,
5: 16 21 25,
6: 23 19 18

);

This declaration creates a table with 25 dword entries, that will hold the values 1..25. The table will be
initialized as follows:

tableName:int32[25] :=
[

0, 0, 0, 0, // Elements 0..3
Page 22 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
1, 1, 1, 1, // Elements 4..7
2, 2, 2, 2, // Elements 8..11
3, 3, 3, // Elements 12..14
5, // Element 15
-1, // Element 16 (no index 17 specified above)
6, 6, // Elements 17 & 18
4, // Element 19
5, // Element 20
4, // Element 21
6, // Element 22
4, // Element 23
5 // Element 24

];

The number of elements appearing in the lookup table will be the difference between the largest index value
you supply in all the lists (25 in this example) and the smallest value (1 in this example) plus one. This particular
lookup table has 25 entries because (25-1+1) = 25.

Note that each line in the example above specifies the value to store into each of the table entries in the list
that immediately follows. This is probably backwards to what your intution would suggest. But the nice thing
about this arrangement is that it lets you specify a single value to be placed into several different array indices. If
there are any gaps in the array indexes you specify (as the value 17 is missing above), then the array.lookupTable
macro will fill in those entries with the default value specified as the second parameter.

In order to access this lookup table at run-time, you must know the minimum index into the array so you can
subtract this from the calculated index you use to access the table. The array.lookupTable macro generates four
constants for you to help you do this (and other things):

tableName_maxValue
tableName_minValue
tableName_maxIndex
tablename_maxIndex

The tableName_minValue and tableName_maxValue constants specify the minimum and maximum index
values for the table. In the current example, these constants would be 1 and 25, respectively. The
tableName_minIndex and tableName_maxIndex values are the product of the array element’s size with the
_minValue and _maxValue constants. In the table above, the element size is four, so tableName_minIndex will
be four and tableName_maxIndex will be 100. Whenever you access an element of the tableName array (in this
example), you’ll want to subtract the tableName_minIndex value from your computed index in order to adjust
for non-zero starting indexes, e.g.,

mov(someIndex, ebx);
mov(tableName[ebx*4 - tableName_minIndex], eax);
Released to the Public Domain Page 23

HLA Standard Library
Page 24 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
4 Bit Manipulation (bits.hhf)

The HLA BITS module contains several procedures useful for bit manpulation. Currently, this includes
routines like counting bits, reversing bits, and merging bit streams.

A Note About Thread Safety: The routines in this module are all thread safe.
Note about stack diagrams: this documentation includes stack diagrams for those functions that pass

parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

4.1 Bit Module
To call functions in the Bits module, you must include one of the following statements in your HLA

application:

#include("bits.hhf")
or
#include("stdlib.hhf")

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

4.2 Bit Counting Function
 bits.cnt(b:dword in eax); @returns("EAX");

 This procedure returns the number of one bits present in the "b" parameter (passed in the EAX register). It
returns the count in the EAX register. To count the number of zero bits in the parameter value, invert the value
of the parameter before passing it to bits.cnt. If you want to count the number of bits in an 8-bit or 16-bit
operand, simply zero extend it to 32 bits prior to calling this function. Here are a couple of examples:

If you want to compute the number of bits in an eight-bit operand it’s probably faster to write a simple loop
that rotates all the bits in the source operand and adds the carry into the accumulating sum. Of course, if
performance isn’t an issue, you can zero extend the byte to 32 bits and call the bits.cnt procedure.

Note: to count the number of zero bits in an object, first invert than object and then call bits.cnt.

HLA high-level calling sequence examples:

bits.cnt(mem32);
mov(eax, count);

mov(bits.cnt(ebx), count); // Note: count is in EAX

// Count the number of bits in 8-bit and 16-bit operands:

bits.cnt(movzx(al, eax));
mov(eax, count8);

mov(bits.cnt(movzx(ax, eax)), count16); // Count is left in EAX.

HLA low-level calling sequence examples:

mov(mem32, eax);
call bits.cnt;
mov(eax, count);
Released to the Public Domain Page 25

HLA Standard Library
mov(ebx, eax);
call bits.cnt;
mov(eax, count);

movzx(al, eax);
call bits.cnt;
mov(eax, count8);

movzx(ax, eax);
call bits.cnt;
mov(eax, count16);

4.3 Bit Reversal Functions
The functions in this category swap the bits in their input operand. That is, they exchange the H.O. and L.O.

bits, the next-to-high-order bit with bit #1, and so on.

 bits.reverse32(b:dword in eax); @returns("eax");

This function reverses the bits passed to it in EAX and returns the swapped value in EAX. This function
swaps bit 31 and 0, bits 30 and 1, bits 29 and 2, bits 28 and 3, and so on. See the diagram for bits.reverse8 and
generalize that diagram to 32 bits for a pictorial example.

HLA high-level calling sequence examples:

bits.reverse32(mem32);
mov(eax, reversed32);

mov(bits.reverse32(ebx), ebxReversed); // Note: result is in EAX

HLA low-level calling sequence examples:

mov(mem32, eax);
call bits.reverse32;
mov(eax, reversed32);

mov(ebx, eax);
call bits.reverse32;
mov(eax, ebxReversed);

 bits.reverse16(b:word in ax); @returns("eax");

This function reverses the bits passed to it in AX and returns the swapped value in AX. This function swaps
bit 15 and 0, bits 14 and 1, bits 13 and 2, bits 12 and 3, and so on. Note that this function does not zero or sign-
extend the result into EAX. Although this function currently preserves the H.O. word of EAX, it’s safer to
assume that the H.O. word of EAX contains an undefined value upon return. See the diagram for bits.reverse8
and generalize that diagram to 16 bits for a pictorial example.

HLA high-level calling sequence examples:

bits.reverse16(mem16);
mov(ax, reversed16);
Page 26 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(bits.reverse16(bx), bxReversed); // Note: result is in AX

HLA low-level calling sequence examples:

mov(mem16, ax);
call bits.reverse16;
mov(ax, reversed16);

mov(bx, ax);
call bits.reverse16;
mov(ax, bxReversed);

 bits.reverse8(b:byte in al); @returns("eax");

This function reverses the bits passed to it in AL and returns the swapped value in AL. This function swaps
bit 7 and 0, bits 6 and 1, bits 5 and 2, and bits 4 and 3 (see the diagram for bits.reverse8). Note that this function
does not zero or sign-extend the result into EAX. Although this function currently preserves the H.O. three bytes
of EAX, it’s safer to assume that the H.O. three bytes of EAX contain an undefined value upon return. See the
diagram for bits.reverse8 and generalize that diagram to 16 bits for a pictorial example.

HLA high-level calling sequence examples:

bits.reverse8(mem8);
mov(al, reversed8);

mov(bits.reverse8(bl), blReversed); // Note: result is in AL

HLA low-level calling sequence examples:

mov(mem8, al);
call bits.reverse8;
mov(al, reversed8);

mov(bl, al);
call bits.reverse8;
mov(al, blReversed);

A B C D E F G H

H G F E D C B A

bits.reverse8
Released to the Public Domain Page 27

HLA Standard Library
4.4 Bit Merging Functions
The bit merging operands take two small values and produce a single larger value by interleaving the bits

from the source operands in the destination operand. One operand’s bits are spread out into the destination
operand’s even bit positions, the other operand’s bits are distributed in the odd bit positions (see the following
diagram).

bits.merge32(even:dword in eax; odd:dword in edx); @returns("EDX:EAX");

This function merges two dword values to produce a single qword value. The bits in the even operand are
placed in the even bit positions of the qword result, the bits in the odd operand are merged into the odd bit
positions. This function returns the qword result in edx:eax (edx contains the H.O. dword).

Note: because this function passes the parameters in EAX and EDX, you may get an undefined result if you
specify EDX as the even parameter or EAX as the odd parameter.

HLA high-level calling sequence examples:

bits.merge32(mem32Even, mem32Odd);
mov(edx, (type dword mergedQword[4]));
mov(eax, (type dword mergedQword[0]));

bits.merge32(ecx, ebx);
mov(edx, (type dword mergedQword[4]));

mov(eax, (type dword mergedQword[0]));

HLA low-level calling sequence examples:

mov(mem32Even, eax);
mov(mem32Odd, edx);
call bits.merge32;
mov(edx, (type dword mergedQword[4]));
mov(eax, (type dword mergedQword[0]));

mov(ecx, eax);
mov(ebx, edx);
call bits.merge32;
mov(edx, (type dword mergedQword[4]));
mov(eax, (type dword mergedQword[0]));

A B C D E F...

I J K L M N

bits.merge n

...

A I B E M F...J N

Odd Operand

Even Operand
Page 28 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
bits.merge16(even:word; odd:word); @returns("EAX");

This function merges two word values to produce a single dword value. The bits in the even operand are
placed in the even bit positions of the dword result, the bits in the odd operand are merged into the odd bit
positions. This function returns the dword result in EAX.

HLA high-level calling sequence examples:

bits.merge16(mem16Even, mem16Odd);
mov(eax, mergedDword);

bits.merge16(cx, bx);
mov(eax, mergedDword);

HLA low-level calling sequence examples:

// If mem16Even and mem16Odd are not at the end
// of some page in memory, you can safely do the following

push((type dword mem16Even));
push((type dword mem16Odd));
call bits.merge16;
mov(eax, mergedDword);

// To be absolutely safe, do something like the following
// (EAX is free to use because the result comes back in EAX):

movzx(mem16Even, eax);
push(eax);
movzx(mem16Odd, eax);
push(eax);
call bits.merge16;
mov(eax, mergedDword);

push(ecx);
push(edx);
call bits.merge16;
mov(eax, mergedDword);

bits.merge8(even:byte in al; odd:byte in ah); @returns("AX");

This function merges two byte values to produce a single word value. The bits in the even operand are
placed in the even bit positions of the word result, the bits in the odd operand are merged into the odd bit
positions. This function returns the word result in AX.

Note: because this function passes the parameters in AL and AH, you may get an undefined result if you
specify AH as the even parameter or AL as the odd parameter.

HLA high-level calling sequence examples:

bits.merge8(mem8Even, mem8Odd);
mov(ax, mergedWord);

bits.merge8(cl, bh);
mov(eax, mergedWord);

HLA low-level calling sequence examples:
Released to the Public Domain Page 29

HLA Standard Library
mov(mem8Even, al);
mov(mem8Odd, ah);
call bits.merge8;
mov(ax, mergedWord);

mov(cl, al);
mov(bh, ah);
call bits.merge8;
mov(ax, mergedWord);

4.5 Bit Extraction Functions
These functions extract nibbles from their source operands, zero extend those nibbles to bytes, and return the

values in an operand twice the size of the original operand (e.g., AL->AX, AX->EAX, and EAX->EDX:EAX).
For example, the bits.nibbles8 function does the following:

bits.nibbles32(d:dword in eax); @returns("EDX:EAX");

This function extracts the 8 nibbles from EAX, zero extends each of them to 8 bits, and then places them in
the following locations

EAX[0:3] -> EAX[0:7]
EAX[4:7] -> EAX[8:15]
EAX[8:11] -> EAX[16:23]
EAX[12:15] -> EAX[24:31]
EAX[16:19] -> EDX[0:7]
EAX[20:23] -> EDX[8:15]
EAX[24:27] -> EDX[16:23]
EAX[28:31] -> EDX[24:31]

HLA high-level calling sequence examples:

bits.nibbles32(mem32);
mov(eax, LONibbles);
mov(edx, HONibbles);

bits.nibbles32(ecx);
mov(eax, LONibbles);
mov(edx, HONibbles);

A B C D E F G H
bits.nibbles8

0 0 0 0 A B C D 0 0 0 0 E F G H

AL

AH AL
Page 30 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

mov(mem32, eax);
call bits.nibbles32;
mov(ax, mergedWord);

mov(ecx, eax);
call bits.nibbles32;
mov(eax, LONibbles);
mov(edx, HONibbles);

bits.nibbles16(w:word in ax); @returns("EAX");

This function extracts the 4 nibbles from AX, zero extends each of them to 8 bits, and then places them in
the following locations
AX[0:3] -> EAX[0:7]
AX[4:7] -> EAX[8:15]
AX[8:11] -> EAX[16:23]
AX[12:15] -> EAX[24:31]

HLA high-level calling sequence examples:

bits.nibbles16(mem16);
mov(eax, Nibbles);

bits.nibbles16(cx);
mov(eax, Nibbles);

HLA low-level calling sequence examples:

mov(mem16, ax);
call bits.nibbles16;
mov(ax, mergedWord);

mov(cx, ax);
call bits.nibbles16;
mov(eax, LONibbles);

bits.nibbles8(b:byte in al); @returns("AX");

This function extracts the 2 nibbles from AL, zero extends each of them to 8 bits, and then places them in the
following locations
AL[0:3] -> AL[0:7]
AL[4:7] -> AH[0:7]

HLA high-level calling sequence examples:

bits.nibbles8(mem8);
mov(ax, TwoNibbles);

bits.nibbles8(ch);
mov(ax, TwoNibbles);
Released to the Public Domain Page 31

HLA Standard Library
HLA low-level calling sequence examples:

mov(mem8, al);
call bits.nibbles8;
mov(ax, TwoNibbles);

mov(ch, al);
call bits.nibbles8;
mov(ax, TwoNibbles);

procedure bits.extract(var d:dword);

@returns("EAX"); // Really a macro.

This function extracts the first set bit in d searching from bit #0 and returns the index of this bit in the EAX
register; the function will also return the zero flag clear in this case. This function also clears that bit in the
operand. If d contains zero, then this function returns the zero flag set and EAX will contain -1.

Note that HLA actually implements this function as a macro, not a procedure. This means that you can pass
any double word operand as a parameter (i.e., a memory or a register operand). However, the results are
undefined if you pass EAX as the parameter (since this function returns the bit number in EAX). Note that the
macro will report an error message if you try to pass EAX as the parameter.

4.6 Bit Distribution Functions

bits.distribute(source:dword; mask:dword; dest:dword);

@returns("EAX");

This function takes the L.O. n bits of source, where n is the number of "1" bits in mask, and inserts these bits
into dest at the bit positions specified by the "1" bits in mask. This function does not change the bits in dest that
correspond to the zeros in the mask value. This function does not affect the value of the actual dest parameter,
instead, it returns the new value in the EAX register.

Example:

source = $FF00_AA55
mask = $F0FF_000F
dest = $1234_5678

The bits.distribute function grabs the L.O. 16 bits of source and inserts these bits at positions 0, 1, 2, 3, 16,
17, 18, 19, 20, 21, 22, 23, and 28, 29, 30, and 31 into the value $1234_5678 and returns the result in EAX. For
this example, bits.distribute begins by grabbing the L.O. four bits of source and inserts them at bit positions 0..3
of $1234_5678 (since mask contains four set bits at positions 0..3). This yields the temporary result

A B C D 1 1 0 0...
bits.extract

A B C D 1 0 0 0...
EAX = 2
ZF = 1
Page 32 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
$1234_5675. Next, bits.distribute grabs bits 4..11 from source ($A5) and inserts these bits into bit positions
16..23 since mask contains eight consecutive bits between positions 16 and 23. The produces the temporary
result $12A5_5675. Finally, bits.distribute grabs bits 12..15 from the source operand ($A) and inserts these into
the result at bit positions 28..31 (since the mask value contains set bits at these positions). The final result this
function returns in EAX is $A2A5_5675.

bits.coalese(source:dword; mask:dword);

@returns("EAX");

This function is the converse of bits.distribute. It extracts all the bits in source whose corresponding positions
in mask contain a one. This function coalesces (right justifies) these bits in the L.O. bit positions of the result
and returns the result in EAX.

Example:

source = $afff_ffce
mask = $aaaa_5555

bits.coalesce grabs bits 0, 2, 4, 6, 8, 10, 12, 14, 17, 19, 21, 23, 25, 27, 29, and 31 from source and packs these into
the L.O. 16 bits of EAX (it also sets the H.O. bits of EAX to zero). The final result in EAX is $FFFA.

? ? ? ? ? ? ? ?... D C B A

bits.distribute

0 0 0 0 0 1 1 0... 0 1 1 0

z y x w h g f e... d c b a

z y x w h D C e... d B A a

z y x w h g f e... d c b a

0 0 0 0 0 0 0 0... g f c b

bits.coalesce

0 0 0 0 0 1 1 0... 0 1 1 0
Released to the Public Domain Page 33

HLA Standard Library
Page 34 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
5 The Blobs Module (blobs.hhf)

This unit contains routines that read data from and write data to memory-based streams (blobs, or Binary
Large OBjects). The blob functions can be broken down into five generic categories: general functions that
initialize and allocate blobs, functions that convert between blobs and generic memory buffers, functions that do
blob file I/O, accessor functions that provide access to the internal blob data structure, and blob I/O functions.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computing certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

A note about thread safety: Each blob object maintains its own critical section variable. Therefore, blobs
are protected from multi-threaded access on a per-blob level. Because blobs create this critical section object
whenever a blob is initialized or allocated, you must ensure that you free or destroy the blob when you are done
using it (and before your program quits) in order to free up system resources.

5.1 Conversion Format Control
The blob output functions that convert numeric values to hexadecimal, unsigned decimal, and signed

decimal output provide the ability to inject underscores between groups of three (decimal) or four (hexadecimal)
digits to make it easier to read large numbers. You enable and disable underscore output using the
conv.setUnderscores and conv.getUnderscores functions. Please refer to their documentation in the conv.rtf file
for more details.

When reading numeric data from a blob, the blob functions use an internal delimiters character set to
determine which characters may legally end a sequence of numeric digits. You can change the complexion of
this character set using the conv.getDelimiters and conv.setDelimiters functions. Please refer to their
documentation in the conv.rtf file for more details.

When converting numeric values to string form for output, the blob routines call the conversion functions
found in the conv (conversions) module. For detailed information on the actual conversions, please consult the
conv.rtf document.

5.2 Blob Synopsis
The best way to describe a blob (Binary Large Object) is by calling it a "memory-based file." You generally

read and write data to a blob using a file I/O paradigm, that is, by using function calls similar to the HLA
standard library's fileio functions. The advantage of blobs over files is that blobs are much faster than files; the
disadvantage of blobs is that blob data is volatile (meaning that you lose all data written to a blob when the
program quits or if there is a power outage). Another pair of blob disadvantages is that blobs' sizes are limited by
the amount of available system RAM (files are limited by the amount of free disk space, which is usually much
larger) and that you have to predeclare a blob's size before using it. By contrast, files can grow to any size up to
the amount of free disk space you having to specify the maximum size prior to creating the file. Despite these
limitations, blobs are quite useful because blob manipulation is much faster than file manipulation (often three
orders of magnitude faster).

Blobs are very similar to strings. The main differences between strings and blobs are
• Strings generally hold character data (ASCII text), blobs hold arbitrary character and binary

data (hence the name "Binary Large OBject").
• Strings generally represent a single coherent value (e.g., a single line of text), blobs may

contain many records (e.g., multiple lines of text).
• Strings are generally created and manipulated in their entirety; blobs are generally built up and

accessed using a sequence of operations (similar to file I/O operations).
• Blobs' data can be aligned on any address that is a power of two (and greater than or equal to

4); strings are always aligned on dword addresses. This makes blobs especially useful for
manipulating data objects with certain SSE instructions.
Released to the Public Domain Page 35

HLA Standard Library
5.3 Blob Internal Representation
The following is the internal representation of a blob object (these declarations are inside the blob

namespace):
type

blobRec:
record := -20;

allocPtr :dword;
criticalSection :dword
rcursor :dword;
wcursor :dword;
maxlen :dword;
length :dword;
blobData :byte[16]; // Minimum is 16 bytes

endrecord;

t :pointer to blobRec; // blob.t outside blob namespace
blob_t :t; // blob.blob_t outside blob namespace
blob :t; // blob.blob outside blob namespace

Note that the fieldnames in blobRec are generally considered private to the blobRec record declaration and are
intended for internal use (by the blobs package) only. Applications should only reference or modify these fields
using the blob accessor functions (described a little later in this document).

The allocPtr field contains the address of the start of the memory block allocated for the blob. Blobs can be
allocated to any address (that is a power of two and greater than or equal to 4). Because the stdlib's mem.alloc
function only guarantees 8-byte alignment, certain calls that allocate storage for a blob might need to allocate
extra storage in order to align the blob's data (the blobData field) at an appropriate address in memory. This might
insert (an arbitrary amount of) padding bytes before the allocPtr field in the blob data structure. The blob data
structure needs to save this allocation address (in allocPtr) so that the application can free the storage consumed
by the blob object. Much of the time, the allocPtr field will contain it's own address; for unaligned (the most
common) blobs, or blobs aligned on 8-byte or less addresses, no extra padding is necessary. If the blob object is
allocated in static memory rather than on the heap (or in memory that was not allocated by the blob library
functions), the allocPtr field will contain NULL.

The criticalSection field contains the object that controls access to the blob’s critical section in multi-threaded
applications. Note that this field is still present (though unused) in single-threaded applications. This is a private
field and should never be accessed by code outside the blob library.

The rcursor (read cursor) field contains the offset into the blob's data where the next value will be read from
the blob using one of the blob.get* functions or any of the other blob input functions that read data from the read
cursor position.

The wcursor (write cursor) field contains the offset into the blob's data where the next value will be written to
in the blob using one of the blob.put* functions or any of the other blob output functions that write data to the
write cursor position in the blob.

The maxlen (maximum length) field contains the maximum size of the blob. If an application attempts to
read or write data beyond this point in the blob, the library routines will generate an exception.

The length field is the current (dynamic) length of the blob. This field's value is always less than or equal to
maxlen's value.

The blobData field is where the blob's data appears in memory. This is an array of bytes containing at least
maxlen bytes (it may contain more, depending on the alignment of the blob allocation). This field always
contains at least 16 bytes (hence the declared size of 16 in the blobRec record).

5.4 Declaring Blob Variables
HLA stdlib blob variables are pointers. When declaring blob objects, you should use the blob.blob,

blob.blob_t, or blob.t data types. These three names are all synonyms, you can use whatever form you choose.
Whenever this documentation refers to a "blob variable", it is actually talking about a pointer to a blob object,
that is, a variable of type blob.blob, blob.blob_t, or blob.t. For example:

var
blobVar : blob.t;
Page 36 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
blobVar2 : blob.blob_t;
blobVar3 : blob.blob;

Note that these declarations all reserve exactly four bytes for the blob variables (blobVar1, blobVar2, and
blobVar3). Blob variables always hold pointers to the actual blob data. Of course, like strings and other pointers,
these declarations do not actually allocate storage for the blob object itself. You will have to call a function such
as blob.alloc to allocate the actual storage for a blob object.

You can also use the blob.init function to initialize a block of memory you’ve allocated for use as a blob.
 See the description of this function for more details.

 5.4.1 Initializing and Allocating Blob Variables
The HLA Blobs module provides several functions that let you allocate storage for a blob on the heap or

associate other storage with the blob. Because you must allocate storage for a blob before using it, these
functions will generally be the first functions you call before using a blob.

 blob.init(var b:var; numBytes:dword); @returns("eax");

The blob.init routine initializes a block of memory so that it contains a blob object. This function returns a
pointer to the blob object in EAX, which you should store into a blob.t variable. The b argument is the address of
a block of bytes that you want to use as the blob object. The numBytes argument is the total size of the block of
memory pointed at by the b parameter. Note that at least 20 bytes of the object pointed at by b will be used to
hold the blob's metadata (internal data structure). That is, numBytes does not specify the maximum size of the
blob; the maximum size will actually be slightly smaller than this value. This function will raise an exception if
numBytes is too small (insufficient space to allocate the blob metadata and at least 16 bytes of blob data.).
Warning: that this function sets the allocPtr field of the blobRec data structure to NULL. If you have allocated
this storage on the heap, it is your responsibility to call mem.free with the original allocation address to return the
storage to the heap. You must never call blob.free to free the blob storage that you've initialized with a blob.init
call.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.destroy when you are done with the blob to delete the critical section object and return its
resources to the operating system.

 blob.init16(var b:var; numBytes:dword); @returns("eax");

Just like blob.init except that this function always returns an address that is aligned to a 16-byte boundary.
Note that if the memory block pointed at by b isn't at an appropriate address, blob.init16 will use up to 15 bytes at
the beginning of this block as padding bytes to guarantee that the address this function returns in eax is aligned to
a 16-byte boundary. Therefore, you should ensure that the block of memory whose address you pass is at least
16 bytes larger than you need to ensure you have enough space after padding is removed from the total. The
warnings above apply to blob.init16 as well as blob.init.

 blob.alloc(size:dword); @returns("eax");

The blob.alloc routine allocates storage for a blob object that contains at least size bytes of blob data. It
initializes the blob header (blobRec) data structure and returns a pointer to the blob in EAX (that you should store
into a blob variable). This function will raise an exception if it cannot allocate the specified amount of storage on
the heap for the blob object. Note that this function also allocates storage for the blob header and pads the size of
the blob (typically to a multiple of 16 bytes) so this call allocates a little bit more storage than size bytes on the
heap. Note that blobs created with the blob.alloc function are always aligned on a 16-byte boundary and they
always initialize the blobRec allocPtr field with the address of the storage allocated by an (internal) mem.alloc call.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.
Released to the Public Domain Page 37

HLA Standard Library
 blob.allocAligned(size:dword; alignment:dword); @returns("eax");

The blob.allocAligned routine also allocates storage for a blob object on the heap. The alignment argument is
an integer in the range 0..16 specifying the alignment on a 2**alignment byte boundary. That is, the alignment
value is interpreted as follows:

Note that the minimum alignment is always 16 bytes because this is the alignment that blob.alloc guarantees.
Note that the blob.allocAligned function might have to add as many as 2*alignment+32 bytes to the size of the
storage allocated on the heap in order to guarantee alignment on the desired address boundary. As for the
blob.alloc call, this function initializes the internal allocPtr field with the address of the block of storage allocated
on the heap.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.

 blob.realloc(theBlob:blob.t; size:dword); @returns("eax");

The blob.realloc routine resizes an existing blob. The first argument, theBlob, is the address of the blob object
to resize and the second argument is the new maximum size of the resultant blob. This function works by
allocating a new blob of the specified size, copying the blob data from the original blob to the new blob, and then
freeing the storage associated with the original blob if the allocPtr field contains a non-NULL value.

 It will also destroy the critical section object held by the original blob.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.

Note that there is no blob.reallocAligned function call, but you can easily write your own using the following
code:

blob.allocAligned(newsize, desiredAlignment);
push(eax);
blob.cpy(originalBlob, eax);
blob.free(originalBlob);

ali
gnment

Blob data
aligned to

0 16 bytes
1 16 bytes
2 16 bytes
3 16 bytes
4 16 bytes
5 32 bytes
6 64 bytes
7 128 bytes
8 256 bytes
9 512 bytes
10 1024 bytes
11 2048 bytes
12 4096 bytes
13 8192 bytes
14 16384 bytes
15 32768 bytes
16 65536 bytes
Page 38 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pop(eax);
mov(eax, originalBlob);

 blob.free(theBlob:blob.t);

The blob.free routine frees the storage associated with a blob object if that blob object was allocated on the
heap with a call to blob.alloc or blob.allocAligned (specifically, if the allocPtr field in the blobRec data structure
contains a non-NULL value). If the allocPtr field contains NULL, then this function returns without raising an
exception. If theBlob is NULL, contains a bad address, or if allocPtr isn't pointing at an object on the heap, then
this routine will raise an appropriate exception.

 This function will also delete the critical section object held b the blob.

 blob.destroy(theBlob:blob.t);

The blob.destroy routine deletes the critical section held by the blob. If the allocPtr

field is non-NULL, this will also deallocate the storage held by the blob. Functionally, blob.free and
blob.destroy are equivalent; though blob.free is intended for blobs allocated via some blob.allooc* or blob.a_*
function and blob.destroy is intended for blobs initialized via the blob.init* functions.

5.5 Blob Accessor Functions
The following functions in the HLA blobs unit provide access to the blobRec data structure. Programs should

use these accessor functions rather than directly accessing the blobRect fields.

 blob.length(b:blob.t); @returns("eax");

The blobl.length routine returns the value of the blobRec.length field, that is, the current size (actual data) of
the blob.

HLA high-level calling sequence example:

blob.length(b);
mov(eax, blobLength);

HLA low-level calling sequence example:

push(b);
call blob.length;
mov(eax, blobLength);

 blob.setLength(b:blob.t; newLen:dword);

The blobl.setLength routine sets the value of the blobRec.length field to the value specified by the newLen
parameter. You should exercise extreme caution when using this function. The blob.setLength function does not
check the value of the newLen argument to determine if it is valid. You could supply a value larger than the actual
amount of data currently in the blob (meaning you've just added garbage to the end of the blob) or you could
even supply a value that is beyond the allocated size of the blob (creating memory access problems down the
road).

HLA high-level calling sequence example:

blob.setLength(b, 32768);

HLA low-level calling sequence example:

push(b);
pushd(32768);
Released to the Public Domain Page 39

HLA Standard Library
call blob.setLength;

 blob.maxlen(b:blob.t); @returns("eax");

The blob.maxlen routine returns the value of the blobRec.maxlen field, that is, the current maximum size of the
blob.

HLA high-level calling sequence example:

blob.maxlen(b);
mov(eax, blobMaxLen);

HLA low-level calling sequence example:

push(b);
call blob.maxlen;
mov(eax, blobMaxLen);

 blob.setMaxlen(b:blob.t; newLen:dword);

The blobl.setMaxlen routine sets the value of the blobRec.maxlen field to the value specified by the newLen
parameter. You should exercise extreme caution when using this function. The blob.setMaxlen function does not
check the value of the newLen argument to determine if it is valid. You should only set the value of this field
when allocating storage for a new blob or if you are shrinking the size of a blob in-place. Expanding the maxlen
value does not allocate any more storage for the blob and such action will probably lead to a memory fault later
on in your program. Note that this function does not change the value of the blobRec.length field, even if the
new value for maxlen is less than the existing length.

HLA high-level calling sequence example:

blob.setMaxlen(b, 32768);

HLA low-level calling sequence example:

push(b);
pushd(32768);
call blob.setMaxlen;

 blob.rcursor(b:blob.t); @returns("eax");

The blobl.rcursor routine returns the value of the blobRec.rcursor field in the EAX register.

HLA high-level calling sequence example:

blob.rcursor(b);
mov(eax, blobReadPosition);

HLA low-level calling sequence example:

push(b);
call blob.rcursor;
mov(eax, blobReadPosition);
Page 40 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 blob.setrCursor(b:blob.t; newCursor:dword);

The blobl.setrCursor routine sets the value of the blobRec.rcursor field to the value specified by the newCursor
parameter. You should exercise extreme caution when using this function. The blob.setrCursor function does not
check the value of the newCursor argument to determine if it is valid. If you point the rcursor field beyond the end
of the blob's length you could get a memory fault error or read garbage data.

HLA high-level calling sequence example:

blob.setrCursor(b, 0);

HLA low-level calling sequence example:

push(b);
pushd(0);
call blob.setrCursor;

 blob.wcursor(b:blob.t); @returns("eax");

The blobl.wcursor routine returns the value of the blobRec.wcursor field in the EAX register.

HLA high-level calling sequence example:

blob.wcursor(b);
mov(eax, blobWritePosition);

HLA low-level calling sequence example:

push(b);
call blob.wcursor;
mov(eax, blobWritePosition);

 blob.setwCursor(b:blob.t; newCursor:dword);

The blobl.setwCursor routine sets the value of the blobRec.rcursor field to the value specified by the newCursor
parameter. You should exercise extreme caution when using this function. The blob.setwCursor function does
not check the value of the newCursor argument to determine if it is valid. If you point the wcursor field beyond the
end of the blob's length you could get a memory fault error or leave garbage data in the middle of the blob.

HLA high-level calling sequence example:

blob.setwCursor(b, 0);

HLA low-level calling sequence example:

push(b);
pushd(0);
call blob.setwCursor;
Released to the Public Domain Page 41

HLA Standard Library
 blob.reset;

The blobl.reset routine sets the blob's rcursor, wcursor, and length fields to zero. This effectively restores the
blob to its original state when it was created. Note that this does not change any actual data appearing the the
blob's memory storage, but since blob.reset sets the length field to zero, this effectively erases any data present in
the blob.

HLA high-level calling sequence example:

blob.reset();

HLA low-level calling sequence example:

call blob.reset;

 blob.eof(b:blob.t); @returns("@c");

This function returns true (1) in EAX and the carry flag if the read cursor is at the end of the blob's data. It
returns false (0) otherwise. Note that this function actually returns true/false in EAX even though the "returns"
value is "@c". It also returns the EOF state in the carry flag (c=1 if EOF, c=0 if not at EOF).

HLA high-level calling sequence example:

while(!(blob.eof(blobPointer)) do

<< something while not at EOF>>

endwhile;

HLA low-level calling sequence example:

whileNotEOF:
push(blobPointer);
call blob.eof;
cmp(al, true);
jne atEOF;

<< something while not at EOF>>

jmp whileNotEOF;
atEOF:

5.6 Blob Assignment Functions
These functions copy blobs and fill a blob with a single byte, word, or double-word value.

 blob.a_cpy(b:blob.t); @returns("eax");

This function creates a new blob on the heap that is a copy of the blob pointed at by the b parameter. It
returns a pointer to the new blob in the EAX register. When you are done using this new blob, you should free
the storage associated with it (and delete the criticalsection it creates) by calling the blob.free function.

HLA high-level calling sequence example:

blob.a_cpy(someBlob);
mov(eax, newBlob);
Page 42 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

push(someBlob);
call blob.a_cpy;
mov(eax, newBlob);

 blob.cpy(src:blob.t; dest:blob.t); @returns("eax");

This function copies the data from the source blob (pointed at by src) to the destination blob (pointed at by
dest) and returns a pointer to the destination blob in EAX. This function raises an ex.BlobOverflow exception if
the destination blob isn’t large enough to hold the data copied from the source blob.

HLA high-level calling sequence example:

blob.cpy(someBlob, destBlob);

HLA low-level calling sequence example:

push(someBlob);
push(destBlob);
call blob.cpy;

 blob.fillb(theValue:byte; numBytes:dword; dest:blob);

This function fills an existing blob with numBytes copies of the byte value theValue. This function resets the
rcursor field to zero and the wcursor and length fields to numBytes. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numBytes bytes.

HLA high-level calling sequence example:

blob.fillb(0, 1024, destBlob);

HLA low-level calling sequence example:

pushd(0);
pushd(1024);
push(destBlob);
call blob.fillb;

 blob.fillw(theValue:word; numWords:dword; dest:blob);

This function fills an existing blob with numWords copies of the word value theValue. This function resets the
rcursor field to zero and the wcursor and length fields to numWords*2. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numWords*2 bytes.

HLA high-level calling sequence example:

blob.fillw(1000, 1024, destBlob);

HLA low-level calling sequence example:

pushd(1000);
pushd(1024);
push(destBlob);
call blob.fillw;
Released to the Public Domain Page 43

HLA Standard Library
 blob.filld(theValue:word; numDwords:dword; dest:blob);

This function fills an existing blob with numDwords copies of the dword value theValue. This function resets
the rcursor field to zero and the wcursor and length fields to numDwords*4. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numDwords*4 bytes.

HLA high-level calling sequence example:

blob.filld(1_000_000, 1024, destBlob);

HLA low-level calling sequence example:

pushd(1_000_000);
pushd(1024);
push(destBlob);
call blob.filld;

5.7 Blob Extraction Functions
These funcions extract subranges (slices) of a blob.

blob.a_subBlob(src:blob; start:dword; len:dword); @returns("eax");

This function creates a new blob on the heap and initializes it with data from an existing blob (pointed at by
src). The new blob is initialized with len bytes starting at offset start in blob src. This function returns a pointer to
the new blob on the heap in the EAX register. It is the callers responsibility to call blob.free to free the storage
associated with this new blob (and delete the critical section that this function creates).

HLA high-level calling sequence example:

blob.a_subBlob(someBlob, 1024, 256);
mov(eax, newBlob);

HLA low-level calling sequence example:

push(someBlob);
pushd(1024);
pushd(256);
call blob.a_subBlob;
mov(eax, newBlob);

blob.subBlob(src:blob; start:dword; len:dword; dest:blob.t);

This function copies a sequence from a source blob (src) to a destination blob (dest). It copies len bytes
starting at offset start in src to dest. This function raises an ex.BlobOverflow exception if d is too small to receive
the blob data.

HLA high-level calling sequence example:

blob.subBlob(someBlob, 1024, 256, destBlob);

HLA low-level calling sequence example:

push(someBlob);
pushd(1024);
pushd(256);
push(destBlob
call blob.subBlob;
Page 44 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
5.8 Blob Comparison Functions
These funcions compare two blobs for equality or inequality.

blob.eq(left:blob; right:blob.t); @returns("@c");

This function compares two blobs and returns true in the carry flag and the AL register if the two blobs are
equal to one another.

HLA high-level calling sequence example:

if(blob.eq(someBlob, anotherBlob)) then

// Do something if blobs are equal

endif;

HLA low-level calling sequence example:

push(someBlob);
push(anotherBlob);
call blob.eq;
jnc blobsNotEqual;

// Do something if blobs are equal

blobsNotEqual:

blob.ne(left:blob; right:blob.t); @returns("@c");

This function compares two blobs and returns true in the carry flag and the AL register if the two blobs are
not equal to one another.

HLA high-level calling sequence example:

if(blob.ne(someBlob, anotherBlob)) then

// Do something if blobs are not equal

endif;

HLA low-level calling sequence example:

push(someBlob);
push(anotherBlob);
call blob.eq;
jnc blobsEqual;

// Do something if blobs are not equal

blobsEqual:

5.9 Blob Scanning Functions
These funcions convert memory buffers (ranges of bytes) to blob objects
Released to the Public Domain Page 45

HLA Standard Library
blob.index(src1:blob; src2:blob.t); @returns("@c");

blob.index(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.index2(src1:blob; src2:blob.t); @returns("@c");

blob.index3(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.indexStr(src1:blob; src2:string); @returns("@c");

blob.indexStr(src1:blob; offs:dword src2:string); @returns("@c");

blob.indexStr2(src1:blob; src2:string); @returns("@c");

blob.indexStr3(src1:blob; offs:dword src2:string); @returns("@c");

These functions search for the presence of a string or blob within some blob. They return the carry flag set
if they find the src2 blob or string within the src1 blob and clear if the src2 string or blob is not found within the
src1 blob. The variants with the offs parameter begin searching for the blob or string at offset offs within the blob
src1. If the carry comes back set (meaning src2 was found), then the EAX register will contain the offset into src1
where src1 is first found. These functions raise an ex.ValueOutOfRange exception if the offs value is greater than
the current length of src1.

HLA high-level calling sequence example:

if(blob.index(someBlob, subBlob)) then

// Do something if subBlob is a subblob of someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
push(subBlob);
call blob.index;
jnc notPresent;

// Do something if subBlob is a subblob of someBlob

notPresent:

blob.rindex(src1:blob; src2:blob.t); @returns("@c");

blob.rindex(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.rindex2(src1:blob; src2:blob.t); @returns("@c");

blob.rindex3(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.rindexStr(src1:blob; src2:string); @returns("@c");

blob.rindexStr(src1:blob; offs:dword src2:string); @returns("@c");

blob.rindexStr2(src1:blob; src2:string); @returns("@c");

blob.rindexStr3(src1:blob; offs:dword src2:string); @returns("@c");

These functions search backwards for the presence of a string or blob within some blob starting at the end of
that blob. They return the carry flag set if they find the src2 blob or string within the src1 blob and clear if the src2
string or blob is not found within the src1 blob. The variants with the offs parameter begin searching for the blob
or string at offset length-offs within the blob src1. If the carry comes back set (meaning src2 was found), then the
Page 46 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
EAX register will contain the offset into src1 where src1 is last found. These functions raise an
ex.ValueOutOfRange exception if the offs value is greater than the current length of src1.

HLA high-level calling sequence example:

if(blob.rindex(someBlob, subBlob)) then

// Do something if subBlob is a subblob of someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
push(subBlob);
call blob.rindex;
jnc notPresent;

// Do something if subBlob is a subblob of someBlob

notPresent:

blob.chpos(src1:blob; src2:char); @returns("@c");

blob.chpos(src1:blob; offs:dword src2:char); @returns("@c");

blob.chpos2(src1:blob; src2:char); @returns("@c");

blob.chpos3(src1:blob; offs:dword src2:char); @returns("@c");

These functions search for the presence of a character within some blob. They return the carry flag set if
they find the src2 character within the src1 blob and clear if the src2 character is not found within the src1 blob.
The variants with the offs parameter begin searching for the character at offset offs within the blob src1. If the
carry comes back set (meaning src2 was found), then the EAX register will contain the offset into src1 where src2
is first found. These functions raise an ex.ValueOutOfRange exception if the offs value is greater than the current
length of src1.

HLA high-level calling sequence example:

if(blob.chpos(someBlob, someChar)) then

// Do something if someChar is within someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
mov(someChar, al);
push(eax);
call blob.chpos;
jnc notPresent;

// Do something if someChar is within someBlob

notPresent:
Released to the Public Domain Page 47

HLA Standard Library
blob.rchpos(src1:blob; src2:char); @returns("@c");

blob.rchpos(src1:blob; offs:dword src2:char); @returns("@c");

blob.rchpos2(src1:blob; src2:char); @returns("@c");

blob.rchpos3(src1:blob; offs:dword src2:char); @returns("@c");

These functions search for the presence of a character within some blob, searching from the end of the blob.
They return the carry flag set if they find the src2 character within the src1 blob and clear if the src2 character is
not found within the src1 blob. The variants with the offs parameter begin searching for the character at offset
offs within the blob src1. If the carry comes back set (meaning src2 was found), then the EAX register will contain
the offset into src1 where src2 is first found. These functions raise an ex.ValueOutOfRange exception if the offs
value is greater than the current length of src1.

HLA high-level calling sequence example:

if(blob.rchpos(someBlob, someChar)) then

// Do something if someChar is within someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
mov(someChar, al);
push(eax);
call blob.rchpos;
jnc notPresent;

// Do something if someChar is within someBlob

notPresent:

5.10 Blob Concatenation Functions
There are two major types of blob concatentation functions. The first group (consisting of the blob.cat macro

and the blob.cat2, blob.cat3, and blob.a_cat functions) take all the data from one blob and concatenates that data to
the end (that is, at the length offset) of a second blob. These functions set the length and wcursor fields to point at
the end of the new blob and reset the rcursor position of the result to zero.

The second group of concatenation functions take data from a string, a buffer, or a blob and append this to
the end of some destination blob starting at the wcursor position in the destination blob.

blob.a_cat(src1:blob; src2:char); @returns("@eax");

This function creates a new blob on the heap whose size is equivalent to the current lengths of the src1 and
src2 blobs whose pointers are passed as parameters. This function then copies the data from src1 to the new blob
and then appends the data from src2 to the end of this. This function returns a pointer to the new blob in EAX
and the length and wcursor fields are set to the new blob’s length and the rcursor field is set to zero. Note that it is
the caller’s responsibility to call blob.free in order to return the allocated storage to the heap and delete the newly
created critical section object for the blob.

HLA high-level calling sequence example:

blob.a_cat(blob1, blob2);
mov(eax, newBlob);

HLA low-level calling sequence example:
Page 48 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(blob1);
push(blob2);
call blob.a_cat;
mov(eax, newBlob);

blob.cat(src:blob; dest:blob);

blob.cat2(src:blob; dest:blob);

These functions concatenate the data from the src blob to the end of the data in the dest blob. They raise an
ex.BlobOverflow exception if the result will not fit in the destination blob.

HLA high-level calling sequence example:

blob.cat2(srcblob, destblob);

HLA low-level calling sequence example:

push(srcblob);
push(destblob);
call blob.cat2;
mov(eax, newBlob);

blob.cat(src1:blob; src2:blob; dest:blob);

blob.cat3(src1:blob; src2:blob; dest:blob);

These functions concatenate the data from two blobs (src1 and src2) and store the concatenated result into
the dest operand. They raise an ex.BlobOverflow exception if the result will not fit in the destination blob.

HLA high-level calling sequence example:

blob.cat3(blob1, blob2, dest);

HLA low-level calling sequence example:

push(blob1);
push(blob2);
push(dest);
call blob.cat3;

blob.catsub(src:blob; start:dword; len:dword; dest:blob);

blob.catsub4(src:string; start:dword; len:dword; dest:blob);

blob.catsub(src2:blob; start:dword; len:dword; src1:string; dest:blob);

blob.catsub5(src2:string; start:dword; len:dword; src1:string; dest:blob);

The blob.catsub functions are actually overloaded procedures that map to the blob.catsub4 and blob.catsub5
functions, depending on the call signature.

These functions concatenate the data froma string (src) or pair of strings (src1 and src2) and store the
concatenated result into the dest blob operand. They raise an ex.BlobOverflow exception if the result will not fit in
the destination blob. These functions raise an ex.StringIndexError exception if the start index value is greater than
the current length of the string.

The first two functions extract a substring of length len, starting at character position start, from src and
concatenate this string to the end of the dest blob.

The second two functions copy the src1 string to the blob and then copy the substring of src2 (specified by
start and len) to the end of this blob.
Released to the Public Domain Page 49

HLA Standard Library
All of these functions concatenate their strings to the blob starting at the wcursor position in the blob. They
will leave wcursor pointing beyond the data just concatenated and will update the length field of the blob if the
concatenated data extends the length. These functions do not affect the rcursor field of the blob.

HLA high-level calling sequence example:

blob.catsub4(strVar, 0, 24, dest);
blob.catsub5(strVar2, 0, 24, strVar1, dest);

HLA low-level calling sequence example:

push(strVar);
pushd(0);
pushd(24);
push(dest);
call blob.catsub4;

push(strVar2);
pushd(0);
pushd(24);
push(strVar1);
push(dest);
call blob.catsub5;

blob.a_catsub(src:blob; start:dword; len:dword; dest:blob);

This function extracts a substring (src, from start of length len) and creates a new blob on the heap from the
substring data. This function returns a pointer to the new blob in EAX This function sets the rcursor field of the
blob to zero and the wcursor and length fields of the blob to len. It is the caller’s responsibility to free the storage
allocated by the function (and the critical section it creates) by calling blob.free when the caller is done with this
blob.

HLA high-level calling sequence example:

blob.a_catsub(strVar, 0, 24);
mov(eax, newBlob);

HLA low-level calling sequence example:

push(strVar);
pushd(0);
pushd(24);
call blob.a_catsub;
mov(eax, newBlob);

blob.catbuf2(src:buf_t; dest:blob);

blob.catbuf3a(startBuf:dword; endBuf:dword; dest:blob);

blob.catbuf2 is a synonym for blob.catbuf3a. As it turns out, a buf_t object passed on the stack is the same as
passing the startBuf and endBuf dwords on the stack.

This function concatenates the bytes from a buffer (specified by the src or startBuf/endBuf variables) to the
end of an existing blob (dest). This function stores the buffer data starting at the offset specified by the wcursor
field of the blob. The bytes from memory locations startBuf to endBuf-1 are concatenated to the blob. If the new
wcursor field value is greater than length, this function also extends the value of the length field. This function
raises an ex.BlobOverflow exception if the new blob size would be greater than the maxlen field value.

HLA high-level calling sequence example:

blob.catbuf3a(startAddress, endAddressPlus1, destBlob);
Page 50 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

push(startAddress);
push(endAddressPlus1);
pushd(destBlob);
call blob.catbuf3a;

blob.catbuf3b(src2:buf_t; src1:string; dest:blob);

blob.catbuf4(startBuf:dword; endBuf:dword; strSrc:string; dest:blob);

blob.catbufe3b is a synonym for blob.catbuf4. As it turns out, a buf_t object passed on the stack is the same as
passing the startBuf and endBuf dwords on the stack.

This function concatenates the bytes from a buffer (specified by the src2 or startBuf/endBuf variables) to the
end of a string (strSrc) and concatenate this data to the end of an existing blob (dest). This function stores the
buffer data starting at the offset specified by the wcursor field of the blob. The bytes from the string (strSrc) and
then memory locations startBuf to endBuf-1 are concatenated to the blob. If the new wcursor field value is greater
than length, this function also extends the value of the length field. This function raises an ex.BlobOverflow
exception if the new blob size would be greater than the maxlen field value.

HLA high-level calling sequence example:

blob.catbuf4(startAddress, endAddressPlus1, someStr, destBlob);

HLA low-level calling sequence example:

push(startAddress);
push(endAddressPlus1);
push(someStr);
pushd(destBlob);
call blob.catbuf4;

5.11 Blob Conversion Functions
These funcions convert memory buffers (ranges of bytes) to blob objects
and strings to blob objects.

blob.bufToBlob2(buf:@global:buf_t; b:blob.t);

blob.bufToBlob3(startBuf:dword; endBuf:dword; b:blob.t);

These functions convert a
range of bytes (specified by a starting and ending address) into a blob object. The blob data is stored into the

(previously allocated) blob object pointed at by the b parameter.
Note that these function names are actually synonyms for the same function. As it turns out, passing a buf_t

object on the stack produces the exact same stack frame as passing a starting and ending buffer address.
The startBuf parameter is the address of the first byte of the memory block to convert; the endBuf parameter

supplies the last address of the buffer plus one.
The b parameter must point at a previously allocated and initialized blob object. This blob must be large

enough (maxlen) to hold the range of bytes specified by the buffer parameter(s).

HLA low-level calling sequence examples:

blob.bufToBlob3(startingAddress, endingAddress, blobPtr1);
blob.bufToBlob3(ebx, ecx, blobPtr2);
blob.bufToBlob2(buf_t_Variable, blobPtr3);

HLA low-level calling sequence examples:
Released to the Public Domain Page 51

HLA Standard Library
push(startingAddress);
push(endingAddress);
push(blobPtr1);
call blob.bufToBlob3;

push(ebx);
push(ecx);
push(blobPtr2);
call blob.a_bufToBlob2;

push((type dword buf_t_Variable[0]));
push((type dword buf_t_Variable[4]));
push(blobPtr3);
call blob.a_bufToBlob1;

blob.a_bufToBlob1(buf:@global:buf_t); @returns("@eax");

blob.a_bufToBlob2(startBuf:dword; endBuf:dword); @returns("@eax");

These functions convert a range of bytes (specified by a starting and ending address) into a blob object. The
blob’s data is allocated on the heap and these functions return a pointer to the blob data in the EAX register.

Note that these function names are actually synonyms for the same function. As it turns out, passing a buf_t
object on the stack produces the exact same stack frame as passing a starting and ending buffer address.

The startBuf parameter is the address of the first byte of the memory block to convert; the endBuf parameter
supplies the last address of the buffer plus one.

It is the caller’s responsibility to call blob.free to free up the allocated storage and release the critical section
object when the caller is done using the blob these function create.

HLA low-level calling sequence examples:

blob.a_bufToBlob2(startingAddress, endingAddress);
mov(eax, blobPtr1);
blob.a_bufToBlob2(ebx, ecx);
mov(eax, blobPtr2);
blob.a_bufToBlob1(buf_t_Variable);
mov(eax, blobPtr3);

HLA low-level calling sequence examples:

push(startingAddress);
push(endingAddress);
call blob.a_bufToBlob2;
mov(eax, blobPtr1);

push(ebx);
push(ecx);
call blob.a_bufToBlob2;
mov(eax, blobPtr2);

push((type dword buf_t_Variable[0]));
push((type dword buf_t_Variable[4]));
call blob.a_bufToBlob1;
mov(eax, blobPtr3);
Page 52 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
blob.strToBlob(src:string; dest:blob);

blob.zstrToBlob(src:string; dest:blob);

5.12 General Blob I/O Functions
Here are the blob file I/O routines provided by the HLA blobs unit:

 blob.a_load(FileName: string); @returns("eax");

The blobl.a_load routine opens the file by the specified name, allocates sufficient storage to hold all the data
in the file, reads the file's data into the blob, and then closes the file. This function returns a pointer to the
initialized blob in the EAX register. You should call blob.free to return this storage to the heap when you are
done using the blob.

This function initializes the read cursor so that it points at the beginning of the blob data read from the file. It
initializes the write cursor to point at the end of the blob's data; note, however, that there is no additional space
allocated at the end of the blob, so any attempt to write data to the blob (without resetting the write cursor to
some other point in the blob) will produce a blob overflow exception.

 blob.a_loadExtended(FileName: string; extend:dword); @returns("eax");

The blobl.a_loadExtended routine opens the file by the specified name, allocates sufficient storage to hold all
the data in the file plus the number of bytes specified by the extend argument, reads the file's data into the blob,
and then closes the file. This function returns a pointer to the initialized blob in the EAX register. You should
call blob.free to return this storage to the heap when you are done using the blob.

This function initializes the read cursor so that it points at the beginning of the blob data read from the file. It
initializes the write cursor to point at the end of the blob's data. Because the blob's size has been extended by the
value of the second parameter in the call, you can write that many additional bytes to the file.

 blob.load(filename:string; b:blob.t);

The blob.load routine opens the file by the specified name and reads the file's data into the blob specified by
the b parameter. This routine raise an exception if there is a problem opening the file (e.g., the file does not
exist). If the file is successfully opened, this function will read the file's data into the blob (raising an exception
if the file's data is too large to fit in the blob or if there is an error reading the file).

HLA high-level calling sequence examples:

blob.load(filenameStr, b);
blob.a_load("myfile2.txt");
mov(eax, b2);
blob.a_loadExtended("myfile3.txt", 8192);
mov(eax, b3);

HLA low-level calling sequence examples:

push(filenameStr);
push(b);
call blob.open;

// Note: If you want to use a string literal for the filename, the best
// solution is to create a string object in the readonly section, e.g.,
//
// readonly
// filenameStr2 :string := "myfile2.txt";
//
// and just use the "filenameStr2" object you’ve created.

push(filenameStr2);
Released to the Public Domain Page 53

HLA Standard Library
call blob.a_open;
mov(eax, b2);

// You may also do the following if you have a register available:

lea(eax, "myfile3.txt");
push(eax);
pushd(8192);
call blob.a_loadExtended;
mov(eax, b3);

 blob.appendFile(filename:string; b:blob.t.blob);

This function opens a file, reads its data, and appends that data to the end of an existing blob. It raises the
ex.BlobOverflow exception if the file is to large to append to the end of the blob specified by the b parameter. This
call sets the write cursor to the end of the file appended to the blob in memory; it does not affect the value of the
read cursor.

HLA high-level calling sequence example:

blob.appendFile(fileNameStr, b);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
call blob.appendFile;

 blob.a_appendFile(filename:string; b:blob.t.blob); @returns("eax");

This function creates a new blob on the heap that is the size of the data in the b blob plus the size of the file
specified by filename. It copies the data from the b blob to the new blob and then reads the file's data and appends
that data to the end of the new blob. It returns a pointer to the new blob in the EAX register (the caller should
ultimately call blob.free to return this storage to the heap). This call sets the write cursor to the end of the file
appended to the blob in memory; the value of the read cursor will be the same value found in the b blob.

HLA high-level calling sequence example:

blob.a_appendFile(fileNameStr, b);
mov(eax, b2);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
call blob.a_appendFile;
mov(eax, b2);
Page 54 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 blob.a_appendFileExtended(filename:string; b:blob.t.blob; extend:dword)
 {@returns("eax")};

This function allocates storage for a new blob that is the size of the existing blob plus the size of the file and
the extend value. It then copies the blob specified by the b parameter to the newly allocated blob and appends the
file's data to the end of this blob. Finally, it returns a pointer to the new blob in the EAX register. Note that the
original blob (specified by the b parameter) is unaffected by this operation. This call sets the write cursor to the
end of the file appended to the blob in memory; it sets the value of the read cursor to the same value of the
original blob (passed in b).

HLA high-level calling sequence example:

blob.a_appendFileExtend(fileNameStr, b, 16384);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
pushd(16384)
call blob.a_appendFileExtend;

 blob.save(filename:string; b:blob.t);

This function writes the blob's data (specified by the b parameter) to the file specified by the filename
parameter. This function will overwrite any existing file.

HLA high-level calling sequence examples:

blob.save(fileNameStr, blobVar);

HLA low-level calling sequence examples:

push(fileNameStr);
push(blobVar);
call blob.save;

5.13 Blob Binary I/O Routines

 blob.write(b:blob.t; var src:var; len:dword); @returns("eax");

This procedure writes the number of bytes specified by the len variable to the blob specified by the b
parameter (at offset wcursor in the blob). The bytes starting at the address of the src object are written to the blob.
No range checking is done on the src address value. It is your responsibility to ensure that the buffer contains at
least len valid data bytes. Note that src is an untyped reference parameter. This means that blob.write will take the
address of whatever object you provide as this parameter (including pointer variables, which may not be what
you want). If you want to pass the value of a pointer variable as the buffer address (rather than the address of the
pointer variable) when using the high-level style calling syntax, use the VAL keyword as a prefix to the
parameter (see the following examples). This function returns the number of bytes written to the blob in the
EAX register. If this operation writes bytes beyond the previous length of the blob, it will increment the
blobRec.length field of the blob appropriately.

HLA high-level calling sequence examples:
Released to the Public Domain Page 55

HLA Standard Library
blob.write(blobPointer, buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the blob:

blob.write(blobPointer, val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the blob (an unusual
// operation):

blob.write(blobPointer, bufPtr, 4);

HLA low-level calling sequence examples:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushd(&buffer);
push(count);
call blob.write;

// If a 32-bit register is available and buffer
// isn’t at a fixed, static, address:

push(blobPointer);
lea(eax, buffer);
push(eax);
push(count);
call blob.write;

// If a 32-bit register is not available and buffer
// isn’t at a fixed, static, address:

push(blobPointer);
sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call blob.write;

// If bufPtr points at the buffer to write,
// then use code like this:

push(blobPointer);
push(bufPtr);
push(count);
call blob.write;

// To write the 4 bytes at bufPtr to
// the file (unusual), you could use
// code like this:

push(blobPointer);
lea(eax, bufPtr);
push(eax);
Page 56 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd(4);
call blob.write;

 blob.writeAt(b:blob.t; var src:var; index:dword; len:dword);
@returns("eax");

This procedure writes the number of bytes specified by the len variable to the blob specified by the b
parameter at the offset specified by the index parameter. This procedure does not use nor does it modify the
blobRec.wcursor value. The bytes starting at the address of the src object are written to the blob. No range
checking is done on the src address value. It is your responsibility to ensure that the buffer contains at least len
valid data bytes. Note that src is an untyped reference parameter. This means that blob.writeAt will take the
address of whatever object you provide as this parameter (including pointer variables, which may not be what
you want). If you want to pass the value of a pointer variable as the buffer address (rather than the address of the
pointer variable) when using the high-level style calling syntax, use the VAL keyword as a prefix to the
parameter (see the following examples). This function returns the number of bytes written to the blob in the
EAX register. If the sum of index+len is greater than the previous length of the blob, then this function will extend
the length of the blob. If the value of index is greater than the original length of the blob, then this function will
return zero in EAX and will not transfer any data to the blob.

HLA high-level calling sequence example:

blob.writeAt(blobPointer, buffer, writeOffset, count);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushd(&buffer);
push(writeOffset);
push(count);
call blob.writeAt;

 blob.putByte(b:blob.t; byteVal:byte);

This procedure writes a single byte value (byteVal, which is a single-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 1. This call
is effectively equivalent to blob.write(b, byteVal, 1); except that it does not return the number of bytes written in
EAX (which is always 1, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putByte(blobPointer, ByteValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory and EAX is available for use:

push(blobPointer);
movzx(ByteValue, eax);
Released to the Public Domain Page 57

HLA Standard Library
push(eax);
call blob.putByte;

 blob.putWord(b:blob.t; wordVal:word);

This procedure writes a single word value (wordVal, which is a two-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 2. This call
is effectively equivalent to blob.write(b, wordVal, 2); except that it does not return the number of bytes written in
EAX (which is always 2, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putWord(blobPointer, WordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushw(0);
push(WordValue);
call blob.putWord;

 blob.putDword(b:blob.t; dwordVal:dword);

This procedure writes a single dword value (dwordVal, which is a four-byte binary value) to the blob
specified by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 4.
This call is effectively equivalent to blob.write(b, dwordVal, 4); except that it does not return the number of bytes
written in EAX (which is always 4, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putDword(blobPointer, DwordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push(DwordValue);
call blob.putDword;

 blob.putQword(b:blob.t; QwordVal:qword);

This procedure writes a single qword value (qwordVal, which is an eight-byte binary value) to the blob
specified by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 8.
This call is effectively equivalent to blob.write(b, qwordVal, 8); except that it does not return the number of bytes
written in EAX (which is always 8, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putQword(blobPointer, QwordValue);
Page 58 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push((type dword QwordValue[4]));
push((type dword QwordValue[0]));
call blob.putQword;

 blob.putTbyte(b:blob.t; tbyteVal:tbyte);

This procedure writes a single tbyte value (tbyteVal, which is a 10-byte binary value) to the blob specified by
the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 10. This call is
effectively equivalent to blob.write(b, tbyteVal, 10); except that it does not return the number of bytes written in
EAX (which is always 10, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putTbyte(blobPointer, TByteValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushw(0);
push((type word TByteValue [8]));
push((type dword TByteValue [4]));
push((type dword TByteValue [0]));
call blob.putTbyte;

 blob.putLword(b:blob.t; LwordVal:lword);

This procedure writes a single lword value (lwordVal, which is a 16-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 16. This call
is effectively equivalent to blob.write(b, lwordVal, 16); except that it does not return the number of bytes written in
EAX (which is always 16, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putLword(blobPointer, LwordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push((type dword LwordValue[12]));
push((type dword LwordValue[8]));
push((type dword LwordValue[4]));
push((type dword LwordValue[0]));
Released to the Public Domain Page 59

HLA Standard Library
call blob.putLword;

 blob.read(b:blob.t; var buffer:byte; count:uns32); @returns("eax");

This routine reads a sequence of count bytes from the specified blob starting at the rcursor position in the
blob. It stores the bytes into memory at the address specified by buffer.

 It returns the number of bytes actually read from the blob in the EAX register (this is usually equal to the
count value, unless the read operation attempts to read beyond the current length of the blob, in which case the
actual number of bytes is returned in EAX).

HLA high-level calling sequence examples:

blob.read(blobPointer, buffer, count);
blob.read(blobPointer, [eax], 1024);

HLA low-level calling sequence examples:

// If buffer is a static variable:

push(blobPointer);
pushd(&buffer);
push(count);
call blob.read;

 blob.readAt(b:blob.t; var buffer:byte; index:dword; len:uns32)

This routine reads a sequence of len bytes from the specified blob starting at offset index into the blob. It
stores the bytes into memory at the address specified by buffer.

 This function call ignores the initial value in the rcursor variable and it does not change this value. This
function returns the actual number of bytes read in the EAX register (which is usually equal to len). If len plus
index is greater than the current blob length, this this function returns the actual number of bytes read (which will
be less than len) in the EAX register.

HLA high-level calling sequence examples:

blob.readAt(blobPointer, buffer, index, count);
blob.readAt(blobPointer, [eax], 500, 1024);

HLA low-level calling sequence examples:

push(blobPointer);
pushd(&buffer);
push(index);
push(count);
call blob.readAt;

 blob.getByte(b:blob.t); @returns("al");

This procedure reads a single byte value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this byte in the AL register. This function call advances the value of rcursor by 1. This call is
effectively equivalent to blob.read(b, byteVal, 1); except that it does not return the number of bytes read in EAX
(which is always 1, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.
Page 60 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence example:

blob.getByte(blobPointer);
mov(al, ByteValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getByte;
mov(al, ByteValue);

 blob.getWord(b:blob.t); @returns("ax");

This procedure reads a single word value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this word in the AX register. This function call advances the value of rcursor by 2. This call is
effectively equivalent to blob.read(b, wordVal, 2); except that it does not return the number of bytes read in EAX
(which is always 2, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getWord(blobPointer);
mov(ax, WordValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getWord;
mov(ax, WordValue);

 blob.getDword(b:blob.t); @returns("eax");

This procedure reads a single dword value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this dword in the EAX register. This function call advances the value of rcursor by 4. This call
is effectively equivalent to blob.read(b, dwordVal, 4); except that it does not return the number of bytes read in
EAX (which is always 4, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getDword(blobPointer);
mov(eax, DwordValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getDword;
mov(ax, DwordValue);
Released to the Public Domain Page 61

HLA Standard Library
 blob.getQword(b:blob.t); @returns("edx:eax");

This procedure reads a single qword value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this qword in the EDX:EAX register pair. This function call advances the value of rcursor by 8.
This call is effectively equivalent to blob.read(b, qwordVal, 8); except that it does not return the number of bytes
read in EAX (which is always 8, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getQword(blobPointer);
mov(eax, (type dword QwordValue[0]));
mov(edx, (type dword QwordValue[4]));

HLA low-level calling sequence example:

push(blobPointer);
call blob.getQword;
mov(eax, (type dword QwordValue[0]));
mov(edx, (type dword QwordValue[4]));

 blob.getTbyte(b:blob.t; tbyteVal:tbyte);

This procedure reads a single tbyte value from the blob specified by the b parameter (at offset rcursor in the
blob) and stores this tbyte via the tbyteVal reference parameter. This function call advances the value of rcursor
by 10. This call is effectively equivalent to blob.read(b, tbyteVal, 10); except that it does not return the number of
bytes read in EAX (which is always 10, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getTbyte(blobPointer, tByteVar);

HLA low-level calling sequence example:

push(blobPointer);
pushd(&tbyteVar);
call blob.getTbyte;

 blob.getLword(b:blob.t; lwordVal:lword);

This procedure reads a single lword value from the blob specified by the b parameter (at offset rcursor in the
blob) and stores this lword via the lwordVal reference parameter. This function call advances the value of rcursor
by 16. This call is effectively equivalent to blob.read(b, lwordVal, 16); except that it does not return the number of
bytes read in EAX (which is always 16, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getLword(blobPointer, lwordVar);

HLA low-level calling sequence example:
Page 62 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(blobPointer);
pushd(&lwordVar);
call blob.getLword;

5.14 Blob Output Routines
The output routines in the blobs module are very similar to the file output routines in the fileio module as

well as the output routines in the stdout library module. In general, these routines require (at least) two
parameters; the first is the (pointer to the) blob object, the second parameter is usually the value to write to the
blob. Some functions contain additional parameters that provide formatting information.

All output is written to the blob at the wcursor offset into the blob's data. For each byte written, wcursor is
incremented by 1. If wcursor’s value becomes greater than or equal to the blob’s length value, then length is
adjusted as well (that is, length and wcursor will have the same value). If wcursor exceeds the value in the maxlen
field, then these functions raise an ex.BlobOverflow exception.

See the descriptions of the corresponding functions in the fileio module for more details.
Note that function names of the form blob.cat* are synonyms for the blob.put* functions.

blob.newln(b:blob.t)
blob.putbool(b:blob.t; b:boolean)
blob.putc(b:blob.t; c:char)
blob.putcSize(b:blob.t; c:char; width:int32; fill:char)
blob.putcset(b:blob.t; cst:cset)
blob.puts(b:blob.t; s:string)
blob.putsSize(b:blob.t; s:string; width:int32; fill:char)
blob.putb(b:blob.t; b:byte)
blob.puth8(b:blob.t; b:byte)
blob.puth8Size(b:blob.t; b:byte; size:dword; fill:char)
blob.putw(b:blob.t; w:word)
blob.puth16(b:blob.t; w:word)
blob.puth16Size(b:blob.t; w:word; size:dword; fill:char)
blob.putd(b:blob.t; d:dword)
blob.puth32(b:blob.t; d:dword)
blob.puth32Size(b:blob.t; d:dword; size:dword; fill:char)
blob.putq(b:blob.t; q:qword)
blob.puth64(b:blob.t; q:qword)
blob.puth64Size(b:blob.t; q:qword; size:dword; fill:char)
blob.puttb(b:blob.t; tb:tbyte)
blob.puth80(b:blob.t; tb:tbyte)
blob.puth80Size(b:blob.t; tb:tbyte; size:dword; fill:char)
blob.putl(b:blob.t; l:lword)
blob.puth128(b:blob.t; l:lword)
blob.puti8 (b:blob.t; b:byte)
blob.puti8Size (b:blob.t; b:byte; width:int32; fill:char)
blob.puti16(b:blob.t; w:word)
blob.puti16Size(b:blob.t; w:word; width:int32; fill:char)
blob.puti32(b:blob.t; d:dword)
blob.puti32Size(b:blob.t; d:dword; width:int32; fill:char)
blob.puti64(b:blob.t; q:qword)
blob.puti64Size(b:blob.t; q:qword; width:int32; fill:char)
blob.puti128(b:blob.t; l:lword)
blob.puti128Size(b:blob.t; l:lword; width:int32; fill:char)
blob.putu8 (b:blob.t; b:byte)
blob.putu8Size(b:blob.t; b:byte; width:int32; fill:char)
blob.putu16(b:blob.t; w:word)
blob.putu16Size(b:blob.t; w:word; width:int32; fill:char)
blob.putu32(b:blob.t; d:dword)
blob.putu32Size(b:blob.t; d:dword; width:int32; fill:char)
blob.putu64(b:blob.t; q:qword)
Released to the Public Domain Page 63

HLA Standard Library
blob.putu64Size(b:blob.t; q:qword; width:int32; fill:char)
blob.putu128(b:blob.t; l:lword)
blob.putu128Size(b:blob.t; l:lword; width:int32; fill:char)
blob.pute32(b:blob.t; r:real32; width:uns32)
blob.pute64(b:blob.t; r:real64; width:uns32)
blob.pute80(b:blob.t; r:real80; width:uns32)
blob.putr32(b:blob.t; r:real32; width:uns32; decpts:uns32; pad:char)
blob.putr64(b:blob.t; r:real64; width:uns32; decpts:uns32; pad:char)
blob.putr80(b:blob.t; r:real80; width:uns32; decpts:uns32; pad:char)
blob.put(list_of_items)

5.15 Blob Input Routines
The input routines in the blobs module are very similar to the file input routines in the fileio module as well

as the input routines in the stdin library module. In general, these routines require one parameter: the pointer to
the blob object.

All input is read from the blob starting at the rcursor offset into the blob's data. For each byte read, rcursor is
incremented by 1. If rcursor’s value becomes greater than or equal to the blob’s length value, then these functions
raise an ex.EndOfFile exception.

See the descriptions of the corresponding functions in the fileio module for more details.

 blob.readLn(b:blob.t);
 blob.eoln(b:blob.t); @returns("al");
 blob.getc(b:blob.t); @returns("al");
 blob.gets(b:blob.t; s:string);
 blob.a_gets(b:blob.t); @returns("eax");
 blob.geth8(b:blob.t); @returns("al");
 blob.geth16(b:blob.t); @returns("ax");
 blob.geth32(b:blob.t); @returns("eax");
 blob.geth64(b:blob.t);@returns("edx:eax");
 blob.geth80(b:blob.t; var dest:tbyte);
 blob.geth128(b:blob.t; var dest:lword);
 blob.geti8(b:blob.t); @returns("al");
 blob.geti16(b:blob.t); @returns("ax");
 blob.geti32(b:blob.t); @returns("eax");
 blob.geti64(b:blob.t);@returns("edx:eax");
 blob.geti128(b:blob.t; var dest:lword);
 blob.getu8(b:blob.t); @returns("al");
 blob.getu16(b:blob.t); @returns("ax");
 blob.getu32(b:blob.t); @returns("eax");
 blob.getu64(b:blob.t);@returns("edx:eax");
 blob.getu128(b:blob.t; var dest:lword);
 blob.getf(b:blob.t); @returns("st0");
 blob.get(List_of_items_to_read);
Page 64 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
6 Character Classification and Utilities Module
(chars.hhf)

The HLA CHARS module contains several procedures that classify and convert various character subtypes.
Conversion routines include upper and lower case conversion. Classification routines include checking for
alphabetic characters, numeric characters, whitespace characters, etc. This module works with ASCII characters
in the range #0..#$7F only. Though the functions accept 8-bit character values, non-ASCII characters generally
do not get translated by the conversion routines and the predicate routines almost always return false for non-
ASCII characters.

A Note About Thread Safety: The routines in this module are all thread safe.
Note about stack diagrams: To conserve space, this documentation does not include a stack diagram for

any functions because none of the current "chars" functions pass data on the stack (that is, only a return address
appears on the stack).

6.1 Conversion Functions
The conversion functions in the chars module convert (alphabetic) characters to lowercase and to uppercase.

 chars.toUpper(c:byte); @returns("AL");

 This routine returns the character passed as a parameter in the AL register. If the character passed as a
parameter was a lower case alphabetic character, this procedure converts it to upper case before returning it.
Character values in the range #128..#255 are returned as-is; no conversion is done on those characters even if in
some language they could be interpreted as alphabetic characters.

HLA high-level calling sequence examples:

chars.toUpper(charVar);
mov(al, uppercaseCharVar);

chars.toUpper(al);
// AL now contains the uppercase version.

mov(chars.toUpper(ch), uppercaseCharVar); // Char is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.toUpper;
mov(al, uppercaseCharVar);

// Char to convert is in AL

call chars.toUpper;
// Result char is left in AL

mov(ch, al);
call chars.toUpper;
mov(al, uppercaseCharVar);

 chars.toLower(c:byte); @returns("AL");

 This routine returns the character passed as a parameter in the AL register. If the character passed as a
parameter was an upper case alphabetic character, this procedure converts it to lower case before returning it.
Released to the Public Domain Page 65

HLA Standard Library
Character values in the range #128..#255 are returned as-is; no conversion is done on those characters even if in
some language they could be interpreted as alphabetic characters.

HLA high-level calling sequence examples:

chars.toLower(charVar);
mov(al, lowercaseCharVar);

chars.toLower(al);
// AL now contains the lowercase version.

mov(chars.toLower(ch), lowercaseCharVar); // Char is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.toLower;
mov(al, lowercaseCharVar);

// Char to convert is in AL

call chars.toLower;
// Result char is left in AL

mov(ch, al);
call chars.toLower;
mov(al, lowercaseCharVar);

6.2 Predicates (Tests)
The following functions test characters in the seven-bit ASCII character set. These functions produce

undefined results for other character sets. Note: Although the "returns" value for each of these functions is "AL",
in reality these functions all return the Boolean result zero-extended to 32 bits in EAX.

 chars.isAlpha(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is an alphabetic character.

HLA high-level calling sequence examples:

chars.isAlpha(charVar);
mov(al, booleanVar);

chars.isAlpha(al);
// AL now contains the Boolean result.

mov(chars.isAlpha(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isAlpha;
mov(al, booleanVar);
Page 66 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Char to convert is in AL

call chars.isAlpha;
// Result boolean is left in AL

mov(ch, al);
call chars.isAlpha;
mov(al, booleanVar);

 chars.isUpper(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is an upper case alphabetic character.

HLA high-level calling sequence examples:

chars.isUpper(charVar);
mov(al, booleanVar);

chars.isUpper(al);
// AL now contains the Boolean result.

mov(chars.isUpper(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isUpper;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isUpper;
// Result boolean is left in AL

mov(ch, al);
call chars.isUpper;
mov(al, booleanVar);

 chars.isLower(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is a lower case alphabetic character.

HLA high-level calling sequence examples:

chars.isLower(charVar);
mov(al, booleanVar);

chars.isLower(al);
// AL now contains the Boolean result.

mov(chars.isLower(ch), booleanVar); // Result is left in AL.
Released to the Public Domain Page 67

HLA Standard Library
HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isLower;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isLower;
// Result boolean is left in AL

mov(ch, al);
call chars.isLower;
mov(al, booleanVar);

 chars.isAlphaNum(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is an alphanumeric character.

HLA high-level calling sequence examples:

chars.isAlphaNum(charVar);
mov(al, booleanVar);

chars.isAlphaNum(al);
// AL now contains the Boolean result.

mov(chars.isAlphaNum(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isAlphaNum;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isAlphaNum;
// Result boolean is left in AL

mov(ch, al);
call chars.isAlphaNum;
mov(al, booleanVar);

 chars.isDigit(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is a decimal digit character.

HLA high-level calling sequence examples:

chars.isDigit(charVar);
mov(al, booleanVar);
Page 68 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
chars.isDigit(al);
// AL now contains the Boolean result.

mov(chars.isDigit(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isDigit;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isDigit;
// Result boolean is left in AL

mov(ch, al);
call chars.isDigit;
mov(al, booleanVar);

 chars.isXDigit(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is a hexadecimal digit character.

HLA high-level calling sequence examples:

chars.isXDigit(charVar);
mov(al, booleanVar);

chars.isXDigit(al);
// AL now contains the Boolean result.

mov(chars.isXDigit(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isXDigit;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isXDigit;
// Result boolean is left in AL

mov(ch, al);
call chars.isXDigit;
mov(al, booleanVar);
Released to the Public Domain Page 69

HLA Standard Library
 chars.isGraphic(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is a printable character or a space (this excludes
control characters; also, this function only applies to ASCII characters).

HLA high-level calling sequence examples:

chars.isGraphic(charVar);
mov(al, booleanVar);

chars.isGraphic(al);
// AL now contains the Boolean result.

mov(chars.isGraphic(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isGraphic;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isGraphic;
// Result boolean is left in AL

mov(ch, al);
call chars.isGraphic;
mov(al, booleanVar);

 chars.isSpace(c:byte); @returns("AL");

 This routine returns true in the AL register if the parameter is a white space character. A white space
character is a space, carriage return, linefeed, or tab character.

HLA high-level calling sequence examples:

chars.isSpace(charVar);
mov(al, booleanVar);

chars.isSpace(al);
// AL now contains the Boolean result.

mov(chars.isSpace(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isSpace;
mov(al, booleanVar);

// Char to convert is in AL
Page 70 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call chars.isSpace;
// Result boolean is left in AL

mov(ch, al);
call chars.isSpace;
mov(al, booleanVar);

 chars.isASCII(c:byte); @returns("AL");

This routine returns true in AL if the parameter byte is an ASCII character (value in the range $0..$7F).

HLA high-level calling sequence examples:

chars.isASCII(charVar);
mov(al, booleanVar);

chars.isASCII(al);
// AL now contains the Boolean result.

mov(chars.isASCII(ch), booleanVar); // Result is left in AL.

HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isASCII;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isASCII;
// Result boolean is left in AL

mov(ch, al);
call chars.isASCII;
mov(al, booleanVar);

 chars.isCtrl(c:byte); @returns("AL");

This function returns true in AL if the parameter is a control character ($0..$1F or $7F).

HLA high-level calling sequence examples:

chars.isCtrl(charVar);
mov(al, booleanVar);

chars.isCtrl(al);
// AL now contains the Boolean result.

mov(chars.isCtrl(ch), booleanVar); // Result is left in AL.
Released to the Public Domain Page 71

HLA Standard Library
HLA low-level calling sequence examples:

mov(charVar, al);
call chars.isCtrl;
mov(al, booleanVar);

// Char to convert is in AL

call chars.isCtrl;
// Result boolean is left in AL

mov(ch, al);
call chars.isCtrl;
mov(al, booleanVar);
Page 72 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
7 Console Display Control (console.hhf)

The HLA console module provides a reasonably portable way to control the console display under different
operating systems. The routines in this module let you write "really-smart-terminal" console applications that
behave in a similar fashion under different operating. The HLA console module routines take advantage of the
Windows console API when running under Windows, they use the VT100/ANSI terminal control code
sequences for other operating systems that use ANSI terminal control codes for console control. The routines in
this module let you control the cursor position, erase selected portions of data from the screen, insert and delete
characters and lines of text, scroll the screen, select display colors, and so on.

Note: this console module replaces the older HLA Standard Library console module that was Win32-specific.
That earlier console module provided many features that are not present in the current console module because
the Win32 console capabilities are quite a bit more sophisiticated than is possible with an ANSI terminal
emulation. Older code that took advantage of these extra features will not be able to compile properly with this
new console module. The original console module is still available in the HLA distribution under the "Examples"
directory; new code, however, should not use that module; if you want to take advantage of the Win32 console
capabilities, you should call the Win32 API routines directly.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About Thread Safety: The args module maintains a couple of static global variables that maintain
the command-line values. Currently, these values apply to all threads in a process. You should take care when
changing these values in threads. The command-line is a resource that must be shared amongst all threads in an
application. If you write multi-threaded applications, it is your responsibility to serialize access to the command-
line functions.

7.1 The Console Module Module
To use the date functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:

#include("console.hhf")
or
#include("stdlib.hhf")

7.2 Cursor Positioning Functions
The functions in this category reposition the cursor on the display

procedure console.gotoxy(x:dword; y:dword);@pascal
procedure console.gotorc(r:dword; c:dword);@stdcall

console.gotoxy and console.gotorc are actually the same function. The only difference between the two calls
is that they (internally) swap their parameters before making the call to the function. Note that the "rc" in gotorc
stands for "row/column" which is equivalent to saying "gotoyx". The console.gotorc function was provided
because people intuitively prefer to specify the row (y) value as the first argument and the column (x) value as
the second argument.

These functions position the cursor at the specified (x,y)/(c,r) coordinate on the screen.

HLA high-level calling sequence examples:

console.gotoxy(0, 10);
stdout.put("Print this on line 10, column 0" nl);
console.gotoxy(15, 0);
stdout.put("Print this on line 15, column 0" nl);

HLA low-level calling sequence examples:
Released to the Public Domain Page 73

HLA Standard Library
pushd(0);
pushd(10);
call console.gotoxy;// row = 10, column = 0

// Note that console.gotorc uses the @stdcall calling convention, so
// it’s arguments are reversed from the declaration, that is, you
// push the same exact arguments you push for gotoxy (which makes
// sense, as both functions are actually the same code).

pushd(0);
pushd(15);
call console.gotorc;

procedure console.up();

console.up moves the cursor up one line. Because of the variation in terminal emulations out there, the
results are undefined if you execute this procedure when the cursor is on the first line of the display. Some
consoles scroll the screen down one line, others ignore the request.

HLA high-level calling sequence example:

console.up();

HLA low-level calling sequence example:

call console.up;

procedure console.nup(n:uns32);

console.nup moves the cursor up n lines. Because of the variation in terminal emulations out there, the
results are undefined if this procedure attempts to move above the top line on the display. Some consoles scroll
the screen down one line, others ignore the request.

HLA high-level calling sequence example:

console.nup(5);

HLA low-level calling sequence example:

pushd(5);
call console.nup;

procedure console.down();

console.down moves the cursor down one line. Because of the variation in terminal emulations out there, the
results are undefined if you execute this procedure when the cursor is on the last line of the display. Some
consoles scroll the screen up one line, others ignore the request..

HLA high-level calling sequence example:

console.down();

HLA low-level calling sequence example:
Page 74 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call console.down;

procedure console.ndown(n:uns32);

console.ndown moves the cursor down one line. Because of the variation in terminal emulations out there,
the results are undefined if you execute this procedure when the cursor is on the last line of the display. Some
consoles scroll the screen up one line, others ignore the request.

HLA high-level calling sequence example:

console.ndown(5);

HLA low-level calling sequence example:

pushd(5);
call console.ndown;

procedure console.left();

console.left moves the cursor up n lines. Because of the variation in terminal emulations out there, the results
are undefined if you execute this procedure and it attempts to move the cursor before the first column on the line.
Some consoles move the cursor to the end of the previous line, others ignore the request.

HLA high-level calling sequence example:

console.left();

HLA low-level calling sequence example:

call console.left;

procedure console.nleft(n:uns32);

console.nleft moves the cursor down one line. Because of the variation in terminal emulations out there, the
results are undefined if you execute this procedure when the cursor is on the last line of the display. Some
consoles scroll the screen up one line, others ignore the request.

HLA high-level calling sequence example:

console.nleft(5);

HLA low-level calling sequence example:

pushd(5);
call console.nleft;

procedure console.right();

console.right moves the cursor to the right one character position. Because of the variation in terminal
emulations out there, the results are undefined if you execute this procedure when the cursor is at the last column
of the display. Some consoles move the cursor to the beginning of the next line, others ignore the request.
Released to the Public Domain Page 75

HLA Standard Library
HLA high-level calling sequence example:

console.right();

HLA low-level calling sequence example:

call console.right;

procedure console.nright(n:uns32);

console.nright moves the cursor down one line. Because of the variation in terminal emulations out there,
the results are undefined if you execute this procedure and it attempts to move the cursor beyond the last column
of the display. Some consoles move the cursor to the beginning of the next line, others ignore the request.

HLA high-level calling sequence example:

console.nright(5);

HLA low-level calling sequence example:

pushd(5);
call console.nright;

procedure console.saveCursor();

console.saveCursor saves the current cursor position in an internal variable. You can restore the cursor
position via the console.restoreCursor call. Note that there is only one level of save available.

HLA high-level calling sequence example:

console.saveCursor();

HLA low-level calling sequence example:

call console.saveCursor;

procedure console.restoreCursor();

console.saveCursor restores the cursor to the position previously saved by console.saveCursor. Note that
there is only one level of "save" available.

HLA high-level calling sequence example:

console.restoreCursor();

HLA low-level calling sequence example:

call console.restoreCursor;

7.3 Console Clearing Functions
The functions in this category clear portions (or all) of the display.
Page 76 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure console.cls();
procedure console.home();

console.cls and console.home are actually the same function. These procedures clear the screen and move
the cursor to the home (0,0) position.

HLA high-level calling sequence examples:

console.cls();
console.home();

HLA low-level calling sequence examples:

call console.cls;
call console.home;

procedure console.clrToEOLN();

console.clrToEOLN clears the text (by writing spaces) from the current cursor position to the end of the line
that the cursor is on.

HLA high-level calling sequence examples:

console.clrToEOLN();

HLA low-level calling sequence examples:

call console.clrToEOLN;

procedure console.clrToBOLN();

console.clrToBOLN clears the text (by writing spaces) from the current cursor position to the beginning of
the line that the cursor is on.

HLA high-level calling sequence examples:

console.clrToBOLN();

HLA low-level calling sequence examples:

call console.clrToBOLN;

procedure console.clrLn();

console.clrLn clears the line that the cursor is on by writing spaces to that line. This does not delete the line
from the screen, it only clears the characters from the line.

HLA high-level calling sequence examples:

console.clrLn();

HLA low-level calling sequence examples:

call console.clrLn;
Released to the Public Domain Page 77

HLA Standard Library
procedure console.clrToEOScrn();

console.clrToEOScrn clears the text (by writing spaces) from the current cursor position to the end of the
screen.

HLA high-level calling sequence examples:

console.clrToEOScrn();

HLA low-level calling sequence examples:

call console.clrToEOScrn;

procedure console.clrToBOScrn();

console.clrToBOScrn clears the text (by writing spaces) from the current cursor position to the beginning of
the screen.

HLA high-level calling sequence examples:

console.clrToBOScrn();

HLA low-level calling sequence examples:

call console.clrToBOScrn;

7.4 Character Insertion/Removal Functions
The functions in this category insert and delete characters on the console display.

procedure console.insertChar();

console.insertChar inserts room for a single character by shifting the characters under the cursor and to the
right of the cursor to the right one position. The vacated position is filled with a space. The last character on the
line is lost.

HLA high-level calling sequence examples:

console.insertChar();

HLA low-level calling sequence examples:

call console.insertChar;

procedure console.insertChars(n:dword);

console.insertChars inserts room for n characters by shifting the characters under the cursor and to the right
of the cursor right n positions. The vacated positions are filled with spaces. The last n characters on the line are
lost.
Page 78 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

console.insertChars(n);

HLA low-level calling sequence examples:

pushd(n);
call console.insertChars;

procedure console.insertLine();

console.insertLine inserts a blank line before the line the cursor is on by pushing the line under the cursor,
and the lines below the cursor, down one line on the screen. The new line is filled with blanks. The last line on
the screen is lost.

HLA high-level calling sequence examples:

console.insertLine();

HLA low-level calling sequence examples:

call console.insertLine;

procedure console.insertLines(n:dword);

console.insertLines opens up n new blank lines at the current cursor position by pushing the lines at and
below the cursor down n lines on the screen. The last n lines on the screen will be lost.

HLA high-level calling sequence examples:

console.insertLines(5);

HLA low-level calling sequence examples:

pushd(5);
call console.insertLines;

procedure console.deleteChar();

console.deleteChar deletes the character under the cursor by shifting the characters after the cursor one
position to the left. The last character position at the end of the line is filled with a blank.

HLA high-level calling sequence examples:

console.deleteChar();

HLA low-level calling sequence examples:

call console.deleteChar;
Released to the Public Domain Page 79

HLA Standard Library
procedure console.deleteChars(n:dword);

console.deleteChars deletes n characters under and to the right of the cursor by shifting the characters after
the cursor n positions to the left. The n character positions at the end of the line are filled with blanks.

HLA high-level calling sequence examples:

console.deleteChars(n);

HLA low-level calling sequence examples:

pushd(n);
call console.deleteChars;

procedure console.deleteLine();

console.deleteLine deletes the line the cursor is one by shifting all the lines below the cursor position up one
line. The last line on the screen is filled with blanks.

HLA high-level calling sequence examples:

console.deleteLine();

HLA low-level calling sequence examples:

call console.deleteLine;

procedure console.deleteLines(n:dword);

console.deleteLines procedure deletes n lines at and below the current cursor position. The vacated lines at
the bottom of the screen are filled with blanks.

HLA high-level calling sequence examples:

console.deleteLines(5);

HLA low-level calling sequence examples:

pushd(5);
call console.deleteLines;

7.5 Console Scrolling
The functions in this category scroll the screen up and down.

procedure console.scrollUp();

console.scrollUp scrolls the entire screen up one line.

HLA high-level calling sequence examples:
Page 80 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
console.scrollUp();

HLA low-level calling sequence examples:

call console.scrollUp;

procedure console.scrollDown();

console.scrollDown scrolls the entire screen down one line.

HLA high-level calling sequence examples:

console.scrollDown();

HLA low-level calling sequence examples:

call console.scrollDown;

7.6 Console Output Colors
The functions in this category control the color of the characters printed on the display.

procedure console.setAttrs(foreground:uns32; background:uns32);

console.setAttrs sets the console internal attribute value to be used for all following character output. Use
the routine to set the color of the characters you wish to print. The foreground parameter sets the color for the text
characters, the background parameter sets the color of the background area of each character cell.

The console module defines the following constants that represent the corresponding colors:
console.black := 0;
console.red := 1;
console.green := 2;
console.yellow := 3;
console.blue := 4;
console.magenta := 5;
console.cyan := 6;
console.white := 7;

HLA high-level calling sequence examples:

console.setAttrs(console.yellow, console.blue);

HLA low-level calling sequence examples:

pushd(console.yellow);
pushd(console.blue);
call console.setAttrs;
Released to the Public Domain Page 81

HLA Standard Library
Page 82 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
8 Conversions (conv.hhf)

This unit contains routines that perform general conversions from one data type to another. Primarily, this
unit supplies the routines that convert various data types to and from string form.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

Most string conversion routines take two forms: one version that writes data to an existing (preallocated)
string and one that automatically allocates storage for a new string on the heap. Those functions that
automatically allocate storage generally have a name that begins with "a_" (for allocate) whereas the functions
that use a preallocated string do not have such a prefix. For example, the conv.h8ToStr function converts an 8-bit
integer to a string using hexadecimal representation and stores the result in a preallocated string object. The
conv.a_h8ToStr function converts an 8-bit value to a (hexadecimal) string that it allocates on the heap;
conv.a_h8ToStr returns a pointer to that string in the EAX register.

An important point to keep in mind is that string variables are pointers. Unless you call a function that
allocates storage for a string (i.e., one of the "a_..." functions), you must ensure that you’ve allocated sufficient
storage to hold any string result the function produces. Failure to do so will produce a memory access error, null
pointer reference error, or string overflow error. Remember, simply declaring a string variable does not
automatically allocate storage for any string data; the declaration only allocates storage for the string pointer.
You must call a function such as str.alloc to actually allocate the string data.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computing certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

8.1 Buffer vs. String Conversions
The Standard Library supports two generic types of numeric-to-string conversions – output to a string

variable (an "HLA string" object) and output to a memory buffer. The string conversion routines are the safest to

use, but the buffer conversion routines are a bit more general.

If you’re working with HLA-style string objects, then using the conversion-to-string functions make the
most sense because you get to take full advantage of range checking and other facilities that are possible with the
string format. Furthermore, you can use the Standard Library string manipulation functions to process such

strings once the conversion is complete.

There are two drawbacks to the string conversion routines (versus the buffer conversion routines):
• You may intend to pass the converted data on to some other routine that doesn’t know anything

about the HLA string format, so you may need to produce the string using a different data
structure.

• If you want to produce a longer string as a sequence of conversion operations, it is slightly
more efficient to do the conversion to a single buffer (which may very well be an HLA string

object) and fix up the string data structure afterwards.

Perhaps the most common example of a non-HLA-string data type you’ll encounter is the simple zero-
terminated string (the word "simple" appears here because HLA strings are zero-terminated and you can often
use them whenever you need a zero-terminated string). Consider the conv.i32ToBuf routine that converts a 32-
bit signed integer to the corresponding sequence of characters. This function stores that characters at the memory

address passed in EDI and upon return EDI points at the first byte beyond the converted sequence, e.g.,

// Stores the characters "12345" at [edi]

conv.i32ToBuf(12345, [edi]);
Released to the Public Domain Page 83

HLA Standard Library
Upon return from this function, EDI will contain a value that is 5 greater than it was upon entry, and the five
memory locations that EDI has skipped over will contain the characters "12345". Note that this string is not zero-
terminated, but you can easily zero-terminate it by storing a zero byte at the location where EDI points upon

return from the function:

// Stores the characters "12345" at [edi] and zero
// terminates the string.

conv.i32ToBuf(12345, [edi]);

mov(0, (type byte [edi]));

As a final example, suppose you want to build up an HLA style string by concatenating two converted

strings together. You could do something like the following:

// Produces " 12345 67890" in fullStr

conv.i32ToStr(12345, 6, ‘ ‘, leftStr);

conv.i32ToStr(67890, 7, ‘ ‘, rightStr

str.cat(leftStr, rightStr, fullStr);

The only problem with this approach is that there is unnecessary string processing (e.g., data copying) taking
place. If efficiency is paramount, and you don’t need the intermediate conversions (leftStr and rightStr), then you

can do this sequence a little bit faster by generating the two strings in place as follows:

mov(fullStr, edi); // Point EDI at start of string data

mov(edi, ebx); // Save to compute length

conv.i32ToBuf(12345, 6, ‘ ‘); // Store " 12345" at fullStr

conv.i32ToBuf(67890, 7, ‘ ‘); // Store " 67890" at fullStr+6

mov(0, (type byte [edi])); // HLA strings must be zero terminated

sub(fullStr, edi); // Compute string length

mov(edi, (type str.strRec [ebx]).length); // Save new length.

As the number of objects you append to the string increases, this scheme becomes even more efficient than using
the str.cat approach. The code above, of course, assumes that you’ve already allocated a sufficient amount of

string storage for the leftStr, rightStr, and fullStr string variables.

8.2 Conversion Format Control
The following functions control the numeric conversion process.

 8.2.1 Underscore Control
When converting numeric data types to strings, the standard library offers the option of inserting

underscores at appropriate places in the numbers (i.e., where you would normally expect a digit separator to
Page 84 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
appear, such as a comma [U.S.] or period [Europe]). The conv.setUnderscores and conv.getUnderscores
functions control the operation of this feature.

The standard library conversion functions will inject underscores into hexadecimal, unsigned integers, and
signed integers if the feature is enabled. For hexadecimal output the standard library conversion routines will
emit an underscore between every fourth and fifth digit, starting with the L.O. digit (e.g., 1234_5678). For
decimal integers (signed or unsigned), the conversion routines emit an underscore between each third and fourth
digit starting with the L.O. digit (e.g., 123_456_789).

Note that the conversion routines do not emit underscores into conversions of floating-point/real values.

Thread Issues: Because the standard library maintains the internal underscore flag as a static object there will be
some problems if you attempt to read and set the underscore flag in multiple threads running in the same address
space. In particular, if you read the underscores flag and save it, set it to a different value, do some conversions,
and then restore the underscores flag its original value, it is quite possible that another thread could do some
conversions between those two points and produce incorrect output. Indeed, it would even be possible for half
the number to contain underscores and the other half not contain underscores, depending on where the system
interrupts the second thread. The current library code does not address this issue because the cost is very high to
solve a problem that almost never occurs (most assembly applications are single-threaded). However, if you are
writing a multi-threaded application, you should note that constantly changing the underscores flag is not a good
idea – you should try to set the flag once, at the beginning of your program, and leave it alone throughout the
program’s execution. If you must change the underscore flag setting on a regular basis within a multi-threaded
application, you should put appropriate locks around all calls to conversion routines (and those routines, such as
the I/O routines, that call the conversion code) to protect the settings.

Current plans are to make the Standard Library thread-safe when the threads module is added to the library.

conv.setUnderscores(onOff: boolean);

The conv.setUnderscores function lets you enable or disable the emission of underscores in numeric values.
Passing true enables underscore emission, passing false disables it.

For efficiency reasons, the standard library routines always pass all parameters as a multiple of four bytes.
The onOff Boolean parameter consumes the L.O. byte of the double word passed on the stack. The
conv.setUnderscore routine ignores the H.O. three bytes of the value passed for this parameter, though by
convention (to make debugging a little easier) you should try to pass zeros in the H.O. three bytes if it is not
inconvenient to do so.

When passing a Boolean constant, you should simply push the dword containing the value true (1) or false
(0), e.g,

pushd(true);
call conv.setUnderscores;

.

.

.
pushd(false);
call conv.setUnderscores;

When passing the Boolean value in one of the 8-bit registers AL, BL, CL or DL, you should simply push the
32-bit register that holds the 8-bit register, e.g.,

push(eax); // Pushes AL onto the stack
call conv.setUnderscores;
push(ebx); // Pushes BL onto the stack
call conv.setUnderscores;

Note that this trick does not apply to the AH, BH, CH, or DH registers. The best code to use when you need to
push these registers is to drop the stack down by four bytes and then move the desired register into the memory
location you’ve just created on the stack, e.g.,

sub(4, esp);
mov(AH, [esp]); // Pushes AH onto the stack
call conv.setUnderscores;

.

Released to the Public Domain Page 85

HLA Standard Library
.

.
sub(4, esp);
mov(BH, [esp]); // Pushes BH onto the stack
call conv.setUnderscores;

Here’s another way you can accomplish this (a little slower, but leaves zeros in the H.O. three bytes):

pushd(0);
mov(CH, [esp]); // Pushes CH onto the stack
call conv.setUnderscores;

When passing a Boolean variable, you should try to push the Boolean value and the following three bytes,
using code like the following (HLA syntax):

pushd((type dword boolVar));
call conv.setUnderscores;

There is one drawback to the approach above. In three very rare cases the code above could cause a segmentation
fault. If the Boolean variable is located on the last three bytes of a page in memory (4,096 bytes) and the next
memory page is not readable, the system will generate a fault if you attempt to push all four bytes. In such a
case, the next best solution, if a register is available, is to move the Boolean value into AL, BL, CL, or DL and
push the corresponding 32-bit register. If no registers are available, then you can write code like the following:

push(eax);
push(eax);
mov(boolVar, al);
mov(al, [esp+4]);
pop(eax);
call conv.setUnderscores;

This code is ugly and slightly inefficient, but it will always work (assuming, of course, you don’t get a stack
overflow).

The HLA compiler will generate code similar to this last example if you pass a boolean variable as the actual
parameter to conv.setUnderscores:

conv.setUnderscores(boolVar);

Therefore, if efficiency is a concern to you, you should try to load the Boolean variable (boolVar in this example)
into AL, BL, CL, or DL prior to calling conv.setUnderscores, e.g.,

mov(boolVar, al);
conv.setUnderscores(al);
Page 86 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.getUnderscores; @returns("eax");

You can test the current state of the underscore conversion by calling conv.getUnderscores. This function
call returns the boolean result in EAX (true means underscores will be output); AL will contain the actual
Boolean value and the H.O. three bytes of EAX will all contain zero. This routine does not have any parameters.

The following example demonstrates how to preserve the value of the internal underscores flag across some
section of code:

conv.getUnderscores();
mov(al, saveUnderscores);
conv.setUnderscores(true);

.

.

.
mov(saveUnderscores, al);
conv.setUnderscores(al);

Note: Do not try to access the internal underscores flag directly in your program. Always use the
conv.setUnderscores and conv.getUnderscores accessor functions. In a future version of the Standard Library,
the internal representation of this flag will change and any code that accesses it directly will break at that point.
However, if you call conv.setUnderscores and conv.getUnderscores, you’re guaranteed that the internal
implementation will be hidden from you and your code will not fail when the internal representation changes.

 8.2.2 Delimiter Control
During the conversion from string to a numeric form, the conversion routines will skip over zero or more

delimiter characters and then process all numeric digits (including hexadecimal digits, if doing a hexadecimal
conversion) up to the end of string or the first delimiter character it finds. If a conversion function encounters a
value that is not a valid digit or delimiter character, it will raise a conversion exception or an illegal character
exception By default, the delimiter characters are members of the following set:

Delimiters: cset :=
{

#0, // End of string
#9, // Tab

conv.setUnderscores stack diagram

Return Address

Byte

0123

ESP

ESP + 4 onOff0/1
Released to the Public Domain Page 87

HLA Standard Library
#10, // Line feed
#13, // Carriage return
' ' , // Space
',', // Comma
';', // Semicolon
':' // Colon

};

While this default delimiters character set is probably appropriate for most applications, some programmers
may want to add or remove characters from this set based on their application requirements. The standard library
provides two routines that provide access to this internal character set object: conv.getDelimiters and
conv.setDelimiters. You should always use these routines to access this character set object rather than accessing
it directly (as an external object).

Thread Issues: Because the standard library maintains the internal delimiters character set as a static object there
will be some problems if you attempt to read and set the delimiters in multiple threads running in the same
address space. In particular, if you read the delimiters character set and save it, set it to a different value, do some
conversions, and then restore the delimiters to the original value, it is quite possible that another thread could do
some conversions between those two points and produce incorrect. The current library code does not address this
issue because the cost is very high to solve a problem that almost never occurs (most assembly applications are
single-threaded). However, if you are writing a multi-threaded application, you should note that constantly
changing the delimiters character set is not a good idea – you should try to set the delimiters once, at the
beginning of your program, and leave them alone throughout the program’s execution. If you must change the
delimiters character set on a regular basis within a multi-threaded application, you should put appropriate locks
around all calls to conversion routines (and those routines, such as the I/O routines, that call the conversion code)
to protect the settings.

Current plans are to make the delimiters character set object thread-safe when the processes module is added to
the library.

Note: Do not try to access the internal delimiters character set directly in your program. Always use the
conv.setDelimiters and conv.getDelimiters accessor functions. In a future version of the Standard Library, the
internal representation of this character set will change and any code that accesses it directly will break at that
point. However, if you call conv.setDelimiters and conv.getDelimiters , you’re guaranteed that the internal
implementation will be hidden from you and your code will not fail when the internal representation changes.

 conv.getDelimiters(var Delims: cset);

The conv.getDelimiters routine returns the current delimiters character set in the variable you pass by
reference as the parameter. The Delims parameter is passed by reference (that is, you pass the address of the
actual cset variable to receive the result). The following are examples of typical HLA high-level invocations of
this routine looks like this:
conv.getDelimiters(saveDelims);

// EDI points at the delimiter cset:

conv.getDelimiters([edi]);

// ptrtoDelims is a dword/pointer variable that contains
// the address of a cset object:

conv.getDelimiters(val ptrToDelims);

To call conv.getDelimiters using a low-level assembly syntax, you must push the address of a cset variable
object onto the stack and then call the conv.getDelimiters function:

// saveDelims_s is a variable declared in the static/storage section:

pushd(&saveDelims_s);
call conv.getDelimiters;
Page 88 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// saveDelims_v is a variable declared in the var section or
// is a parameter:

lea(eax, saveDelims_v);
push(eax);
call conv.getDelimiters;

// Alternative call passing saveDelims_v if no 32-bit registers
// are available (this code assumes that EBP points at the current
// activation record/stack frame that contains saveDelims_v):

push(ebp);
add(@offset(saveDelims_v), (type dword [esp]));
call conv.getDelimiters;

// Low-level call assuming a 32-bit register (esi in this case)
// contains the address of the cset:

push(esi);
call conv.getDelimiters;

// Low-level call assuming a dword or pointer variable contains the
// address of the cset that will receive the delimiter character set:

push(ptrToDelims);
call conv.getDelimiters;

 conv.setDelimiters(Delims: cset)

The conv.setDelimiters function lets you change the value of the internal delimiter character set. It requires a
16-byte character set parameter (passed by value) and will copy the value of this parameter to the internal
character set variable. Note that this routine makes a copy of the actual parameter you pass it. If you pass an
character set variable as the actual parameter, future changes to that character set variable (without a
corresponding call to conv.setDelimiters) will have no effect on the internal delimiters character set that the
standard library routines use. The following examples are typical HLL style calls to this function:

conv.setDelimiters({‘ ‘, ‘,’});// Pass in a literal constant
conv.setDelimiters(csetVar);// Pass in a cset variable’s value
conv.setDelimiters([edx]);// EDX points at a cset variable

conv.getDelimiters Stack Diagram

Return Address

Byte

0123

ESP

ESP + 4 Delims (ptr)
Released to the Public Domain Page 89

HLA Standard Library
To call conv.setDelimiters using a low-level calling sequence, you’d first push the 16 bytes associated with
the character set object (H.O. dword first down to the L.O. dword) and then call the conv.setDelimiters function.
Here are some examples:

// Push the literal cset constant {‘ ‘, ‘,’} onto the stack:

pushd(0); // Must manually convert cset to a sequence of
pushd($1001);// four dwords (ugh!). Note: ORD(‘ ‘) = $20
pushd(0); // and ORD(‘,’) = $2C so bit positions $20 and
pushd(0); // $2c must contain ‘1’s, zeros everywhere else.
call conv.setDelimiters;

// Push the cset variable "saveDelims" onto the stack and
// call conv.setDelimiters:

push((type dword saveDelims[12]));
push((type dword saveDelims[8]));
push((type dword saveDelims[4]));
push((type dword saveDelims[0]));
call conv.setDelimiters.

// If manually converting a literal cset constant to the equivalent
// numeric values isn’t your thing, you can also do the following
// (though this is slightly less efficient):

readonly
spaceAndComma :cset := {‘ ‘, ‘,’ };

endreadonly
push((type dword spaceAndComma [12]));
push((type dword spaceAndComma [8]));
push((type dword spaceAndComma [4]));
push((type dword spaceAndComma [0]));
call conv.setDelimiters.

If you insist on using low-level calling sequences to call the conv.setDelimiters routine, you might want to
consider writing a macro that will automatically push a literal cset constant for you. Here is a set of HLA macros
that will do this task:

program t;

 // dword_n extracts the nth dword (0, 1, 2, 3) from a
 // 16-byte object such as a character set. cst must be
 // a cset constant value (or an lword), n must be an
 // integer constant in the range 0..3.

 #macro dword_n(cst, n);

 (
 (@byte(@lword(cst), n*4+3) << 24)
 | (@byte(@lword(cst), n*4+2) << 16)
 | (@byte(@lword(cst), n*4+1) << 8)
 | (@byte(@lword(cst), n*4+0) << 0)
)
 #endmacro

 // pushcset pushes the cset constant passed as an argument
 // onto the CPU’s stack. H.O. dword is pushed first, L.O.
 // dword is pushed last.
Page 90 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 #macro pushcset(cst);

 // Push the four dwords that make up a cset constant:

 pushd(dword_n(cst, 3));
 pushd(dword_n(cst, 2));
 pushd(dword_n(cst, 1));
 pushd(dword_n(cst, 0));

 #endmacro

begin t;

 // Example of pushcset invocation:

 pushcset({' ', ','});

end t;

Here is an example using conv.getDelimiters and conv.setDelimiters that demonstrates how to temporarily
change the delimiters character set and the restore its value:

var
saveDelims:cset;

.

.

.
conv.getDelimiters(saveDelims);
conv.setDelimiters({ ‘!’, ‘@’ })l

.

.

.
conv.setDelimiters(saveDelims);

8.3 Hexadecimal Conversions
The standard library hexadecimal routines convert numeric values of varying sizes (8, 16, 32, 64, 80, and

128 bits) into a string of characters holding the hexadecimal representation of those values. The hexadecimal
output routines can be broken down into the following categories:

conv.setDelimiters Stack Diagram

ESP + 4

Return Address

Byte

0123

ESP

Delims
ESP + 8

ESP + 12

ESP + 16 H.O. DWord

L.O. DWord
Released to the Public Domain Page 91

HLA Standard Library
Output type (string or sequence of characters to a buffer)
Fill type (no fill; fill with zeros to
a standardized length, based on data type; fill with a caller-specified character to a caller-specified length).

 8.3.1 Internal Routines
The conversions module in the standard library contains several routines that are intended for internal use

only. Generally, you should not call these routines directly from your application programs. These routines all
have names that begin with an underscore. The internal hexadecimal conversion routines include:
_hexTobuf64Size, _hexTobuf80, _hexTobuf80Size, _hexTobuf128, _hexTobuf128Size, _hexTobuf32,
_hexTobuf32Size, and _hexTobuf64.

 8.3.2 Hexadecimal Numeric Size Functions
The hexadecimal conversion size functions return the number of digit print positions required by the

conversion of a numeric value to a hexadecimal string. There are two sets of six routines that compute the output
size: one set computes the fixed-size width and the other set computes a varying-sized width.

 8.3.2.1 Fixed Size Hexadecimal Size Functions
It is common practice to display hexadecimal values using exactly one digit for each nibble of the

corresponding data type, including leading zeros, as necessary. The common fixed sizes are byte=2, word=4,
dword=8, qword=16, tbyte=20, and lword=32. With underscore output enabled (see conv.setUnderscores) these
values are byte=2, word=4, dword=9, qword=19, tb=24, and lword=39. Because these numbers are fixed (at
least, for a given underscores flag setting) there are only three reasons for calling these functions:

• You don’t know the underscores flag setting when executing a particular section of code
(which can affect the output size of dword, qword, tbyte, and lword objects), or,

• You’re generating a call to these functions via some macro that is given a function name like
"putb" or "puth8" and you’re manually constructing the size function to call via the
assembler’s compile-time language. or,

• You’re writing generic code and you want to make it easy to modify the code in the future.

procedure conv.bSize(b:byte in al); @returns("eax");

This function always returns 2 because the fixed output size of a byte is two hexadecimal digits (two 4-bit
nibbles).

HLA high-level calling sequence examples:

conv.bSize(byteVariable);
conv.bSize(<byte register>); // al, ah, bl, bh, cl, ch, dl, dh
conv.bSize(<constant>); // Must fit into eight bits

Because conv.bSize passes its input parameter in the AL register, any form of the high-level calling
sequence except "conv.bSize(al);" will automatically generate an instruction of the form
"mov(<operand>,al);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the AL register and pass AL as the parameter to conv.bSize.

HLA low-level calling sequence examples:

mov(byteVariable, al);
call conv.bSize;

mov(<byte register>, al); // ah, bl, bh, cl, ch, dl, dh
call conv.bSize;

mov(<constant>, al);
call conv.bSize;
Page 92 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.wSize(w:word in ax); @returns("eax");

This function always returns 4 because the "natural" size of a word is four hexadecimal digits (four 4-bit
nibbles).

HLA high-level calling sequence examples:

conv.wSize(wordVariable);
conv.wSize(<word register>); // ax, bx, cx, dx, bp, sp, si, di
conv.wSize(<constant>); // Must fit into 16 bits

Because conv.wSize passes its input parameter in the AX register, any form of the high-level calling
sequence except "conv.wSize(ax);" will automatically generate an instruction of the form
"mov(<operand>,ax);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the AX register and pass AX as the parameter to conv.wSize.

HLA low-level calling sequence examples:

mov(wordVariable, ax);
call conv.wSize;

mov(<word register>, ax); // bx, cx, dx, bp, sp, si, di
call conv.wSize;

mov(<constant>, ax);
call conv.wSize;

procedure conv.dSize(d:dword in eax); @returns("eax");

This function returns 8 if the internal underscores flag is false, 9 if it is true, because the "natural" size of a
double word is eight hexadecimal digits (eight 4-bit nibbles).

HLA high-level calling sequence examples:

conv.dSize(dwordVariable);
conv.dSize(<dword register>); // eax, ebx, ecx, edx,
 //ebp, esp, esi, edi
conv.dSize(<constant>); // Must fit into 32 bits

Because conv.dSize passes its input parameter in the EAX register, any form of the high-level calling
sequence except "conv.dSize(eax);" will automatically generate an instruction of the form
"mov(<operand>,eax);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the EAX register and pass EAX as the parameter to conv.dSize.

HLA low-level calling sequence examples:

mov(dwordVariable, eax);
call conv.dSize;

mov(<dword register>, eax); // ebx, ecx, edx, ebp, esp, esi, edi
call conv.dSize;

mov(<constant>, eax);
call conv.dSize;
Released to the Public Domain Page 93

HLA Standard Library
procedure conv.qSize(q:qword); @returns("eax");

This function returns 16 if the internal underscores flag is false, 19 if it is true, because the "natural" size of
a quad word is 16 hexadecimal digits (16 4-bit nibbles) and there are four groups of four digits with underscores
between them (if the underscores flag contains true).

HLA high-level calling sequence examples:

conv.qSize(qwordVariable);
conv.qSize(<constant>); // Must fit into 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable

push((type dword qwordVar[4]));// Push H.O. dword first
push((type dword qwordVar[0])); // Push L.O. dword second
call conv.qSize;

// Example where 64-bit value is held in EDX:EAX

push(edx); // Push H.O. dword first
push(eax); // Push L.O. dword second
call conv.qSize;

// Passing a qword constant:

pushd(<qword constant> >> 32); // Push H.O. dword
pushd(<qword constant> & $FFFF_FFFF); // Push L.O. dword
call conv.qSize;

procedure conv.tbSize(tb:tbyte); @returns("eax");

This function returns 20 if the internal underscores flag is false, 24 if it is true, because the "natural" size of
a ten-byte word is 20 hexadecimal digits (20 4-bit nibbles) and there are five groups of four digits with
underscores between them (if the underscores flag contains true).

HLA high-level calling sequence examples:

conv.qSize stack diagram

Return Address

Byte

0123

ESP

q (H.O. dword)

q (L.O. dword)
Page 94 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.tbSize(tbyteVariable);
conv.tbSize(<constant>); // Must fit into 80 bits

HLA low-level calling sequence examples:

// Passing a tbyte variable

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVar[8])); // Push H.O. word
push((type dword tbyteVar[4]));// Push middle dword second
push((type dword tbyteVar[0])); // Push L.O. dword third
call conv.tbSize;

// Passing a tbyte constant:

pushw(0); // Must pad to 12 bytes.
pushw(<tbyte constant> >> 64); // Push H.O. word
pushd((<tbyte constant> >> 32) & $FFFF_FFFF); // Push middle dword
pushd(<tbyte constant> & $FFFF_FFFF); // Push L.O. dword
call conv.tbSize;

procedure conv.lSize(l:lword); @returns("eax");

This function returns 32 if the internal underscores flag is false, 39 if it is true, because the "natural" size of
an lword is 32 hexadecimal digits (32 4-bit nibbles) and there are eight groups of four digits with underscores
between them (if the underscores flag contains true).

HLA high-level calling sequence examples:

conv.lSize(lwordVariable);
conv.lSize(<constant>); // Must fit into 128 bits

HLA low-level calling sequence examples:

// Passing an lword variable

push((type dword lwordVar[12])); // Push H.O. dword first

conv.tbSize stack diagram

Return Address

0123

Byte

ESP

tb (L.O. dword)ESP+4

ESP+8

ESP+12

tb:tbyte

01

tb (H.O. word)

(padding)
Released to the Public Domain Page 95

HLA Standard Library
push((type dword tbyteVar[8]));
push((type dword tbyteVar[4]));
push((type dword tbyteVar[0])); // Push L.O. dword last
call conv.lSize;

// Passing a lword constant:

pushd(<lword constant> >> 96); // Push H.O. dword first
pushw((<lword constant> >> 64) & $FFFF_FFFF);
pushd((<lword constant> >> 32) & $FFFF_FFFF);
pushd(<lword constant> & $FFFF_FFFF); // Push L.O. dword last
call conv.lSize;

 8.3.2.2 Standard Hexadecimal Size Functions
The h8Size, h16Size, h32Size, h64Size, h80Size, and h128Size routines compute the minimum number of

output hexadecimal digits (with no leading zeros). These functions return a count that includes space for
underscores if the internal underscores flag contains true (see conv.setUnderscores for details).

procedure conv.h8Size(b:byte in al); @returns("eax");

This function returns the number of print positions required by the conversion of the value in AL to a string
of hexadecimal digits. The return value is always 1 or 2 (as a single byte never consumes more than two
hexadecimal digits). Note that the internal underscores flag setting does not affect the return result because the
conversion routines never inject an underscore into a hexadecimal conversion unless there are at least five output
digits.

HLA high-level calling sequence examples:

conv.h8Size(byteVariable);
conv.h8Size(<byte register>); // al, ah, bl, bh, cl, ch, dl, dh
conv.h8Size(<constant>); // Must fit into eight bits

Because conv.h8Size passes its input parameter in the AL register, any form of the high-level calling
sequence except "conv.h8Size(al);" will automatically generate an instruction of the form
"mov(<operand>,al);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the AL register and pass AL as the parameter to conv.h8Size.

HLA low-level calling sequence examples:

conv.lSize stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Page 96 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(byteVariable, al);
call conv.h8Size;

mov(<byte register>, al); // ah, bl, bh, cl, ch, dl, dh
call conv.h8Size;

mov(<constant>, al);
call conv.h8Size;

procedure conv.h16Size(w:word in ax); @returns("eax");

This function returns the number of print positions required by the conversion of the value in AX to a string
of hexadecimal digits. The return value is always 1, 2, 3, or 4 (as a single word never requires more than four
hexadecimal digits). Note that the internal underscores flag setting does not affect the return result because the
conversion routines never inject an underscore into a hexadecimal conversion unless there are at least five output
digits.

HLA high-level calling sequence examples:

conv.h16Size(wordVariable);
conv.h16Size(<word register>); // ax, bx, cx, dx, bp, sp, si, di
conv.h16Size(<constant>); // Must fit into 16 bits

Because conv.h16Size passes its input parameter in the AX register, any form of the high-level calling
sequence except "conv.h16Size(ax);" will automatically generate an instruction of the form
"mov(<operand>,ax);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the AX register and pass AX as the parameter to conv.h16Size.

HLA low-level calling sequence examples:

mov(wordVariable, ax);
call conv.h16Size;

mov(<word register>, ax); // bx, cx, dx, bp, sp, si, di
call conv.h16Size;

mov(<constant>, ax);
call conv.h16Size;

procedure conv.h32Size(s:dword in eax); @returns("eax");

This function returns the number of print positions required by the conversion of the value in EAX to a
string of hexadecimal digits. The return value is always in the range 1-8 if the internal underscores flag is false, it
is in the range 1-9 if the internal underscores flag is true (see the discussion of conv.setUnderscores for details).

HLA high-level calling sequence examples:

conv.h32Size(dwordVariable);
conv.h32Size(<dword register>); // eax, ebx, ecx, edx,
 //ebp, esp, esi, edi
conv.h32Size(<constant>); // Must fit into 32 bits

Because conv.h32Size passes its input parameter in the EAX register, any form of the high-level calling
sequence except "conv.h32Size(eax);" will automatically generate an instruction of the form
"mov(<operand>,eax);". Therefore, if at all possible, you should try to have the value whose size you wish to
compute already sitting in the EAX register and pass EAX as the parameter to conv.h32Size.

HLA low-level calling sequence examples:
Released to the Public Domain Page 97

HLA Standard Library
mov(dwordVariable, eax);
call conv.h32Size;

mov(<dword register>, eax); // ebx, ecx, edx, ebp, esp, esi, edi
call conv.h32Size;

mov(<constant>, eax);
call conv.h32Size;

procedure conv.h64Size(q:qword); @returns("eax");

This function returns the number of print positions required by the conversion of the value passed in q to a
string of hexadecimal digits. The return value is always in the range 1-16 if the internal underscores flag is false,
it is in the range 1-19 if the internal underscores flag is true (see the discussion of conv.setUnderscores for
details).

HLA high-level calling sequence examples:

conv.h64Size(qwordVariable);
conv.h64Size(<constant>); // Must fit into 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable

push((type dword qwordVar[4]));// Push H.O. dword first
push((type dword qwordVar[0])); // Push L.O. dword second
call conv.h64Size;

// Example where 64-bit value is held in EDX:EAX

push(edx); // Push H.O. dword first
push(eax); // Push L.O. dword second
call conv.h64Size;

// Passing a qword constant:

pushd(<qword constant> >> 32); // Push H.O. dword
pushd(<qword constant> & $FFFF_FFFF); // Push L.O. dword
call conv.h64Size;
Page 98 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.h80Size(tb:tbyte); @returns("eax");

This function returns the number of print positions required by the conversion of the value passed in tb to a
string of hexadecimal digits. The return value is always in the range 1-20 if the internal underscores flag is false,
it is in the range 1-24 if the internal underscores flag is true (see the discussion of conv.setUnderscores for
details).

HLA high-level calling sequence examples:

conv.h80Size(tbyteVariable);
conv.h80Size(<constant>); // Must fit into 80 bits

HLA low-level calling sequence examples:

// Passing a tbyte variable

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVar[8])); // Push H.O. word
push((type dword tbyteVar[4]));// Push middle dword second
push((type dword tbyteVar[0])); // Push L.O. dword third
call conv.h80Size;

// Passing a tbyte constant:

pushw(0); // Must pad to 12 bytes.
pushw(<tbyte constant> >> 64); // Push H.O. word
pushd((<tbyte constant> >> 32) & $FFFF_FFFF); // Push middle dword
pushd(<tbyte constant> & $FFFF_FFFF); // Push L.O. dword
call conv.h80Size;

conv.h64Size stack diagram

Return Address

Byte

0123

ESP

q (H.O. dword)

q (L.O. dword)
Released to the Public Domain Page 99

HLA Standard Library
procedure conv.h128Size(l:lword); @returns("eax");

This function returns the number of print positions required by the conversion of the value passed in l to a
string of hexadecimal digits. The return value is always in the range 1-32 if the internal underscores flag is false,
it is in the range 1-39 if the internal underscores flag is true (see the discussion of conv.setUnderscores for
details).

HLA high-level calling sequence examples:

conv.h128Size(lwordVariable);
conv.h128Size(<constant>); // Must fit into 128 bits

HLA low-level calling sequence examples:

// Passing an lword variable

push((type dword lwordVar[12])); // Push H.O. dword first
push((type dword tbyteVar[8]));
push((type dword tbyteVar[4]));
push((type dword tbyteVar[0])); // Push L.O. dword last
call conv.h128Size;

// Passing a lword constant:

pushd(<lword constant> >> 96); // Push H.O. dword first
pushw((<lword constant> >> 64) & $FFFF_FFFF);
pushd((<lword constant> >> 32) & $FFFF_FFFF);
pushd(<lword constant> & $FFFF_FFFF); // Push L.O. dword last
call conv.h128Size;

conv.h80Size stack diagram

Return Address

0123

Byte

ESP

tb (L.O. dword)ESP+4

ESP+8

ESP+12

tb:tbyte

01

tb (H.O. word)

(padding)
Page 100 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 8.3.3 Hexadecimal Numeric to Buffer Conversions
The hexadecimal numeric to buffer conversion routines translate a numeric value to a sequence of

hexadecimal characters and store those characters into memory starting at the address pointed at by the EDI
register. After the conversion, the EDI register points at the first byte in memory beyond the sequence of
characters these routines produce. With successive calls to these routines (or any routine that emits characters to
the buffer at which EDI points) you can build up larger strings.

If the internal underscores flag is true, these routines will emit an underscore between each group of four
hexadecimal digits.

 8.3.3.1 Fixed Length Hexadecimal Numeric to Buffer Conversions
The fixed length hexadecimal to buffer conversion routines translate an input numeric value to a fixed-

length string (depending on the data type size and the setting of the internal underscores flag). These functions
emit the characters of the string (including leading zeros, as necessary) to sequential locations starting at the
address held in EDI.

procedure conv.bToBuf(b:byte in al; var buffer:var in edi);

Converts the numeric value in AL to a sequence of exactly two hexadecimal digits (including a leading zero
if the value is in the range $0-$f) and stores these two characters at the location pointed at by EDI. This function
returns EDI pointing at the first byte after the sequence. Because the conversion is always less than five digits,
the internal underscores flag does not affect the output this function produces.

HLA high-level calling sequence examples:

// The following will load "byteVariable" into AL and
// the address of "charArrayVariable" into EDI and then
// call conv.bToBuf:

conv.bToBuf(byteVariable, charArrayVariable);

// The following call will copy BH into AL and
// EDX into EDI prior to calling conv.bToBuf:

conv.bToBuf(bh, [edx]);

// The following just calls conv.bToBuf as AL and EDI
// already hold the parameter values:

conv.h128Size stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 101

HLA Standard Library
conv.bToBuf(al, [edi]);

// The following loads the constant in AL and calls
// conv.bToBuf:

conv.bToBuf(<constant>, [edi]); // <constant> must fit in 8 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AL and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. byte of EAX (i.e., AL) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AL and [EDI].

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable:

mov(byteVariable, al);
lea(edi, charArrayVariable);
call conv.bToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(byteVariable, al);
mov(&charArrayVariable, edi);
call conv.bToBuf;

// Passing a pair of registers (that are not
// AL and EDI):

mov(bh, al);
mov(edx, edi);
call conv.bToBuf;

// Passing a constant:

mov(<constant>, al);
call conv.bToBuf; // Assume EDI already contains buffer address.

procedure conv.wToBuf(w:word in ax; var buffer:var in edi);

Converts the numeric value in AX to a sequence of exactly four hexadecimal digits (including leading zeros,
as necessary) and stores these four characters at the location pointed at by EDI. This function returns EDI
pointing at the first byte after the sequence. Because the conversion is always less than five digits, the internal
underscores flag does not affect the output this function produces.

HLA high-level calling sequence examples:

// The following will load "wordVariable" into AX and
// the address of "charArrayVariable" into EDI and then
// call conv.wToBuf:

conv.wToBuf(wordVariable, charArrayVariable);

// The following call will copy BX into AX and
// EDX into EDI prior to calling conv.wToBuf:

conv.wToBuf(bx, [edx]);
Page 102 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following just calls conv.wToBuf as AX and EDI
// already hold the parameter values:

conv.wToBuf(ax, [edi]);

// The following loads the constant in AX and calls
// conv.wToBuf:

conv.wToBuf(<constant>, [edi]); // <constant> must fit in 16 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. word of EAX (i.e., AX) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AX and [EDI].

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable:

mov(wordVariable, ax);
lea(edi, charArrayVariable);
call conv.wToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(wordVariable, ax);
mov(&charArrayVariable, edi);
call conv.wToBuf;

// Passing a pair of registers (that are not
// AX and EDI):

mov(bx, ax);
mov(edx, edi);
call conv.wToBuf;

// Passing a constant:

mov(<constant>, ax);
call conv.wToBuf; // Assume EDI already contains buffer address.

procedure conv.dToBuf(d:dword in eax; var buffer:var in edi);

Converts the numeric value in EAX to a sequence of exactly eight hexadecimal digits (including leading
zeros, as necessary) and stores these characters at the location pointed at by EDI. This function returns EDI
pointing at the first byte after the sequence. If the internal underscores flag contains true, this function will emit a
nine-character string with a single underscore between the fourth and fifth digits.

HLA high-level calling sequence examples:

// The following will load "dwordVariable" into EAX and
// the address of "charArrayVariable" into EDI and then
// call conv.dToBuf:

conv.dToBuf(dwordVariable, charArrayVariable);

// The following call will copy EBX into EAX and
Released to the Public Domain Page 103

HLA Standard Library
// EDX into EDI prior to calling conv.dToBuf:

conv.dToBuf(ebx, [edx]);

// The following just calls conv.dToBuf as EAX and EDI
// already hold the parameter values:

conv.dToBuf(eax, [edi]);

// The following loads the constant in EAX and calls
// conv.dToBuf:

conv.dToBuf(<constant>, [edi]); // <constant> must fit in 32 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EAX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite EAX before it copies the address to the EDI register.
It goes without saying that this function will overwrite the values of EAX and EDI if the original parameters are
not EAX and [EDI].

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

mov(dwordVariable, eax);
lea(edi, charArrayVariable);
call conv.dToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(dwordVariable, eax);
mov(&charArrayVariable, edi);
call conv.dToBuf;

// Passing a pair of registers (that are not
// EAX and EDI):

mov(ebx, eax);
mov(edx, edi);
call conv.dToBuf;

// Passing a constant:

mov(<constant>, eax);
call conv.dToBuf; // Assume EDI already contains buffer address.

procedure conv.qToBuf(q:qword; var buffer:var in edi);

Converts the numeric value passed in q to a sequence of exactly 16 hexadecimal digits (including leading
zeros, as necessary) and stores these characters at the location pointed at by EDI. This function returns EDI
pointing at the first byte after the sequence. If the internal underscores flag contains true, this function will emit a
19-character string with underscores between the 4th and 5th, 8th and 9th, and 12th and 13th digits.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.qToBuf:
Page 104 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.qToBuf(qwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.qToBuf:

conv.qToBuf(<constant>, [edi]); // <constant> must fit in 64 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.qToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.qToBuf;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.qToBuf; // Assume EDI already contains buffer address.

procedure conv.tbToBuf(tb:tbyte; var buffer:var in edi);

Converts the numeric value passed in tb to a sequence of exactly 20 hexadecimal digits (including leading
zeros, as necessary) and stores these characters at the location pointed at by EDI. This function returns EDI

conv.qToBuf Stack Diagram

ESP + 4

Return Address

Byte

0123

ESP

ESP + 8q (H.O. dword)

q (L.O. dword)
Released to the Public Domain Page 105

HLA Standard Library
pointing at the first byte after the sequence. If the internal underscores flag contains true, this function will emit a
24-character string with underscores between the 4th and 5th, 8th and 9th, 12th and 13th , and 16th and 17th digits.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.tbToBuf:

conv.tbToBuf(tbyteVariable, charArrayVariable);

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing a tbyte variable and a buffer variable:

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.tbToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.tbToBuf;

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.tbToBuf; // Assume EDI already contains buffer address.

procedure conv.lToBuf(l:lword; var buffer:var in edi);

Converts the numeric value passed in l to a sequence of exactly 32 hexadecimal digits (including leading
zeros, as necessary) and stores these characters at the location pointed at by EDI. This function returns EDI
pointing at the first byte after the sequence. If the internal underscores flag contains true, this function will emit a
39 character string with underscores between the 4th and 5th, 8th and 9th, 12th and 13th , 16th and 17th, 20th and
21st, 24th and 25th, and 28th and 29th digits.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.lToBuf:
Page 106 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.lToBuf(lwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.lToBuf:

conv.lToBuf(<constant>, [edi]); // <constant> must fit in 128 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing an lword variable and a buffer variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.lToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.lToBuf;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.lToBuf; // Assume EDI already contains buffer address.

conv.lToBuf stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 107

HLA Standard Library
 8.3.3.2 Variable Length Hexadecimal Numeric to Buffer Conversions
The variable length hexadecimal to buffer conversion routines translate an input numeric value to a variable-

length string (depending on the value, data type size, and the setting of the internal underscores flag). These
functions emit the characters of the string (without leading zeros) to sequential locations starting at the address
held in EDI.

procedure conv.h8ToBuf(b:byte in al; var buffer:var in edi);

Converts the numeric value in AL to a sequence of one or two hexadecimal digits and stores these two
characters at the location pointed at by EDI. This function returns EDI pointing at the first byte after the
sequence. Because the conversion is always less than five digits, the internal underscores flag does not affect the
output this function produces.

HLA high-level calling sequence examples:

// The following will load "byteVariable" into AL and
// the address of "charArrayVariable" into EDI and then
// call conv.h8ToBuf:

conv.h8ToBuf(byteVariable, charArrayVariable);

// The following call will copy BH into AL and
// EDX into EDI prior to calling conv.h8ToBuf:

conv.h8ToBuf(bh, [edx]);

// The following just calls conv.h8ToBuf as AL and EDI
// already hold the parameter values:

conv.h8ToBuf(al, [edi]);

// The following loads the constant in AL and calls
// conv.h8ToBuf:

conv.h8ToBuf(<constant>, [edi]); // <constant> must fit in 8 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AL and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. byte of EAX (i.e., AL) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AL and [EDI].

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable:

mov(byteVariable, al);
lea(edi, charArrayVariable);
call conv.h8ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(byteVariable, al);
mov(&charArrayVariable, edi);
call conv.h8ToBuf;

// Passing a pair of registers (that are not
// AL and EDI):
Page 108 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(bh, al);
mov(edx, edi);
call conv.h8ToBuf;

// Passing a constant:

mov(<constant>, al);
call conv.h8ToBuf; // Assume EDI already contains buffer address.

procedure conv.h16ToBuf(w:word in ax; var buffer:var in edi);

Converts the numeric value in AX to a sequence of one to four hexadecimal digits and stores these
characters at the location pointed at by EDI. This function returns EDI pointing at the first byte after the
sequence. Because the conversion is always less than five digits, the internal underscores flag does not affect the
output this function produces.

HLA high-level calling sequence examples:

// The following will load "wordVariable" into AX and
// the address of "charArrayVariable" into EDI and then
// call conv.h16ToBuf:

conv.h16ToBuf(wordVariable, charArrayVariable);

// The following call will copy BX into AX and
// EDX into EDI prior to calling conv.h16ToBuf:

conv.h16ToBuf(bx, [edx]);

// The following just calls conv.h16ToBuf as AX and EDI
// already hold the parameter values:

conv.h16ToBuf(ax, [edi]);

// The following loads the constant in AX and calls
// conv.h16ToBuf:

conv.h16ToBuf(<constant>, [edi]); // <constant> must fit in 16 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. word of EAX (i.e., AX) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AX and [EDI].

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable:

mov(wordVariable, ax);
lea(edi, charArrayVariable);
call conv.h16ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(wordVariable, ax);
mov(&charArrayVariable, edi);
call conv.h16ToBuf;
Released to the Public Domain Page 109

HLA Standard Library
// Passing a pair of registers (that are not
// AX and EDI):

mov(bx, ax);
mov(edx, edi);
call conv.h16ToBuf;

// Passing a constant:

mov(<constant>, ax);
call conv.h16ToBuf; // Assume EDI already contains buffer address.

procedure conv.h32ToBuf(d:dword in eax; var buffer:var in edi);

Converts the numeric value in EAX to a sequence of one to eight hexadecimal digits and stores these
characters at the location pointed at by EDI. This function returns EDI pointing at the first byte after the
sequence. If the internal underscores flag contains true and the value is $1_0000 or greater, then this function
will emit an underscore between the fourth and fifth digits in the output string.

HLA high-level calling sequence examples:

// The following will load "dwordVariable" into EAX and
// the address of "charArrayVariable" into EDI and then
// call conv.h32ToBuf:

conv.h32ToBuf(dwordVariable, charArrayVariable);

// The following call will copy EBX into EAX and
// EDX into EDI prior to calling conv.h32ToBuf:

conv.h32ToBuf(ebx, [edx]);

// The following just calls conv.h32ToBuf as EAX and EDI
// already hold the parameter values:

conv.h32ToBuf(eax, [edi]);

// The following loads the constant in EAX and calls
// conv.h32ToBuf:

conv.h32ToBuf(<constant>, [edi]); // <constant> must fit in 32 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EAX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite EAX before it copies the address to the EDI register.
It goes without saying that this function will overwrite the values of EAX and EDI if the original parameters are
not EAX and [EDI].

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

mov(dwordVariable, eax);
lea(edi, charArrayVariable);
call conv.h32ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):
Page 110 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(dwordVariable, eax);
mov(&charArrayVariable, edi);
call conv.h32ToBuf;

// Passing a pair of registers (that are not
// EAX and EDI):

mov(ebx, eax);
mov(edx, edi);
call conv.h32ToBuf;

// Passing a constant:

mov(<constant>, eax);
call conv.h32ToBuf; // Assume EDI already contains buffer address.

procedure conv.h64ToBuf(q:qword; var buffer:var in edi);

Converts the numeric value in q to a sequence of 1 to 16 hexadecimal digits and stores these characters at the
location pointed at by EDI. This function returns EDI pointing at the first byte after the sequence.

If the internal underscores flag contains true and the value is $1_0000 or greater, then this function will emit
an underscore between the 4th and 5th digits in the output string.

If the value is $1_0000 or greater, then this function will emit an underscore between the 4th and 5th digits in
the output string.

If the value is $1_0000_0000 or greater, then this function will emit an underscore between the 8th and 9th
digits.

If the value is $1_0000_0000_0000 or greater, then this function will emit an underscore between the 12th
and 13th digits.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.h64ToBuf:

conv.h64ToBuf(qwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.h64ToBuf:

conv.h64ToBuf(<constant>, [edi]); // <constant> must fit in 64 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.h64ToBuf;

// Alternate form of above if charArrayVariable is
Released to the Public Domain Page 111

HLA Standard Library
// a static object (STATIC, READONLY, or STORAGE):

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.h64ToBuf;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.h64ToBuf; // Assume EDI already contains buffer address.

procedure conv.h80ToBuf(tb:tbyte; var buffer:var in edi);

Converts the numeric value in tb to a sequence of 1 to 20 hexadecimal digits and stores these characters at
the location pointed at by EDI. This function returns EDI pointing at the first byte after the sequence.

If the internal underscores flag contains true, and:

If the value is $1_0000 or greater, then this function will emit an underscore between the 4th and 5th digits in
the output string.

If the value is $1_0000_0000 or greater, then this function will emit an underscore between the 8th and 9th
digits.

If the value is $1_0000_0000_0000 or greater, then this function will emit an underscore between the 12th
and 13th digits.

If the value is $1_0000_0000_0000_0000 or greater, then this function will emit an underscore between the
16th and 17th digits.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.h80ToBuf:

conv.h80ToBuf(tbyteVariable, charArrayVariable);

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

conv.h64ToBuf Stack Diagram

ESP + 4

Return Address

Byte

0123

ESP

ESP + 8q (H.O. dword)

q (L.O. dword)
Page 112 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// Passing a tbyte variable and a buffer variable:

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.h80ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.h80ToBuf;

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.tbToBuf; // Assume EDI already contains buffer address.

procedure conv.h128ToBuf(l:lword; var buffer:var in edi);

Converts the numeric value in l to a sequence of 1 to 32 hexadecimal digits and stores these characters at the
location pointed at by EDI. This function returns EDI pointing at the first byte after the sequence.

If the internal underscores flag contains true, and:

If the value is $1_0000 or greater, then this function will emit an underscore between the 4th and 5th digits in
the output string.

If the value is $1_0000_0000 or greater, then this function will emit an underscore between the 8th and 9th
digits.

If the value is $1_0000_0000_0000 or greater, then this function will emit an underscore between the 12th
and 13th digits.

If the value is $1_0000_0000_0000_0000 or greater, then this function will emit an underscore between the
16th and 17th digits.

If the value is $1_0000_0000_0000_0000_0000 or greater, then this function will emit an underscore
between the 20th and 21st digits.

If the value is $1_0000_0000_0000_0000_0000_0000 or greater, then this function will emit an underscore
between the 24th and 25th digits.

If the value is $1_0000_0000_0000_0000_0000_0000_0000 or greater, then this function will emit an
underscore between the 28th and 29th digits.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.h128ToBuf:

conv.h128ToBuf(lwordVariable, charArrayVariable);
Released to the Public Domain Page 113

HLA Standard Library
// The following pushes the constant onto the stack and calls
// conv.h128ToBuf:

conv.h128ToBuf(<constant>, [edi]); // <constant> must fit in 128 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing an lword variable and a buffer variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.h128ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.h128ToBuf;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.h128ToBuf; // Assume EDI already contains buffer address.

conv.h128ToBuf stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Page 114 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 8.3.4 Hexadecimal Numeric to String Conversions
The hexadecimal numeric to string conversion routines are the general-purpose hexadecimal string

conversion routines. There are two versions: one set of these routines store their string data into a preallocated
string object (the unadorned versions), the other set (adorned with an "a_" prefix in their name) allocates storage
for a new string on the heap and returns a pointer to that new string in the EAX register.

As for the buffer routines (e.g., conv.bToBuf and conv.h8ToBuf) there are two categories of routines based
on whether the routines emit a mimimum length string or pad the string with leading zeros to the data type’s
natural size. The conv.hXToStr routines emit the minimum number of hexadecimal digits in the string they
create.

The conv.XToStr (X= b, w, d, q, tb, or l) functions always create a fixed length string with an appropriate
number of leading zeros (b=2 digits, w=4 digits, d=8 digits, q=16 digits, tb=20 digits, and l=32 digits). If the
internal underscores flag contains true, then these functions will emit an underscore between each group of four
hexadecimal digits.

The conv.hXToStr functions (X=8, 16, 32,64, 80, or 128) let you specify a minimum field width and a
padding character (because the conv.XToBuf routines always emit fixed-length strings, there is no need to
specify a minimum field width or padding character for those strings). The absolute value of the width parameter
specifies the minimum string length for the conversion. The conversion will always produce a string at least
abs(width) characters long. If the conversion would require more than abs(width) print positions, then the
conversion will produce a larger string, as necessary.

If the string conversion requires fewer than abs(width) characters and the width parameter is a non-negative
value, these routines right justify the value in the string and pad the remaining positions with the fill character. If
the conversion requires fewer than abs(width) characters and the width parameter is a negative number, then
these functions will left-justify the value in the output field and pad the end of the string with the fill character.

For the unadorned functions, the destination string’s maximum length must be large enough to hold the full
result (including any extra print positions needed beyond the value specified by abs(width)) or these functions
will raise a string overflow exception.

If the internal underscore flag is true, then the 32-bit and larger hex to string conversion functions will emit
an underscore between each set of four hexadecimal digits, starting from the least significant digit. This is true
for both the conv.hXToStr and conv.XToStr routines. See the descriptions of the conv.setUnderscores and
conv.getUnderscores functions for more details. Note that the hexadecimal to numeric conversion functions do
not inject underscores into sequences of padding characters, only into the actual digits the conversion produces.
This is true even if you specify a numeric character (such as ‘0’) as the padding character.

 8.3.4.1 Fixed-Length Numeric to Hexadecimal String Conversions
The functions in this category convert an 8-bit, 16-bit, 32-bit, 64-bit, 80-bit, or 128-bit numeric value to

fixed-length strings (one hexadecimal digit for each four bits, including leading zeros). If the internal
underscores flag contains true, then these functions will also insert an underscore between each group of four
hexadecimal digits.

conv.bToStr(b:byte; dest:string);

This function converts the 8-bit value of the b parameter to a two-byte string containing b’s hexadecimal
representation. Because this conversion requires exactly two digits, the internal underscores flag setting does not
affect the operation of this function. This function raises a string overflow error if the destination string is not
large enough to hold the converted string.

HLA high-level calling sequence examples:

xxxToStr (value, width, fill, buffer);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxToStr
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxToStr functions produce the string

V A L U E f f f
Released to the Public Domain Page 115

HLA Standard Library
// The following will push "byteVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.bToStr:

conv.bToStr(byteVariable, destStr);

// The following call will BH’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.bToStr:

conv.bToStr(bh, edx);

// The following pushes the constant and destStr and calls
// conv.bToStr:

conv.bToBuf(<constant>, destStr); // <constant> must fit in 8 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.bToStr;

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
push(destStr);
call conv.bToStr;

// Passing a byte variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
push(destStr);
call conv.bToStr;

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
push(edx);
call conv.bToStr;
Page 116 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
push(edx);
call conv.bToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.bToStr;

conv.a_bToStr(b:byte); @returns("eax");

This function converts the value of the b parameter to a two-byte string containing b’s hexadecimal
representation. Because this conversion requires exactly two digits, the internal underscores flag setting does not
affect the operation of this function. This function allocates storage for the string on the heap and returns a
pointer to that string in the EAX register.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and then call conv.a_bToStr:

conv.a_bToStr(byteVariable);
mov(eax, byteStr);

// The following call will BH’s value onto the stack
// before calling conv.a_bToStr:

conv.a_bToStr(bh);
mov(eax, byteStr);

// The following pushes the constant and calls
// conv.a_bToStr:

conv.bToBuf(<constant>); // <constant> must fit in 8 bits
mov(eax, byteStr);

conv.bToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 b :byte

dest:string (ptr)
Released to the Public Domain Page 117

HLA Standard Library
HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
call conv.a_bToStr;
mov(eax, destStr);

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
call conv.a_bToStr;
mov(eax, destStr);

// Passing a byte variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
call conv.a_bToStr;
mov(eax, destStr);

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
call conv.a_bToStr;
mov(eax, byteStr);

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
call conv.a_bToStr;
mov(eax, byteStr);

// Passing a constant:

pushd(<constant>);
call conv.a_bToStr;
mov(eax, byteStr);
Page 118 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.wToStr(w:word; dest:string);

Converts the 16-bit value of the w parameter to a four-byte string that is the hexadecimal representation of
this value. Because this conversions requires exactly four digits, the internal underscores flag setting does not
affect the operation of this function. This function raises a string overflow error if the destination string is not
large enough to hold the converted string.

HLA high-level calling sequence examples:

// The following will push "wordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.wToStr:

conv.wToStr(wordVariable, destStr);

// The following call will BX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.wToStr:

conv.wToStr(bx, edx);

// The following pushes the constant and destStr and calls
// conv.wToStr:

conv.wToStr(<constant>, destStr); // <constant> must fit in 16 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.wToStr;

conv.a_bToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Released to the Public Domain Page 119

HLA Standard Library
// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
push(destStr);
call conv.wToStr;

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
push(destStr);
call conv.wToStr;

// Passing a pair of registers:
// BX = value to print, EDX = pointer to string object.

push(ebx); // Pushes BX
push(edx);
call conv.wToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.wToStr;

conv.a_wToStr(w:word; dest:string); @returns("eax");

Converts the 16-bit value of the w parameter to a four-byte string that is the hexadecimal representation of
this value. Because this conversions requires exactly four digits, the internal underscores flag setting does not
affect the operation of this function. This function allocates storage for the string on the heap and returns a
pointer to that string in the EAX register.

HLA high-level calling sequence examples:

// The following will push "wordVariable" and then call conv.wToStr:

conv.wToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 w :word

dest:string (ptr)
Page 120 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.a_wToStr(wordVariable);
mov(eax, destStr);

// The following call will BX’s value onto the stack
// before calling conv.a_wToStr:

conv.a_wToStr(bx);

// The following pushes the constant and calls
// conv.a_wToStr:

conv.a_wToStr(<constant>, destStr); // <constant> must fit in 16 bits

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(wordVariable, eax);
push(eax);
call conv.a_wToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
call conv.wToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
call conv.wToStr;
mov(eax, destStr);

// Passing a pair of registers:
// BX = value to print.

push(ebx); // Pushes BX
call conv.wToStr;
mov(eax, wordStr);

// Passing a constant:

pushd(<constant>);
call conv.wToStr;
mov(eax, destStr);
Released to the Public Domain Page 121

HLA Standard Library
conv.dToStr(d:dword; dest:string);

This function converts the 32-bit value of the d parameter to an eight- or nine-byte string that is the
hexadecimal representation of this value. If d’s value is greater than $FFFF and the underscores flag is true, then
this function emits a nine-character string with an underscore between the fourth and fifth digits (counting from
the least signficant digit). This function raises a string overflow error if the destination string is not large enough
to hold the converted string.

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.dToStr:

conv.dToStr(dwordVariable, destStr);

// The following call will EBX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.dToStr:

conv.dToStr(ebx, edx);

// The following pushes the constant and destStr and calls
// conv.dToStr:

conv.dToStr(<constant>, destStr); // <constant> must fit in 32 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

push(dwordVariable);
push(destStr);
call conv.dToStr;

conv.a_wToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4 w :word
Page 122 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a pair of registers:
// EBX = value to print, EDX = pointer to string object.

push(ebx);
push(edx);
call conv.dToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.dToStr;

conv.a_dToStr(d:dword; dest:string); @returns("eax");

Converts the 32-bit value of the d parameter to an eight- or nine-byte string that is the hexadecimal
representation of this value. If d’s value is greater than $FFFF and the underscores flag is true, then this function
emits a nine-character string with an underscore between the fourth and fifth digits (counting from the least
signficant digit). This function allocates storage for the string on the heap and returns a pointer to that string in
the EAX register.

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and then call conv.a_dToStr:

conv.a_dToStr(dwordVariable);
mov(eax, destStr);

// The following call will push EBX’s value onto the stack
// before calling conv.a_dToStr:

conv.a_dToStr(ebx);

// The following pushes the constant and calls
// conv.a_dToStr:

conv.a_dToStr(<constant>, destStr); // <constant> must fit in 32 bits

conv.dToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 d :dword

dest:string (ptr)
Released to the Public Domain Page 123

HLA Standard Library
HLA low-level calling sequence examples:

// Passing a dword variable:

push(dwordVariable);
call conv.a_dToStr;
mov(eax, destStr);

// Passing a register:
// EBX = value to print.

push(ebx);
call conv.a_dToStr;
mov(eax, dwordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_dToStr;
mov(eax, destStr);

conv.qToStr(q:qword; dest:string);

Converts the 64-bit value of the q parameter to 16- or 19-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 19-character string).
This function raises a string overflow error if the destination string is not large enough to hold the converted
string.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// and the value of the destStr string variable
// onto the stack and then call conv.qToStr:

conv.qToStr(qwordVariable, destStr);

conv.a_dToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Page 124 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following pushes the constant onto the stack along with
// the value held in the destStr variable and calls
// conv.qToStr:

conv.qToStr(<constant>, destStr); // <constant> must fit in 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.qToStr;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
push(destStr);
call conv.qToStr;

conv.a_qToStr(q:qword; dest:string); @returns("eax");

Converts the 64-bit value of the q parameter to 16- or 19-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 19-character string).
This function allocates storage for the string on the heap and returns a pointer to that string in the EAX register.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack and then call conv.a_qToStr:

conv.a_qToStr(qwordVariable);
mov(eax, destStr);

conv.qToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
q :qword

dest:string (ptr)

ESP+12
Released to the Public Domain Page 125

HLA Standard Library
// The following pushes the constant onto the stack and calls
// conv.a_qToStr:

conv.a_qToStr(<constant>); // <constant> must fit in 64 bits
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing a qword variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_qToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.a_qToStr;
mov(eax, destStr);

conv.tbToStr(tb:tbyte; dest:string);

Converts the 80-bit value of the d parameter to 20- or 24-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 24-character string).
This function raises a string overflow error if the destination string is not large enough to hold the converted
string.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// and the value of destStr onto the stack
// and then call conv.tbToStr:

conv.tbToStr(tbyteVariable, destStr);

conv.a_qToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
q :qword
Page 126 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// Passing a tbyte variable:

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.tbToStr;

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(destStr);
call conv.tbToStr;

conv.a_tbToStr(tb:tbyte; dest:string); @returns("eax");

Converts the 80-bit value of the d parameter to 20- or 24-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 24-character string).
This function allocates storage for the string on the heap and returns a pointer to that string in the EAX register.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// onto the stack and then call conv.a_tbToStr:

conv.a_tbToStr(tbyteVariable);
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing a tbyte variable:

pushw(0); // Must pad parameter to 12 bytes

conv.tbToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

tb :tbyte

dest:string (ptr)

ESP+12

ESP+16 01(padding)

tb (H.O. word)

tb (L.O. dword)
Released to the Public Domain Page 127

HLA Standard Library
push((type word tbyteVariable[8])); // H.O. word first
push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_tbToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_tbToStr;
mov(eax, destStr);

conv.lToStr(l:lword; dest:string);

Converts the 128-bit value of the l parameter to 32- or 19-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 39-character string).
This function raises a string overflow error if the destination string is not large enough to hold the converted
string.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// and destStr onto the stack, and then call conv.lToStr:

conv.lToStr(lwordVariable, destStr);

// The following pushes the constant onto the stack and calls
// conv.lToStr:

conv.lToStr(<constant>, edx); // EDX contains string pointer value.

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));

conv.a_tbToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 tb :tbyte

ESP+12 01(padding)

tb (H.O. word)

tb (L.O. dword)
Page 128 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

push(destStr);
call conv.lToStr;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(edx);// EDX contains string pointer value.
call conv.lToStr;

conv.a_lToStr(l:lword; dest:string); @returns("eax");

Converts the 128-bit value of the l parameter to 32- or 19-byte string (based on the setting of the underscores
flag) that is the hexadecimal representation of this value. If the internal underscores flag is true, then this
function emits an underscore between each group of four hexadecimal digits (resulting in a 39-character string).
This function allocates storage for the string on the heap and returns a pointer to that string in the EAX register.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, and then call conv.a_lToStr:

conv.a_lToStr(lwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_lToStr:

conv.a_lToStr(<constant>);
mov(eax, destStr);

HLA low-level calling sequence examples:

conv.lToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

l :lword

dest:string (ptr)

ESP+12

ESP+16 01

l (L.O. dword)

l (H.O. dword)ESP+20
Released to the Public Domain Page 129

HLA Standard Library
// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last
call conv.a_lToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_lToStr;
mov(eax, destStr);

 8.3.4.2 Variable-Length Numeric to Hexadecimal String Conversions
The functions in this category convert a numeric value (8, 16, 32, 64, 80, or 128 bits) to a variable-length

hexadecimal string (with no leading zeros). The string will contain the minimum number of digits needed to
represent the value (plus underscores between each group of four digits if the internal underscores flag contains
true).

 procedure conv.h8ToStr (b:byte; width:int32; fill:char; buffer:string);

Converts the 8-bit value of the b parameter to a one or two-byte string that is the hexadecimal representation
of this value. Because 8-bit hexadecimal conversions require no more than two digits, the internal underscores
flag setting does not affect the operation of this function. This function raises a string overflow error if the
destination string is not large enough to hold the converted string.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.h8ToStr:

conv.h8ToStr(byteVariable, destStr);

conv.a_lToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
l :lword

ESP+12

ESP+16

01

l (L.O. dword)

l (H.O. dword)
Page 130 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following call will BH’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.h8ToStr:

conv.h8ToStr(bh, edx);

// The following pushes the constant and destStr and calls
// conv.h8ToStr:

conv.h8ToBuf(<constant>, destStr); // <constant> must fit in 8 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.h8ToStr;

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
push(destStr);
call conv.h8ToStr;

// Passing a byte variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
push(destStr);
call conv.h8ToStr;

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
push(edx);
call conv.h8ToStr;

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
Released to the Public Domain Page 131

HLA Standard Library
mov(bh, [esp]);
push(edx);
call conv.h8ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.h8ToStr;

procedure conv.a_h8ToStr(b:byte; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 8-bit value of the b
parameter to a 1..2 byte string that is the hexadecimal representation of this value. Returns a pointer to the newly
allocated string in EAX. Because the number of digits is always two or less, the internal underscores flag does
not affect the string this function produces.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and then call conv.a_h8ToStr:

conv.a_h8ToStr(byteVariable);
mov(eax, byteStr);

// The following call will BH’s value onto the stack
// before calling conv.a_h8ToStr:

conv.a_h8ToStr(bh);
mov(eax, byteStr);

// The following pushes the constant and calls
// conv.a_h8ToStr:

conv.a_h8ToStr(<constant>); // <constant> must fit in 8 bits
mov(eax, byteStr);

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

conv.h8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 b

size

fill

buffer (ptr)
Page 132 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(byteVariable, eax);
push(eax);
call conv.a_h8ToStr;
mov(eax, destStr);

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
call conv.a_h8ToStr;
mov(eax, destStr);

// Passing a byte variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
call conv.a_h8ToStr;
mov(eax, destStr);

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
call conv.a_h8ToStr;
mov(eax, byteStr);

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
call conv.a_h8ToStr;
mov(eax, byteStr);

// Passing a constant:

pushd(<constant>);
call conv.a_h8ToStr;
mov(eax, byteStr);
Released to the Public Domain Page 133

HLA Standard Library
procedure conv.h16ToStr (w:word; width:int32; fill:char; buffer:string);

 Converts the 16-bit value of the w parameter to a 1..4 byte string that is the hexadecimal representation of
this value. Because 16-bit hexadecimal conversions require no more than four digits, the internal underscores
flag setting does not affect the operation of this function. This function raises a string overflow error if the
destination string is not large enough to hold the converted string.

HLA high-level calling sequence examples:

// The following will push "wordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.h16ToStr:

conv.h16ToStr(wordVariable, destStr);

// The following call will BX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.h16ToStr:

conv.h16ToStr(bx, edx);

// The following pushes the constant and destStr and calls
// conv.h16ToStr:

conv.h16ToStr(<constant>, destStr); // <constant> must fit in 16 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);

conv.a_h8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 b

size

fill
Page 134 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax);
push(destStr);
call conv.h16ToStr;

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
push(destStr);
call conv.h16ToStr;

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
push(destStr);
call conv.h16ToStr;

// Passing a pair of registers:
// BX = value to print, EDX = pointer to string object.

push(ebx); // Pushes BX
push(edx);
call conv.h16ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.h16ToStr;

conv.h16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 w

size

fill

buffer (ptr)
Released to the Public Domain Page 135

HLA Standard Library
procedure conv.a_h16ToStr(w:word; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 16-bit value of the w
parameter to a 1..4 byte string that is the hexadecimal representation of this value. Returns a pointer to the newly
allocated string in EAX. Because the number of digits is always four or less, the internal underscores flag does
not affect the string this function produces.

HLA high-level calling sequence examples:

// The following will push "wordVariable" and call conv.a_h16ToStr:

conv.a_h16ToStr(wordVariable);
mov(eax, destStr);

// The following call will BX’s value onto the stack
// before calling conv.a_h16ToStr:

conv.a_h16ToStr(bx);

// The following pushes the constant and calls
// conv.a_h16ToStr:

conv.a_h16ToStr(<const>, destStr); // <const> must fit in 16 bits

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(wordVariable, eax);
push(eax);
call conv.a_h16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
call conv.a_h16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
call conv.a_h16ToStr;
mov(eax, destStr);

// Passing a pair of registers:
// BX = value to print.

push(ebx); // Pushes BX
call conv.a_h16ToStr;
mov(eax, wordStr);
Page 136 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a constant:

pushd(<constant>);
call conv.a_h16ToStr;
mov(eax, destStr);

procedure conv.h32ToStr (d:dword; width:int32; fill:char; buffer:string);

 Converts the 32-bit value of the d parameter to a 1..8 byte string (1..9 bytes if the underscores flag is set)
that is the hexadecimal representation of this value. If the 32-bit value is greater than $FFFF and the internal
underscores flag is true, then this function will insert an underscore between the 4th and 5th digits of the string it
produces. This function raises a string overflow error if the destination string is not large enough to hold the
converted string.

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.h32ToStr:

conv.h32ToStr(dwordVariable, destStr);

// The following call will push EBX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.h32ToStr:

conv.h32ToStr(ebx, edx);

// The following pushes the constant and destStr and calls
// conv.h32ToStr:

conv.h32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

conv.a_h16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

w

size

fill
Released to the Public Domain Page 137

HLA Standard Library
// Passing a dword variable and a buffer variable:

push(dwordVariable);
push(destStr);
call conv.h32ToStr;

// Passing a pair of registers:
// EBX = value to print, EDX = pointer to string object.

push(ebx);
push(edx);
call conv.h32ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.h32ToStr;

procedure conv.a_h32ToStr(d:dword; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 32-bit value of the d
parameter to a 1..8 byte string (1..9 bytes if the underscores flag is set) that is the hexadecimal representation of
this value. Returns a pointer to the newly allocated string in EAX. If the 32-bit value is greater than $FFFF and
the internal underscores flag is true, then this function will insert underscores between each set of four digits to
the left of the least significant digit in the string it produces.

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and then call conv.a_h32ToStr:

conv.a_h32ToStr(dwordVariable);
mov(eax, destStr);

// The following call will push EBX’s value onto the stack

conv.h32ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 d

size

fill

buffer (ptr)
Page 138 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// before calling conv.a_h32ToStr:

conv.a_h32ToStr(ebx);

// The following pushes the constant and calls
// conv.a_h32ToStr:

conv.a_h32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

HLA low-level calling sequence examples:

// Passing a dword variable:

push(dwordVariable);
call conv.a_h32ToStr;
mov(eax, destStr);

// Passing a register:
// EBX = value to print.

push(ebx);
call conv.a_h32ToStr;
mov(eax, dwordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_h32ToStr;
mov(eax, destStr);

procedure conv.h64ToStr (q:qword; width:int32; fill:char; buffer:string);

 Converts the 64-bit value of the q parameter to a 1..16 byte string (1..19 bytes if the underscores flag is set)
that is the hexadecimal representation of this value. If the 64-bit value is greater than $FFFF and the internal
underscores flag is true, then this function will insert underscores between each set of four digits to the left of the
least significant digit in the string it produces. This function raises a string overflow error if the destination string
is not large enough to hold the converted string.

conv.a_h32ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 d

size

fill
Released to the Public Domain Page 139

HLA Standard Library
HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// and the value of the destStr string variable
// onto the stack and then call conv.h64ToStr:

conv.h64ToStr(qwordVariable, destStr);

// The following pushes the constant onto the stack along with
// the value held in the destStr variable and calls
// conv.h64ToStr:

conv.h64ToStr(<constant>, destStr); // <constant> must fit in 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.h64ToStr;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
push(destStr);
call conv.h64ToStr;

conv.h64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20 q (H.O. dword)

q (L.O. dword)
q

Page 140 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_h64ToStr(q:qword; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 64-bit value of the q
parameter to a 1..16 byte string (1..19 bytes if the underscores flag is set) that is the hexadecimal representation
of this value. Returns a pointer to the newly allocated string in EAX. If the 64-bit value is greater than $FFFF
and the internal underscores flag is true, then this function will insert underscores between each set of four digits
to the left of the least significant digit in the string it produces.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack and then call conv.a_h64ToStr:

conv.a_h64ToStr(qwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_h64ToStr:

conv.a_h64ToStr(<constant>); // <constant> must fit in 64 bits
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing a qword variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_h64ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.a_h64ToStr;
mov(eax, destStr);
Released to the Public Domain Page 141

HLA Standard Library
procedure conv.h80ToStr(tb:tbyte; width:int32; fill:char; buffer:string);

 Converts the 80-bit value of the tb parameter to a 1..20 byte string (1..24 bytes if the underscores flag is set)
that is the hexadecimal representation of this value. If the 80-bit value is greater than $FFFF and the internal
underscores flag is true, then this function will insert underscores between each set of four digits to the left of the
least significant digit in the string it produces. This function raises a string overflow error if the destination string
is not large enough to hold the converted string.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// and the value of destStr onto the stack
// and then call conv.h80ToStr:

conv.h80ToStr(tbyteVariable, destStr);

HLA low-level calling sequence examples:

// Passing a tbyte variable:

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.h80ToStr;

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(destStr);
call conv.h80ToStr;

conv.a_h64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

q (H.O. dword)

q (L.O. dword)
q

Page 142 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_h80ToStr(tb:tbyte; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 80-bit value of the tb
parameter to a 1..20 byte string (1..24 bytes if the underscores flag is set) that is the hexadecimal representation
of this value. Returns a pointer to the newly allocated string in EAX. If the 80-bit value is greater than $FFFF
and the internal underscores flag is true, then this function will insert underscores between each set of four digits
to the left of the least significant digit in the string it produces.

HLA high-level calling sequence examples:

// The following will push the value of "tbyteVariable"
// onto the stack and then call conv.a_h80ToStr:

conv.a_h80ToStr(tbyteVariable);
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing a tbyte variable:

pushw(0); // Must pad parameter to 12 bytes
push((type word tbyteVariable[8])); // H.O. word first

push((type dword tbyteVariable[4]));
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_h80ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 64); // Push H.O. word as dword, first
pushd((<constant> >> 32) & $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_h80ToStr;
mov(eax, destStr);

conv.h80ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20

tb (H.O. word)

tb (L.O. dword)

tb

ESP+24 01(padding)
Released to the Public Domain Page 143

HLA Standard Library
procedure conv.h128ToStr (l:lword; width:int32; fill:char; buffer:string);

 Converts the 128-bit value of the l parameter to a 1..32 byte string (1..39 bytes if the underscores flag is set)
that is the hexadecimal representation of this value. If the 128-bit value is greater than $FFFF and the internal
underscores flag is true, then this function will insert underscores between each set of four digits to the left of the
least significant digit in the string it produces. This function raises a string overflow error if the destination string
is not large enough to hold the converted string.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// and destStr onto the stack, and then call conv.h128ToStr:

conv.h128ToStr(lwordVariable, destStr);

// The following pushes the constant onto the stack and calls
// conv.h128ToStr:

conv.h128ToStr(<constant>, edx); // EDX contains string pointer value.

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

push(destStr);
call conv.h128ToStr;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.

conv.a_h80ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

ESP+20

tb (H.O. word)

tb (L.O. dword)

tb

01(padding)
Page 144 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(edx);// EDX contains string pointer value.
call conv.h128ToStr;

conv.a_h128ToStr(l:lword; width:int32; fill:char);
@returns("eax");

Allocates an appropriate amount of string storage on the heap and then converts the 128-bit value of the l
parameter to a 1..32 byte string (1..39 bytes if the underscores flag is set) that is the hexadecimal representation
of this value. Returns a pointer to the newly allocated string in EAX. If the 128-bit value is greater than $FFFF
and the internal underscores flag is true, then this function will insert underscores between each set of four digits
to the left of the least significant digit in the string it produces.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, and then call conv.a_h128ToStr:

conv.a_h128ToStr(lwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_h128ToStr:

conv.a_h128ToStr(<constant>);
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

conv.h128ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20
l:lword

ESP+24

ESP+28

l (L.O. dword)

l (H.O. dword)
Released to the Public Domain Page 145

HLA Standard Library
call conv.a_h128ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_h128ToStr;
mov(eax, destStr);

 8.3.5 Hexadecimal Buffer to Numeric Conversions
The hexadecimal buffer to numeric conversions ("ASCII to hexadecimal") convert a sequence of characters

at some address in memory to numeric form.
These routines will skip over any leading underscore and delimiter characters (specified by the internal

delimiters character set, see the discussion of conv.setDelimiters and conv.getDelimiters for details). These
functions will convert all characters in the sequence until encountering a non-hexadecimal digit or underscore. If
the first non-hex character is not the end of string or a delimiter character, these functions will raise a conversion
exception. If the character is not a valid 7-bit ASCII character, these functions will raise an illegal character
exception.

procedure conv.atoh8(var buffer:var in esi); @returns("eax");

This function converts the hexadecimal character sequence beginning at character position held in ESI to an
8-bit numeric value. It raises an overflow exception if the value is outside the range $00..$FF. This function
returns the result in AL, zero extended into EAX. This function returns ESI pointing at the first character after
the sequence of hexadecimal characters.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AL:

conv.a_h128ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

ESP+20
l:lword

ESP+24

l (L.O. dword)

l (H.O. dword)
Page 146 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.atoh8([esi]);
mov(al, hexNumericResult);

// The following loads ESI with the address of
// a sequence of hexadecimal characters (held in an HLA
// string) and converts them to an 8-bit number:

conv.atoh8(sourceStr); // Loads "sourceStr" into ESI
mov(al, byteVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoh8;
mov(al, hexNumericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoh8;
mov(al, hex12);

procedure conv.atoh16(var buffer:var in esi); @returns("eax");

This function converts the hexadecimal character sequence beginning at character position held in ESI to an
8-bit numeric value. It raises an overflow exception if the value is outside the range $0000..$FFFF. This
function returns the result in AX, zero extended into EAX. This function returns ESI pointing at the first
character after the sequence of hexadecimal characters.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AX:

conv.atoh16([esi]);
mov(ax, hex16NumericResult);

// The following loads ESI with the address of
// a sequence of hexadecimal characters (held in an HLA
// string) and converts them to a 16-bit number:

conv.atoh16(sourceStr); // Loads "sourceStr" into ESI
mov(ax, wordVariable);

HLA low-level calling sequence examples:
Released to the Public Domain Page 147

HLA Standard Library
// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoh16;
mov(ax, hex16NumericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoh16;
mov(ax, hex12);

procedure conv.atoh32(var buffer:var in esi); @returns("eax");

This function converts the hexadecimal character sequence beginning at character position held in ESI to an
8-bit numeric value. It raises an overflow exception if the value is outside the range $0000_0000..$FFFF_FFFF.
This function returns the result in EAX. This function returns ESI pointing at the first character after the
sequence of hexadecimal characters.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EAX:

conv.atoh32([esi]);
mov(eax, hex32NumericResult);

// The following loads ESI with the address of
// a sequence of hexadecimal characters (held in an HLA
// string) and converts them to a 32-bit number:

conv.atoh32(sourceStr); // Loads "sourceStr" into ESI
mov(eax, dwordVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoh32;
mov(eax, hex32NumericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.

Page 148 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
.
mov(sourceStr, esi);
call conv.atoh32;
mov(eax, hex12);

procedure conv.atoh64(var buffer:var in esi); @returns("edx:eax");

This function converts the hexadecimal character sequence beginning at character position held in ESI to an
8-bit numeric value. It raises an overflow exception if the value is outside the range
$0000_0000_0000_0000..$FFFF_FFFF_FFFF_FFFF. This function returns the result in EDX:EAX (H.O.
double word in EDX). This function returns ESI pointing at the first character after the sequence of hexadecimal
characters.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EDX:EAX:

conv.atoh64([esi]);
mov(eax, (type dword hex64NumericResult[0]));
mov(edx, (type dword hex64NumericResult[4]));

// The following loads ESI with the address of
// a sequence of hexadecimal characters (held in an HLA
// string) and converts them to a 64-bit number:

conv.atoh64(sourceStr); // Loads "sourceStr" into ESI
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoh64;
mov(eax, (type dword hex64NumericResult[0]));
mov(edx, (type dword hex64NumericResult[4]));

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoh64;
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));
Released to the Public Domain Page 149

HLA Standard Library
procedure conv.atoh128(var buffer:var in esi; var dest:lword);

This function converts the hexadecimal character sequence beginning at character position in the string to a
128-bit numeric value. It raises an overflow exception if the value is outside the range
$0000_0000_0000_0000_0000_0000_0000_0000..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF. This
function returns the result in the variable specified by the dest parameter.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and stores that value in lwordDest (passed by reference):

conv.atoh128([esi], lwordDest);

// The following loads ESI with the address of
// a sequence of hexadecimal characters (held in an HLA
// string) and converts them to a 128-bit number that it
// stores in lwordDest:

conv.atoh128(sourceStr, lwordDest); // Loads "sourceStr" into ESI

HLA low-level calling sequence examples:

// Option 1: lwordDest is a static object declared in a
// HLA STATIC, READONLY, or STORAGE section:
// As with the first example above, assume ESI already
// contains the address of the string to convert:

pushd(&lwordDest);// Pass address of lwordDest as reference parm.
call conv.atoh128;

// Option 2: lwordDest is a simple automatic variable (no indexing)
// declared in a VAR section (or as a parameter). Assume that
// no 32-bit registers can be disturbed by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.atoh128;

// Option 3: lwordDest is a complex addressing mode and at least
// one 32-bit register is available for use by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

lea(eax, lwordDest);// Assume EAX is the available register
push(eax);
call conv.atoh128;

// Same as second high-level example above. Assumes that
// lwordDest is a static object.

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
Page 150 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd(&lwordDest);
call conv.atoh128;

 8.3.6 Hexadecimal String to Numeric Conversions
This functions convert a string value, that contain the hexadecimal representation of a number, into the

numeric form. These functions have two parameters: a string object and an index into that string. Numeric
conversion begins at the zero-based character position specified by the index parameter. For example, the
invocation

conv.strToh8(someStr, 5);

begins the conversion starting with the sixth character (index 5) in someStr. These functions will raise an "index
out of range" exception if the supplied index is greater than the size of the string the first parameter specifies.
They will return a null pointer reference exception if the string parameter is NULL (they will return an illegal
memory access exception if the first parameter is not a valid pointer and references unpaged memory).

These routines will skip over any leading underscore and delimiter characters (specified by the internal
delimiters character set, see the discussion of conv.setDelimiters and conv.getDelimiters for details). These
functions will convert all characters in the sequence until encountering a non-hexadecimal digit or underscore. If
the first non-hex character is not the end of string or a delimiter character, these functions will raise a conversion
exception. If the character is not a valid 7-bit ASCII character, these functions will raise an illegal character
exception.

procedure conv.strToh8(s:string; index:dword); @returns("eax");

This function converts the hexadecimal character sequence beginning at the indexth character position in the
string to an 8-bit numeric value. It raises an overflow exception if the value is outside the range $00..$FF. This
function returns the result in AL, zero extended into EAX.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "hexValueStr" to numeric form:

conv.strToh8(hexValueStr, 0);// Index=0 starts at beginning
mov(al, hexNumericResult);

// The following demonstrates using a non-zero index:

conv.strToh8("abc12", 3); // "12" begins at offset 3
mov(al, hex12);

conv.aToh128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4 var dest :lword (ptr)
Released to the Public Domain Page 151

HLA Standard Library
HLA low-level calling sequence examples:

push(hexValueStr);// Same as first example above
pushd(0);
call conv.strToh8;
mov(al, hexNumericResult);

// Same as second example above

static
str12 :string := "abc12";
.
.
.

push(str12);// Note that str12 points at "abc12".
pushd(3);// Index to "12" in "abc12".
call conv.strToh8;
mov(al, hex12);

procedure conv.strToh16(s:string; index:dword); @returns("eax");

This function converts the hexadecimal character sequence beginning at the indexth character position in the
string to a 16-bit numeric value. It raises an overflow exception if the value is outside the range $0000..$FFFF.
This function returns the result in AX, zero extended into EAX.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "hexValueStr" to numeric form:

conv.strToh16(hexValueStr, 0);// Index=0 starts at beginning
mov(ax, wordVar);

// The following demonstrates using a non-zero index:

conv.strToh16("abc12FF", 3); // "12FF" begins at offset 3
mov(ax, wordVar);

conv.strToh8 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 152 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(hexValueStr);// Same as first example above
pushd(0);
call conv.strToh16;
mov(ax, wordVar);

// Same as second example above

static
str12FF :string := "abc12FF";
.
.
.

push(str12FF);// Note that str12FF points at "abc12FF".
pushd(3);// Index to "12FF" in "abc12FF".
call conv.strToh16;
mov(ax, wordVar);

procedure conv.strToh32(s:string; index:dword); @returns("eax");

This function converts the hexadecimal character sequence beginning at the indexth character position in the
string to a 32-bit numeric value. It raises an overflow exception if the value is outside the range
$0000_0000..$FFFF_FFFF. This function returns the result in EAX.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "hexValueStr" to numeric form:

conv.strToh32(hexValueStr, 0);// Index=0 starts at beginning
mov(eax, dwordVar);

// The following demonstrates using a non-zero index:

conv.strToh32("abc12_FF00", 3); // "12_FF00" begins at offset 3
mov(eax, dwordVar);

HLA low-level calling sequence examples:

push(hexValueStr);// Same as first example above

conv.strToh16 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 153

HLA Standard Library
pushd(0);
call conv.strToh32;
mov(eax, dwordVar);

// Same as second example above

static
str12FF00 :string := "abc12_FF00";
.
.
.

push(str12FF00);// Note that str12FF00 points at "abc12_FF00".
pushd(3); // Index to "12_FF00" in "abc12_FF00".
call conv.strToh32;
mov(eax, dwordVar);// dwordVar now contains $12_FF00.

procedure conv.strToh64(s:string; index:dword); @returns("edx:eax");

This function converts the hexadecimal character sequence beginning at the indexth character position in the
string to a 64-bit numeric value. It raises an overflow exception if the value is outside the range
$0000_0000_0000_0000..$FFFF_FFFF_FFFF_FFFF. This function returns the result in EDX:EAX (H.O.
double word in EDX).

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "hexValueStr" to numeric form:

conv.strToh64(hexValueStr, 0);// Index=0 starts at beginning
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

// The following demonstrates using a non-zero index:

conv.strToh64("abc12", 1); // "bc12" begins at offset 1
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

HLA low-level calling sequence examples:

conv.strToh16 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 154 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(hexValueStr);// Same as first example above
pushd(0);
call conv.strToh64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

// Same as second example above

static
strabc12 :string := "abc12";
.
.
.

push(strabc12);// Note that strabc12 points at "abc12".
pushd(1); // Index to "bc12" in "abc12".
call conv.strToh64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

procedure conv.strToh128(s:string; index:dword; var dest:lword);

This function converts the hexadecimal character sequence beginning at the indexth character position in the
string to a 128-bit numeric value. It raises an overflow exception if the value is outside the range
$0000_0000_0000_0000_0000_0000_0000_0000..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF. This
function returns the result in the variable specified by the dest parameter.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "hexValueStr" (index=0) to numeric form and store the
// 128-bit result into the 1wordDest variable:

conv.strToh128(hexValueStr, 0, 1wordDest);

// The following demonstrates using a non-zero index:

conv.strToh128("abc1234567890abcdef", 3, 1wordDest);

HLA low-level calling sequence examples:

conv.strToh32 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 155

HLA Standard Library
// Option #1: lwordDest is a STATIC/READONLY/STORAGE
// variable:

push(hexValueStr);// Same as first example above
pushd(0);
pushd(&lwordDest);
call conv.strToh128;

// Option #2: lwordDest is not a static object and
// a 32-bit register is available for use:

push(hexValueStr);// Same as first example above
pushd(0);
lea(eax, lwordDest); // Assuming EAX is available
push(eax);
call conv.strToh128;

// Option #3: lwordDest is an automatic (var) object and
// no 32-bit registers are available for use:

push(hexValueStr);// Same as first example above
pushd(0);
push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.strToh128;

// Option #4: lwordDest is a complex addressing mode object and
// no 32-bit registers are available for use:

push(hexValueStr);// Same as first example above
pushd(0);
sub(4, esp);
push(eax);
lea(eax, lwordDest);
mov(eax, [esp+4]);
pop(eax);
call conv.strToh128;

conv.strToh128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

s :string

index :dword

ESP+12

var l :lword (ptr)
Page 156 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
8.4 Signed Integer Conversions
The integer conversion functions process signed integer values that are 8, 16, 32, 64, or 128 bits long.

Functions in this category compute the output size (in print positions) of an integer, convert an integer to a
sequence of characters, and convert a sequence of characters to an integer value.

 8.4.1 Internal Functions
These functions are for internal use by the standard library. You should not call these functions in your own

code. The internal functions in this category are conv._intToBuf32, conv._intToBuf32Size, conv._intToBuf64,
conv._intToBuf64Size, conv._intToBuf128, conv._intToBuf128Size

 8.4.2 Integer Size Calculations
These routines return the size, in screen print positions, it would take to print the signed integer passed in the

specified parameter. They return their value in the EAX register (the value always fits in AL and AX, if you’d
prefer to use these registes as the return value). The count includes room for a minus sign if the number is
negative. Note that these routines include print positions required by underscores if you’ve enabled underscore
output in values (see conv.setUnderscores and conv.getUnderscores for details).

procedure conv.i8Size(b:byte in al); @returns("eax");

This function computes the number of print positions required by the 8-bit signed integer passed in the AL
register. Because the number of decimal positions is always three or less, the internal underscores flag does not
affect the value this function returns. This function will always return a value in the range 1..4 (e.g., four
positions for a value like "-128").

HLA high-level calling sequence examples:

conv.i8Size(byteVariable);
mov(eax, numSize);

conv.i8Size(<byte register>); // al, ah, bl, bh, cl, ch, dl, dh
mov(eax, int8Size);

conv.i8Size(<constant>); // Must fit into eight bits
mov(al, constantsSize);

Because conv.i8Size passes its input parameter in the AL register, any form of the
high-level calling sequence except "conv.i8Size(al);" will automatically generate
an instruction of the form "mov(<operand>,al);". Therefore, if possible, you should
try to have the value whose size you wish to compute already sitting in the AL
register and pass AL as the parameter to conv.i8Size.

HLA low-level calling sequence examples:

mov(byteVariable, al);
call conv.i8Size;
mov(eax, numSize);

mov(<byte register>, al); // ah, bl, bh, cl, ch, dl, dh
call conv.i8Size;
mov(ax, wordVariable);

// Explicit Examples:

mov(bh, al);
call conv.i8Size;
mov(al, bhSize);
Released to the Public Domain Page 157

HLA Standard Library
call conv.i8Size; // Assume value is already in AL
mov(al, alSize);

mov(123, al); // Example of computing the size of a constant
call conv.i8Size;
mov(eax, constsSize);

It might seem silly to compute the size of a constant as this last example is doing, as the constant’s print
width is known at compile time. Note, however, that this sequence could appear as part of a macro expansion and
the literal constant "123" could actually be the result of expanding a macro parameter.

procedure conv.i16Size(w:word in ax); @returns("eax");

This function computes the number of print positions required by the 16-bit signed integer passed in the AX
register. If the internal underscores flag is set and the integer value is greater than 999 (or less than -999) then this
function will account for the underscores injected by the integer to string conversion routines. This function will
always return a value in the range 1..6 if the underscores flag is not set (e.g., "-12345") or a value in the range
1…7 if the internal underscores flag is set (e.g., "-12_345").

HLA high-level calling sequence examples:

conv.i16Size(wordVariable);
mov(eax, numSize);

conv.i16Size(<word register>); // ax, bx, cx, dx, bp, sp, si, di
mov(eax, int16Size);

conv.i16Size(<constant>); // Must fit into 16 bits
mov(al, constantsSize);

Because conv.i16Size passes its input parameter in the AX register, any form of the high-level calling
sequence except "conv.i16Size(ax);" will automatically generate an instruction of the form
"mov(<operand>,ax);". Therefore, if possible, you should try to have the value whose size you wish to compute
already sitting in the AX register and pass AX as the parameter to conv.i16Size.

HLA low-level calling sequence examples:

mov(wordVariable, ax);
call conv.i16Size;
mov(eax, numSize);

mov(<word register>, ax); // bx, cx, dx, bp, sp, si, or di
call conv.i16Size;
mov(ax, wordVariable);

// Explicit Examples:

mov(bx, ax);
call conv.i16Size;
mov(al, bxSize);

call conv.i16Size; // Assume value is already in AX
mov(al, axSize);

mov(12345, ax); // Example of computing the size of a constant
call conv.i16Size;
mov(eax, constsSize);
Page 158 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
See the comment at the end of conv.i8Size about passing constants to these functions.

procedure conv.i32Size(d:dword in eax); @returns("eax");

This function computes the number of print positions required by the 32-bit signed integer passed in the
EAX register. If the internal underscores flag is set this function will include print positions for the underscores
that the conversion routines will inject into the string. This function will always return a value in the range 1..11
if the underscores flag is not set (e.g., "-1000000000") or a value in the range 1…14 if the internal underscores
flag is set (e.g., "-1_000_000_000").

HLA high-level calling sequence examples:

conv.i32Size(wordVariable);
mov(eax, numSize);

conv.i32Size(<dword register>); // eax, ebx, ecx, edx,
mov(eax, int16Size)l// ebp, esp, esi, or edi

conv.i32Size(<constant>); // Must fit into 32 bits
mov(al, constantsSize);

Because conv.i32Size passes its input parameter in the EAX register, any form of the high-level calling
sequence except "conv.i32Size(eax);" will automatically generate an instruction of the form
"mov(<operand>,eax);". Therefore, if possible, you should try to have the value whose size you wish to
compute already sitting in the EAX register and pass EAX as the parameter to conv.i32Size.

HLA low-level calling sequence examples:

mov(dwordVariable, eax);
call conv.i32Size;
mov(eax, numSize);

mov(<dword register>, eax); // ebx, ecx, edx,
call conv.i32Size;// ebp, esp, esi, or edi
mov(ax, wordVariable);

// Explicit Examples:

mov(ebx, eax);
call conv.i32Size;
mov(al, bxSize);

call conv.i32Size; // Assume value is already in AX
mov(al, axSize);

mov(1234567890, eax); // Example of computing
call conv.i32Size;// the size of a constant.
mov(eax, constsSize);

See the comment at the end of conv.i8Size about passing constants to these functions.

procedure conv.i64Size(q:qword); @returns("eax");

This function computes the number of print positions required by the 64-bit signed integer passed on the
stack. If the internal underscores flag is set this function will include print positions for the underscores that the
conversion routines will inject into the string. This function will always return a value in the range 1..20 if the
underscores flag is not set (e.g., "-9223372036854775807") or a value in the range 1..26 if the internal
underscores flag is set (e.g., "-9_223_372_036_854_775_808").
Released to the Public Domain Page 159

HLA Standard Library
HLA high-level calling sequence examples:

conv.i64Size(qwordVariable);
mov(eax, numSize);

conv.i64Size(<constant>); // Must fit into 64 bits
mov(al, constantsSize);

HLA low-level calling sequence examples:

push((type dword qwordVariable[4]));// Push H.O. dword first
push((type dword qwordVariable[0]));// Push L.O. dword second
call conv.i64Size;
mov(eax, numSize);

// Compute the size of a 64-bit constant:

pushd(12345 >> 32);// Push H.O. dword first
pushd(12345 & $FFFF_FFFF);// Push L.O. dword second
call conv.i64Size;
mov(eax, constsSize);

See the comment at the end of conv.i8Size about passing constants to these functions. If you make a habit of
explicitly passing 64-bit constants to this function, you might consider writing a macro to push the 64-bit
constant for you (see the chapter on "Passing Parameters to Standard Library Routines" for more details).

procedure conv.i128Size(l:lword); @returns("eax");

This function computes the number of print positions required by the 128-bit signed integer passed in the
EAX register. If the internal underscores flag is set this function will include print positions for the underscores
that the conversion routines will inject into the string. This function will always return a value in the range 1..40
if the underscores flag is not set (e.g., "-170141183460469231731687303715884105727") or a value in the
range 1…52 if the internal underscores flag is set (e.g.,
"-170_141_183_460_469_231_731_687_303_715_884_105_728").

HLA high-level calling sequence examples:

conv.i64Size stack diagram

Return Address

Byte

0123

ESP

q (H.O. dword)

q (L.O. dword)
Page 160 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.i128Size(lwordVariable);
mov(eax, numSize);

conv.i128Size(<constant>); // Must fit into 128 bits
mov(al, constantsSize);

HLA low-level calling sequence examples:

push((type dword lwordVariable[12]));// Push H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// Push L.O. dword last
call conv.i64Size;
mov(eax, numSize);

// Compute the size of a 128-bit constant:

pushd(12345 >> 96);// Push H.O. dword first
pushd((12345 >> 64) & $FFFF_FFFF);
pushd((12345 >> 32) & $FFFF_FFFF);
pushd(12345 & $FFFF_FFFF);// Push L.O. dword last
call conv.i128Size;
mov(eax, constsSize);

See the comment at the end of conv.i8Size about passing constants to these functions. If you make a habit of
explicitly passing 128-bit constants to this function, you might consider writing a macro to push the 128-bit
constant for you (see the chapter on "Passing Parameters to Standard Library Routines" for more details).

 8.4.3 Signed Integer Numeric to Buffer Conversions
These routines convert the input parameter to a sequence of characters and store those characters starting at

location [EDI]. They return EDI pointing at the first character beyond the converted string. Note that these
functions do not zero terminate the string; if you want a zero-terminated string, then store a zero at the byte
pointed at by EDI upon return from these functions.

If the internal underscores flag is set (see conv.getUnderscores and conv.setUnderscores for details), then
these functions will insert an underscore between each group of three digits starting with the least significant
digit.

conv.i128Size stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 161

HLA Standard Library
procedure conv.i8ToBuf(i8 :int8 in al; var buf:var in edi);

This function converts the 8-bit signed integer passed in AL to a sequence of 1..4 characters. The string this
function produces is always in the range -128..127. Note that because this string always contains three or fewer
digits, the internal underscores flag setting does not affect this function’s output.

HLA high-level calling sequence examples:

// The following will load "byteVariable" into AL and
// the address of "charArrayVariable" into EDI and then
// call conv.i8ToBuf:

conv.i8ToBuf(byteVariable, charArrayVariable);

// The following call will copy BH into AL and
// EDX into EDI prior to calling conv.i8ToBuf:

conv.i8ToBuf(bh, [edx]);

// The following just calls conv.i8ToBuf as AL and EDI
// already hold the parameter values:

conv.i8ToBuf(al, [edi]);

// The following loads the constant in AL and calls
// conv.i8ToBuf:

conv.i8ToBuf(<constant>, [edi]); // <constant> must fit in 8 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AL and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. byte of EAX (i.e., AL) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AL and [EDI].

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable:

mov(byteVariable, al);
lea(edi, charArrayVariable);
call conv.i8ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(byteVariable, al);
mov(&charArrayVariable, edi);
call conv.i8ToBuf;

// Passing a pair of registers (that are not
// AL and EDI):

mov(bh, al);
mov(edx, edi);
call conv.i8ToBuf;

// Passing a constant:

mov(<constant>, al);
Page 162 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call conv.i8ToBuf; // Assume EDI already contains buffer address.

procedure conv.i16ToBuf(i16 :int16 in ax; var buf:var in edi)

This function converts the 16-bit signed integer passed in AX to a sequence of 1..6 characters if the internal
underscores flag is false, 1..7 characters if the underscores flag contains true. The string this function produces is
always in the range -32768..32767. If the internal underscores flag contains true and the value is greater than 999
or less than -999, then this function emits an underscore between the third and fourth digits (from the right) in the
string.

HLA high-level calling sequence examples:

// The following will load "wordVariable" into AX and
// the address of "charArrayVariable" into EDI and then
// call conv.i16ToBuf:

conv.i16ToBuf(wordVariable, charArrayVariable);

// The following call will copy BX into AX and
// EDX into EDI prior to calling conv.i16ToBuf:

conv.i16ToBuf(bx, [edx]);

// The following just calls conv.i16ToBuf as AX and EDI
// already hold the parameter values:

conv.i16ToBuf(ax, [edi]);

// The following loads the constant in AX and calls
// conv.i16ToBuf:

conv.i16ToBuf(<constant>, [edi]); // <constant> must fit in 16 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. word of EAX (i.e., AX) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AX and [EDI].

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable:

mov(wordVariable, ax);
lea(edi, charArrayVariable);
call conv.i16ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(wordVariable, ax);
mov(&charArrayVariable, edi);
call conv.i16ToBuf;

// Passing a pair of registers (that are not
// AX and EDI):

mov(bx, ax);
mov(edx, edi);
Released to the Public Domain Page 163

HLA Standard Library
call conv.i16ToBuf;

// Passing a constant:

mov(<constant>, ax);
call conv.i16ToBuf; // Assume EDI already contains buffer address.

procedure conv.i32ToBuf(i32 :int32 in eax; var buf:var in edi)

This function converts the 32-bit signed integer passed in EAX to a sequence of 1..11 characters if the
internal underscores flag is false, 1..14 characters if the underscores flag contains true. The string this function
produces is always in the range -2147483648..2147483647. If the internal underscores flag contains true and the
value is greater than 999 or less than -999, then this function emits an underscore between the third and fourth
digits (from the right) in the string.

HLA high-level calling sequence examples:

// The following will load "dwordVariable" into EAX and
// the address of "charArrayVariable" into EDI and then
// call conv.i32ToBuf:

conv.i32ToBuf(dwordVariable, charArrayVariable);

// The following call will copy EBX into EAX and
// EDX into EDI prior to calling conv.i32ToBuf:

conv.i32ToBuf(ebx, [edx]);

// The following just calls conv.i32ToBuf as EAX and EDI
// already hold the parameter values:

conv.i32ToBuf(eax, [edi]);

// The following loads the constant in EAX and calls
// conv.i32ToBuf:

conv.i32ToBuf(<constant>, [edi]); // <constant> must fit in 32 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EAX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite EAX before it copies the address to the EDI register.
It goes without saying that this function will overwrite the values of EAX and EDI if the original parameters are
not EAX and [EDI].

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

mov(dwordVariable, eax);
lea(edi, charArrayVariable);
call conv.i32ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(dwordVariable, eax);
mov(&charArrayVariable, edi);
call conv.i32ToBuf;
Page 164 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a pair of registers (that are not
// EAX and EDI):

mov(ebx, eax);
mov(edx, edi);
call conv.i32ToBuf;

// Passing a constant:

mov(<constant>, eax);
call conv.i32ToBuf; // Assume EDI already contains buffer address.

procedure conv.i64ToBuf(q :qword; var buf:var in edi)

This function converts the 64-bit signed integer passed in q to a sequence of 1..20 characters if the internal
underscores flag is false, 1..26 characters if the underscores flag contains true. The string this function produces
is always in the range -9223372036854775808 .. 9223372036854775807. If the internal underscores flag
contains true and the value is greater than 999 or less than -999, then this function emits an underscore between
each group of three digits starting with the least significant digit.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.i64ToBuf:

conv.i64ToBuf(qwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.i64ToBuf:

conv.i64ToBuf(<constant>, [edi]); // <constant> must fit in 64 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.i64ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.i64ToBuf;

// Passing a constant:
Released to the Public Domain Page 165

HLA Standard Library
pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.i64ToBuf; // Assume EDI already contains buffer address.

procedure conv.i128ToBuf(l :lword; var buf:var in edi)

This function converts the 128-bit signed integer passed in l to a sequence of 1..40 characters if the internal
underscores flag is false, 1..53 characters if the underscores flag contains true. The string this function produces
is always in the range -170141183460469231731687303715884105728 ..
170141183460469231731687303715884105727. If the internal underscores flag contains true and the value is
greater than 999 or less than -999, then this function emits an underscore between each group of three digits
starting with the least significant digit.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.i128ToBuf:

conv.i128ToBuf(lwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.i128ToBuf:

conv.i128ToBuf(<constant>, [edi]); // <constant> must fit in 128 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing an lword variable and a buffer variable:

push((type dword lwordVariable[12]));// H.O. dword first

conv.i64ToBuf stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20 q (H.O. dword)

q (L.O. dword)
q

Page 166 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.i128ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.i128ToBuf;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.i128ToBuf; // Assume EDI already contains buffer address.

 8.4.4 Integer Numeric to String Conversions
These routines convert a signed integer value (8, 16, 32, 64, or 128 bits) to a string. The standard

("unadorned") functions store the string data into a string object that you pass as a parameter to the function. That
string object must be preallocated and large enough to receive the string result (else a string overflow occurs).
The "adorned" functions, whose names begin with "a_" automatically allocate storage on the heap, store the
converted string into that heap object, and then return a pointer to the newly allocated string in the EAX register
(it is the caller’s responsibility to free the storage when it is no longer needed).

These functions let you specify a minimum field width and a fill character. If the number would require
fewer than width print positions, the routines copy the fill character to the remaining positions in the destination
string. If width is positive, the number is right justified in the string. If width is negative, the number is left
justified in the string. If the string representation of the value requires more than width print positions, then these
functions ignore the width and fill paramenters and use however many positions are necessary to properly
display the value.

conv.i128ToBuf stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 167

HLA Standard Library
Here are the maximum number of print positions these routines will produce for each data type before
considering the minimum field width:
Underscores flag is false:

8 bits:4 (-128..127)
16 bits:6 (-32768..32767)
32 bits:11 (-2147483648..2147483647)
64 bits:20 (-9223372036854775808..9223372036854775807)
128 bits:40 (-170141183460469231731687303715884105728 ..

170141183460469231731687303715884105728)

Underscores flag is true:
8 bits:4 (-128..127)
16 bits:7 (-32_768..32_767)
32 bits:14 (-2_147_483_648..2_147_483_647)
64 bits:26 (-9_223_372_036_854_775_808..9_223_372_036_854_775_807)
128 bits:52 (-170_141_183_460_469_231_731_687_303_715_884_105_728 ..

170_141_183_460_469_231_731_687_303_715_884_105_728)

procedure conv.i8ToStr (b:int8; width:int32; fill:char; dest:string);

This function converts an 8-bit signed integer to the decimal string representation of that integer and stores
the string in the preallocated string object specified by the dest paramenter. The width and fill parameters specify
the minimum field width and padding character (if the minimum field width is greater than the number of output
characters needed for the string). This function will raise a string overflow exception if the destination string is
not large enough to hold the conversion. Note that the internal underscores flag will not affect the output because
8-bit integers are always three digits or smaller.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.i8ToStr:

conv.i8ToStr(byteVariable, destStr);

// The following call will BH’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.i8ToStr:

conv.i8ToStr(bh, edx);

// The following pushes the constant and destStr and calls
// conv.i8ToStr:

conv.bToBuf(<constant>, destStr); // <constant> must fit in 8 bits

xxxToStr (value, width, fill, buffer);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxToStr
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxToStr functions produce the string

V A L U E f f f
Page 168 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.i8ToStr;

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
push(destStr);
call conv.i8ToStr;

// Passing a byte variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
push(destStr);
call conv.i8ToStr;

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
push(edx);
call conv.i8ToStr;

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
push(edx);
call conv.i8ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.i8ToStr;
Released to the Public Domain Page 169

HLA Standard Library
procedure conv.a_i8ToStr (b:int8; width:int32; fill:char);
@returns("eax");

This function converts an 8-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. Note that the internal
underscores flag will not affect the output because 8-bit integers are always three digits or smaller.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and then call conv.a_i8ToStr:

conv.a_i8ToStr(byteVariable);
mov(eax, byteStr);

// The following call will BH’s value onto the stack
// before calling conv.a_i8ToStr:

conv.a_i8ToStr(bh);
mov(eax, byteStr);

// The following pushes the constant and calls
// conv.a_i8ToStr:

conv.a_i8ToStr(<constant>); // <constant> must fit in 8 bits
mov(eax, byteStr);

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
call conv.a_i8ToStr;
mov(eax, destStr);

conv.i8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 b

size

fill

buffer (ptr)
Page 170 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
call conv.a_i8ToStr;
mov(eax, destStr);

// Passing a byte variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
call conv.a_i8ToStr;
mov(eax, destStr);

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
call conv.a_i8ToStr;
mov(eax, byteStr);

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
call conv.a_i8ToStr;
mov(eax, byteStr);

// Passing a constant:

pushd(<constant>);
call conv.a_i8ToStr;
mov(eax, byteStr);

conv.a_i8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 b

size

fill
Released to the Public Domain Page 171

HLA Standard Library
procedure conv.i16ToStr(w:int16; width:int32; fill:char; dest:string);

This function converts a 16-bit signed integer to its decimal string representation and stores the string in the
preallocated string object specified by the dest paramenter. The width and fill parameters specify the minimum
field width and padding character (if the minimum field width is greater than the number of output characters
needed for the string). This function will raise a string overflow exception if the destination string is not large
enough to hold the conversion. If the conversion requires more than three digits and the internal underscores flag
is true, then this function will insert an underscore between each group of three digits, starting with the least
signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "wordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.i16ToStr:

conv.i16ToStr(wordVariable, destStr);

// The following call will BX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.i16ToStr:

conv.i16ToStr(bx, edx);

// The following pushes the constant and destStr and calls
// conv.i16ToStr:

conv.i16ToStr(<constant>, destStr); // <constant> must fit in 16 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.i16ToStr;

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
push(destStr);
call conv.i16ToStr;

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:
Page 172 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushw(0);
push(wordVariable);
push(destStr);
call conv.i16ToStr;

// Passing a pair of registers:
// BX = value to print, EDX = pointer to string object.

push(ebx); // Pushes BX
push(edx);
call conv.i16ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.i16ToStr;

procedure conv.a_i16ToStr(w:int16; width:int32; fill:char);
@returns("eax");

This function converts a 16-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion produces
more than three digits and the internal underscores flag is true, then this function will insert an underscore
between each group of three digits, starting with the least signficant digit (see conv.getUnderscores and
conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "wordVariable" and call conv.a_i16ToStr:

conv.a_i16ToStr(wordVariable);
mov(eax, destStr);

// The following call will BX’s value onto the stack

conv.i16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 w

size

fill

buffer (ptr)
Released to the Public Domain Page 173

HLA Standard Library
// before calling conv.a_i16ToStr:

conv.a_i16ToStr(bx);

// The following pushes the constant and calls
// conv.a_i16ToStr:

conv.a_i16ToStr(<const>, destStr); // <const> must fit in 16 bits

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(wordVariable, eax);
push(eax);
call conv.a_i16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
call conv.a_i16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
call conv.a_i16ToStr;
mov(eax, destStr);

// Passing a pair of registers:
// BX = value to print.

push(ebx); // Pushes BX
call conv.a_i16ToStr;
mov(eax, wordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_i16ToStr;
mov(eax, destStr);
Page 174 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.i32ToStr(d:int32; width:int32; fill:char; buffer:string);

This function converts a 32-bit signed integer to its decimal string representation and stores the string in the
preallocated string object specified by the buffer paramenter. The width and fill parameters specify the minimum
field width and padding character (if the minimum field width is greater than the number of output characters
needed for the string). This function will raise a string overflow exception if the destination string is not large
enough to hold the conversion. If the conversion requires more than three digits and the internal underscores flag
is true, then this function will insert an underscore between each group of three digits, starting with the least
signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.i32ToStr:

conv.i32ToStr(dwordVariable, destStr);

// The following call will push EBX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.i32ToStr:

conv.i32ToStr(ebx, edx);

// The following pushes the constant and destStr and calls
// conv.i32ToStr:

conv.i32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data. In any case, this is why you can pass a register
value as the destination string location rather than having to pass something like "[edx]". A construct like "[edx]"
would imply that EDX contains the address of the string variable, that is, a pointer to the pointer to the string
data.

HLA low-level calling sequence examples:

conv.a_i16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

w

size

fill
Released to the Public Domain Page 175

HLA Standard Library
// Passing a dword variable and a buffer variable:

push(dwordVariable);
push(destStr);
call conv.i32ToStr;

// Passing a pair of registers:
// EBX = value to print, EDX = pointer to string object.

push(ebx);
push(edx);
call conv.i32ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.i32ToStr;

procedure conv.a_i32ToStr(d:int32; width:int32; fill:char);
@returns("eax");

This function converts a 32-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion produces
more than three digits and the internal underscores flag is true, then this function will insert an underscore
between each group of three digits, starting with the least signficant digit (see conv.getUnderscores and
conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and then call conv.a_i32ToStr:

conv.a_i32ToStr(dwordVariable);
mov(eax, destStr);

conv.i32ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 d

size

fill

buffer (ptr)
Page 176 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following call will push EBX’s value onto the stack
// before calling conv.a_i32ToStr:

conv.a_i32ToStr(ebx);

// The following pushes the constant and calls
// conv.a_i32ToStr:

conv.a_i32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

HLA low-level calling sequence examples:

// Passing a dword variable:

push(dwordVariable);
call conv.a_i32ToStr;
mov(eax, destStr);

// Passing a register:
// EBX = value to print.

push(ebx);
call conv.a_i32ToStr;
mov(eax, dwordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_i32ToStr;
mov(eax, destStr);

procedure conv.i64ToStr(q:qword; width:int32; fill:char; buffer:string);

This function converts a 64-bit signed integer to its decimal string representation and stores the string in the
preallocated string object specified by the buffer paramenter. The width and fill parameters specify the minimum
field width and padding character (if the minimum field width is greater than the number of output characters
needed for the string). This function will raise a string overflow exception if the destination string is not large
enough to hold the conversion. If the conversion requires more than three digits and the internal underscores flag
is true, then this function will insert an underscore between each group of three digits, starting with the least
signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// and the value of the destStr string variable
// onto the stack and then call conv.i64ToStr:

conv.i64ToStr(qwordVariable, destStr);

// The following pushes the constant onto the stack along with
// the value held in the destStr variable and calls
// conv.i64ToStr:
Released to the Public Domain Page 177

HLA Standard Library
conv.i64ToStr(<constant>, destStr); // <constant> must fit in 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.i64ToStr;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
push(destStr);
call conv.i64ToStr;

procedure conv.a_i64ToStr(q:qword; width:int32; fill:char);
@returns("eax");

This function converts a 64-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion produces
more than three digits and the internal underscores flag is true, then this function will insert an underscore
between each group of three digits, starting with the least signficant digit (see conv.getUnderscores and
conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack and then call conv.a_i64ToStr:

conv.a_i64ToStr(qwordVariable);

conv.i64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20 q (H.O. dword)

q (L.O. dword)
q

Page 178 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_i64ToStr:

conv.a_i64ToStr(<constant>); // <constant> must fit in 64 bits
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing a qword variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_i64ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.a_i64ToStr;
mov(eax, destStr);

procedure conv.i128ToStr(l:lword; width:int32; fill:char; buffer:string);

This function converts a 128-bit signed integer to its decimal string representation and stores the string in the
preallocated string object specified by the buffer paramenter. The width and fill parameters specify the minimum
field width and padding character (if the minimum field width is greater than the number of output characters
needed for the string). This function will raise a string overflow exception if the destination string is not large
enough to hold the conversion. If the conversion requires more than three digits and the internal underscores flag

conv.a_i64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

q (H.O. dword)

q (L.O. dword)
q

Released to the Public Domain Page 179

HLA Standard Library
is true, then this function will insert an underscore between each group of three digits, starting with the least
signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// and destStr onto the stack, and then call conv.i128ToStr:

conv.i128ToStr(lwordVariable, destStr);

// The following pushes the constant onto the stack and calls
// conv.i128ToStr:

conv.i128ToStr(<constant>, edx); // EDX contains string pointer value.

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

push(destStr);
call conv.i128ToStr;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(edx);// EDX contains string pointer value.
call conv.i128ToStr;

conv.i128ToStr stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Page 180 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_i128ToStr(l:lword; width:int32; fill:char);
@returns("eax");

This function converts a 128-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion produces
more than three digits and the internal underscores flag is true, then this function will insert an underscore
between each group of three digits, starting with the least signficant digit (see conv.getUnderscores and
conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, and then call conv.a_i128ToStr:

conv.a_i128ToStr(lwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_i128ToStr:

conv.a_i128ToStr(<constant>);
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

call conv.a_i128ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_i128ToStr;
mov(eax, destStr);
Released to the Public Domain Page 181

HLA Standard Library
 8.4.5 Signed Integer String to Numeric Conversions
The standard library string to integer conversion routines convert a sequence of digits, possibly prefaced by

a minus sign, into the corresponding signed integer value. These routines begin by skipping over any leading
delimiter characters (see the conv.getDelimiters and conv.setDelimiters functions for details), handling an
optional minus sign, followed by any number of decimal digits and underscores (these routines ignore the
underscores). Conversion stops at the end of the string or upon encountering a delimiter character.

These routines will raise a conversion error exception if they encounter a 7-bit ASCII character that is not a
decimal digit, an underscore, or a delimiter character during the translation. These routines will raise an illegal
character exception if they encounter a non-ASCII character (one with its H.O. bit set). These routines will raise
a value out of range exception if the converted value will not fit in the destination data object.

There are two basic sets of string to numeric conversion routines: the conv.atoi* routines and the
conv.strToi* routines. The atoi* routines process the characters pointed at by the ESI register. The strToi*
routines process data in a string object, starting at an offset specified by a second parameter. For example,
"conv.strToi8("12345", 3);" returns the value 45 because it begins processing the string at (zero-based) offset 3
in the string.

procedure conv.atoi8 (buffer:var in esi); @returns("al");

This function converts the sequence of characters starting at the memory address held in ESI to an 8-bit
signed integer. It returns the value (in the range -128..+127) in AL. Note that this function actually returns the
sign-extended value in EAX, so you may use EAX if it is more convenient to do so. Upon successful return, ESI
is pointing at the delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AL:

conv.atoi8([esi]);
mov(al, numericResult);

conv.a_i128ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

ESP+20
l:lword

ESP+24

l (L.O. dword)

l (H.O. dword)
Page 182 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to an 8-bit number:

conv.atoi8(sourceStr); // Loads "sourceStr" into ESI
mov(al, byteVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoi8;
mov(al, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoi8;
mov(al, num12);

procedure conv.atoi16 (buffer:var in esi); @returns("ax");

This function converts the sequence of characters starting at the memory address held in ESI to a 16-bit
signed integer. It returns the value (in the range -32768..+32767) in AX. Note that this function actually returns
the sign-extended value in EAX, so you may use EAX if it is more convenient to do so. Upon successful return,
ESI is pointing at the delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AX:

conv.atoi16([esi]);
mov(ax, numericResult);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 16-bit number:

conv.atoi16(sourceStr); // Loads "sourceStr" into ESI
mov(ax, wordVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:
Released to the Public Domain Page 183

HLA Standard Library
call conv.atoi16;
mov(ax, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoi16;
mov(ax, num12);

procedure conv.atoi32 (buffer:var in esi); @returns("eax");

This function converts the sequence of characters starting at the memory address held in ESI to a 32-bit
signed integer. It returns the value (in the range -2147483648..+2147483647) in EAX. ESI is pointing at the
delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EAX:

conv.atoi32([esi]);
mov(eax, numericResult);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 32-bit number:

conv.atoi32(sourceStr); // Loads "sourceStr" into ESI
mov(eax, dwordVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoi32;
mov(eax, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoi32;
mov(eax, num12);
Page 184 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

procedure conv.atoi64 (buffer:var in esi); @returns("edx:eax");

This function converts the sequence of characters starting at the memory address held in ESI to a 64-bit
signed integer. It returns the value (in the range -9223372036854775808..+9223372036854775807) in
EDX:EAX (EDX contains the H.O. dword). ESI is pointing at the delimiter character at the end of the sequence
of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EDX:EAX:

conv.atoi64([esi]);
mov(eax, (type dword hex64NumericResult[0]));
mov(edx, (type dword hex64NumericResult[4]));

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 64-bit number:

conv.atoi64(sourceStr); // Loads "sourceStr" into ESI
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atoi64;
mov(eax, (type dword numericResult[0]));
mov(edx, (type dword numericResult[4]));

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atoi64;
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));

procedure conv.atoi128(buffer:var in esi; var l:lword);

This function converts the sequence of characters starting at the memory address held in ESI to a 128-bit
signed integer. It returns the value (in the range -
170141183460469231731687303715884105728..+170141183460469231731687303715884105727) in the l
Released to the Public Domain Page 185

HLA Standard Library
parameter that is passed by reference to this function. ESI is pointing at the delimiter character at the end of the
sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and stores that value in lwordDest (passed by reference):

conv.atoi128([esi], lwordDest);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 128-bit number that it
// stores in lwordDest:

conv.atoi128(sourceStr, lwordDest); // Loads "sourceStr" into ESI

HLA low-level calling sequence examples:

// Option 1: lwordDest is a static object declared in a
// HLA STATIC, READONLY, or STORAGE section:
// As with the first example above, assume ESI already
// contains the address of the string to convert:

pushd(&lwordDest);// Pass address of lwordDest as reference parm.
call conv.atoi128;

// Option 2: lwordDest is a simple automatic variable (no indexing)
// declared in a VAR section (or as a parameter). Assume that
// no 32-bit registers can be disturbed by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.atoi128;

// Option 3: lwordDest is a complex addressing mode and at least
// one 32-bit register is available for use by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

lea(eax, lwordDest);// Assume EAX is the available register
push(eax);
call conv.atoi128;

// Same as second high-level example above. Assumes that
// lwordDest is a static object.

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
pushd(&lwordDest);
Page 186 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call conv.atoi128;

procedure conv.strToi8(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to an 8-bit signed integer. It returns the value (in the range -128..+127) in AL. Note that this function
actually returns the sign-extended value in EAX, so you may use EAX if it is more convenient to do so.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strToi8(decValueStr, 0);// Index=0 starts at beginning
mov(al, numericResult);

// The following demonstrates using a non-zero index:

conv.strToi8("abc12", 3); // "12" begins at offset 3
mov(al, hex12);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strToi8;
mov(al, decNumericResult);

// Same as second example above

static
str12 :string := "abc12";
.
.
.

push(str12);// Note that str12 points at "abc12".

conv.aToi128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4 var dest :lword (ptr)
Released to the Public Domain Page 187

HLA Standard Library
pushd(3);// Index to "12" in "abc12".
call conv.strToi8;
mov(al, dec12);

procedure conv.strToi16(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 16-bit signed integer. It returns the value (in the range -32768..+32767) in AX. Note that this
function actually returns the sign-extended value in EAX, so you may use EAX if it is more convenient to do so.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strToi16(hexValueStr, 0);// Index=0 starts at beginning
mov(ax, wordVar);

// The following demonstrates using a non-zero index:

conv.strToi16("abc1234", 3); // "1234" begins at offset 3
mov(ax, wordVar);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strToi16;
mov(ax, wordVar);

// Same as second example above

static
str1200 :string := "abc1200";
.
.

conv.strToi8 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 188 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
.
push(str1200);// Note that str1200 points at "abc1200".
pushd(3);// Index to "1200" in "abc1200".
call conv.strToi16;
mov(ax, wordVar);

procedure conv.strToi32(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 32-bit signed integer. It returns the value (in the range -2147483648..+2147483647) in EAX.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strToi32(decValueStr, 0);// Index=0 starts at beginning
mov(eax, dwordVar);

// The following demonstrates using a non-zero index:

conv.strToi32("abc12_345", 3); // "12_345" begins at offset 3
mov(eax, dwordVar);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strToi32;
mov(eax, dwordVar);

// Same as second example above

static
str12345 :string := "abc-12_345";
.

conv.strToi16 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 189

HLA Standard Library
.

.
push(str12345);// Note that str12345 points at "abc-12_345".
pushd(3); // Index to "-12_345" in "abc-12_345".
call conv.strToi32;
mov(eax, dwordVar);// dwordVar now contains -12,345.

procedure conv.strToi64(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 64-bit signed integer. It returns the value (in the range -9223372036854775808 ..
+9223372036854775807) in EDX:EAX (EDX contains the H.O. dword).

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strToi64(decValueStr, 0);// Index=0 starts at beginning
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

// The following demonstrates using a non-zero index:

conv.strToi64("a-123", 1); // "-123" begins at offset 1
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strToi64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

conv.strToi32 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 190 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Same as second example above

static
strabc12 :string := "a-123";
.
.
.

push(strabc12);// Note that strabc12 points at "a-123".
pushd(1); // Index to "-123" in "a-123".
call conv.strToi64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

procedure conv.strToi128(s:string; index:dword; var dest:lword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 128-bit signed integer. It returns the value (in the range
-170141183460469231731687303715884105728.. +170141183460469231731687303715884105727) in the
parameter l that you pass by reference to this function.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" (index=0) to numeric form and store the
// 128-bit result into the 1wordDest variable:

conv.strToi128(decValueStr, 0, 1wordDest);

// The following demonstrates using a non-zero index:

conv.strToi128("abc1234567890123456789", 3, 1wordDest);

HLA low-level calling sequence examples:

// Option #1: lwordDest is a STATIC/READONLY/STORAGE
// variable:

push(decValueStr);// Same as first example above

conv.strToi64 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 191

HLA Standard Library
pushd(0);
pushd(&lwordDest);
call conv.strToi128;

// Option #2: lwordDest is not a static object and
// a 32-bit register is available for use:

push(decValueStr);// Same as first example above
pushd(0);
lea(eax, lwordDest); // Assuming EAX is available
push(eax);
call conv.strToi128;

// Option #3: lwordDest is an automatic (var) object and
// no 32-bit registers are available for use:

push(decValueStr);// Same as first example above
pushd(0);
push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.strToi128;

// Option #4: lwordDest is a complex addressing mode object and
// no 32-bit registers are available for use:

push(decValueStr);// Same as first example above
pushd(0);
sub(4, esp);
push(eax);
lea(eax, lwordDest);
mov(eax, [esp+4]);
pop(eax);
call conv.strToi128;

8.5 Unsigned Integer Conversions
The integer conversion function process signed integer values that are 8, 16, 32, 64, or 128 bits long.

Functions in this category compute the output size (in print positions) of an integer, convert an integer to a
sequence of characters, and convert a sequence of characters to an integer value.

conv.strToi128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

s :string

index :dword

ESP+12

var l :lword (ptr)
Page 192 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 8.5.1 Internal Routines

The following routines are used internally by the standard library unsigned
integer code and you should not directly call them: conv._u8Size,
conv._u16Size, and conv._u32Size.

 8.5.2 Unsigned Integer Size Calculations
These routines return the size, in screen print positions, it would take to print the unsigned integer passed in

the specified parameter. They return their value in the EAX register. Note that these routines include print
positions required by underscores if you’ve enabled underscore output in values (see conv.setUnderscores and
conv.getUnderscores for details).

It should go without saying that if you compute the size of an unsigned integer and then change the value of
the internal underscores flag, the size you’ve computed may be invalid.

procedure conv.u8Size(b:byte in al); @returns("eax");

Computes the output size of an 8-bit unsigned integer (passed in AL) and returns this value in EAX. The
return result will always be a value in the range 1..3. The internal underscores flag does not affect the result this
function returns.

HLA high-level calling sequence examples:

conv.u8Size(byteVariable);
mov(eax, numSize);

conv.u8Size(<byte register>); // al, ah, bl, bh, cl, ch, dl, dh
mov(eax, int8Size);

conv.u8Size(<constant>); // Must fit into eight bits
mov(al, constantsSize);

Because conv.u8Size passes its input parameter in the AL register, any form of the high-level calling
sequence except "conv.u8Size(al);" will automatically generate an instruction of the form
"mov(<operand>,al);". Therefore, if possible, you should try to have the value whose size you wish to compute
already sitting in the AL register and pass AL as the parameter to conv.u8Size.

HLA low-level calling sequence examples:

mov(byteVariable, al);
call conv.u8Size;
mov(eax, numSize);

mov(<byte register>, al); // ah, bl, bh, cl, ch, dl, dh
call conv.u8Size;
mov(ax, wordVariable);

// Explicit Examples:

mov(bh, al);
call conv.u8Size;
mov(al, bhSize);

call conv.u8Size; // Assume value is already in AL
mov(al, alSize);

mov(123, al); // Example of computing the size of a constant
Released to the Public Domain Page 193

HLA Standard Library
call conv.u8Size;
mov(eax, constsSize);

It might seem silly to compute the size of a constant as this last example is doing, as the constant’s print
width is known at compile time. Note, however, that this sequence could appear as part of a macro expansion and
the literal constant "123" could actually be the result of expanding a macro parameter.

procedure conv.u16Size(w:word in ax)

Computes the output size of a 16-bit unsigned integer (passed in AX) and returns this value in EAX. The
return result will always be a value in the range 1..5 if the internal underscores flag contains false, 1..6 if the
underscores flag contains true.

HLA high-level calling sequence examples:

conv.u16Size(wordVariable);
mov(eax, numSize);

conv.u16Size(<word register>); // ax, bx, cx, dx, bp, sp, si, di
mov(eax, int16Size);

conv.u16Size(<constant>); // Must fit into 16 bits
mov(al, constantsSize);

Because conv.u16Size passes its input parameter in the AX register, any form of the high-level calling
sequence except "conv.u16Size(ax);" will automatically generate an instruction of the form
"mov(<operand>,ax);". Therefore, if possible, you should try to have the value whose size you wish to compute
already sitting in the AX register and pass AX as the parameter to conv.u16Size.

HLA low-level calling sequence examples:

mov(wordVariable, ax);
call conv.u16Size;
mov(eax, numSize);

mov(<word register>, ax); // bx, cx, dx, bp, sp, si, or di
call conv.u16Size;
mov(ax, wordVariable);

// Explicit Examples:

mov(bx, ax);
call conv.u16Size;
mov(al, bxSize);

call conv.u16Size; // Assume value is already in AX
mov(al, axSize);

mov(12345, ax); // Example of computing the size of a constant
call conv.u16Size;
mov(eax, constsSize);

See the comment at the end of conv.i8Size about passing constants to these functions.
Page 194 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.u32Size(d:dword in eax)

Computes the output size of a 32-bit unsigned integer (passed in EAX) and returns this value in EAX. The
return result will always be a value in the range 1..10 if the internal underscores flag contains false, 1..11 if the
underscores flag contains true.

HLA high-level calling sequence examples:

conv.u32Size(wordVariable);
mov(eax, numSize);

conv.u32Size(<dword register>); // eax, ebx, ecx, edx,
mov(eax, int16Size)l// ebp, esp, esi, or edi

conv.u32Size(<constant>); // Must fit into 32 bits
mov(al, constantsSize);

Because conv.u32Size passes its input parameter in the EAX register, any form of the high-level calling
sequence except "conv.u32Size(eax);" will automatically generate an instruction of the form
"mov(<operand>,eax);". Therefore, if possible, you should try to have the value whose size you wish to
compute already sitting in the EAX register and pass EAX as the parameter to conv.u32Size.

HLA low-level calling sequence examples:

mov(dwordVariable, eax);
call conv.u32Size;
mov(eax, numSize);

mov(<dword register>, eax); // ebx, ecx, edx,
call conv.u32Size;// ebp, esp, esi, or edi
mov(ax, wordVariable);

// Explicit Examples:

mov(ebx, eax);
call conv.u32Size;
mov(al, bxSize);

call conv.u32Size; // Assume value is already in AX
mov(al, axSize);

mov(1234567890, eax); // Example of computing
call conv.u32Size;// the size of a constant.
mov(eax, constsSize);

See the comment at the end of conv.u8Size about passing constants to these functions.

procedure conv.u64Size(q:qword)

Computes the output size of a 64-bit unsigned integer (passed in in q parameter) and returns this value in
EAX. The return result will always be a value in the range 1..20 (e.g., "18446744073709551615") if the internal
underscores flag contains false, 1..26 if the underscores flag contains true (e.g.,
"18_446_744_073_709_551_615").

HLA high-level calling sequence examples:

conv.u64Size(qwordVariable);
Released to the Public Domain Page 195

HLA Standard Library
mov(eax, numSize);

conv.u64Size(<constant>); // Must fit into 64 bits
mov(al, constantsSize);

HLA low-level calling sequence examples:

push((type dword qwordVariable[4]));// Push H.O. dword first
push((type dword qwordVariable[0]));// Push L.O. dword second
call conv.u64Size;
mov(eax, numSize);

// Compute the size of a 64-bit constant:

pushd(12345 >> 32);// Push H.O. dword first
pushd(12345 & $FFFF_FFFF);// Push L.O. dword second
call conv.u64Size;
mov(eax, constsSize);

See the comment at the end of conv.u8Size about passing constants to these functions. If you make a habit of
explicitly passing 64-bit constants to this function, you might consider writing a macro to push the 64-bit
constant for you (see the chapter on "Passing Parameters to Standard Library Routines" for more details).

procedure conv.u128Size(l:lword)

Computes the output size of a 128-bit unsigned integer (passed in the l parameter) and returns this value in
EAX. The return result will always be a value in the range 1..39 (e.g.,
"340282366920938463463374607431768211455") if the internal underscores flag contains false, 1..51 if the
underscores flag contains true (e.g., "340_282_366_920_938_463_463_374_607_431_768_211_455").

HLA high-level calling sequence examples:

conv.u128Size(lwordVariable);
mov(eax, numSize);

conv.u128Size(<constant>); // Must fit into 128 bits
mov(al, constantsSize);

conv.u64Size stack diagram

Return Address

Byte

0123

ESP

q (H.O. dword)

q (L.O. dword)
Page 196 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push((type dword lwordVariable[12]));// Push H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// Push L.O. dword last
call conv.u64Size;
mov(eax, numSize);

// Compute the size of a 128-bit constant:

pushd(12345 >> 96);// Push H.O. dword first
pushd((12345 >> 64) & $FFFF_FFFF);
pushd((12345 >> 32) & $FFFF_FFFF);
pushd(12345 & $FFFF_FFFF);// Push L.O. dword last
call conv.u128Size;
mov(eax, constsSize);

See the comment at the end of conv.u8Size about passing constants to these functions. If you make a habit of
explicitly passing 128-bit constants to this function, you might consider writing a macro to push the 128-bit
constant for you (see the chapter on "Passing Parameters to Standard Library Routines" for more details).

 8.5.3 Unsigned Integer Numeric to Buffer Conversions
These routines convert the input parameter to a sequence of characters and store those characters starting at

location [EDI]. They return EDI pointing at the first character beyond the converted string. Note that these
functions do not zero terminate the string; if you want a zero-terminated string, then store a zero at the byte
pointed at by EDI upon return from these functions.

If the internal underscores flag is set (see conv.getUnderscores and conv.setUnderscores for details), then
these functions will insert an underscore between each group of three digits starting with the least significant
digit.

procedure conv.u8ToBuf(u8: uns8 in al)

This function converts the 8-bit unsigned integer passed in AL to a sequence of 1..3 characters. The string
this function produces is always in the range 0..255. Note that because this string always contains three or fewer
digits, the internal underscores flag setting does not affect this function’s output.

conv.u128Size stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 197

HLA Standard Library
HLA high-level calling sequence examples:

// The following will load "byteVariable" into AL and
// the address of "charArrayVariable" into EDI and then
// call conv.u8ToBuf:

conv.u8ToBuf(byteVariable, charArrayVariable);

// The following call will copy BH into AL and
// EDX into EDI prior to calling conv.u8ToBuf:

conv.u8ToBuf(bh, [edx]);

// The following just calls conv.u8ToBuf as AL and EDI
// already hold the parameter values:

conv.u8ToBuf(al, [edi]);

// The following loads the constant in AL and calls
// conv.u8ToBuf:

conv.u8ToBuf(<constant>, [edi]); // <constant> must fit in 8 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AL and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. byte of EAX (i.e., AL) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AL and [EDI].

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable:

mov(byteVariable, al);
lea(edi, charArrayVariable);
call conv.u8ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(byteVariable, al);
mov(&charArrayVariable, edi);
call conv.u8ToBuf;

// Passing a pair of registers (that are not
// AL and EDI):

mov(bh, al);
mov(edx, edi);
call conv.u8ToBuf;

// Passing a constant:

mov(<constant>, al);
call conv.u8ToBuf; // Assume EDI already contains buffer address.
Page 198 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.u16ToBuf(u16: uns16 in ax)

This function converts the 16-bit unsigned integer passed in AX to a sequence of 1..5 characters if the
internal underscores flag is false, 1..6 characters if the underscores flag contains true. The string this function
produces is always in the range 0..65535. If the internal underscores flag contains true and the value is greater
than 999, then this function emits an underscore between the third and fourth digits (from the right) in the string.

HLA high-level calling sequence examples:

// The following will load "wordVariable" into AX and
// the address of "charArrayVariable" into EDI and then
// call conv.u16ToBuf:

conv.u16ToBuf(wordVariable, charArrayVariable);

// The following call will copy BX into AX and
// EDX into EDI prior to calling conv.u16ToBuf:

conv.u16ToBuf(bx, [edx]);

// The following just calls conv.u16ToBuf as AX and EDI
// already hold the parameter values:

conv.u16ToBuf(ax, [edi]);

// The following loads the constant in AX and calls
// conv.u16ToBuf:

conv.u16ToBuf(<constant>, [edi]); // <constant> must fit in 16 bits

When using the HLA high-level calling form, always keep in mind that these statements load the AX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite the L.O. word of EAX (i.e., AX) before it copies the
address to the EDI register. It goes without saying that this function will overwrite the values of EAX and EDI if
the original parameters are not AX and [EDI].

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable:

mov(wordVariable, ax);
lea(edi, charArrayVariable);
call conv.u16ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(wordVariable, ax);
mov(&charArrayVariable, edi);
call conv.u16ToBuf;

// Passing a pair of registers (that are not
// AX and EDI):

mov(bx, ax);
mov(edx, edi);
call conv.u16ToBuf;

// Passing a constant:

mov(<constant>, ax);
Released to the Public Domain Page 199

HLA Standard Library
call conv.u16ToBuf; // Assume EDI already contains buffer address.

procedure conv.u32ToBuf(u32: uns32 in eax)

This function converts the 32-bit unsigned integer passed in EAX to a sequence of 1..10 characters if the
internal underscores flag is false, 1..11 characters if the underscores flag contains true. The string this function
produces is always in the range 0..4294967295. If the internal underscores flag contains true and the value is
greater than 999, then this function emits an underscore between the third and fourth digits (from the right) in the
string.

HLA high-level calling sequence examples:

// The following will load "dwordVariable" into EAX and
// the address of "charArrayVariable" into EDI and then
// call conv.u32ToBuf:

conv.u32ToBuf(dwordVariable, charArrayVariable);

// The following call will copy EBX into EAX and
// EDX into EDI prior to calling conv.u32ToBuf:

conv.u32ToBuf(ebx, [edx]);

// The following just calls conv.u32ToBuf as EAX and EDI
// already hold the parameter values:

conv.u32ToBuf(eax, [edi]);

// The following loads the constant in EAX and calls
// conv.u32ToBuf:

conv.u32ToBuf(<constant>, [edi]); // <constant> must fit in 32 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EAX and
EDI registers with their respective parameter values. In particular, you should not specify [EAX] as the buffer
address because the code that HLA generates can overwrite EAX before it copies the address to the EDI register.
It goes without saying that this function will overwrite the values of EAX and EDI if the original parameters are
not EAX and [EDI].

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

mov(dwordVariable, eax);
lea(edi, charArrayVariable);
call conv.u32ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

mov(dwordVariable, eax);
mov(&charArrayVariable, edi);
call conv.u32ToBuf;

// Passing a pair of registers (that are not
// EAX and EDI):

mov(ebx, eax);
mov(edx, edi);
Page 200 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call conv.u32ToBuf;

// Passing a constant:

mov(<constant>, eax);
call conv.u32ToBuf; // Assume EDI already contains buffer address.

procedure conv.u64ToBuf(q:qword)

This function converts the 64-bit unsigned integer passed in q to a sequence of 1..20 characters if the internal
underscores flag is false, 1..26 characters if the underscores flag contains true. The string this function produces
is always in the range 0 .. 18446744073709551615. If the internal underscores flag contains true and the value is
greater than 999, then this function emits an underscore between each group of three digits starting with the least
significant digit.

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.u64ToBuf:

conv.u64ToBuf(qwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.u64ToBuf:

conv.u64ToBuf(<constant>, [edi]); // <constant> must fit in 64 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);
call conv.u64ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.u64ToBuf;

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.u64ToBuf; // Assume EDI already contains buffer address.
Released to the Public Domain Page 201

HLA Standard Library
procedure conv.u128ToBuf(l:lword)

This function converts the 128-bit unsigned integer passed in l to a sequence of 1..39 characters if the
internal underscores flag is false, 1..52 characters if the underscores flag contains true. The string this function
produces is always in the range 0 .. 340282366920938463463374607431768211455. If the internal underscores
flag contains true and the value is greater than 999, then this function emits an underscore between each group of
three digits starting with the least significant digit.

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, load the address of "charArrayVariable"
// into EDI and then call conv.u128ToBuf:

conv.u128ToBuf(lwordVariable, charArrayVariable);

// The following pushes the constant onto the stack and calls
// conv.u128ToBuf:

conv.u128ToBuf(<constant>, [edi]); // <constant> must fit in 128 bits

When using the HLA high-level calling form, always keep in mind that these statements load the EDI
register with the respective parameter value. It goes without saying that this function will overwrite the value of
EDI if the original parameter is not [EDI].

HLA low-level calling sequence examples:

// Passing an lword variable and a buffer variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

lea(edi, charArrayVariable);

conv.u64ToBuf stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20 q (H.O. dword)

q (L.O. dword)
q

Page 202 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call conv.u128ToBuf;

// Alternate form of above if charArrayVariable is
// a static object (STATIC, READONLY, or STORAGE):

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

mov(&charArrayVariable, edi);
call conv.u128ToBuf;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.u128ToBuf; // Assume EDI already contains buffer address.

 8.5.4 Unsigned Integer Numeric to String Conversions
These routines convert an unsigned integer value (8, 16, 32, 64, or 128 bits) to a string. The standard

("unadorned") functions store the string data into a string object that you pass as a parameter to the function. That
string object must be preallocated and large enough to receive the string result (else a string overflow occurs).
The "adorned" functions, whose names begin with "a_" automatically allocate storage on the heap, store the
converted string into that heap object, and then return a pointer to the newly allocated string in the EAX register
(it is the caller’s responsibility to free the storage when it is no longer needed).

These functions let you specify a minimum field width and a fill character. If the number would require
fewer than width print positions, the routines copy the fill character to the remaining positions in the destination
string. If width is positive, the number is right justified in the string. If width is negative, the number is left
justified in the string. If the string representation of the value requires more than width print positions, then these
functions ignore the width and fill paramenters and use however many positions are necessary to properly
display the value.

conv.u128ToBuf stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 203

HLA Standard Library
Here are the maximum number of print positions these routines will produce for each data type before
considering the minimum field width:
Underscores flag is false:

8 bits:3 (0..255)
16 bits:5 (0..65535)
32 bits:10 (0..4294967295)
64 bits:20 (0..18446744073709551615)
128 bits:39 (0 .. 340282366920938463463374607431768211455)

Underscores flag is true:
8 bits:3 (0..255)
16 bits:6 (0..65_535)
32 bits:13 (0..4_294_967_295)
64 bits:26 (0..18_446_744_073_709_551_615)
128 bits:51 (0..340_282_366_920_938_463_463_374_607_431_768_211_455)

procedure conv.u8ToStr (b:uns8; width:int32; fill:char; buffer:string);

This function converts an 8-bit unsigned integer to the decimal string representation of that integer and
stores the string in the preallocated string object specified by the dest paramenter. The width and fill parameters
specify the minimum field width and padding character (if the minimum field width is greater than the number of
output characters needed for the string). This function will raise a string overflow exception if the destination
string is not large enough to hold the conversion. Note that the internal underscores flag will not affect the output
because 8-bit integers are always three digits or smaller.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.u8ToStr:

conv.u8ToStr(byteVariable, destStr);

// The following call will BH’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.u8ToStr:

conv.u8ToStr(bh, edx);

// The following pushes the constant and destStr and calls
// conv.u8ToStr:

conv.bToBuf(<constant>, destStr); // <constant> must fit in 8 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns

xxxToStr (value, width, fill, buffer);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxToStr
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxToStr functions produce the string

V A L U E f f f
Page 204 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.u8ToStr;

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
push(destStr);
call conv.u8ToStr;

// Passing a byte variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
push(destStr);
call conv.u8ToStr;

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
push(edx);
call conv.u8ToStr;

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
push(edx);
call conv.u8ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.u8ToStr;
Released to the Public Domain Page 205

HLA Standard Library
procedure conv.a_u8ToStr (b:uns8; width:int32; fill:char);
@returns("eax");

This function converts an 8-bit unsigned integer to the decimal string representation of that integer and
stores the string in storage it allocates on the heap. The width and fill parameters specify the minimum field
width and padding character (if the minimum field width is greater than the number of output characters needed
for the string). The caller is responsible for freeing the storage when it is no longer needed. Note that the internal
underscores flag will not affect the output because 8-bit integers are always three digits or smaller.

HLA high-level calling sequence examples:

// The following will push "byteVariable" and then call conv.a_u8ToStr:

conv.a_u8ToStr(byteVariable);
mov(eax, byteStr);

// The following call will BH’s value onto the stack
// before calling conv.a_u8ToStr:

conv.a_u8ToStr(bh);
mov(eax, byteStr);

// The following pushes the constant and calls
// conv.a_u8ToStr:

conv.a_u8ToStr(<constant>); // <constant> must fit in 8 bits
mov(eax, byteStr);

HLA low-level calling sequence examples:

// Passing a byte variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);

conv.u8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 b

size

fill

buffer (ptr)
Page 206 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call conv.a_u8ToStr;
mov(eax, destStr);

// Passing a byte variable and a buffer variable, option 2
// (if byteVariable isn’t the last byte in mapped memory):

push((type dword byteVariable));
call conv.a_u8ToStr;
mov(eax, destStr);

// Passing a byte variable, option 3
// No registers are available and we can’t guarantee that
// the three bytes following byteVariable are present in
// mapped memory:

sub(4, esp);
push(eax);
movzx(byteVariable, eax);
mov(eax, [esp+4]);
pop(eax);
call conv.a_u8ToStr;
mov(eax, destStr);

// Passing a pair of registers (hex value in AL, BL, CL, or DL):
// BL = value to print, EDX = pointer to string object.

push(ebx); // Pushes BL
call conv.a_u8ToStr;
mov(eax, byteStr);

// Passing a pair of registers (hex value in AH, BH, CH, or DH):
// BH = value to print, EDX = pointer to string object.

pushd(0);
mov(bh, [esp]);
call conv.a_u8ToStr;
mov(eax, byteStr);

// Passing a constant:

pushd(<constant>);
call conv.a_u8ToStr;
mov(eax, byteStr);
Released to the Public Domain Page 207

HLA Standard Library
procedure conv.u16ToStr(w:uns16; width:int32; fill:char; buffer:string);

This function converts a 16-bit unsigned integer to its decimal string representation and stores the string in
the preallocated string object specified by the dest paramenter. The width and fill parameters specify the
minimum field width and padding character (if the minimum field width is greater than the number of output
characters needed for the string). This function will raise a string overflow exception if the destination string is
not large enough to hold the conversion. If the conversion requires more than three digits and the internal
underscores flag is true, then this function will insert an underscore between each group of three digits, starting
with the least signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "wordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.u16ToStr:

conv.u16ToStr(wordVariable, destStr);

// The following call will BX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.u16ToStr:

conv.u16ToStr(bx, edx);

// The following pushes the constant and destStr and calls
// conv.u16ToStr:

conv.u16ToStr(<constant>, destStr); // <constant> must fit in 16 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data (confusing, isn’t it?). In any case, this is why
you can pass a register value as the destination string location rather than having to pass something like "[edx]".
A construct like "[edx]" would imply that EDX contains the address of the string variable, that is, a pointer to the
pointer to the string.

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1

conv.a_u8ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 b

size

fill
Page 208 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// (if a 32-bit register is available):

movzx(byteVariable, eax);
push(eax);
push(destStr);
call conv.u16ToStr;

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
push(destStr);
call conv.u16ToStr;

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
push(destStr);
call conv.u16ToStr;

// Passing a pair of registers:
// BX = value to print, EDX = pointer to string object.

push(ebx); // Pushes BX
push(edx);
call conv.u16ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.u16ToStr;

conv.u16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 w

size

fill

buffer (ptr)
Released to the Public Domain Page 209

HLA Standard Library
procedure conv.a_u16ToStr(w:uns16; width:int32; fill:char);
@returns("eax");

This function converts a 16-bit unsigned integer to the decimal string representation of that integer and
stores the string in storage it allocates on the heap. The width and fill parameters specify the minimum field
width and padding character (if the minimum field width is greater than the number of output characters needed
for the string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion
produces more than three digits and the internal underscores flag is true, then this function will insert an
underscore between each group of three digits, starting with the least signficant digit (see conv.getUnderscores
and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "wordVariable" and call conv.a_u16ToStr:

conv.a_u16ToStr(wordVariable);
mov(eax, destStr);

// The following call will BX’s value onto the stack
// before calling conv.a_u16ToStr:

conv.a_u16ToStr(bx);

// The following pushes the constant and calls
// conv.a_u16ToStr:

conv.a_u16ToStr(<const>, destStr); // <const> must fit in 16 bits

HLA low-level calling sequence examples:

// Passing a word variable and a buffer variable, option 1
// (if a 32-bit register is available):

movzx(wordVariable, eax);
push(eax);
call conv.a_u16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 2
// (if wordVariable isn’t the last byte in mapped memory):

push((type dword wordVariable));
call conv.a_u16ToStr;
mov(eax, destStr);

// Passing a word variable and a buffer variable, option 3
// No registers are available and we can’t guarantee that
// the two bytes following wordVariable are present in
// mapped memory:

pushw(0);
push(wordVariable);
call conv.a_u16ToStr;
mov(eax, destStr);

// Passing a pair of registers:
// BX = value to print.
Page 210 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(ebx); // Pushes BX
call conv.a_u16ToStr;
mov(eax, wordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_u16ToStr;
mov(eax, destStr);

procedure conv.u32ToStr(d:uns32; width:int32; fill:char; buffer:string);

This function converts a 32-bit unsigned integer to its decimal string representation and stores the string in
the preallocated string object specified by the buffer paramenter. The width and fill parameters specify the
minimum field width and padding character (if the minimum field width is greater than the number of output
characters needed for the string). This function will raise a string overflow exception if the destination string is
not large enough to hold the conversion. If the conversion requires more than three digits and the internal
underscores flag is true, then this function will insert an underscore between each group of three digits, starting
with the least signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and "destStr" (which
// is a pointer to a string object) and then call conv.u32ToStr:

conv.u32ToStr(dwordVariable, destStr);

// The following call will push EBX’s value onto the stack and then
// push EDX’s value (which is the address of a string object)
// before calling conv.u32ToStr:

conv.u32ToStr(ebx, edx);

// The following pushes the constant and destStr and calls
// conv.u32ToStr:

conv.a_u16ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

w

size

fill
Released to the Public Domain Page 211

HLA Standard Library
conv.u32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

When using the HLA high-level calling form, remember that string variables are dword pointers that contain
the address of a string object. The destination string parameter is passed by value, not by reference; it just turns
out that the value of a string is a pointer to the actual string data. In any case, this is why you can pass a register
value as the destination string location rather than having to pass something like "[edx]". A construct like "[edx]"
would imply that EDX contains the address of the string variable, that is, a pointer to the pointer to the string
data.

HLA low-level calling sequence examples:

// Passing a dword variable and a buffer variable:

push(dwordVariable);
push(destStr);
call conv.u32ToStr;

// Passing a pair of registers:
// EBX = value to print, EDX = pointer to string object.

push(ebx);
push(edx);
call conv.u32ToStr;

// Passing a constant:

pushd(<constant>);
push(destStr);
call conv.u32ToStr;

conv.u32ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16 d

size

fill

buffer (ptr)
Page 212 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_u32ToStr(d:uns32; width:int32; fill:char);
@returns("eax");

This function converts a 32-bit unsigned integer to the decimal string representation of that integer and
stores the string in storage it allocates on the heap. The width and fill parameters specify the minimum field
width and padding character (if the minimum field width is greater than the number of output characters needed
for the string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion
produces more than three digits and the internal underscores flag is true, then this function will insert an
underscore between each group of three digits, starting with the least signficant digit (see conv.getUnderscores
and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push "dwordVariable" and then call conv.a_u32ToStr:

conv.a_u32ToStr(dwordVariable);
mov(eax, destStr);

// The following call will push EBX’s value onto the stack
// before calling conv.a_u32ToStr:

conv.a_u32ToStr(ebx);

// The following pushes the constant and calls
// conv.a_u32ToStr:

conv.a_u32ToStr(<constant>, destStr); // <constant> must fit in 32 bits

HLA low-level calling sequence examples:

// Passing a dword variable:

push(dwordVariable);
call conv.a_u32ToStr;
mov(eax, destStr);

// Passing a register:
// EBX = value to print.

push(ebx);
call conv.a_u32ToStr;
mov(eax, dwordStr);

// Passing a constant:

pushd(<constant>);
call conv.a_u32ToStr;
mov(eax, destStr);
Released to the Public Domain Page 213

HLA Standard Library
procedure conv.u64ToStr(q:qword; width:int32; fill:char; buffer:string);

This function converts a 64-bit unsigned integer to its decimal string representation and stores the string in
the preallocated string object specified by the buffer paramenter. The width and fill parameters specify the
minimum field width and padding character (if the minimum field width is greater than the number of output
characters needed for the string). This function will raise a string overflow exception if the destination string is
not large enough to hold the conversion. If the conversion requires more than three digits and the internal
underscores flag is true, then this function will insert an underscore between each group of three digits, starting
with the least signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// and the value of the destStr string variable
// onto the stack and then call conv.u64ToStr:

conv.u64ToStr(qwordVariable, destStr);

// The following pushes the constant onto the stack along with
// the value held in the destStr variable and calls
// conv.u64ToStr:

conv.u64ToStr(<constant>, destStr); // <constant> must fit in 64 bits

HLA low-level calling sequence examples:

// Passing a qword variable and a buffer variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

push(destStr);
call conv.u64ToStr;

conv.a_u32ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 d

size

fill
Page 214 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
push(destStr);
call conv.u64ToStr;

procedure conv.a_u64ToStr(q:qword; width:int32; fill:char);
@returns("eax");

This function converts a 64-bit unsigned integer to the decimal string representation of that integer and
stores the string in storage it allocates on the heap. The width and fill parameters specify the minimum field
width and padding character (if the minimum field width is greater than the number of output characters needed
for the string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion
produces more than three digits and the internal underscores flag is true, then this function will insert an
underscore between each group of three digits, starting with the least signficant digit (see conv.getUnderscores
and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "qwordVariable"
// onto the stack and then call conv.a_u64ToStr:

conv.a_u64ToStr(qwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_u64ToStr:

conv.a_u64ToStr(<constant>); // <constant> must fit in 64 bits
mov(eax, destStr);

HLA low-level calling sequence examples:

conv.u64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

buffer (ptr)

ESP+20 q (H.O. dword)

q (L.O. dword)
q

Released to the Public Domain Page 215

HLA Standard Library
// Passing a qword variable:

push((type dword qwordVariable[4]));// H.O. dword first
push((type dword qwordVariable[0]));// L.O. dword last

call conv.a_u64ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 32);// Push H.O. dword of constant first.
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword second.
call conv.a_u64ToStr;
mov(eax, destStr);

procedure conv.u128ToStr(l:lword; width:int32; fill:char; buffer:string);

This function converts a 128-bit unsigned integer to its decimal string representation and stores the string in
the preallocated string object specified by the buffer paramenter. The width and fill parameters specify the
minimum field width and padding character (if the minimum field width is greater than the number of output
characters needed for the string). This function will raise a string overflow exception if the destination string is
not large enough to hold the conversion. If the conversion requires more than three digits and the internal
underscores flag is true, then this function will insert an underscore between each group of three digits, starting
with the least signficant digit (see conv.getUnderscores and conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// and destStr onto the stack, and then call conv.u128ToStr:

conv.u128ToStr(lwordVariable, destStr);

// The following pushes the constant onto the stack and calls
// conv.u128ToStr:

conv.a_u64ToStr stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

q (H.O. dword)

q (L.O. dword)
q

Page 216 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.u128ToStr(<constant>, edx); // EDX contains string pointer value.

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

push(destStr);
call conv.u128ToStr;

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
push(edx);// EDX contains string pointer value.
call conv.u128ToStr;

procedure conv.a_u128ToStr(l:lword; width:int32; fill:char);
@returns("eax");

This function converts a 128-bit signed integer to the decimal string representation of that integer and stores
the string in storage it allocates on the heap. The width and fill parameters specify the minimum field width and
padding character (if the minimum field width is greater than the number of output characters needed for the
string). The caller is responsible for freeing the storage when it is no longer needed. If the conversion produces
more than three digits and the internal underscores flag is true, then this function will insert an underscore
between each group of three digits, starting with the least signficant digit (see conv.getUnderscores and
conv.setUnderscores for more details).

HLA high-level calling sequence examples:

// The following will push the value of "lwordVariable"
// onto the stack, and then call conv.a_u128ToStr:

conv.i128ToStr stack diagram

Return Address

Byte

0123

ESP

l (L.O. dword)

l (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

l:lword
Released to the Public Domain Page 217

HLA Standard Library
conv.a_u128ToStr(lwordVariable);
mov(eax, destStr);

// The following pushes the constant onto the stack and calls
// conv.a_u128ToStr:

conv.a_u128ToStr(<constant>);
mov(eax, destStr);

HLA low-level calling sequence examples:

// Passing an lword variable:

push((type dword lwordVariable[12]));// H.O. dword first
push((type dword lwordVariable[8]));
push((type dword lwordVariable[4]));
push((type dword lwordVariable[0]));// L.O. dword last

call conv.a_u128ToStr;
mov(eax, destStr);

// Passing a constant:

pushd(<constant> >> 96);// Push H.O. dword of constant first.
pushd((<constant> >> 64)& $FFFF_FFFF);
pushd((<constant> >> 32)& $FFFF_FFFF);
pushd(<constant> & $FFFF_FFFF);// Push L.O. dword last.
call conv.a_u128ToStr;
mov(eax, destStr);

conv.a_u128ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

size

fill

ESP+20
l:lword

ESP+24

l (L.O. dword)

l (H.O. dword)
Page 218 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 8.5.5 Unsigned Integer String to Numeric Conversions
The standard library string to integer conversion routines convert a sequence of digits into the corresponding

unsigned integer value. These routines begin by skipping over any leading delimiter characters (see the
conv.getDelimiters and conv.setDelimiters functions for details) followed by any number of decimal digits and
underscores (these routines ignore the underscores). Conversion stops at the end of the string or upon
encountering a delimiter character.

These routines will raise a conversion error exception if they encounter a 7-bit ASCII character that is not a
decimal digit, an underscore, or a delimiter character during the translation. These routines will raise an illegal
character exception if they encounter a non-ASCII character (one with its H.O. bit set). These routines will raise
a value out of range exception if the converted value will not fit in the destination data object.

There are two basic sets of string to numeric conversion routines: the conv.atou* routines and the
conv.strTou* routines. The atou* routines process the characters pointed at by the ESI register. The strTou*
routines process data in a string object, starting at an offset specified by a second parameter. For example,
"conv.strTou8("12345", 3);" returns the value 45 because it begins processing the string at (zero-based) offset 3
in the string.

procedure conv.atou8 (buffer: var in esi); @returns("ax");

This function converts the sequence of characters starting at the memory address held in ESI to an 8-bit
unsigned integer. It returns the value (in the range 0..+255) in AL. Note that this function actually returns the
zero-extended value in EAX, so you may use EAX if it is more convenient to do so. Upon successful return, ESI
is pointing at the delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AL:

conv.atou8([esi]);
mov(al, numericResult);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to an 8-bit number:

conv.atou8(sourceStr); // Loads "sourceStr" into ESI
mov(al, byteVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atou8;
mov(al, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atou8;
mov(al, num12);
Released to the Public Domain Page 219

HLA Standard Library

procedure conv.atou16 (buffer: var in esi); @returns("ax");

This function converts the sequence of characters starting at the memory address held in ESI to a 16-bit
unsigned integer. It returns the value (in the range 0..65535) in AX. Note that this function actually returns the
zero-extended value in EAX, so you may use EAX if it is more convenient to do so. Upon successful return, ESI
is pointing at the delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in AX:

conv.atou16([esi]);
mov(ax, numericResult);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 16-bit number:

conv.atou16(sourceStr); // Loads "sourceStr" into ESI
mov(ax, wordVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atou16;
mov(ax, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atou16;
mov(ax, num12);

procedure conv.atou32 (buffer: var in esi); @returns("eax");

This function converts the sequence of characters starting at the memory address held in ESI to a 32-bit
unsigned integer. It returns the value (in the range 0..4294967295) in EAX. ESI is pointing at the delimiter
character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the hexadecimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EAX:
Page 220 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
conv.atou32([esi]);
mov(eax, numericResult);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 32-bit number:

conv.atou32(sourceStr); // Loads "sourceStr" into ESI
mov(eax, dwordVariable);

HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atou32;
mov(eax, numericResult);

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atou32;
mov(eax, num12);

procedure conv.atou64 (buffer: var in esi); @returns("edx:eax");

This function converts the sequence of characters starting at the memory address held in ESI to a 64-bit
unsigned integer. It returns the value (in the range 0..18446744073709551615) in EDX:EAX (EDX contains the
H.O. dword). ESI is pointing at the delimiter character at the end of the sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and return that value in EDX:EAX:

conv.atou64([esi]);
mov(eax, (type dword hex64NumericResult[0]));
mov(edx, (type dword hex64NumericResult[4]));

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 64-bit number:

conv.atou64(sourceStr); // Loads "sourceStr" into ESI
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));
Released to the Public Domain Page 221

HLA Standard Library
HLA low-level calling sequence examples:

// Same as first example above – ESI already contains
// the address of the first character to convert:

call conv.atou64;
mov(eax, (type dword numericResult[0]));
mov(edx, (type dword numericResult[4]));

// Same as second example above

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
call conv.atou64;
mov(eax, (type dword qwordVariable[0]));
mov(edx, (type dword qwordVariable[4]));

procedure conv.atou128(buffer: var in esi; var l:lword);

This function converts the sequence of characters starting at the memory address held in ESI to a 128-bit
signed integer. It returns the value (in the range 0..340282366920938463463374607431768211455) in the l
parameter that is passed by reference to this function. ESI is pointing at the delimiter character at the end of the
sequence of digits.

HLA high-level calling sequence examples:

// The following will convert the decimal characters in memory
// at the address specified by [esi] into a numeric value
// and stores that value in lwordDest (passed by reference):

conv.atou128([esi], lwordDest);

// The following loads ESI with the address of
// a sequence of decimal characters (held in an HLA
// string) and converts them to a 128-bit number that it
// stores in lwordDest:

conv.atou128(sourceStr, lwordDest); // Loads "sourceStr" into ESI

HLA low-level calling sequence examples:

// Option 1: lwordDest is a static object declared in a
// HLA STATIC, READONLY, or STORAGE section:
// As with the first example above, assume ESI already
// contains the address of the string to convert:

pushd(&lwordDest);// Pass address of lwordDest as reference parm.
call conv.atou128;

// Option 2: lwordDest is a simple automatic variable (no indexing)
Page 222 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// declared in a VAR section (or as a parameter). Assume that
// no 32-bit registers can be disturbed by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.atou128;

// Option 3: lwordDest is a complex addressing mode and at least
// one 32-bit register is available for use by this code.
// As with the first example above, assume ESI already
// contains the address of the string to convert:

lea(eax, lwordDest);// Assume EAX is the available register
push(eax);
call conv.atou128;

// Same as second high-level example above. Assumes that
// lwordDest is a static object.

static
sourceStr :string := "12";
.
.
.

mov(sourceStr, esi);
pushd(&lwordDest);
call conv.atou128;

procedure conv.strTou8(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to an 8-bit unsigned integer. It returns the value (in the range 0..255) in AL. Note that this function
actually returns the zero-extended value in EAX, so you may use EAX if it is more convenient to do so.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.aToi128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4 var dest :lword (ptr)
Released to the Public Domain Page 223

HLA Standard Library
conv.strTou8(decValueStr, 0);// Index=0 starts at beginning
mov(al, numericResult);

// The following demonstrates using a non-zero index:

conv.strTou8("abc12", 3); // "12" begins at offset 3
mov(al, hex12);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strTou8;
mov(al, decNumericResult);

// Same as second example above

static
str12 :string := "abc12";
.
.
.

push(str12);// Note that str12 points at "abc12".
pushd(3);// Index to "12" in "abc12".
call conv.strTou8;
mov(al, dec12);

procedure conv.strTou16(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 16-bit unsigned integer. It returns the value (in the range 0..65535) in AX. Note that this
function actually returns the zero-extended value in EAX, so you may use EAX if it is more convenient to do so.

HLA high-level calling sequence examples:

conv.strTou8 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 224 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strTou16(hexValueStr, 0);// Index=0 starts at beginning
mov(ax, wordVar);

// The following demonstrates using a non-zero index:

conv.strTou16("abc1234", 3); // "1234" begins at offset 3
mov(ax, wordVar);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strTou16;
mov(ax, wordVar);

// Same as second example above

static
str1200 :string := "abc1200";
.
.
.

push(str1200);// Note that str1200 points at "abc1200".
pushd(3);// Index to "1200" in "abc1200".
call conv.strTou16;
mov(ax, wordVar);

procedure conv.strTou32(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 32-bit unsigned integer. It returns the value (in the range 0..4294967295) in EAX.

HLA high-level calling sequence examples:

conv.strTou16 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 225

HLA Standard Library
// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strTou32(decValueStr, 0);// Index=0 starts at beginning
mov(eax, dwordVar);

// The following demonstrates using a non-zero index:

conv.strTou32("abc12_345", 3); // "12_345" begins at offset 3
mov(eax, dwordVar);

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strTou32;
mov(eax, dwordVar);

// Same as second example above

static
str12345 :string := "abc012_345";
.
.
.

push(str12345);// Note that str12345 points at "abc-12_345".
pushd(3); // Index to "012_345" in "abc012_345".
call conv.strTou32;
mov(eax, dwordVar);// dwordVar now contains 12,345.

procedure conv.strTou64(s:string; index:dword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 64-bit unsigned integer. It returns the value (in the range 0.. 18446744073709551615) in
EDX:EAX (EDX contains the H.O. dword).

conv.strTou32 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Page 226 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" to numeric form:

conv.strTou64(decValueStr, 0);// Index=0 starts at beginning
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

// The following demonstrates using a non-zero index:

conv.strTou64("a9123", 1); // "9123" begins at offset 1
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

HLA low-level calling sequence examples:

push(decValueStr);// Same as first example above
pushd(0);
call conv.strTou64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

// Same as second example above

static
strabc12 :string := "a9123";
.
.
.

push(strabc12);// Note that strabc12 points at "a9123".
pushd(1); // Index to "-123" in "a9123".
call conv.strTou64;
mov(eax, (type dword qwordVar[0]));
mov(edx, (type dword qwordVar[4]));

conv.strTou64 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 227

HLA Standard Library
procedure conv.strTou128(s:string; index:dword; var dest:lword)

This function converts the sequence of characters starting at zero-based offset index within the string
parameter s to a 128-bit unsigned integer. It returns the value (in the range 0..
340282366920938463463374607431768211456) in the parameter l that you pass by reference to this function.

HLA high-level calling sequence examples:

// The following will convert the characters at the beginning
// of "decValueStr" (index=0) to numeric form and store the
// 128-bit result into the 1wordDest variable:

conv.strTou128(decValueStr, 0, 1wordDest);

// The following demonstrates using a non-zero index:

conv.strTou128("abc1234567890123456789", 3, 1wordDest);

HLA low-level calling sequence examples:

// Option #1: lwordDest is a STATIC/READONLY/STORAGE
// variable:

push(decValueStr);// Same as first example above
pushd(0);
pushd(&lwordDest);
call conv.strTou128;

// Option #2: lwordDest is not a static object and
// a 32-bit register is available for use:

push(decValueStr);// Same as first example above
pushd(0);
lea(eax, lwordDest); // Assuming EAX is available
push(eax);
call conv.strTou128;

// Option #3: lwordDest is an automatic (var) object and
// no 32-bit registers are available for use:

push(decValueStr);// Same as first example above
pushd(0);
push(ebp);
add(@offset(lwordDest), (type dword [esp]));
call conv.strTou128;

// Option #4: lwordDest is a complex addressing mode object and
// no 32-bit registers are available for use:

push(decValueStr);// Same as first example above
pushd(0);
sub(4, esp);
push(eax);
lea(eax, lwordDest);
mov(eax, [esp+4]);
pop(eax);
call conv.strTou128;
Page 228 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
8.6 Floating Point Conversions
These functions convert betweeen the three IEEE/Intel floating point formats and their string representation.

There are two generic classes of these routines: those that convert their values to exponential/scientific notation
and those that convert their string to a decimal format.

Note that the floating-point conversions do not insert underscores into the character sequences they
produce. Therefore, these conversion functions ignore the internal underscores flag setting. If you wish to
produce floating-point strings that have underscores between certain sets of digits, you should call one of these
floating-point routines to do the basic conversion and then using other standard library routines to insert those
underscores (or other character of your choosing) into the string.

FPU Note: The floating-point routines make use of the 80x86 x87 floating-point unit (FPU). Whenever you
call one of these conversion routines, you must ensure that the CPU is operating in FPU mode (rather than MMX
mode). If this is not the case, you should exit the MMX mode by executing an EMMS instruction prior to calling
any of these conversion routines. As a general rule, you should use the SSE instructions rather than the MMX
instructions and leave the CPU in FPU mode. Also note that the floating-point conversion routines make use of
the FPU stack (probably as many as three elements, or so, just a guess) so you shouldn’t leave any pending
operations on the FPU stack when calling these conversion routines.

 8.6.1 Exponential Floating-Point Conversions
The exponential floating-point conversion routines include conv.e32ToBuf, conv.e64ToBuf,

conv.e80ToBuf, conv.e32ToStr, conv.e64ToStr, conv.e80ToStr, conv.a_e32ToStr, conv.a_e64ToStr, and
conv.a_e80ToStr. The *Buf routines write the converted sequence of characters to memory, starting at the
location pointed at by EDI. The *Str routines store the converted character data into a string object.

The routines convert their values to a character sequence using scientific (exponential) notation. These
routines each at least two parameters: the value to convert and the field width of the result that control how these
functions format the output These routines produce a string with the following format:

conv.strTou128 Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

s :string

index :dword

ESP+12

var l :lword (ptr)

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 229

HLA Standard Library
The width parameter specifies the exact number of print positions the value will consume (i.e., the length of
the resulting string). The first position holds the sign of the value. This is a space for positive values or a minus
sign for negative values. If you do not want a leading space in front of positive values you can either store a "+"
over the top of this space character (if the number is zero or positive) or you can call str.trim to remove any
leading space.

The exponent field (’x’) always uses the minimum number of digits to exactly represent the exponent. If the
exponent is non-negative, then these routines preface the value with a ’+’. If the exponent is negative, then these
functions preface the exponent value with a ’-’ character.

The minimum field width you should specify is five. This allows one print position for the leading sign
character, one digit for the mantissa, the "E", the exponent sign, and one exponent digit. Obviously, values
greater than 1E+9 or less than 1E-9 will require additional print positions to handle the additional exponent
digits.

The number of fractional digits this routines produce is "(width - 5) - # exponent digits". So you should
choose your width according to the expected exponent size and the number of digits you would like to have to
the right of the decimal point.

 8.6.2 Floating Point Numeric to Buffer Conversions, Exponential
Form

The floating point numeric to buffer conversion routines, conv.e32ToBuf, conv.e64ToBuf, and
conv.e80ToBuf, translate the three different binary floating point formats to a sequence of characters that they
store into sequential memory locations starting at the address held in the EDI register. They return EDI pointing
at the first byte beyond the converted sequence. Note that these functions do not zero terminate the string; if you
want a zero-terminated string, then store a zero at the byte pointed at by EDI upon return from these functions.

procedure conv.e80ToBuf
(

 e80: real80;
 width: uns32;
var buffer: var in EDI

)

This function converts the 80-bit extended precision e80 value to its character representation using
exponential/scientific notation. This function stores the resulting conversion starting at the address specified in
EDI. It is the caller’s responsibility to ensure that sufficient memory is avaiable at this starting address. On
return, EDI will point at the first byte beyond the convered string. Note that the 80-bit extended precision format
supports approximately 18 decimal digits of precision. Therefore, any digits beyond the 18th significant digit
will contain garbage. Hence, your choice of width should not produce more than 18 mantissa digits.

conv.e80ToBuf Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

width

ESP+20

e80 (H.O. word)

e80 (L.O. dword)

e80 :real80

01(padding)
Page 230 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.e64ToBuf
(

 e64: real64;
 width: uns32;
var buffer: var in EDI

)

This function converts the 64-bit extended precision e64 value to its character representation using
exponential/scientific notation. This function stores the resulting conversion starting at the address specified in
EDI. It is the caller’s responsibility to ensure that sufficient memory is avaiable at this starting address. On
return, EDI will point at the first byte beyond the convered string. Note that the 64-bit extended precision format
supports approximately 15 decimal digits of precision. Therefore, any digits beyond the 15th significant digit
will contain garbage. Hence, your choice of width should not produce more than 15 mantissa digits.

procedure conv.e32ToBuf
(

 e32: real32;
 width: uns32;
var buffer: var in EDI

)

This function converts the 32-bit extended precision e32 value to its character representation using
exponential/scientific notation. This function stores the resulting conversion starting at the address specified in
EDI. It is the caller’s responsibility to ensure that sufficient memory is avaiable at this starting address. On
return, EDI will point at the first byte beyond the convered string. Note that the 32-bit single precision format
supports approximately 6-7 decimal digits of precision. Therefore, any digits beyond the seventh significant
digit will contain garbage. Hence, your choice of width should not produce more than seven mantissa digits.

conv.e64ToBuf Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

width

e64 (L.O. dword)

e64 :real64e64 (H.O. dword)
Released to the Public Domain Page 231

HLA Standard Library
 8.6.3 Floating Point Numeric to String Conversions, Exponential
Form

The floating point numeric to string conversion routines translate the three different binary floating point
formats to their string representation. The standard ("unadorned") functions store the string data into a string
object that you pass as a parameter to the function. That string object must be preallocated and large enough to
receive the string result (else a string overflow occurs). The "adorned" functions, whose names begin with "a_"
automatically allocate storage on the heap, store the converted string into that heap object, and then return a
pointer to the newly allocated string in the EAX register (it is the caller’s responsibility to free the storage when
it is no longer needed).

procedure conv.e80ToStr
(

e80: real80;
width: uns32;
buffer: string

)

This function converts the 80-bit extended precision e80 value to its string representation using exponential/
scientific notation. This function stores the resulting string in the buffer variable whose MaxLength field must
be at least width or this function will raise an exception. Note that the 80-bit extended precision format supports
approximately 18 decimal digits of precision. Therefore, any digits beyond the 18th significant digit will contain
garbage. Hence, your choice of width should not produce more than 18 mantissa digits.

conv.e32ToBuf Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

width

e64 (L.O. dword) e32 :real32
Page 232 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.e64ToStr
(

e64: real64;
width: uns32;
buffer: string

)

This function converts the 64-bit double precision e64 value to its string representation using exponential/
scientific notation. This function stores the resulting string in the buffer variable whose MaxLength field must
be at least width or this function will raise an exception. Note that the 64-bit double precision format supports
approximately 15 decimal digits of precision. Therefore, any digits beyond the 15th significant digit will contain
garbage. Hence, your choice of width should not produce more than 15 mantissa digits.

conv.e80ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

width

buffer (ptr)

ESP+20

e80 (H.O. word)

e80 (L.O. dword)

e80 :real80

01(padding)

conv.e64ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

width

buffer (ptr)

e64 (L.O. dword)
e64 :real64

e64 (H.O. dword)
Released to the Public Domain Page 233

HLA Standard Library
procedure conv.e32ToStr
(

e32: real32;
width:uns32;
buffer:string

)

This function converts the 32-bit single precision e32 value to its string representation using exponential/
scientific notation. This function stores the resulting string in the buffer variable whose MaxLength field must
be at least width or this function will raise an exception. Note that the 32-bit single precision format supports
approximately 6-7 decimal digits of precision. Therefore, any digits beyond the seventh significant digit will
contain garbage. Hence, your choice of width should not produce more than seven mantissa digits.

procedure conv.a_e80ToStr
(

e80: real80;
width: uns32

); @returns("eax");

This function converts the 80-bit extended precision e80 value to its string representation using exponential/
scientific notation. This function stores the resulting string in storage it allocates on the heap and returns a
pointer to that string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are
done with it. Note that the 80-bit extended precision format supports approximately 18 decimal digits of
precision. Therefore, any digits beyond the 18th significant digit will contain garbage. Hence, your choice of
width should not produce more than 18 mantissa digits.

conv.e32ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

width

buffer (ptr)

e32 :real32
Page 234 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_e64ToStr
(

e64: real64;
width: uns32

); @returns("eax");

This function converts the 64-bit double precision e64 value to its string representation using exponential/
scientific notation. This function stores the resulting string in storage it allocates on the heap and returns a
pointer to that string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are
done with it. Note that the 64-bit double precision format supports approximately 15 decimal digits of precision.
Therefore, any digits beyond the 15th significant digit will contain garbage. Hence, your choice of width should
not produce more than 15 mantissa digits.

conv.a_e80ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16

width

ESP+20

e80 (H.O. word)

e80 (L.O. dword)

e80 :real80

01(padding)

conv.a_e64ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

width

e64 (L.O. dword)

e64 :real64e64 (H.O. dword)
Released to the Public Domain Page 235

HLA Standard Library
procedure conv.a_e32ToStr
(

e32: real32;
width: uns32

); @returns("eax");

This function converts the 32-bit single precision e32 value to its string representation using exponential/
scientific notation. This function stores the resulting string in storage it allocates on the heap and returns a
pointer to that string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are
done with it. Note that the 32-bit single precision format supports approximately 6-7 decimal digits of precision.
Therefore, any digits beyond the seventh significant digit will contain garbage. Hence, your choice of width
should not produce more than seven mantissa digits.

 8.6.4 Floating Point Numeric to Character Conversions, Decimal
Form

Although scientific (exponential) notation is the most general display format for real numbers, real numbers
you display in this format are difficult to read. Therefore, the standard library conversions module also provides
a set of functions that convert real values to their decimal string equivalent. Although you cannot (practically)
use these decimal conversion routines for all real values, they are applicable to a wide variety of common
numbers you will use in your programs.

These functions all have at least four parameters: the real value to convert, the width of the converted value,
the number of digit positions to the right of the decimal point, and a padding character. These functions convert
their values to the following string format:

conv.a_e32ToStr Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

width

e64 (L.O. dword) e32 :real32
Page 236 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The width parameter specifies the length of the resulting string. This value must be less than or equal to the
destination string’s MaxLength value or these functions will raise an exception. The decimalpts parameter to
these functions specify the number of digits to the right of the decimal point. If this parameter contains zero,
then these functions display the value as an integer (no fractional digits and no decimal point). If this parameter
is non-zero, then these routines produce the specified number of decimal digits along with a decimal point.

The width parameter specifies the total size of the resulting string. If decimalpts is zero, then the width
value must be at least one greater than the number of digits that appear to the left of the decimal point (the extra
position is for the sign character. If the decimalpts parameter is non-zero, then width must be at least (decimalpts
+ 2 + # integer digits). If width is not sufficiently large, then these functions produce a string containing width
"#" characters to denote a conversion error.

If the width value is sufficiently large and the decimalpts sufficiently small then these routines will fill the
extra print positions using the fill character you pass as a parameter. For example, if you convert the value -1.5
with a width of six, a decimalpts value of two, and a fill character of "*" these routines produce the string
"*-1.50".

The floating point numeric to buffer conversion routines, conv.r32ToBuf, conv.r64ToBuf, and
conv.r80ToBuf, translate the three different binary floating point formats to a sequence of characters that they
store into sequential memory locations starting at the address held in the EDI register. They return EDI pointing
at the first byte beyond the converted sequence. Note that these functions do not zero terminate the string; if you
want a zero-terminated string, then store a zero at the byte pointed at by EDI upon return from these functions.

procedure conv.r80ToBuf
(

r80: real80;
width: uns32;
decimalpts: uns32;
fill: char;

 var buffer: var in edi
)

This function converts the 80-bit extended precision r80 value to its string representation using decimal
notation. This function stores the resulting character sequence into sequential memory locations starting at the
address held in the EDI register. They return EDI pointing at the first byte beyond the converted sequence. Note
that these functions do not zero terminate the string; if you want a zero-terminated string, then store a zero at the
byte pointed at by EDI upon return from these functions. Note that the 80-bit single precision format supports
approximately 18 decimal digits of precision. Therefore, any digits beyond the 18th significant digit will contain
garbage. Hence, your choice of width should not produce more than 18 mantissa digits. Do keep in mind that
the average person has trouble comprehending value with more than six or seven digits. For values that are
routinely outside this range you may want to use exponential form to display the number with a limited number
of significant digits.

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Released to the Public Domain Page 237

HLA Standard Library
procedure conv.r64ToBuf
(

r64: real64;
width: uns32;
decimalpts: uns32;
fill: char;

 varbuffer: var in edi
)

This function converts the 64-bit double precision r64 value to its string representation using decimal
notation. This function stores the resulting character sequence into sequential memory locations starting at the
address held in the EDI register. They return EDI pointing at the first byte beyond the converted sequence. Note
that these functions do not zero terminate the string; if you want a zero-terminated string, then store a zero at the
byte pointed at by EDI upon return from these functions. Note that the 64-bit single precision format supports
approximately 15 decimal digits of precision. Therefore, any digits beyond the 15th significant digit will contain
garbage. Hence, your choice of width should not produce more than 15 mantissa digits. Do keep in mind that
the average person has trouble comprehending value with more than six or seven digits. For values that are
routinely outside this range you may want to use exponential form to display the number with a limited number
of significant digits.

conv.r80ToBuf Stack Diagram

Return Address

Byte

0123

ESP

width

r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

fill

decimalpts

ESP+24
Page 238 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.r32ToBuf
(

r32: real32;
width: uns32;
decimalpts: uns32;
fill: char;

 varbuffer: var in edi
)

This function converts the 32-bit single precision r32 value to its string representation using decimal
notation. This function stores the resulting Note that the 32-bit single precision format supports approximately
6-7 decimal digits of precision. Therefore, any digits beyond the seventh significant digit will contain garbage.
Hence, your choice of width should not produce more than seven mantissa digits.

conv.r64ToBuf Stack Diagram

Return Address

Byte

0123

ESP

width

r64 (L.O. dword)
r64 :real64

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

fill

decimalpts

r64 (H.O. dword)

conv.r32ToBuf Stack Diagram

Return Address

Byte

0123

ESP

width

r32 :real32

ESP+4

ESP+8

ESP+12

ESP+16

fill

decimalpts
Released to the Public Domain Page 239

HLA Standard Library
 8.6.5 Floating-Point Numeric to String Conversions, Decimal Form
The floating point numeric to string conversion routines translate the three different binary floating point

formats to their string representation. The standard ("unadorned") functions store the string data into a string
object that you pass as a parameter to the function. That string object must be preallocated and large enough to
receive the string result (else a string overflow occurs). The "adorned" functions, whose names begin with "a_"
automatically allocate storage on the heap, store the converted string into that heap object, and then return a
pointer to the newly allocated string in the EAX register (it is the caller’s responsibility to free the storage when
it is no longer needed).

procedure conv.r80ToStr
(

r80: real80;
width: uns32;
decimalpts: uns32;
fill: char;
buffer: string

)

This function converts the 80-bit extended precision r80 value to its string representation using decimal
notation. This function stores the resulting string in the buffer variable whose MaxLength field must be at least
width or this function will raise an exception. Note that the 80-bit single precision format supports
approximately 18 decimal digits of precision. Therefore, any digits beyond the 18th significant digit will contain
garbage. Hence, your choice of width should not produce more than 18 mantissa digits. Do keep in mind that
the average person has trouble comprehending value with more than six or seven digits. For values that are
routinely outside this range you may want to use exponential form to display the number with a limited number
of significant digits.

procedure conv.r64ToStr
(

r64: real64;
width: uns32;

conv.r80ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

fill

decimalpts

ESP+24

buffer

ESP+28
Page 240 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
decimalpts: uns32;
fill: char;
buffer: string

)

This function converts the 64-bit double precision r64 value to its string representation using decimal
notation. This function stores the resulting string in the buffer variable whose MaxLength field must be at least
width or this function will raise an exception. Note that the 64-bit single precision format supports
approximately 15 decimal digits of precision. Therefore, any digits beyond the 15th significant digit will contain
garbage. Hence, your choice of width should not produce more than 15 mantissa digits. Do keep in mind that
the average person has trouble comprehending value with more than six or seven digits. For values that are
routinely outside this range you may want to use exponential form to display the number with a limited number
of significant digits.

procedure conv.r32ToStr
(

r32: real32;
width: uns32;
decimalpts: uns32;
fill: char;
buffer: string

)

This function converts the 32-bit single precision r32 value to its string representation using decimal
notation. This function stores the resulting string in the buffer variable whose MaxLength field must be at least
width or this function will raise an exception. Note that the 32-bit single precision format supports
approximately 6-7 decimal digits of precision. Therefore, any digits beyond the seventh significant digit will
contain garbage. Hence, your choice of width should not produce more than seven mantissa digits.

conv.r64ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r64 (L.O. dword)
r64 :real64

fill

decimalpts

r64 (H.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

buffer

ESP+24
Released to the Public Domain Page 241

HLA Standard Library
procedure conv.a_r80ToStr
(

r80: real80;
width: uns32;
decimalpts: uns32;
fill: char

); @returns("eax");

This function converts the 80-bit extended precision r80 value to its string representation using decimal
notation. This function stores the resulting string in storage it allocates on the heap and returns a pointer to that
string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are done with it..
Note that the 80-bit single precision format supports approximately 18 decimal digits of precision. Therefore,
any digits beyond the 18th significant digit will contain garbage. Hence, your choice of width should not produce
more than 18 mantissa digits. Do keep in mind that the average person has trouble comprehending value with
more than six or seven digits. For values that are routinely outside this range you may want to use exponential
form to display the number with a limited number of significant digits.

conv.r32ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r32 :real32

fill

decimalpts

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

buffer

conv.a_r80ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

fill

decimalpts

ESP+24
Page 242 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.a_r64ToStr
(

r64: real64;
width: uns32;
decimalpts: uns32;
fill: char

); @returns("eax");

This function converts the 64-bit double precision r64 value to its string representation using decimal
notation. This function stores the resulting string in storage it allocates on the heap and returns a pointer to that
string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are done with it.
Note that the 64-bit single precision format supports approximately 15 decimal digits of precision. Therefore,
any digits beyond the 15th significant digit will contain garbage. Hence, your choice of width should not produce
more than 15 mantissa digits. Do keep in mind that the average person has trouble comprehending value with
more than six or seven digits. For values that are routinely outside this range you may want to use exponential
form to display the number with a limited number of significant digits.

procedure conv.a_r32ToStr
(

r32: real32;
width: uns32;
decimalpts: uns32;
fill: char

); @returns("eax");

This function converts the 32-bit single precision r32 value to its string representation using decimal
notation. This function stores the resulting string in storage it allocates on the heap and returns a pointer to that
string in the EAX register. It is the caller’s responsibility to deallocate this storage when they are done with it.
Note that the 32-bit single precision format supports approximately 6-7 decimal digits of precision. Therefore,
any digits beyond the seventh significant digit will contain garbage. Hence, your choice of width should not
produce more than seven mantissa digits.

conv.a_r64ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r64 (L.O. dword)
r64 :real64

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

fill

decimalpts

r64 (H.O. dword)
Released to the Public Domain Page 243

HLA Standard Library
 8.6.6 Floating Point String/Buffer to Numeric Conversions
The floating-point string to numeric routines convert characters found in a character sequence to an 80-bit

IEEE floating-point format. There are two versions – conv.atof and conv.strToFlt. conv.atof operates on an
arbitrary sequence of characters in memory and conv.strToFlt operates on a string variable.

These routines will skip over any leading underscore and delimiter characters (specified by the internal
delimiters character set, see the discussion of conv.setDelimiters and conv.getDelimiters for details). These
functions will convert all characters in the sequence until encountering an illegal floating-point character
(decimal digits, a decimal point, ‘e’ or ‘E’, and an optional sign for the exponent and mantissa). If the first non-
acceptable character is not the end of string or a delimiter character, these functions will raise a conversion
exception. If the character is not a valid 7-bit ASCII character, these functions will raise an illegal character
exception.

The conv.strToFlt functions has two parameters: a string object and an index into that string. Numeric
conversion because at the zero-based character position specified by the index parameter. For example, the
invocation
conv.strToFlt(someStr, 5);

begins the conversion starting with the sixth character (index 5) in someStr. These functions will raise an "index
out of range" exception if the supplied index is greater than the size of the string the first parameter specifies.
They will return a null pointer reference exception if the string parameter is NULL (they will return an illegal
memory access exception if the first parameter is not a valid pointer).

These functions always convert their strings to an 80-bit floating-point value and leave that value sitting on
the top of the FPU stack (ST0). If you want the conversion to a 32-bit or 64-bit floating-point format, then use the
fstp instruction to store the result in whatever destination format you desire (real32, real64, or real80).

procedure conv.atof(bufptr: dword in esi); @returns("st0");

This routine assumes that ESI is pointing at a sequence of characters that represents a floating point number.
The characters are converted to numeric form and the result is returned in ST0. ESI is left pointing at the first
character beyond the converted characters. This function raises an exception if the value begins with something
other than a standard numeric, ‘-‘, or delimiter character or ends with something other than a standard delimiter
character (or the end of string).

This routine accepts floating point input in either decimal or exponential form.

conv.a_r32ToStr Stack Diagram

Return Address

Byte

0123

ESP

width

r32 :real32

ESP+4

ESP+8

ESP+12

ESP+16

fill

decimalpts
Page 244 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure conv.strToFlt(s:string; index:dword); @returns("st0");

This function converts the sequence of characters starting at position index in s to the equivalent extended
precision floating point value and it leaves the result in ST0. This function raises an exception if the value begins
with something other than a standard numeric, ‘-‘, or delimiter character, or ends with something other than a
standard delimiter character (or the end of string).

This routine accepts floating point input in either decimal or exponential form.

 8.6.7 Roman Numeral Conversion

procedure conv.roman(Arabic:uns32; rmn:string)

This procedure converts the specified integer value (Arabic) into a string that contains the Roman numeral
representation of the value. Note that this routine only converts integer values in the range 1..3,999 to Roman
numeral form. Since ASCII text doesn’t allow overbars (that multiply roman digits by 1,000), this function
doesn’t handle really large Roman numbers. A different character set would be necessary for that.

 conv.a_roman(Arabic:uns32)

Just like the routine above, but this one allocates storage for the string and returns a pointer to the string in
the EAX register.

conv.strToFlt Stack Diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 s :string

index :dword
Released to the Public Domain Page 245

HLA Standard Library
Page 246 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
9 Coroutines Module (coroutines.hhf)

HLA provides a powerful coroutines class that lets you easily use coroutines in your programs. The
coroutine class provides three procedures and methods you can use to initialize a coroutine, transfer control
between coroutines, and free up the storage associated with a coroutine when it completes execution. The
coroutine class also has several data fields, but you should treat these as private fields and never disturb their
values.

In addition to these class procedures and methods, the coroutine package provides a coret procedure that is
useful for returning from a coroutine to whomever "cocalled" the coroutine. This makes it very easy to
implement Generators using coroutines.

Finally, the coroutine module provides a special coroutine variable, mainPgm, that you can use to cocall the
"coroutine" corresponding to the main HLA program.

9.1 The Coroutine Module
To use the coroutine functions in your application, you will need to include one of the following statements

at the beginning of your HLA application:
#include("coroutines.hhf")
or
#include("stdlib.hhf")

9.2 The Coroutine Class Definition
Here’s the definition of the coroutine class data type:

// Note: the original declaration was "coroutine"
// but this has been deprecated. The following text
// equate is for legacy code. Someday, this declaration
// will go away.

const
coroutine:text := "coroutine_t";

type
 coroutine_t:
 class

 var
 CurrentSP: dword;
 Stack: dword;
 ExceptionContext: dword;
 LastCaller: dword;

 procedure cocall;
 @external("COR_COCALL");

 procedure create(size:uns32; theProc:procedure);
 @external("COR_CREATE");

 method cofree;
 @external("COR_COFREE");

 endclass;
Released to the Public Domain Page 247

HLA Standard Library
The data fields are all private fields to this class, your applications should not modify these fields. In
addition to the two procedures and the method in this class, the coroutines.hhf header file also defines a single
external procedure and an external coroutine variable:

procedure coret; @external("COR_CORET");

static
mainPgm_coroutine:coroutine_t; @external("MainPgmCoroutine__hla_");

9.3 Coroutine Functions

procedure coroutine_t.create(size:uns32; theProc:procedure);

coroutine_t.create is the typical HLA class constructor for the coroutine class. Since this is a class
procedure, you can call create one of two different ways:

(1) You can call it via the statement "coroutine_t.create(size, proc);" This form assumes that you wish to
create a dynamic coroutine object on the heap. When called this way, the coroutine_t.create procedure allocates
storage for a coroutine object on the heap and returns a pointer to this new coroutine object in the ESI register.
Otherwise it behaves identically to the second form of the coroutine_t.create procedure.

(2) You can call coroutine_t.create using an invocation of the form "objectName.create(size, proc);" where
"objectName" is the name of a coroutine_t variable or a pointer to a coroutine_t object (that, presumably, has
been initialized with a valid pointer to a coroutine_t object). Do be aware that this form of the call loads ESI
with the address of the coroutine_t object. On return, ESI will contain this new value.

Either form of the call to create will initialize the coroutine_t object, allowing subsequent cocalls to the
coroutine_t object.

Coroutines execute using their own stack (independent of other coroutine stacks and independent of the
stack the main program uses). The size parameter specifies the number of bytes of stack space to reserve for the
coroutine. A good minimum value for a coroutine stack is between 256 and 1,024 bytes. If the coroutine
allocates lots of local/automatic variables, or calls other procedures that allocate lots of local/automatic storage,
you will need to allocate a larger stack as appropriate. Likewise, if your coroutine calls procedures that are
recursive, additional stack space may be necessary.

The theProc parameter is a pointer to a procedure. This procedure is the code that will execute when you
cocall this coroutine. The only thing special about the procedure is that it should never be possible to return to
the procedure’s caller by executing a RET instruction. You exit coroutine using the coroutine_t.cocall procedure
or the coroutine_t.coret procedure. If your code accidentally "falls off the end of the procedure" or otherwise
attempts to return to the caller via a RET instruction, the coroutine will go into a special state in which any
attempt to cocall it forces an immediate return by the coroutine to the cocaller.

Object declarations for examples:

static
ptrToCoroutine:pointer to coroutine;
staticCoroutine:coroutine_t;

HLA high-level calling sequence examples:

coroutine_t.create(1024, &myCoroutineProc);
mov(esi, ptrToCoroutine);
staticCoroutine.create(1024, &anotherProc);

HLA low-level calling sequence examples:

pushd(1024);
pushd(&myCoroutineProc);
mov(NULL, esi);// Tells create to allocate storage
call coroutine_t.create;
Page 248 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(esi, ptrToCoroutine);

pushd(1024);
pushd(&anotherProc);
lea(esi, staticCoroutine);
call coroutine.create;

procedure coroutine_t.cocall();

coroutine_t.cocall is the mechanism you use to invoke a coroutine. Note that this is a procedure for
performance reasons. You should never invoke the static procedure coroutine_t.cocall as this will raise a run-
time exception. Instead, you should always invoke this procedure using an object invocation of the form
"objectName.cocall();" This will switch the thread of execution from the current coroutine (or the main
program) to the coroutine code associated with "objectName". Note that coroutines rarely begin execution at the
first statement of the procedure associated with the coroutine (in fact, this happens exactly once, when you
invoke the coroutine for the very first time).

The cocall mechanism provides the standard way of leaving a coroutine. Cocalling some other coroutine
switches the execution context from the current coroutine to that other coroutine. The next time some code
cocalls a coroutine that leaves via cocall, execution continues with the first statement following the cocall (it’s
almost as though you had called that other coroutine using a CALL instruction).

HLA high-level calling sequence examples:

ptrToCoroutine.cocall();
staticCoroutine.cocall();

HLA low-level calling sequence examples:

mov(ptrToCoroutine, esi);
call coroutine_t.cocall;

lea(esi, staticCoroutine);
call coroutine_t.cocall;

method coroutine_t.cofree();

When you are done with a coroutine, you should call the coroutine_t.cofree method to free up the stack
space associated with that coroutine. You must not call coroutine_t.cofree from inside the coroutine you’re
cleaning up since it still needs its stack to transfer control to some other coroutine.

HLA high-level calling sequence examples:

ptrToCoroutine.cofree();
staticCoroutine.cofree();

HLA low-level calling sequence examples:

mov(ptrToCoroutine, esi);
mov([esi], edi);
call([edi+@offset(coroutine_t.cofree)]);

lea(esi, staticCoroutine);
mov([esi], edi);
call([edi+@offset(coroutine_t.cofree)]);
Released to the Public Domain Page 249

HLA Standard Library
method coret();

coret is nearly identical to coroutine_t.cocall with two major exceptions. First, note that this procedure is
not a member of the coroutine_t class. Therefore, you do not specify an object name in front of the call to the
coret procedure. Second, coret returns control to whomever cocalled the current coroutine. The current
coroutine does not have to know who called it; coret figures this out and cocalls the appropriate coroutine.

Note that coret is not a "return" in the usual sense that the coroutine completes execution upon calling coret.
coret is identical to a coroutine_t.cocall to the coroutine that called the current coroutine. In particular, after a
coroutine returns to another, any future cocalls to this coroutine will continue execution with the first statement
following the coret call.

HLA high-level calling sequence examples:

coret();

HLA low-level calling sequence examples:

call coret;

static mainPgm:coroutine_t;

This is a special coroutine_t variable that contains the control information for the main program. If, inside a
coroutine, you wish to cocall the main program, just use a cocall of the form "MainPgm.cocall();" and control in
the main program will continue at the point of the last cocall executed in the main program. (Note: the term
"main program" here does not imply that the cocall has to be in the actual main program of an HLA program, it
simply refers to the thread of execution that starts in the main program. Your main program can call a procedure
that transfers control to some coroutine via cocall. MainPgm.cocall will transfer control back into that
procedure.)
Page 250 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
10 Character Sets (cset.hhf)

The HLA Standard Library contains several routines that provide the power of the HLA compile-time
character set facilities at run-time (i.e., within your programs).

HLA uses a 128-bit bitmap (16 consecutive bytes) to implement sets of seven-bit ASCII characters. This
has a very important implication: you cannot pass byte values greater than $7F to a character set function.
Currently, the HLA Standard Library routines do not check for values out of range (for performance reasons). In
the future, this checking may be added as a compilable option. For the time being, however, it is your
responsibility to verify that all character values are in the range #$0..#$7F (and, in general, #$0 is an exceeding
bad value to specify in many cases since the null character terminates strings).

The bitmap consists of 128 consectutive bits numbered 0..127. If a bit in a character set is one, then the
corresponding character (whose ASCII code matches the bit number) is a member of the character set.
Conversely, if a bit is zero, the corresponding character is not a member of the set.

Note that many routines pass character sets by value. This means you can pass HLA character set constants
as parameters to these procedures/functions. HLA emits four MOV (doubleword) instructions to copy a
character set by value, so passing character sets by value is not horribly inefficient (though not quite as fast as a
32-bit integer!).

Warning: All of the character set routines are members of the cs namespace. This means you cannot use the
name cs within your programs. (cs is a common character set name that lazy programmers use; sorry, it’s
already been taken!)

The following sections describe each of the character set routines in the HLA Standard Library.
A Note About Thread Safety: The routines in this module are all thread safe.
Note about stack diagrams: this documentation includes stack diagrams for those functions that pass

parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

10.1 Predicates (tests)
Although the "returns" value for each of the following functions is "AL", these tests always set EAX to zero

or one. Therefore, you may refer to the AL or EAX register after these tests, whichever is more convenient for
you. If you use instruction composition and bury one of these function calls in another statement, that statement
will use the AL register as the operand.

Note that these functions generally pass their character set parameters by value. This involves pushing 16
bytes on the stack for each cset parameter (typically four push instructions). Keep this in mind if efficiency is
your utmost concern. Be sure to read the section on "Passing CSET Parameters on the Stack" in the chapter on
"Passing Parameters to Standard Library Routines".

procedure cs.IsEmpty(src: cset); @returns("AL");

This function returns true (1) in the AL register if the specified character set is empty (has no members). It
returns false (0) in AL/EAX otherwise.

HLA high-level calling sequence examples:

cs.IsEmpty(csetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

// cs.IsEmpty is really intended to be used as a high-level
// type function. It’s actually just as easy to compute the
// function manually as it is to call it. Here’s the low-level
// calling sequence:

push((type dword csetVar[12]));
push((type dword csetVar[8]));
push((type dword csetVar[4]));
Released to the Public Domain Page 251

HLA Standard Library
push((type dword csetVar[0]));
call cs.IsEmpty;
mov(al, booleanResult;

// Here’s the same thing using bare machine instructions:

mov((type dword csetVar[0]), eax);
or((type dword csetVar[4]), eax);
or((type dword csetVar[8]), eax);
or((type dword csetVar[12]), eax);
setz(al);
mov(al, booleanResult);

procedure cs.member(c:char; theSet:cset); @returns("AL");

This function returns true (1) or false (0) in AL/EAX if the specified character is a member of the specified
character set.

HLA high-level calling sequence examples:

cs.member(charVar, csetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

// cs.member is really intended to be used as a high-level
// type function. It’s actually just as easy to compute the
// function manually as it is to call it. Here’s the low-level
// calling sequence:

movzx(charVar, eax);
push(eax);
push((type dword csetVar[12]));
push((type dword csetVar[8]));

cs.isEmpty stack d iagram

Return Address

Byte

0123

src :cset

ESP

ESP+4

ESP+8

ESP+12

ESP+16 src (H.O. dword)

src (L.O. dword)

!

Page 252 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword csetVar[4]));
push((type dword csetVar[0]));
call cs.member;
mov(al, booleanResult;

// Here’s the same thing using bare machine instructions:

movzx(charVar, eax);
bt(eax, csetVar);
setc(al);
mov(al, booleanResult);

procedure cs.subset(src1:cset; src2:cset); @returns("AL");

The cs.subset function returns true in AL/EAX if src1 <= src2 (that is, all of src1’s members are also members
of src2).

HLA high-level calling sequence examples:

cs.subset(subsetVar, supersetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword subsetVar[12]));
push((type dword subsetVar[8]));
push((type dword subsetVar[4]));
push((type dword subsetVar[0]));

push((type dword supersetVar [12]));
push((type dword supersetVar [8]));
push((type dword supersetVar [4]));
push((type dword supersetVar [0]));
call cs.subset;
mov(al, booleanResult);

cs.Member stack diagram

Return Address

Byte

0123

theSet :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

ESP+20 c :char

!

Released to the Public Domain Page 253

HLA Standard Library
procedure cs.superset(src1:cset; src2:cset); @returns("AL");

The cs.superset function returns true in AL/EAX if src1 >= src2 (that is, all of src2’s members are members of
src1).

HLA high-level calling sequence examples:

cs.superset(supersetVar, subsetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword supersetVar[12]));
push((type dword supersetVar[8]));
push((type dword supersetVar[4]));
push((type dword supersetVar[0]));

push((type dword subsetVar[12]));
push((type dword subsetVar[8]));
push((type dword subsetVar[4]));
push((type dword subsetVar[0]));
call cs.superset;
mov(al, booleanResult);

cs.subset stack d iagr am

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)

!

Page 254 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure cs.psubset(src1:cset; src2:cset); @returns("AL");

The cs.psubset (proper subset) function returns true in AL/EAX if src1 < src2 (that is, all of src1’s members
are members of src2 but src1 <> src2).

HLA high-level calling sequence examples:

cs.psubset(subsetVar, supersetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword subsetVar[12]));
push((type dword subsetVar[8]));
push((type dword subsetVar[4]));
push((type dword subsetVar[0]));

push((type dword supersetVar [12]));
push((type dword supersetVar [8]));
push((type dword supersetVar [4]));
push((type dword supersetVar [0]));
call cs.psubset;
mov(al, booleanResult);

cs.super set stack d iagr am

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)
Released to the Public Domain Page 255

HLA Standard Library
procedure cs.psuperset(src1:cset; src2:cset); @returns("AL");

The cs.spsuperset (proper superset) function returns true in AL/EAX if src1 > src2 (that is, all of src2’s
members are members of src1 but src2 <> src1).

HLA high-level calling sequence examples:

cs.psuperset(supersetVar, subsetVar);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword supersetVar[12]));
push((type dword supersetVar[8]));
push((type dword supersetVar[4]));
push((type dword supersetVar[0]));

push((type dword subsetVar[12]));
push((type dword subsetVar[8]));
push((type dword subsetVar[4]));
push((type dword subsetVar[0]));
call cs.psuperset;
mov(al, booleanResult);

cs.psubset stack d iagr am

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)
Page 256 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure cs.eq(src1:cset; src2:cset); @returns("AL");

The cs.eq function compares the two sets and returns true/false in AL/EAX; true if the two sets are equal,
false if they are not.

HLA high-level calling sequence examples:

cs.eq(src1, src2);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword src1[12]));
push((type dword src1[8]));
push((type dword src1[4]));
push((type dword src1[0]));

push((type dword src2[12]));
push((type dword src2[8]));
push((type dword src2[4]));
push((type dword src2[0]));
call cs.eq;
mov(al, booleanResult);

cs.psuperset stack d iagram

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)
Released to the Public Domain Page 257

HLA Standard Library
procedure cs.ne(src1:cset; src2:cset); @returns("AL");

The cs.eq function compares the two sets and returns true/false in AL/EAX; true if the two sets are not equal,
false if they are equal.

HLA high-level calling sequence examples:

cs.ne(src1, src2);
mov(al, booleanResult);

HLA low-level calling sequence examples:

push((type dword src1[12]));
push((type dword src1[8]));
push((type dword src1[4]));
push((type dword src1[0]));

push((type dword src2[12]));
push((type dword src2[8]));
push((type dword src2[4]));
push((type dword src2[0]));
call cs.ne;
mov(al, booleanResult);

cs.eq stack diagram

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)
Page 258 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
10.2 Character Set Construction and Manipulation
The functions in this group create character set objects, extract data from character set objects, or transfer

data between character set objects.

procedure cs.empty(var dest:cset);

This function clears all the bits in a character set to create the empty set. Note that the single character set
parameter is passed by reference.

HLA high-level calling sequence examples:

cs.empty(csetVar);

HLA low-level calling sequence examples:

// cset_s is a variable declared in the static/storage section:

pushd(&cset_s);
call cs.empty;

// cset_v is a variable declared in the var section or
// is a parameter:

lea(eax, cset_v);
push(eax);
call cs.empty;

// Alternative call passing cset_v if no 32-bit registers
// are available (this code assumes that EBP points at the current
// activation record/stack frame that contains cset_v):

push(ebp);
add(@offset(cset_v), (type dword [esp]));
call cs.empty;

cs.ne stack diagram

Return Address

Byte

0123

src2 :cset

ESP+4

ESP+8

ESP+12

ESP+16 src2 (H.O. dword)

src2 (L.O. dword)

ESP

src1 :cset

ESP+20

ESP+24

ESP+28

ESP+32 src1 (H.O. dword)

src1 (L.O. dword)

!

Released to the Public Domain Page 259

HLA Standard Library
// Low-level call assuming a 32-bit register (esi in this case)
// contains the address of the cset:

push(esi);
call cs.empty;

// Low-level call assuming a dword or pointer variable contains the
// address of the cset that will receive the delimiter character set:

push(ptrToDelims);
call cs.empty;

procedure cs.cpy(src:cset; var dest:cset);

This routine copies the data from the source character set (src) to the destination character set (dest). Note
that the dest set is passed by reference. Although this routine is convenient, you should consider writing a macro
to do this same function (copy 16 bytes from src to dest) if you call this function in time critical sections of your
code.

HLA high-level calling sequence examples:

cs.cpy(csetSrc, csetDest);
cs.cpy({‘a’..’z’}, lowerCaseCset);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]));
push((type dword csetSrc_s[0]));

cs.empty stack diagram

Return Address

Byte

0123

ESP+4

ESP

var dest :cset
Page 260 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd(&csetDest_s);
call cs.cpy;

// csetDest_v is a variable declared in the var section or
// is a parameter:

push((type dword csetSrc_v[12]));
push((type dword csetSrc_v[8]));
push((type dword csetSrc_v[4]));
push((type dword csetSrc_v[0]));
lea(eax, csetDest_v);
push(eax);
call cs.cpy;

// Alternative call passing csetDest_v if no 32-bit registers
// are available (this code assumes that EBP points at the current
// activation record/stack frame that contains csetDest_v):

push((type dword csetSrc_v[12]));
push((type dword csetSrc_v[8]));
push((type dword csetSrc_v[4]));
push((type dword csetSrc_v[0]));
push(ebp);
add(@offset(csetDest_v), (type dword [esp]));
call cs.cpy;

// Low-level call assuming a 32-bit register (edi in this case)
// contains the address of the destination cset:

push((type dword csetSrc_v[12]));
push((type dword csetSrc_v[8]));
push((type dword csetSrc_v[4]));
push((type dword csetSrc_v[0]));
push(edi);
call cs.cpy;

// Low-level call assuming a dword or pointer variable contains the
// address of the destination cset:

push((type dword csetSrc[12]));
push((type dword csetSrc[8]));
push((type dword csetSrc[4]));
push((type dword csetSrc[0]));
push(ptrTodest);
call cs.cpy;
Released to the Public Domain Page 261

HLA Standard Library
procedure cs.charToCset(c:char; var dest:cset);

The cs.charToCset procedure takes the character passed as a parameter and creates a singleton set containing
that character (a singleton is a set with exactly one member). The resulting set is stored into the destination
parameter (which is passed by reference).

HLA high-level calling sequence examples:

cs.charToCset(‘c’, csetDest);
cs.charToCset(charVar, lowerCaseCset);
cs.charToCset((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.
//
// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest_s);
call cs.charToCset;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov(charVar, al);
push(eax);
pushd(&csetDest_s);
call cs.charToCset;

cs.cpy stack diagram

Return Address

Byte

0123

src :cset

src (H.O. dword)

src (L.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP

ESP+20

var dest:cset
Page 262 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar);
pushd(&csetDest_s);
call cs.charToCset;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);
mov(ah, [esp]);
pushd(&csetDest_s);
call cs.charToCset;

procedure cs.rangeChar(first:char; last:char; var dest:cset);

This function creates a set whose member range between the first character specified and the last character
specified. For example, cs.rangeChar(’A’, ’Z’, UpperCaseSet) will create a character set whose members are the
upper case alphabetic characters. Any previous members in the destination set are lost.

HLA high-level calling sequence examples:

cs.rangeChar(‘a’, ‘z’, csetDest);
cs.rangeChar(charVar, endCharVal, lowerCaseCset);
cs.rangeChar((type char [esi]), ‘0’, (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.
// Also note that both the "first" and "last" parameters are
// character objects that you pass the same way. For brevity,
// the following examples only demonstrate variations on the

cs.charToC set stack diagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

c :char
Released to the Public Domain Page 263

HLA Standard Library
// "first" parameter; the same principles apply to the "last"
// parameter.
//
// Passing two character constants:

pushd(‘a’);
pushd(‘z’);
pushd(&csetDest_s);
call cs.rangeChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov(charVar, al);
push(eax);
pushd(‘z’);
pushd(&csetDest_s);
call cs.rangeChar;

// If the "first" character variable is guaranteed not to be in the
// last three bytes of allocated storage, you could also do this:

push(type dword charVar);
pushd(‘z’);
pushd(&csetDest_s);
call cs.rangeChar;

// If the "first" character is in one of the 8-bit
// registers: AH, BH, CH, DH

sub(4, esp);
mov(ah, [esp]);
pushd(‘z’);
pushd(&csetDest_s);
call cs.rangeChar;

cs.rangeC har stack diagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

last :char

first :charESP+12
Page 264 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure cs.strToCset(s:string; var dest:cset);

This function first sets the destination character set to the empty set. Then it "unions in" all the characters
found in the string parameter to the destination set.

HLA high-level calling sequence examples:

cs.strToCset(strSrc, csetDest);
cs.strToCset("ABCDEFabcdef", hexCset);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(&csetDest_s);
call cs.strtoCset;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable).

lea(eax, "abcdefABCDEF");
push(eax);
pushd(&csetDest_s);
call cs.strtoCset;

procedure cs.strToCset2(s:string; offs:uns32; var dest:cset);

This function first sets the destination character set to the empty set. Then it "unions in" all the characters
starting at offset offs in the string parameter to the destination character set.

cs.strToC set stack d iagr am

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

s :string
Released to the Public Domain Page 265

HLA Standard Library
HLA high-level calling sequence examples:

cs.strToCset2(strSrc, 2, csetDest);
cs.strToCset2("ABCDEF", offsetIntoStr, partialHexCset);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)
pushd(&csetDest_s);
call cs.strToCset2;

// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);
push(offsetIntoStr);
pushd(&csetDest_s);
call cs.strToCset2;

procedure cs.extract(var dest:cset); @returns("EAX");

This function removes a single character from the character set and returns that character in the AL register.
Currently, this function removes characters by order of their ASCII character codes (that is, each call returns the
character in the set with the lowest ASCII code). However, you should not make this assumption. You should
assume that this function could return the characters in an arbitrary order. If the specified character set is empty,
this routine returns -1 ($FFFF_FFFF) in the EAX register; in all other cases the H.O. three bytes of EAX contain
zero upon return.

Note: unlike the HLA compile-time function "@extract", this function actually removes the character from
the character set ("@extract" leaves the character in the set). Keep this in mind. (In the future, the name of the
HLA @extract function will probably be changed to something else to clean up this conflict.)

cs.str toC set2 stack d iagr am

Return Address

Byte

0123

ESP+4

ESP+8

ESP+12

ESP

var dest :cset

s :string

offs :uns32

!

Page 266 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

cs.extract(csetVar);
if(eax <> -1) then

mov(al, charExtracted);

endif;

HLA low-level calling sequence example:

// The following low-level example assumes that cset_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

pushd(&cset_s);
call cs.extract;
cmp(eax, -1);
je noCharExtracted;
mov(al, charExtracted;
noCharExtracted:

10.3 Set Operations
The following set functions perform what is generally considered to be set arithmetic: operations like set

union, intersection, difference, and so on.

cs.extr act stack diagram

Return Address

Byte

0123

ESP+4

ESP

var dest :cset
Released to the Public Domain Page 267

HLA Standard Library
procedure cs.setunion(src:cset; var dest:cset);

This function computes the union of two sets, storing the result back into the destination set. Note that the
destination set parameter is passed by reference.

Note: The name "setunion" was used rather than the more obvious choice of "union" because "union" is an
HLA reserved word.

HLA high-level calling sequence examples:

cs.setunion(csetSrc, csetDest);
cs.setunion({‘a’..’z’}, lowerCaseUnion);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]));
push((type dword csetSrc_s[0]));
pushd(&csetDest_s);
call cs.setunion;

procedure cs.intersection(src:cset; var dest:cset);

This function computes the set intersection of the two sets passed as parameters and stores the result back
into the destination set. Note that the dest parameter is passed by reference.

HLA high-level calling sequence examples:

cs.intersection(csetSrc, csetDest);

cs.setUnion stack d iagram

Return Address

Byte

0123

src :cset

src (H.O. dword)

src (L.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP

ESP+20

var dest:cset
Page 268 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
cs.intersection({‘a’..’z’}, lowerCaseUnion);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]));
push((type dword csetSrc_s[0]));
pushd(&csetDest_s);
call cs.intersection;

procedure cs.difference(src:cset; var dest:cset);

This function computes the set difference of two sets (i.e., the members in the destination set that are not
also members of the source set). It stores the result back into the dest set (which is passed by reference).

HLA high-level calling sequence examples:

cs.difference(csetSrc, csetDest);
cs.difference({‘a’..’z’}, csetWithoutLowerCase);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

cs.Intersection stack d iagram

Return Address

Byte

0123

src :cset

src (H.O. dword)

src (L.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP

ESP+20

var dest:cset
Released to the Public Domain Page 269

HLA Standard Library
push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]));
push((type dword csetSrc_s[0]));
pushd(&csetDest_s);
call cs.difference;

procedure cs.complement(src:cset; var dest:cset);

This function computes the set complement of a set (i.e., the members in the destination set are those
elements that are not in the source set.). It stores the complemented version of the set in the destination operand
(which is passed by reference).

HLA high-level calling sequence examples:

cs.complement(csetSrc, negatedCsetDest);
cs.complement({‘a’..’z’}, allButLowercase);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]));
push((type dword csetSrc_s[0]));
pushd(&csetDest_s);
call cs.complement;

cs.d iffer ence stack d iagram

Return Address

Byte

0123

src :cset

src (H.O. dword)

src (L.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP

ESP+20

var dest:cset
Page 270 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure cs.unionChar(c:char; var dest:cset);

The cs.unionChar function adds the character (supplied as a parameter) to the specified destination character
set (passed by reference). If the character was already a member of the set, this function does not affect the
character set.

HLA high-level calling sequence examples:

cs.unionChar(‘c’, csetDest);
cs.unionChar(charVar, lowerCaseCset);
cs.unionChar((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.
//
// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest_s);
call cs.unionChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov(charVar, al);
push(eax);
pushd(&csetDest_s);
call cs.unionChar;

cs.complemen t stack d iagr am

Return Address

Byte

0123

src :cset

src (H.O. dword)

src (L.O. dword)

ESP+4

ESP+8

ESP+12

ESP+16

ESP

ESP+20

var dest:cset
Released to the Public Domain Page 271

HLA Standard Library
// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar);
pushd(&csetDest_s);
call cs.unionChar;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);
mov(ah, [esp]);
pushd(&csetDest_s);
call cs.unionChar;

procedure cs.removeChar(c:char; var dest:cset);

This function removes a single character from the specified destination set (passed by reference). If the
character was not previously a member of the destination set, this function does not affect that set.

HLA high-level calling sequence examples:

cs.removeChar(‘c’, csetDest);
cs.removeChar(charVar, lowerCaseCset);
cs.removeChar((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.
//

cs.unionC har stack diagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

c :char

!

Page 272 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest_s);
call cs.removeChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov(charVar, al);
push(eax);
pushd(&csetDest_s);
call cs.removeChar;

// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar);
pushd(&csetDest_s);
call cs.removeChar;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);
mov(ah, [esp]);
pushd(&csetDest_s);
call cs.removeChar;

procedure cs.unionStr(s:string; var dest:cset);

This function will union in all the characters in a string to the destination set. Unlike the cs.strToCset
function, this function does not clear the destination character set before processing the characters in the string.

cs.removeC har stack d iagr am

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

c :char

!

Released to the Public Domain Page 273

HLA Standard Library
HLA high-level calling sequence examples:

cs.unionStr(strSrc, csetDest);
cs.unionStr("ABCDEFabcdef", csetPlusHexChars);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(&csetDest_s);
call cs.unionStr;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable).

lea(eax, "abcdefABCDEF");
push(eax);
pushd(&csetDest_s);
call cs.unionStr;

procedure cs.unionStr2(s:string; offs:uns32; offs:uns32; var dest:cset);

This function will union in all the characters in a string to the destination set. Unlike the cs.unionStr function,
this function starts at character position offs in s rather than at character position zero.

HLA high-level calling sequence examples:

cs.unionStr2(strSrc, 2, csetDest);
cs.unionStr2("ABCDEF", offsetIntoStr, partialHexUnion);

cs.unionStr stack d iagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

s :string
Page 274 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)
pushd(&csetDest_s);
call cs.unionStr2;

// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);
push(offsetIntoStr);
pushd(&csetDest_s);
call cs.unionStr2;

procedure cs.removeStr(s:string; var dest:cset);

This function removes characters found in the string from the specified character set. If a character in the
string was not previously a member of the character set, the specified character has no effect on the destination
set.

HLA high-level calling sequence examples:

cs.removeStr(strSrc, csetDest);
cs.removeStr("ABCDEFabcdef", csetMinusHexChars);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

cs.unionStr2 stack d iagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP+12

ESP

var dest :cset

s :string

offs :uns32
Released to the Public Domain Page 275

HLA Standard Library
push(strSrc);
pushd(&csetDest_s);
call cs.removeStr;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable).

lea(eax, "abcdefABCDEF");
push(eax);
pushd(&csetDest_s);
call cs.removeStr;

procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);

This function removes characters found in the string at character position offs and beyond from the specified
character set. If a character in the string was not previously a member of the character set, the specified character
has no effect on the destination set.

HLA high-level calling sequence examples:

cs.removeStr2(strSrc, 2, csetDest);
cs.removeStr2("ABCDEF", offsetIntoStr, csetMinusSomeHexChars);

HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)
pushd(&csetDest_s);
call cs.removeStr2;

cs.removeStr stack diagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP

var dest :cset

s :string

!

Page 276 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);
push(offsetIntoStr);
pushd(&csetDest_s);
call cs.removeStr2;

cs.removeStr2 stack diagram

Return Address

Byte

0123

ESP+4

ESP+8

ESP+12

ESP

var dest :cset

s :string

offs :uns32
Released to the Public Domain Page 277

HLA Standard Library
Page 278 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
11 Date Functions (datetime.hhf)

HLA contains a set of procedures and functions that simplify correct date calculations. There are actually
two modules: a traditional set of date functions and, for those who prefer an object-oriented approach, a date
class module.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About Thread Safety: The date and time routines maintain a couple of static global variables that
track the output format and output separate characters for dates. Currently, these values apply to all threads in a
process. You should take care when changing these values in threads. When the process module is added to the
standard library, these values will be placed in a per-thread data structure. Until then, you should set the format/
separator character before starting any other threads and avoid changing their values once other threads (that
might use the date/time library module) begin execution.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

Note about function overloading: the functions in the date/time module use function overloading in order
to allow you to specify the parameter lists in different ways. The macro that handles the overloading generally
coerces the possible parameter types into a single object that it passes to the underlying function. The
documentation for the specific functions will tell you whether a symbol is a macro or a function. For the most
part, this should matter to you unless you are taking the address of a function (which you cannot do with a
macro). See the HLA documentation for more details on function overloading via macros.

11.1 The Date Module
To use the date functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:
#include("datetime.hhf")
or
#include("stdlib.hhf")

11.2 Date Data Types
The date namespace defines the following useful data types:

 date.daterec

Date representation. This is a dword object containing m, d, and y fields holding the obvious values. The y
field is a 16-bit quantity supporting years 0..9,999. No Y2K problems here! (Of course, it does suffer from
Y10K, but that’s probably okay.) Since the Gregorian calendar began use in Oct, 1582, there is really no need to
represent dates any earlier than this. In fact, most date calculations in the HLA stdlib will not allow dates earlier
than Jan 1, 1600 for this very reason. The limitation of year 9999 is an arbitrary limit set in the library to help
catch wild values. If you really need dates beyond 9999, feel free to modify the date validation code. The m and
d fields are both byte objects. The date validation routines enforce the month limits of 1..12 and appropriate day
limits (depending on the month and year).

Here is the current data type definition for the daterec data type:

type
daterec:

record
day :uns8;
month :uns8;
year :uns16;

endrecord;

Because of the way the fields are defined, you may compare two dates as 32-bit values and test the result
using unsigned conditional branch instructions.
Released to the Public Domain Page 279

HLA Standard Library
date.outputFormat

This is an enumerated data type that defines the following constants:
mdyy, mdyyyy, mmddyy, mmddyyyy, yymd, yyyymd, yymmdd, yyyymmdd, MONdyyyy, and MONTHdyyyy.

These constants control the date output format in the (mostly) obvious way. Note that mdyy can output one digit
for the day and month while mmddyy always inputs two digits for each field. The MONdyyyy format outputs
dates in the form "Jan 1, 2000" while the MONTHdyyyy outputs the dates using the format "January 1, 2000".

type
OutputFormat:

enum
{

mdyy,
mdyyyy,

mmddyy,
mmddyyyy,

yymd,
yyyymd,
yymmdd,
yyyymmdd,

MONdyyyy,
MONTHdyyyy,
badDateFormat

};

11.3 Date Tables
The date/time module includes several date/time-related data objects that may be of interest to an application

programmer. Here are the declarations found in the datetime.hhf header file:

 DaysToMonth :uns32[13];
 DaysInMonth :uns32[13];
 DaysFromMonth :uns32[13];
 Months :string[13];
 shortMonths :string[13];

You must treat these tables as read-only objects. Changing their values will cause the date/time routines to
produce incorrect results. Each of these tables is indexed by a month value in the range 1..12. Zero is an illegal
value and the value found at index 0 in these tables is undefined. Obviously, accessing any data beyond index 12
is also undefined. The first three functions return some number of days relative to the month whose index you’ve
supplied. These day values are relative to the first day of the specified month. The values in these tables are for
non-leap years. If your date calculation is for a leap year, you must add one to the value found in these tables, as
appropriate for the month you specify; details appear in the discussion of each function.

DaysToMonth contains the number of days from January 1 to the first of the month you specify as the index.
For example, index 1 contains zero, index 2 contains 31, index 3 contains 59 (31+28), etc. For leap years, you
will need to add one to the table entry if the index is in the range 3..12.

DaysInMonth contains the number of days in the month specified by the index. For example,
DaysInMonth[1] contains 31, DaysInMonth[2] contains 28, and DaysInMonth[3] contains 31. For leap years,
you need to add one to the value appearing at index 2 (of course, it’s probably just easier to explicitly set the
value to 29 for February in leap years).

DaysFromMonth contains the number of days from the first day of the month specified by the index to the
first day of January in the following year. For example, DaysFromMonth[1] will contain 365,
DaysFromMonth[2] will contain 334 (365-31), and so on. For leap years, you will want to add one to the value if
the month index is less than 3.
Page 280 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Months is an array of strings, indexed by the month value, that contain the month’s name. For example,
Month[1] is the string "January" and Month[2] is the string "February".

shortMonths is an array of strings that contain shortened versions of the month names (the first three
characters of each of the month names found in the Months array).

11.4 Date Predicates
The date module provides many functions that test date values. This section details those functions.

#macro date.isLeapYear(y:uns32); @returns("al");
#macro date.isLeapYear(dr:date.daterec); @returns("al");
procedure date._isLeapYear(Year:word); @returns("al");

This is an overloaded function. You may either pass it an unsigned integer containing the year or a
date.daterec value specifying a m/d/y value (the overloading function will simply pick out the year value and pass
it on to the underlying date._isLeapYear function). These functions return true or false in the AL register
depending upon whether the parameter is a leap year (true if it is a leap year). Note that this function will be
correct until sometime between the years 3000 and 4000, at which point people will probably have to agree upon
adding an extra leap day in at some point (no such agreement has been made today, hence the absence from this
function); currently, HLA date routines do not allow dates beyond the year 2999, so this won’t be a problem
unless you modify the maximum year value in the date/time header files. Note that these functions return the
boolean result zero-extended into EAX. The @returns("al") declarations exist so that these functions will be
type-compatible with boolean objects.

HLA high-level calling sequence examples:

date.isLeapYear(someDateVar);
mov(al, someDateVar_is_leap_year);
if(date.isLeapYear(aYearValue)) then

// Do something if aYearValue is a leap year

endif;

mov(&date._isLeapYear(ebx), ptrToIsLeapYearFunction);

HLA low-level calling sequence examples:

movzx(someDateVar.year, eax);
push(eax);
call date._isLeapYear;
mov(al, someDateVar_is_leap_year);

movzx(aYearValue, eax);
push(eax);
call date._isLeapYear;
test(al, al);
jz notALeapYear;

// Do something if aYearValue is a leap year

notALeapYear:
Released to the Public Domain Page 281

HLA Standard Library
#macro date.validate(m:byte; day:byte; year:word);
#macro date.validate(dr:date.daterec);
date._validate(dr:daterec);

These two functions check the date passed as a parameter and raise an ex.InvalidDate exception if the data in
the fields (or the m/d/y) parameter is not a valid date between 1/1/1600 and 12/31/2999.

HLA high-level calling sequence examples:

try

date.validate(someDateVar);

 anyexception

// Do something if the date is invalid

endtry;

try

date.validate(someMonth, someDay, someYear);

 anyexception

// Do something if the date is invalid

endtry;

try

date._validate(someDateVar);

 anyexception

// Do something if the date is invalid

endtry;

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._validate;

#macro date.isValid(m:byte; day:byte; year:word); @returns("al");
#macro date.isValid(dr:date.daterec); @returns("al");
date._isValid(dr:daterec); @returns("al");

Similar to the date.validate procedures, except these functions return true/false in the AL register if the date is
valid/invalid. They do not raise an exception. Note that these functions return the boolean result zero-extended
into EAX. The @returns("al") declarations exist so that these functions will be type-compatible with boolean
objects.
Page 282 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
11.5 Date Conversions
The functions (and macros) in this category convert dates from one format to another. Specifically, there are

conversions to and from Julian day numbers, conversions to days into year, computation of week day (Sunday
through Saturday), and conversions to days left in year.

#macro date.pack(m, d, y, dr);

date.pack is a macro that accepts year (y), month (m), and day (d) values (presumably dwords), and a
date.daterec (dr) object. It converts the three values to date.daterec form and stores the result in the specified
destination. If the y, m, or d values are constants, this macro checks them to ensure they are somewhat reasonable
(days are only checked for the range 1..31, years are checked for the range 1600..2999). If m or d are memory
objects, then they are coerced to a byte before use. If y is a memory object, it is coerced to a word before use.
You may use registers for y, m, and d; if you do, the m and d values must be passed in 8-bit registers and the y
value must be passed in a 16-bit register. This macro works best if all three operands are constants. If you take a
look at the macro definition in the datetime.hhf header file, you’ll discover that this macro efficiently translates a
constant date into a single machine instruction. The macro attempts to generate good code for other operand
types, but if efficiency is your primary concern, you may want to consider manually moving the data into the
fields of the daterec object if the d, m, and y values are memory operands.

Because this is a macro, there are no parameters passed on the stack (hence, no stack diagram). Do note,
however, that this macro preserves the value in EAX on the stack if it needs to use EAX. As such you should not
specify an ESP-relative memory operand as one of the parameters to this macro. In some cases the macro will
push EAX on the stack during conversion, in other cases it will not. As such, ESP-relative memory addresses
may be rendered incorrect when this macro preserves EAX on the stack.

Other than a mild check for constant operands, this macro does not validate the date you pack into the dr
argument. No checking is done because this macro is primarily intended for moving constant values into a
daterec object (and you should be able to verify the value manually when writing the macro invocation). If you
need to verify the date packed into the dr parameter, use the date.validate or date.isValid functions.

Macro invocation example:

date.pack(6, 21, 2007, drDateVar);

#macro date.unpack(dr, m, d, y);

date.unpack is a macro that accepts a daterec object (dr) and converts this to three dword values (m, d, and
y) by zero-extending the values before storing them into the destination locations. The m, d, and y operands must
be 32-bit memory locations or registers (except EAX, which this macro uses for the zero extension operation).

Macro invocation example:

date.unpack(drDateVar, monthVar32, dayVar32, yearVar32);

#macro date.toJulian(m:byte; d:byte; y:word); @returns("eax");
#macro date.toJulian(dr:date.daterec); @returns("eax");
date._toJulian(dr:daterec); @returns("eax");

These functions convert the Gregorian (i.e., standard) date passed as a parameter into a "Julian day number."
A Julian day number treats Jan 1, 4713 as day zero and simply numbers dates forward from that point. For
example, Oct 9, 1995 is JD 2,450,000. Jan 1, 2000 is JD 2,452,545. Julian dates make date calculations of the
form "what date is it X days from now?" trivial. You just compute JD+X to get the new date.

A Julian Day begins at 12:00 noon (compared with Gregorian days, that begin at 12:00 midnight). Because
these functions do not have a time parameter, they assume that the time is between 12:00 noon on the specified
date you pass as a parameter and 11:59:59 of the next day. If the current time is before 12:00 noon, you should
subtract one from the Julian day number these functions return. If you would like a true ‘toJulian’ function, you
can easily write one thusly:

procedure toJulian(dr:date.daterec; tm:time.timerec);
begin toJulian;
Released to the Public Domain Page 283

HLA Standard Library
date.toJulian(dr);
if(tm.hour < 12) then

dec(eax);
endif;

 end toJulian;

date.toJulian is actual a macro that handles the parameter overloading. It
reformats the parameters (as necessary) and calls the date._toJulian function to do
the actual work. You would not normally call the date._toJulian function as the
date.toJulian macro with a single argument makes this call for you. You would
normally use the date._toJulian function in your applications if you need to pass
the address of a function as a parameter to some other function (you cannot take the
address of a macro).

Note: a "Julian Date" is not the same thing as a "Julian Day Number". A Julian date is based on the Julian
Calendar created by Julius Caesar in about 45 BC. It was very similar to our current calendar except they didn’t
get the leap years quite right. Julian Day numbers are a different calendar system that, as explained above,
number days consecutively after Jan 1 4713 BC (resetting to day one 7980 years later). Out of sheer laziness,
this document will use the term "Julian Date" as a description of the calendar based on Julian day numbers
despite that fact that this is technically incorrect.

HLA high-level calling sequence examples:

date.toJulian(someDateVar);
mov(eax, JulianDayNumber);
date.toJulian(month, day, year);
mov(eax, JulianDayNumber2);

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._toJulian;
mov(eax, JulianDayNumber);

date.fromJulian(jd:uns32; var gd:date.daterec);

This procedure converts a Julian date to a Gregorian date. The Julian date is the first parameter, the second
(reference) parameter is a Gregorian date variable (data.daterec). See the note above about adding some number
of days to a Gregorian date via translation to Julian. Note that adding months or years to a Julian date is a real
pain in the rear. It’s generally easier and faster to convert the Julian date to a Gregorian date, add the months
and/or years to the Gregorian date (which is relatively easy), and then convert the whole thing back to a Julian
day number.

HLA high-level calling sequence examples:

date.fromJulian(JulianDayNumber, someDateVar);

HLA low-level calling sequence examples:

// Assume someDateVar is a static variable:

push(JulianDayNumber);
pushd(&someDateVar);
call date.fromJulian;

// Assume someDateVar is not a static object

push(JulianDayNumber);
lea(eax, someDateVar);
Page 284 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax);
call date.fromJulian;

#macro date.dayNumber(m:byte; d:byte; y:word); @returns("eax");
#macro date.dayNumber(dr:date.daterec); @returns("eax");
date._dayNumber(dr:daterec); @returns("eax");

These functions convert the Gregorian date passed as a parameter into a day number into the current year
(often erroneously called a "Julian Date" since NASA adopted this terminology in the late sixties). These
functions return a value between 1 and 365 or 366 (for leap years) in the EAX register. Jan 1 is day 1, Dec 31 is
day 365 or day 366.

HLA high-level calling sequence examples:

date.dayNumber(someDateVar);
mov(eax, dayNumber1);
date.dayNumber(month, day, year);
mov(eax, dayNumber2);

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._dayNumber;
mov(eax, dayNumber1);

#macro date.daysLeft(m:byte; d:byte; y:word); @returns("eax");
#macro date.daysLeft(dr:date.daterec); @returns("eax");
date._daysLeft(dr:daterec); @returns("eax");

These functions return the number of days left in the current year counting the date passed as a parameter
(hence Dec 31, yyyy always returns one).

HLA high-level calling sequence examples:

date.daysLeft(someDateVar);
mov(eax, daysLeft1);
date.daysLeft(month, day, year);
mov(eax, daysLeft2);

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._daysLeft;
mov(eax, daysLeft1);

#macro date.dayOfWeek(m:byte; d:byte; y:word); @returns("eax");
#macro date.dayOfWeek(dr:date.daterec); @returns("eax");
date._dayOfWeek(dr:daterec); @returns("eax");

These functions return, in EAX, a value between zero and six denoting the day of the week of the given
Gregorian date (0=sun, 1=mon, etc.)

HLA high-level calling sequence examples:

date.dayOfWeek(someDateVar);
Released to the Public Domain Page 285

HLA Standard Library
mov(eax, dayOfWeek1);
date.dayOfWeek(month, day, year);
mov(eax, dayOfWeek2);

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._dayOfWeek;
mov(eax, dayOfWeek1);

11.6 Date Arithmetic
The functions in this category perform date arithmetic – adding integer (day) values to dates, subtracting

integer (day) values, adding integer month or year values to a date, and computing the number of days between
two dates.

#macro date.daysBetween
(

m1:byte;
d1:byte;
y1:word;
m2:byte;
d2:byte;
y2:word

); @returns("eax");

#macro date.daysBetween
(

m1:byte;
d1:byte;
y1:word;
dr:date.daterec

); @returns("eax");

#macro date.daysBetween
(

dr:date.daterec;
m:byte;
d:byte;
y:word

); @returns("eax");

#macro date.daysBetween
(

dr1:date.daterec;
dr2:date.daterec

); @returns("eax");

date._daysBetween(first:daterec; last:daterec); @returns("eax");

These functions return an uns32 value in EAX that gives the number of days between the two specified
dates. These functions work directly on the Gregorian dates.
Page 286 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

date.daysBetween(dateVar1, dateVar2);
mov(eax, daysBetweenD1D2);

date.daysBetween(m1, d1, y1, m2, d2, y2);
mov(eax, daysBetween2);

date.daysBetween(dateVar3, m4, d4, y4);
mov(eax, daysBetween3);

date.daysBetween(m5, d5, y5, dateVar6,);
mov(eax, daysBetween4);

HLA low-level calling sequence examples:

push(dateVar1.date);
push(dateVar2.date);
call date._daysBetween;
mov(eax, daysBetween5);

date.addDays(days:uns32; var dr:date.daterec);

This procedure adds the first parameter (in days) directly to the Gregorian date variable passed by reference
as the second parameter.

HLA high-level calling sequence example:

date.addDays(days, someDateVar);

HLA low-level calling sequence example:

push(days);
push(someDateVar.date);
call date.addDays;

date.addMonths(months:uns32; var dr:date.daterec);

This procedure adds the first parameter (in months) directly to the Gregorian date variable passed by
reference as the second parameter.

HLA high-level calling sequence example:

date.addMonths(months, someDateVar);

HLA low-level calling sequence example:

push(months);
push(someDateVar.date);
call date.addMonths;
Released to the Public Domain Page 287

HLA Standard Library
date.addYears(years:uns32; var dr:date.daterec);

This procedure adds the first parameter (in years) directly to the Gregorian date variable passed by reference
as the second parameter.

HLA high-level calling sequence example:

date.addYears(years, someDateVar);

HLA low-level calling sequence example:

push(years);
push(someDateVar.date);
call date.addYears;

date.subDays(days:uns32; var dr:date.daterec);

This procedure subtracts the first parameter (in days) directly from the Gregorian date variable passed by
reference as the second parameter.

HLA high-level calling sequence example:

date.subDays(days, someDateVar);

HLA low-level calling sequence example:

push(days);
push(someDateVar.date);
call date.subDays;

date.subMonths(months:uns32; var dr:date.daterec);

This procedure subtracts the first parameter (in months) directly from the Gregorian date variable passed by
reference as the second parameter.

HLA high-level calling sequence example:

date.subMonths(months, someDateVar);

HLA low-level calling sequence example:

push(months);
push(someDateVar.date);
call date.subMonths;

date.subYears(years:uns32; var dr:date.daterec);

This procedure subtracts the first parameter (in years) directly from the Gregorian date variable passed by
reference as the second parameter.

HLA high-level calling sequence example:

date.subYears(years, someDateVar);

HLA low-level calling sequence example:
Page 288 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(years);
push(someDateVar.date);
call date.subYears;

11.7 Reading the Current System Date
The functions in this category read the current date from the system.

date.today(var dr:date.daterec);

Stores the local date (today’s date) into the specified parameter. Warning: some systems may not provide a
localized date and time, if this is the case then this function will return the UTC/GMT date. If this would cause
your application to fail, then you should read both the local and UTC dates and times and, if they are not
different, apply an application-defined time zone difference to the local date value.

HLA high-level calling sequence example:

date.today(someDateVar);

HLA low-level calling sequence example:

// Assume that "someDateVar" is a static object:

pushd(&someDateVar);
call date.today;

// If someDateVar is not a static object:

lea(eax, someDateVar);
push(eax);
call date.today;

date.utc(var dr:date.daterec);

Stores the UTC date (today’s GMT date) into the specified parameter. Of course, the difference between the
local and GMT date depend entirely upon which time zone you’re in.

HLA high-level calling sequence example:

date.utc(someDateVar);

HLA low-level calling sequence example:

// Assume that "someDateVar" is a static object:

pushd(&someDateVar);
call date.utc;

// If someDateVar is not a static object:

lea(eax, someDateVar);
push(eax);
call date.utc;
Released to the Public Domain Page 289

HLA Standard Library
11.8 Date Output and String Conversion
The date module contains several functions that let you choose a date output format, convert a date to a

string, and output dates (to the standard output device). This section describes those functions.

date.setFormat(fmt : OutputFormat);

This sets the internal format variable to the date.OutputFormat value you specify. This constant must be
one of the date.OutputFormat enumerated constants (given earlier) or date.SetFormat will raise an
ex.InvalidDateFormat exception.

HLA high-level calling sequence example:

date.setFormat(date.mmddyyyy);
date.setFormat(dateFmtVariable);

HLA low-level calling sequence example:

// If the parameter is a constant:

pushd(date.mmddyyyy);
call date.setFormat;

// If someFmtVar is byte variable and the
// three bytes following it are in paged memory:

push((type dword someFmtVar));
call date.setFormat;

// If you cannot access the three bytes beyond someFmtVar:

movzx(someFmtVar, eax);
push(eax);
call date.setFormat;

date.setSeparator(chr:char);

This procedure sets the internal date separator character (default is ’/’) to the character you pass as a
parameter. This is used when printing dates and converting dates to strings.

HLA high-level calling sequence example:

date.setSeparator(‘-‘);
date.setSeparator(someCharVar);

HLA low-level calling sequence example:

// If the parameter is a constant:

pushd(‘/’);
call date.setSeparator;

// If someFmtVar is byte variable and the
// three bytes following it are in paged memory:

push((type dword someCharVar));
call date.setSeparator;

// If you cannot access the three bytes beyond someFmtVar:
Page 290 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(someCharVar, eax);
push(eax);
call date.setSeparator;

#macro date.toString(m:byte; d:byte; y:word; s:string);
#macro date.toString(dr:date.daterec; s:string);
date._toString(dr:daterec; s:string);

These functions will convert the specified date to a string (using the output format specified by
date.SetFormat and the separator character specified by date.SetSeparator) and store the result in the specified
string. An ex.StringOverflow exception occurs if the destination string’s MaxStrLen field is too small (generally,
20 characters handles all string formats).

HLA high-level calling sequence examples:

date.toString(someDateVar, dateString1);
date.toString(month, day, year, dateString2);

HLA low-level calling sequence examples:

push(someDateVar.date);
push(dateString3);
call date._toString;

#macro date.a_toString(m:byte; d:byte; y:word); @returns("eax");
#macro date.a_toString(dr:date.daterec); @returns("eax");
date._a_toString(dr:daterec); @returns("eax");

These procedures are similar to the date.toString procedures above except they automatically allocate the
storage for the string and return a pointer to the string object in the EAX register. You should free the string
storage with str.free with you are done with this string.

HLA high-level calling sequence examples:

date.a_toString(someDateVar);
mov(eax, dateStr1);
date.a_toString(month, day, year);
mov(eax, dateStr2);

HLA low-level calling sequence examples:

push(someDateVar.date);
call date._a_toString;
mov(eax, dateStr3);

11.9 Date Class Types
For those who prefer an object-oriented programming approach, the Standard Library provides the ability to

create date class data types. To use one of the date class data types, you must include the following statement at
the beginning of your HLA program:

#include("dtClass.hhf")
Note that stdlib.hhf does not include dtClass.hhf, so you must explicitly include the dtClass.hhf header file if

you intend to use any of the date class functions or data types.
Released to the Public Domain Page 291

HLA Standard Library
The Standard Library provides two predefined date class types: dateClass_t and virtualDateClass. The
difference between these two types is that the dateClass_t type uses static procedures for all the date functions
whereas virtualDateClass_t uses virtual methods for all the date functions. In certain cases, using the
dateClass_t data type is more efficient than using virtualDateClass_t because you only link in the class functions
you actually call. However, you lose the object-oriented method inheritence/override ability when using the
dateClass_t type rather than the virtualDateClass_t type. For more details on the differences between these two
class types, please see the discussion of the dtClass.make_dateClass macro appearing later in this section. This
section will use the phrase "date class" to mean any class created by the make.dateClass_t macro, including the
dateClass_t and virtualDateClass_t data types.

The date class types provide three data fields:

 var
 theDate: date.daterec;
 OutFmt: date.OutputFormat;
 Separator: char;

The first field, theDate, holds the date value associated with the date object. This is the standard date.daterec
date type described earlier in this document. Note that you can pass this field to any of the standard date and time
functions that expect a date.daterec value.

The second field, OutFmt, specifies the output format when using the date class string conversion routines.
Note that only the date class string conversion routines respect the value of this field; if you pass theDate directly
to a date function that takes a date.daterec argument, that function will use the system-wide global date format
rather than the object’s OutFmt value.

Thread Safety Issue: Although each date object has its own OutFmt field, this does not make the use of
date class objects thread safe. When converting theDate to a string, the date class functions save the global
format value, copy OutFmt to the global format value, call the date functions to do the string conversion, and
then restore the original global value. If a thread is suspended during this activity then any date/string
conversions during this suspension may use an incorrect format value. This issue will be corrected in a later
version of the Standard Library. For now, you must manually protect all date/string conversions if you perform
such conversions in multiple threads in your application.

The third field, Separator, holds the character that is used to separate the months, days, and years fields
during a string conversion. The dateClass_t and virtualDateClass_t constructors initialize this field with a slash
character (‘/’).

Of course, you may create a derived class from either dateClass_t or virtualDateClass_t (or create a brand
new date class using the dtClass.make_dateClass macro) and add any other fields you like to that new date class.
One suggestion for such a class is to pad the data fields to a multiple of four bytes. Currently, the dateClass_t and
virtualDateClass_t objects consumes ten bytes of storage (six bytes for the three fields above plus four bytes for
the VMT pointer). For performance reasons, you might want to extend the size of the data storage to 12 or even
16 bytes.

 11.9.1 Date Class Methods/Procedures
In most HLA classes, there are two types of functions: (static) procedures and (dynamic) methods (there are

also iterators, but the date classes do not use iterators so we will ignore that here). The only difference between a
method and a procedure is how the program actually calls the function: the program calls procedures directly, it
calls methods indirectly through an entry in the virtual method table (VMT). Static procedure calls are very
efficient, but you lose the benefits of inheritence and functional polymorphism when you define a function as a
static procedure in a class. Methods, on the other hand, fully support polymorphic calls, but introduce some
efficiency issues.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and links in the code for each method in the class. This can make your program a little larger because it may be
including several date class functions that you don’t actually call.

The second effiency issue concerning method calls is that they use the EDI register to make the indirect call
(static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and available
before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though exteremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined dateClass_t and virtualDateClass_t classes differ in how they define the functions appearing
in the class types. The dateClass_t type uses static procedures for all functions, the virtualDateClass_t type uses
methods for all class functions. Therefore, dateClass_t date types will make direct calls to all the functions (and
Page 292 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
only link in the procedures you actually call); however, dateClass_t objects do not support function
polymorphism in derived classes. The virtualDateClass_t type does support polymorphism for all the class
methods, but whenever you use this data type you will link in all the methods (even if you don’t call them all)
and calls to these methods will require the use of the EDI register.

It is important to understand that dateClass_t and virtualDateClass_t are two separate types. Neither is
derived from the other. Nor are the two types compatible with one another. You should take care not to confuse
objects of these two types if you’re using both types in the same program.

 11.9.2 Creating New Date Class Types
As it turns out, the only difference between a method and a procedure (in HLA) is how that method/

procedure is called. The actual function code is identical regardless of the declaration (the reason HLA supports
method and procedure declarations is so that it can determine how to populate the VMT and to determine how to
call the function). By pulling some tricks, it’s quite possible to call a procedure using the method invocation
scheme or call a method using a direct call (like a static procedure). The Standard Library date class module
takes advantage of this trick to make it possible to create new date classes with a user-selectable set of
procedures and methods. This allows you to create a custom date type that uses methods for those functions you
want to override (as methods) and use procedures for those functions you don’t call or will never override (as
virtual methods). Indeed, the dateClass_t and virtualDateClass_t date types were created using this technique.
The dateClass_t data type was created specifying all functions as procedures, the virtualDateClass_t data type
was created specifying all functions as methods. By using the dtClass.make_dateClass macro, you can create
new date data types that have any combination of procedures and methods.

dtClass.make_dateClass(className, "<list of methods>")

dtClass.make_dateClass is a macro that generates a new data type. As such, you should only invoke this
macro in an HLA type declaration section. This macro requires two arguments: a class name and a string
containing the list of methods to use in the new data type. The method list string must contain a sequence of
method names (typically separated by spaces, though this isn’t strictly necessary) from the following list:
 today
 utc
 isLeapYear
 isValid

 validate

 a_toString
 toString
 setSeparator
 setFormat
 addDays
 subDays
 addMonths

 subMonths

 addYears

 subYears
 fromJulian
 toJulian
 dayOfWeek
 dayNumber
 daysLeft
 daysBetween

 difference

Here is dtClass.make_dateClass macro invocation that creates the virtualDateClass_t type:

type

 dtClass.make_dateClass
Released to the Public Domain Page 293

HLA Standard Library
 (
 virtualDateClass,
 "today"
 "isLeapYear"
 "isValid"
 "a_toString"
 "toString"
 "setSeparator"
 "setFormat"
 "addDays"
 "subDays"
 "addMonths"
 "addYears"
 "fromJulian"
 "toJulian"
 "dayOfWeek"
 "dayNumber"
 "daysLeft"
 "daysBetween"
);

(For those unfamiliar with the syntax, HLA automatically concatenates string literals that are separated by
nothing but whitespace; therefore, this macro contains exactly two arguments, the virtualDateClass_t name and a
single string containing the concatenation of all the strings above.)

From this macro invocation, HLA creates a new data type using methods for each of the names appearing in
the string argument. If a particular date function’s name is not present in the dtClass.make_dateClass macro
invocation, then HLA creates a static procedure for that function. As a second example, consider the declaration
of the dateClass_t data type (which uses static procedures for all the date functions):

type
 dtClass.make_dateClass(dateClass_t, " ");

Because the function string does not contain any of the date function names, the dtClass.make_dateClass macro
generates static procedures for all the date functions.

The dateClass_t type is great if you don’t need to create a derived date class that allows you to
polymorphically override any of the date functions. If you do need to create methods for certain functions and
you don’t mind linking in all the date class functions (and you don’t mind the extra overhead of a method call,
even for those functions you’re not overloading), the virtualDateClass_t is convenient to use because it makes all
the functions virtual (that is, methods). Probably 99% of the time you won’t be calling the date functions very
often, so the overhead of using method invocations for all date functions is irrelevant. In those rare cases where
you do need to support polymorphism for a few date functions but don’t want to link in the entire set of date
functions, or you don’t want to pay the overhead for indirect calls to functions that are never polymorphic, you
can create a new date class type that specifies exactly which functions require polymorphism.

For example, if you want to create a date class that overrides the definition of the fromJulian and toJulian
functions, you could declare that new type thusly:

type
 dtClass.make_dateClass

 (
 myDateClass,
 "fromJulian"
 "toJulian"
);

This new class type (myDateClass) has two methods, fromJulian and toJulian, and all the other date
functions are static procedures. This allows you to create a derived class that overloads the fromJulian and
toJulian methods and access those methods when using a generic myDateClass pointer, e.g.,

type
 derivedMyDateClass :
Page 294 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
class inherits(myDateClass);

override method fromJulian;
override method toJulian;

endclass;

It is important for you to understand that types created by dtClass.make_dateClass are base types. They are
not derived from any other class (e.g., virtualDateClass_t is not derived from dateClass_t or vice-versa). The
types created by the dtClass.make_dateClass macro are independent and incompatible types. For this reason,
you should avoid using different base date class types in your program. Pick (or create) a base date class and use
that one exclusively in an application. You’ll avoid confusion by following this rule.

For the sake of completeness, here are the macros that the Standard Library uses to create date data types:
namespace dtClass;

 // The following macro allows us to turn a class function
 // into either a method or a procedure based on the
 // presence of "funcName" within a list of method names
 // passed to the class generating macro.

 #macro function(funcName);

 #if(@index(methods, 0, @string:funcName) = -1)

 procedure funcName

 #else

 method funcName

 #endif

 #endmacro

 #macro make_dateClass(className, methods);

 className:
 class

 var
 theDate: date.daterec;
 OutFmt: date.OutputFormat;
 Separator: char;

 procedure create;
 @external("DATECLASS_CREATE");

 dtClass.function(today);
 @external("DATECLASS_TODAY");

 dtClass.function(utc);
 @external("DATECLASS_UTC");

 dtClass.function(isLeapYear);
 @returns("al");
 @external("DATECLASS_ISLEAPYEAR");

 dtClass.function(isValid);
Released to the Public Domain Page 295

HLA Standard Library
 @returns("al");
 @external("DATECLASS_ISVALID");

 dtClass.function(validate);
 @returns("al");
 @external("DATECLASS_VALIDATE");

 dtClass.function(a_toString);
 @returns("eax");
 @external("DATECLASS_A_TOSTRING");

 dtClass.function(toString)(dest:string);
 @external("DATECLASS_TOSTRING");

 dtClass.function(setSeparator)(c:char);
 @external("DATECLASS_SETSEPARATOR");

 dtClass.function(setFormat)(f:date.OutputFormat);
 @external("DATECLASS_SETFORMAT");

 dtClass.function(addDays)(days:uns32);
 @external("DATECLASS_ADDDAYS");

 dtClass.function(subDays)(days:uns32);
 @external("DATECLASS_SUBDAYS");

 dtClass.function(addMonths)(months:uns32);
 @external("DATECLASS_ADDMONTHS");

 dtClass.function(subMonths)(days:uns32);
 @external("DATECLASS_SUBMONTHS");

 dtClass.function(addYears)(years:uns32);
 @external("DATECLASS_ADDYEARS");

 dtClass.function(subYears)(days:uns32);
 @external("DATECLASS_SUBYEARS");

 dtClass.function(fromJulian)(Julian:uns32);
 @external("DATECLASS_FROMJULIAN");

 dtClass.function(toJulian);
 @returns("eax");
 @external("DATECLASS_TOJULIAN");

 dtClass.function(dayOfWeek);
 @returns("eax");
 @external("DATECLASS_DAYOFWEEK");

 dtClass.function(dayNumber);
 @returns("eax");
 @external("DATECLASS_DAYNUMBER");

 dtClass.function(daysLeft);
 @returns("eax");
 @external("DATECLASS_DAYSLEFT");

 dtClass.function(daysBetween)
 (
 otherDate:date.daterec
);
Page 296 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 @returns("eax");
 @external("DATECLASS_DAYSBETWEEN");

 dtClass.function(difference)
 (
 var otherDate:className in eax
);
 @returns("eax");
 @external("DATECLASS_DIFFERENCE");

 endclass
 #endmacro

end dtClass;

If you look closely at the make_dateClass macro, you’ll notice that it maps all the functions, be they
methods or procedures, to the dateClass_t names (which are all procedures, if you look at the source code for
these functions). As noted earlier, the function code for methods and procedures is exactly the same, only the
call to a given function is different based on whether it is a method or a procedure. Therefore, the
dtClass.make_dateClass macro maps all functions to the same set of procedures. Therefore, if you do create and
use multiple date classes in the same application, the linker will only link in one set of routines (unless, of course,
you overload some methods, in which case the linker will link in your new functions as well as the original
dateClass_t set).

 11.9.3 Date Class Functions
The date class type supports most of the functions associated with the date type. The main difference is that

the date class functions operate directly on the date object rather than on a date value you pass as a parameter.
For this reason, there aren’t any macros that overload the date function parameter lists.

The following sections do not include sample code demonstrating the calling sequences for a couple of
reasons:

For high level calls, the syntax deponds on the object name and type.
Low-level calling sequences don’t appear here because it doesn’t really make sense to make a low-level

object invocation; people wanting to make low-level calls will probably use the standard date procedures rather
than the object-oriented ones.

These functions are really intended for use by programmers experienced with HLA’s Object-oriented
assembly facilities. Note that the dtClass.hhf header file is not automatically included by stdlib.hhf; this reflects
the more advanced nature of the date class module.

For the same reasons, there are no stack diagrams for these function calls. If you want more information on
making calls to HLA class methods and procedures, please consult the HLA documentation.

In the following function descriptions, the symbol <object> is used to specify a date class object or a pointer
to a date class object. Note that class invocations of static procedures (e.g., "dateClass_t.isLeapYear") are illegal
with the single exception of the constructor (the create procedure). If you call a date class procedure directly, the
system will raise an exception (as ESI, which should be pointing at the object’s data, will contain NULL).

<object>.create();

The <name>.create procedure is the object constructor. This is the only function that you may call using a
class name rather than an object name. For example, dateClass_t.create(); is a perfectly legitimate constructor
call. As is the convention for HLA class constructors, if you call a class constructor directly (using the class
name rather than an object name), the date class constructor will allocate storage for a new date class object on
the heap and return a pointer to the new object in ESI. Once the storage is allocated (or if you specify the name of
a previously-allocated object rather than the class name), the date class constructor will initialize all the fields of
the object to reasonable values (in particular, the constructor initializes the VMT pointer, initializes theDate to a
valid date, and sets up the OutFmt and Separator fields with default values).

If you create a derived date class and add new data fields to the data type, you should override the create
procedure and initialize those new fields in the overridden procedure. See the HLA documentation or The Art of
Assembly Language for more details on derived classes and overriding constructors.
Released to the Public Domain Page 297

HLA Standard Library
<object>.isLeapYear(); @returns("al");

This function returns true or false in the AL register depending upon whether the object’s theDate field is a
leap year (true if it is a leap year). See the discussion of date.isLeapYear for more details.

<object>.validate();

This function checks the object’s theDate field and raises an ex.InvalidDate exception if the date is not a valid
date between 1/1/1600 and 12/31/2999. See the discussion of date.validate for more details.

<object>.isValid(); @returns("al");

This function checks the object’s theDate field and returns false in EAX if the date is not a valid date
between 1/1/1600 and 12/31/2999 (it returns true otherwise). See the discussion of date.isValid for more details.

<object>.toJulian(); @returns("eax");

This function converts the Gregorian (i.e., standard) date found in the object’s theDate field into a Julian day
number. See the discussion of date.toJulian for more details.

<object>.fromJulian(jd:uns32);

This function converts the Julian Day Number passed as the argument to a Gregorian (i.e., standard) date
and stores the result the object’s theDate field. See the discussion of date.fromJulian for more details. This
function will raise an ex.InvalidDate exception if the Julian Day Number conversion produces a date outside the
range 1/1/1600 to 12/31/2999. See the discussion of date.fromJulian for more details.

<object>.dayNumber(); @returns("eax");

This function converts the Gregorian date found in the objects theDate field into a day number into the
current year. It returns the day number in the EAX register. See the discussion of date.dayNumber for more
details.

<object>.daysLeft(); @returns("eax");

This function returns the number of days left in the current year counting the object’s theDate field. See the
discussion of date.daysLeft for more details.

<object>.dayOfWeek(); @returns("eax");

These functions return, in EAX, a value between zero and six denoting the day of the week of theDate. See
the discussion of date.dayOfWeek for more details.

<object>.daysBetween(otherDate:daterec); @returns("eax");

This function returns an uns32 value in EAX that gives the number of days between object’s date and the
daterec value passed as a parameter dates. See the discussion of date.daysBetween for more details.

<object>.difference(var otherDate:<classType>); @returns("eax");

This function returns an uns32 value in EAX that gives the number of days between object’s date and the
date class object value passed as a parameter. The parameter type ("<classType>") must be the same type as
<object>. See the discussion of date.daysBetween for more details.

<object>.addDays(days:uns32);

This procedure adds the parameter value (in days) directly to the object’s theDate field. See the discussion
of date.addDays for more details.
Page 298 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.addMonths(months:uns32; var dr:date.daterec);

This procedure adds the parameter value (in months) directly to the object’s theDate field. See the
discussion of date.addMonths for more details.

<object>.addYears(years:uns32; var dr:date.daterec);

This procedure adds the parameter value (in years) directly to the object’s theDate field. See the discussion
of date.addYears for more details.

<object>.subDays(days:uns32; var dr:date.daterec);

This procedure subtracts the parameter value (in days) directly from the object’s theDate field. See the
discussion of date.subDays for more details.

<object>.subMonths(months:uns32; var dr:date.daterec);

This procedure subtracts the parameter value (in months) directly from the object’s theDate field. See the
discussion of date.subMonths for more details.

<object>.subYears(years:uns32; var dr:date.daterec);

This procedure subtracts the parameter value (in years) directly from the object’s theDate field. See the
discussion of date.subYears for more details.

<object>.today();

Stores the local date (today’s date) into the object’s theDate field. See the discussion of date.today for more
details.

<object>.utc(var dr:date.daterec);

Stores the UTC date (today’s GMT date) into the object’s theDate field. See the discussion of date.utc for
more details.

<object>.toString(s:string);

This function converts the object’s theDate field to a string (using the output format specified by the object’s
theDate field and the separator character specified by the object’s OutFmt field) and stores the result in the
specified string. See the discussion of date.toString for more details.

<object>.a_toString(dr:daterec); @returns("eax");

This function converts the object’s theDate field to a string (using the output format specified by the object’s
theDate field and the separator character specified by the object’s OutFmt field) and stores the result in storage it
allocates on the heap. This function returns a pointer to the new string in the EAX register. See the discussion of
date.a_toString for more details.
Released to the Public Domain Page 299

HLA Standard Library
Page 300 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
12 Environment Variables Module (env.hhf)

The env module contains a couple of functions that fetch environment strings from the operating system.
These functions can be used to test global values set by the user in the environment space inherited by your
processes.

12.1 The Env Module
To use the environment functions in your application, you will need to include one of the following

statements at the beginning of your HLA application:

#include("env.hhf")
or
#include("stdlib.hhf")

12.2 Retrieving Environment Strings
The env module contains two functions for retrieving environment string data. To each of these functions

you must pass the name of an environment variable (in the envVar string parameter). These functions will locate
the specified environment variable in the system (if it is present) and return the associated string value.

procedure env.get(envVar:string; dest:string);

env.get copies the environment string data to the (preallocated) string variable you specify via the dest
parameter. Note that the dest parameter must contain the address of a value HLA string object or this function
may fail (or raise an exception). If the allocated storage isn’t large enough to hold the string data, or the
environment variable’s string is greater than 4095 characters long, this function will raise an exception. This
function returns true in EAX if it locates the environment variable in the environment space and successfully
returns the environment variable’s data. This function returns false in EAX if it cannot locate the environment
variable in the environment space.

HLA high-level calling sequence examples:

env.get(envVarName, envData);
if(eax) then

// process the environment data in envData

endif;

HLA low-level calling sequence examples:

push(envVarName);// Assumption: envVarName is a string variable
call env.get;

procedure env.a_get(envVar:string);

env.a_get also returns the value of an environment variable; however, it allocates storage for the result and
returns a pointer to the string result (on the heap) in the EAX register, if such an environment variable exists.
This function returns NULL in EAX if the environment variable does not exist. This function raises an exception
if the environment variable’s data is greater than 4095 characters long. The caller is responsible for freeing the
storage allocated on the heap by this function.
Released to the Public Domain Page 301

HLA Standard Library
HLA high-level calling sequence examples:

env.a_get(envVarName);
mov(eax, envData);
if(eax <> NULL) then

// process the environment data pointed at by envData

endif;
str.free(envData);

HLA low-level calling sequence examples:

push(envVarName);// Assumption: envVarName is a string variable
call env.get;
mov(eax, envData);
Page 302 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
13 Exceptions Module (excepts.hhf)

The exceptions module contains several things of interest. First, it defines the ExceptionValues enumerated
data type that lists out all the standard exceptions in the HLA Standard Library. The second thing provided in the
excepts unit is the ex.PrintExceptionError procedure which prints a string associated with the exception number in
EAX. Next, the excepts.hhf header file defines the "assert(expr)" macro. Finally, the excepts.hhf header file
defines some procedures that the HLA run-time system uses to maintain the exception handling system; these
procedures are of interest only to those who want to override the default HLA exception handling mechanisms.

13.1 The Exceptions Module
To use the exceptions functions in your application, you will need to include one of the following statements

at the beginning of your HLA application:
#include("excepts.hhf")
or
#include("stdlib.hhf")

13.2 Exception Resource Reduction
By default, if you include excepts.hhf or stdlib.hhf in your HLA main program, HLA will automatically link

in a set of strings that describe, in detail, each of the possible exceptions. This string data consumes a
considerable amount of space and may not be necessary if you’re not taking advantage of HLA’s exception-
handling system.

HLA will link in these strings if the compile-time variable @exceptions contains true when HLA encounters
the begin associated with the main program. If you would like HLA to link in a single (small) string in place of
this huge table of strings, just set the @exceptions compile-time variable to false after include excepts.hhf (or
stdlib.hhf), e.g,
#include("excepts.hhf")
?@exceptions := false;

This will reduce the size of your executable. Note, however, that you’ll get a single "unhandled exception"
error message if an unhandled error ever comes along. So during debugging, it’s probably best to leave the
exception strings in the program and remove them only for a release of your program.

13.3 Exception Constants
The following paragraphs describe each of the standard HLA exception constants and describe the

conditions that lead to the Standard Library routines raising these exceptions. The "excepts.hhf" header file
defines these constants. Since this list changes frequently, please refer to the excepts.hhf header file for the most
recent list of exception names. HLA and the HLA Standard Library only raise these exceptions; user
applications, however, may define other exceptions in addition to these. Of course, user applications may also
raise exceptions using these exception constants. Note that the following numeric constants for the exception
names are subject to change.

/* 0 */UnknownException,

// String related exceptions:

/* 1 */StringOverflow,
/* 2 */StringIndexError,
/* 3 */StringOverlap,
/* 4 */StringMetaData,
/* 5 */StringAlignment,
/* 6 */StringUnderflow,
/* 7 */IllegalStringOperation,

// General exceptions:
Released to the Public Domain Page 303

HLA Standard Library
/* 8 */ValueOutOfRange,
/* 9 */IllegalChar,
/* 10 */AttemptToDerefNULL,
/* 11 */TooManyCmdLnParms,
/* 12 */AssertionFailed,
/* 13 */ExecutedAbstract,
/* 14 */BadObjPtr,
/* 15 */InvalidAlignment,
/* 16 */InvalidArgument,
/* 17 */BufferOverflow,
/* 18 */BufferUnderflow,
/* 19 */IllegalSize,

// Formatting and conversion errors:

/* 20 */ConversionError,
/* 21 */WidthTooBig,
/* 22 */FractionTooBig,

// File-related exceptions:

/* 23 */BadFileHandle,
/* 24 */FileNotFound,
/* 25 */FileOpenFailure,
/* 26 */FileCloseError,
/* 27 */FileWriteError,
/* 28 */FileReadError,
/* 29 */FileSeekError,
/* 30 */DiskFullError,
/* 31 */AccessDenied,
/* 32 */EndOfFile,

// FileSys-related exceptions:

/* 33 */CannotCreateDir,
/* 34 */CannotRemoveDir,
/* 35 */CannotRemoveFile,
/* 36 */CDFailed,
/* 37 */CannotRenameFile,

// Memory management exceptions:

/* 38 */MemoryAllocationFailure,
/* 39 */MemoryFreeFailure,
/* 40 */MemoryAllocationCorruption,
/* 41 */AttemptToFreeNULL,
/* 42 */BlockAlreadyFree,
/* 43 */CannotFreeMemory,
/* 44 */PointerNotInHeap,

// Array exceptions:

/* 45 */ArrayShapeViolation,
/* 46 */ArrayBounds,

// Time/date exceptions:

/* 47 */InvalidDate,
/* 48 */InvalidDateFormat,
/* 49 */TimeOverflow,
/* 50 */InvalidTime,
Page 304 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
/* 51 */InvalidTimeFormat,

// Socket Errors:

/* 52 */SocketError,

// Thread Errors:

/* 53 */ThreadError,

// Hardware/OS related exceptions

/* 54 */AccessViolation,
/* 55 */InPageError,
/* 56 */NoMemory,
/* 57 */InvalidHandle,
/* 58 */ControlC,
/* 59 */StackOverflow,
/* 60 */Breakpoint,
/* 61 */SingleStep,
/* 62 */PrivInstr,
/* 63 */IllegalInstr,
/* 64 */BoundInstr,
/* 65 */IntoInstr,
/* 66 */DivideError,
/* 67 */fDivByZero,
/* 68 */fInexactResult,
/* 69 */fInvalidOperation,
/* 70 */fOverflow,
/* 71 */fUnderflow,
/* 72 */fStackCheck,
/* 73 */fDenormal,

// Blob related exceptions

/* 74 */BlobOverflow

ex.UnknownException

This is a reserved value that HLA’s Standard Library functions do not raise. The HLA run-time system
displays this exception value if it cannot figure out the source of the interrupt. ex.PrintExceptionError calls also
use this value to display an appropriate message for unhandled user exceptions.

ex.StringOverflow

The string functions in the HLA Standard Library raise this exception if the caller attempts to store too many
characters into a string variable (causing a string overflow error).

ex.StringIndexError

Some string functions require a parameter that supplies an index into a string. If those functions require that
the index be within the range 0..length-1, they will raise this exception to denote an index out of range error.

ex.ValueOutOfRange

Several HLA Standard Library routines raise this exception if an integer calculation overflows. The best
examples are the integer input routines (e.g., stdin.geti8) that will raise this exception if the user’s input is
otherwise legal but out of range for the specific data type (i.e., -128..+127 for stdin.geti8).
Released to the Public Domain Page 305

HLA Standard Library
ex.IllegalChar

Certain input and conversion routines raise this exception if an unexpected character comes along. An
unexpected character is usually a non-ASCII character (character codes in the range $80..$FF). Note that the
conversion and input routines do not raise this exception if a non-digit character comes along. See
ex.ConversionError to see how the HLA Standard Library handles that exception.

ex.AttemptToDerefNULL

Many HLA Standard Library routines expect a pointer to some object as a parameter. If they do not allow a
NULL pointer value (zero) the routines may explicitly test for a NULL value and raise this exception if the user
inadventently passes in a NULL pointer. Also see the ex.AccessViolation exception.

ex.TooManyCmdLnParms

The args.hhf module raises this exception if you specify too many command line parameters. The exact
maximum value may vary between versions of the HLA Standard Library, but it’s typically a value like 64 or
128.

ex.AssertionFailed

The HLA assert statement raises this expression if the value of the assertion expression evaluates false. See
the section on assertions later in this section for more details.

ex.ExecutedAbstract

The HLA run-time system raises this exception if you attempt to execute an abstract class method that has
not been overridden and defined.

ex.BadObjPtr

The HLA run-time system raises this exception if you attempt to execute a class method using an illegal
pointer.

ex.InvalidAlignment

HLA raises this exception if you specify an illegal alignment value for an allocation operation.

ex.ConversionError

HLA raises this exception whenever there is some sort of error converting data from one from to another
(usually, this exception occurs when converting string data to numeric data). For example, when converting a
string to an integer value, the HLA Standard Library will raise this exception if it encounters a character that is
not legal for that numeric type and is not a delimiter character.

ex.WidthTooBig

Certain numeric conversion and output functions let you specify a field width value for the conversion.
Those routines raise this exception if that field width value is too large (this is nominally 256, but the exact value
may be different).

ex.BadFileHandle

The file class and fileio library modules raise this exception if you attempt to read from or write to a file with
an illegal file handle (i.e., the file has not been opened or has already been closed).

ex.FileNotFound

HLA raises this exception if you attempt to open (or otherwise access by name) a file and the system could
not find the path/filename you specified.
Page 306 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
ex.FileOpenFailure

The HLA file open routines raise this error if there was a catastrophic error opening a file.

ex.FileCloseError

The HLA file close routines raise this error if there was an error closing a file.

ex.FileWriteError

The HLA Standard Library file output routines raise this exception if there is an error while attempting to
write data to a file. This is usually a catastrophic error such as file I/O or some hardware error.

ex.FileReadError

The HLA Standard Library file output routines raise this exception if there is an error while attempting to
read data from a file. This is usually a catastrophic error such as file I/O or some hardware error.

ex.FileSeekError

The HLA Standard Library file routines raise this exception if there was an error while attempting to seek to
some new position in a file.

ex.DiskFullError

The HLA Standard Library raises this exception if you attempt to write data to a disk that is full.

ex.AccessDenied

The HLA Standard Library raises this exception if you attempt to access a file for which you do not have
proper access permission.

ex.EndOfFile

The HLA Standard Library file I/O routines raise this exception if you attempt to read data from a file after
you’ve reached the end of file. Note that HLA does not raise this exception upon reaching the EOF. You must
actually attempt to read beyond the end of the file.

ex.CannotCreateDir

The HLA Standard Library mkdir function raises this exception if you attempt to create a subdirectory and
the system returns an error.

ex.CannotRemoveDir

The HLA Standard Library rmdir function raises this exception if you attempt to remove a subdirectory and
the system returns an error.

ex.CannotRemoveFile

The HLA Standard Library rmdir function raises this exception if you attempt to remove a file and the
system returns an error.

ex.CDFailed

The HLA Standard Library raises this exception if you attempt to switch to a new working directory and the
system could not find that directory or the change working directory operation otherwise failed.
Released to the Public Domain Page 307

HLA Standard Library
ex.CannotRenameFile

The HLA Standard Library raises this exception if you attempt to rename a file and the operation failed.

ex.MemoryAllocationFailure

HLA raises this exception if a function attempts to allocate storage and the memory allocation operation
fails (because of insufficent storage).

ex.MemoryFreeFailure

HLA raises this exception if you attempt to free storage and the request could not be satisfied (see also:
CannotFreeMemory).

ex.MemoryFreeFailure

HLA raises this exception if you attempt to free storage and the request could not be satisfied (see also:
CannotFreeMemory).

ex.AttemptToFreeNULL

HLA raises this exception if you attempt to free storage storage but you pass a NULL pointer to be freed.

ex.BlockAlreadyFree

HLA raises this exception if you attempt to free storage storage that has already been freed.

ex.CannotFreeMemory

The HLA memory free routines raise this exception if there is an error deallocating memory that was
(presumably) allocated earlier.

ex.PointerNotInHeap

The HLA memory management routines raise this exception if you pass a pointer to an object that is
supposed to be on the heap, but the pointer does not reference any object on the heap.

ex.ArrayShapeViolation

The arrays.hhf module raise this exception if you attempt to copy data from one array to another or
otherwise operate on two arrays with incompatible "shapes." The "shape" of an array is the number of
dimensions and the bounds on each dimension of that array. Compatible arrays typically have the same number
of dimensions and the same bounds on each dimensions (though there are some exceptions to this rule).

ex.ArrayBounds

The arrays.hhf module raises this exception if you attempt to supply the wrong number of array dimensions
or one of the array indices is out of bounds for that array.

ex.InvalidDate

The HLA datetime.hhf module raises this expression if you supply an illegal date to a date function. Note
that legal dates must fall between Jan 1, 1600 and Dec 31, 9999 and must have valid day and month values
(depending on the month and year).

ex.InvalidDateFormat

The HLA date conversion routines raise this exception if the internal date format value is illegal.
Page 308 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
ex.TimeOverflow

The HLA datetime.hhf module raises this exception if, during a time calculation, an overflow occurs.

ex.InvalidTime

The HLA datetime.hhf module raises this expression if you supply an illegal time to a time function. Note
that legal times must fall between 00:00:00 and 23:59:59.

ex.InvalidTimeFormat

The HLA time conversion routines raise this exception if the internal time format value is illegal.

ex.AccessViolation

This is a hardware exception that the CPU raises if you attempt to access an illegal memory or I/O location.

ex.InPageError

This is a hardware exception that the CPU raises if you attempt to access an illegal memory or I/O location.

ex.NoMemory

This is an exception that the OS raises if it cannot provide memory for the requested operation.

ex.InvalidHandle

This is an exception that the OS raises if it you pass it an invalid handle value for some operation.

ex.ControlC

If control-C checking is enabled, Windows will raise this exception whenever the user presses control-C on
the console device.

ex.StackOverflow

The OS raises this exception if the hardware (80x86) stack exceeds the bounds set by the linker.

ex.Breakpoint

This is a hardware exception that the CPU raises if you execute an INT 3 (breakpoint) instruction.

ex.SingleStep

This is a hardware exception that the CPU raises after each instruction if the trace flag is set in the EFLAGs
register.

ex.PrivInstr

This is a hardware exception that the CPU raises if you attempt to execute a priviledged instruction while in
user (non-kernel) mode.

ex.IllegalInstr

This is a hardware exception that the CPU raises if you attempt to execute an opcode that is not a legal
80x86 instruction.
Released to the Public Domain Page 309

HLA Standard Library
ex.BoundInstr

This is a hardware exception that the CPU raises if you execute a BOUND instruction and the register value
is not within the bounds specified by the BOUND memory operand(s).

ex.IntoInstr

This is a hardware exception that the CPU raises if you execute an INTO instruction and the overflow flag is
set.

ex.DivideError

This is a hardware exception that the CPU raises if you attempt to divide by zero or if the quotient will not fit
in the destination operand.

ex.fDivByZero

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and a floating
point division by zero occurs.

ex.fInexactResult

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and a floating
point operation produces an inexact result.

ex.fInvalidOperation

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and you attempt
an illegal operation on the FPU.

ex.fOverflow

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and a floating
point operation produces an overflow (see ex.fDenormal and ex.fUnderflow for underflows).

ex.fUnderflow

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and an underflow
occurs.

ex.fStackCheck

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and an FPU stack
overflow occurs.

ex.fDenormal

This is a hardware exception that the FPU raises if you’ve enable floating point exceptions and a floating
point operation produces a demormalized result.

13.4 Exception Messages
The exceptions module provides two functions for converting exception numbers into meaningful messages.
Page 310 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure ex.exceptionMsg(exceptionCode:dword; msg:string);

ex.exceptionMsg converts the exception code passed in the exceptionCode parameter to a string message and
stores the resulting string into the string pointed at by the msg parameter. The msg string must be large enough to
hold the result (128 characters should be sufficient). Note that this function cannot raise any exceptions because
it may be called from inside an exception handler, hence the requirement that msg be of sufficient size to hold the
string.

Note: no "ex.a_exceptionMsg" function exists because the error code resulting in the call to the function
might be an "out of memory" error and it wouldn’t do to have this function produce an error.

If the exception code is outside the range of the valid exception codes, this function returns the message
associated with the "unknown exception" code.

HLA high-level calling sequence examples:

static
msg :str.strvar(256);

.

.

.
ex.exceptionMsg(someCode, msg);
stdout.put(msg);

procedure ex.printExceptionError;

ex.printExceptionError displays the message associated with the exception code in EAX in a form
appropriate to the OS (e.g., under Windows this brings up a dialog box, under Linux this prints the message to
the standard error device).
Released to the Public Domain Page 311

HLA Standard Library
Page 312 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
14 File Class Module (fileclass.hhf)

The HLA Standard Library provides an object-oriented file access mechanism implemented via the file_t
and virtualfile_t classes. Unless otherwise specified, this document will use the term "file class" to describe the
generic file class rather than the specific instance of the file_t class (which uses static linking for all functions).

Note: HLA also provides a fileio library module that does file I/O using traditional procedures rather than
class objects. If you’re more comfortable using such a programming paradigm, or you prefer your code to be a
bit more efficient, you should use the fileio module.

Note: Currently, the file_t class is implemented as a thin layer over the fileio module. That is, functions in
the file class simply pass their parameters on to the corresponding functions in the fileio module. The ultimate
intent, however, is for the file_t class to implement buffered I/O to improve performance. Because of the wide
variety of operating systems that the HLA Standard Library supports (and will support), this may lead to some
functionality limitations in future versions of the file_t class. In particular, you should only use file_t class
objects to access files on block structured (disk) devices and avoid accessing character-oriented or other device
types. Also, file_t objects will provide the best performance for sequential files. Though the intent is to fully
support random-access to file data via file_t objects, you may get better performance by using the traditional file
I/O functions in the fileio module.

Note: the virtualFile_t class is completely different from the file_t class. In particular, it is not a thin layer
over the fileio module. All of the functions in the virtualFile_t class ultimately call the virtualFile_t.read and
virtualFile_t.write functions to do file I/O. If you override these two functions (read and write), you will override
the behavior of all methods in the virtualFile_t class. Note that this is not true for file_t objects.

Warning: Don’t forget that HLA objects modify the values in the ESI and EDI registers whenever you call a
class procedure, method, or iterator. Do not leave any important values in either of these register when making
calls to the following routines. If the use of ESI and EDI is a problem for you, you might consider using the fileio
module that does not suffer from this problem.

A Note About Thread Safety: The file class functions and the operating system maintain system-wide
values to track things like file position within a file. Currently, these values apply to all threads in a process (and,
in the case of the OS, all processes in the system). When accessing the same file object from different threads,
you should use synchronization to serialize access to the file object.

Note about function overloading: the functions in the file classes use function overloading in order to
allow you to specify the parameter lists in different ways. The macro that handles the overloading generally
coerces the possible parameter types into a single object that it passes to the underlying function. The
documentation for the specific functions will tell you whether a symbol is a macro or a function. For the most
part, this should matter to you unless you are taking the address of a function (which you cannot do with a
macro). See the HLA documentation for more details on function overloading via macros.

14.1 File Class Methods/Procedures
In most HLA classes, there are three types of functions: (static) procedures, (dynamic) methods, and

dynamic iterators. The only difference between a method and a procedure is how the program actually calls the
function: the program calls procedures directly, it calls methods indirectly through an entry in the virtual method
table (VMT). The system always calls iterators indirectly through the VMT, so we will not consider them further.
Static procedure calls are very efficient, but you lose the benefits of inheritence and functional polymorphism
when you define a function as a static procedure in a class. Methods, on the other hand, fully support
polymorphic calls, but introduce some efficiency issues.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and links in the code for each method in the class. This can make your program a little larger because it may be
including several date class functions that you don’t actually call.

The second efficiency issue concerning method calls is that they use the EDI register to make the indirect
call (static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and
available before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though extremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined file_t and virtualFile_t objects differ in how they define the functions appearing in the class
types. The file_t type uses static procedures for all functions, the virtualFile_t type uses methods for all class
functions. Therefore, file_t object types will make direct calls to all the functions (and only link in the
procedures you actually call); however, file_t objects do not support function polymorphism in derived classes.
The virtualFile_t type does support polymorphism for all the class methods, but whenever you use this data type
Released to the Public Domain Page 313

HLA Standard Library
you will link in all the methods (even if you don’t call them all) and calls to these methods will require the use of
the EDI register.

It is important to understand that file_t and virtualFile_t are two separate types. Neither is derived from the
other. Nor are the two types compatible with one another. You should take care not to confuse objects of these
two types if you’re using both types in the same program.

14.2 A Quick Note
The following sections do not include sample code demonstrating the calling sequences for a couple of

reasons:
For high level calls, the syntax depends on the object name and type.
Low-level calling sequences don’t appear here because it doesn’t really make sense to make a low-level

object invocation; people wanting to make low-level calls will probably use the standard
fileio procedures rather than the object-oriented ones.
These functions are really intended for use by programmers experienced with HLA’s Object-oriented

assembly facilities.
For the same reasons, there are no stack diagrams for these function calls. If you want more information on

making calls to HLA class methods and procedures, please consult the HLA documentation.
In the following function descriptions, the symbol <object> is used to specify a file class object or a pointer

to a file_t class object. This wherever this document uses the name "file_t", you may substitute (as appropriate)
"virtualFile_t". Note that class invocations of static procedures (e.g., "file_t.open") are illegal with the single
exception of the constructor (the create procedure). If you call a file class procedure directly, the system will
raise an exception (as ESI, which should be pointing at the object’s data, will contain NULL).

14.3 General File Operations
The functions in this category let you initialize file objects, access fields of the file objects, and perform

other housekeeping tasks.

<object>.create; @returns("esi");
file_t.create; @returns("esi"); [to create dynamic objects]
virtualFile_t.create; @returns("esi"); [to create dynamic objects]

The file class provides a file_t.create or virtualFile_t.create constructor which you should always call before
making use of a file variable. For file variables (as opposed to file pointer variables), you should call this routine
specifying the name of the file variable. For file pointer variables, you should call this routine using the class
name and store the pointer returned in EAX into your file variable. For example, to initialize the two following
two file objects, you would use code like the following:

var
MyOutputFile: file_t;
filePtr: pointer to file_t;
.
.
.

MyOutputFile.create();

file_t.create();
mov(eax, filePtr);

Note that the file_t.create constructor simply initializes the virtual method table
pointer and does other necessary internal initialization. The constructor does not
open a file or perform other file-related activities.
Page 314 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 <object>.handle; @returns("eax");

This function returns the file handle in the EAX register. The returned value is invalid if you have not
opened the file. You can pass this handle value to any of the Standard Library file routines (e.g., fileio.putc) that
expect a handle. You may also pass this value to OS API functions that expect a file handle.

HLA high-level calling sequence examples:

filePtr.handle();
mov(eax, fileHandle);

14.4 Opening and Closing Files
<object>.open(filename:string; access:dword)

This method opens an existing file. The filename parameter is a string specifying the name of the file you
wish to open. The access parameter is one of the following:

• fileio.r
• fileio.w
• fileio.rw
• fileio.a

The fileio.r constant tells <object>.open to open the file for read-only access. The fileio.w constant tells
<object>.open to open the file for writing. Using the fileio.rw constant tells <object>.open to open the file for
reading and writing. The fileio.a option tells the <object>.open function to open the file for writing and append
all written data to the end of the file.

Before accessing the data in a file, you must open the file (which initializes the file handle). The
<object>.open and <object>.openNew methods are excellent tools for this purpose. You may also open the file
using direct calls to the OS API, but you must initialize the <object>.fileHandle field of the class variable before
making any other method calls in the file class.

HLA high-level calling sequence examples:

filePtr.open("myfile.txt", fileio.r);

// Note: the Access parameter is almost always a constant in
// calls to fileio.open. However, if you want to pass a variable
// value or a register value in this parameter, you may certainly
// do so:

MyOutputFile.open(filenameStr, accessVarByte);

filePtr.open(someStr, al);

<object>.openNew(filename:string)

This function opens a new file for writing (if the file already exists, it is first deleted and then a new file is
opened for writing). The file is given the "normal" attribute.

Before accessing the data in a file, you must open the file (which initializes the file handle). The
<object>.open and <object>.openNew methods are excellent tools for this purpose. You may also open the file
using direct calls to the OS API, but you must initialize the <object>.fileHandle field of the class variable before
making any other method calls in the file class.

HLA high-level calling sequence examples:
Released to the Public Domain Page 315

HLA Standard Library
filePtr.openNew("myfile.txt");

// If the filename string pointer is in a register (EAX):

MyOutputFile.openNew(eax);

<object>.close;

This method closes a file opened via <object>.open or <object>.openNew and flushes any buffered data to
the disk.

HLA high-level calling sequence examples:

filePtr.close();
MyOutputFile.close();

14.5 File Predicates
The functions in this category test conditions associated with the file.

<object>.eof(); @returns("al");

This function returns true in the AL register if the file pointer is at the end of the file. It returns false if the
program can read additional data from the file.

Warning: <object>.eof only functions properly for actual disk files. If you attempt to read data from an
interactive device like the system console (keyboard) or a serial port, <object>.eof’s behavior is incorrect (it will
wind up eating a character from the interactive input stream every time you call it). Unfortunately, none of the
Oses that HLA supports provide a way to test for EOF until after you’ve actually read a character from the input
stream. A better solution, which works fine with both interactive input streams and file data is to use HLA’s
try..endtry statement to trap and EOF error when it occurs. For example, rather than writing the following:

while(!filePtr.eof(someHandle)) do
.
.
.
endwhile;

You should write the following:

try
forever

.

.

.
endfor;
 exception(ex.EndOfFile);

endtry;

Note: under Windows, <object>.eof always returns false for character device files (e.g., keyboard input) and
it returns false for all other non-disk file device types. Note that if the user presses ctrl-Z on the keyboard,
<object>.eof will not return true, but the system will return an ex.endOfFile exception. If there is any chance
you’ll be reading data from a device file rather than a disk file, always use the try..endtry block to test for EOF.

HLA high-level calling sequence examples:
Page 316 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
while(!filePtr.eof(fileHandle)) do

<<something while not at EOF>>

endwhile;

<object>.eoln(); @returns("al");

This function returns true in AL if the file pointer is currently pointing at the OS’ end-of-line sequence in the
file (carriage return/line feed for Windows, linefeed for other operating systems).

HLA high-level calling sequence examples:

filePtr.eoln();

14.6 Miscellaneous Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.write(var buffer:var; count:dword)

This method writes the number of bytes specified by the count parameter to the file. The bytes starting at the
address of the buffer byte are written to the file. No range checking is done on the buffer, it is your responsibility
to ensure that the buffer contains at least count valid data bytes.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:

filePtr.write(buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the file:

filePtr.write(val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the file (an unusual
// operation):

filePtr.write(bufPtr, 4);

<object>.putbool(b:boolean);

This procedure writes the string "true" or "false" to the <object> output file depending on the value of the b
parameter.

HLA high-level calling sequence examples:
Released to the Public Domain Page 317

HLA Standard Library
filePtr.putbool(boolVar);

// If the boolean is in a register (AL):

MyOutputFile.putbool(al);

<object>.newln();

This function writes a newline sequence (carriage return/line feed under Windows, linefeed under other
operating systems) to the specified output file (<object>).

HLA high-level calling sequence examples:

filePtr.newln();
MyOutputFile.newln();

14.7 Character, Character Set, and String Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.putc(c:char)

Writes the character specified by the c parameter to the file.

HLA high-level calling sequence examples:

filePtr.putc(charVar);

// If the character is in a register (AL):

MyOutputFile.putc(al);

<object>.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the file filevar using at least width output positions. If the absolute value of width
is greater than one, then this function writes fill characters as padding characters during the output. If width is a
positive value greater than one, then <object>.putcSize writes c left justfied in a field of width characters; if
width is a negative value less than one, then <object>.putcSize writes c right justified in a field of width
characters.

HLA high-level calling sequence examples:

filePtr.putcSize(charVar, width, padChar);

<object>.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the specified file variable.

HLA high-level calling sequence examples:
Page 318 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
filePtr.putcset(csVar);
MyOutputFile.putcset([ebx]); // EBX points at the cset.

<object>.puts(s:string);

This procedure writes the value of the string parameter to the file.

HLA high-level calling sequence examples:

filePtr.puts(strVar);
filePtr.puts(ebx); // EBX holds a string value.
MyOutputFile.puts("Hello World");

<object>.putsSize(s:string; width:int32; fill:char)

This function writes the s string to the file using at least width character positions. If the absolute value of
width is less than or equal to the length of s, then this function behaves exactly like <object>.puts. On the other
hand, if the absolute value of width is greater than the length of s, then <object>.putsSize writes width characters
to the output file. This procedure emits the fill character in the extra print positions. If width is positive, then
<object>.putsSize right justifies the string in the print field. If width is negative, then <object>.putsSize left
justifies the string in the print field. Generally, people expect the string to be left justified, so you should ensure
that this value is negative to achieve this.

HLA high-level calling sequence examples:

filePtr.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

MyOutputFile.putsSize(ebx, ecx, al);

filePtr.putsSize("Hello World", 25, padChar);

14.8 Hexadecimal Numeric Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.putb(b:byte);

This procedure writes the value of b to the file using exactly two hexadecimal digits (including a leading
zero if necessary).

HLA high-level calling sequence examples:

filePtr.putb(byteVar);

// If the character is in a register (AL):
Released to the Public Domain Page 319

HLA Standard Library
MyOutputFile.putb(al);

<object>.puth8(b:byte);

This procedure writes the value of b to the file using one or two hexadecimal digits (the minimum
necessary).

HLA high-level calling sequence examples:

filePtr.puth8(byteVar);

// If the character is in a register (AL):

MyOutputFile.puth8(al);

<object>.puth8Size(b:byte; width:dword; fill:char)

This procedure writes the value of b to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth8Size(byteVar, width, padChar);

<object>.putw(w:word);

This procedure writes the value of w to the file using exactly four hexadecimal digits (including leading
zeros if necessary).

HLA high-level calling sequence examples:

filePtr.putw(wordVar);

// If the word is in a register (AX):

MyOutputFile.putw(ax);

<object>.puth16(w:word);

This procedure writes the value of w to the file using 1-4 hexadecimal digits (the minimum necessary).

HLA high-level calling sequence examples:

filePtr.puth16(wordVar);

// If the word is in a register (AX):
Page 320 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
MyOutputFile.puth16(ax);

<object>.puth16Size(w:word; width:dword; fill:char)

This procedure writes the value of w to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth16Size(wordVar, width, padChar);

<object>.putd(dw:dword);

This procedure writes the value of d to the file using exactly eight hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between the fourth and fifth digits.

HLA high-level calling sequence examples:

filePtr.putd(dwordVar);

// If the dword value is in a register (EAX):

MyOutputFile.putd(eax);

<object>.puth32(dw:dword);

This procedure writes the value of d to the file using the minimum number of hexadecimal required. If the
stdlib global underscores value (see the conversions module for details) contains true, then this function will also
print an underscore between the fourth and fifth digits (if there are at least five digits in the number).

HLA high-level calling sequence examples:

filePtr.puth32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.puth32(eax);

<object>.puth32Size(d:dword; width:dword; fill:char)

This procedure writes the value of d to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:
Released to the Public Domain Page 321

HLA Standard Library
filePtr.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

MyOutputFile.puth32Size(eax, width, cl);

<object>.putq(q:qword);

This procedure writes the value of q to the file using exactly 16 hexadecimal digits (including leading zeros
if necessary). If the stdlib global underscores value (see the conversions module for details) contains true, then
this function will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

filePtr.putq(qwordVar);

<object>.puth64(q:qword);

This procedure writes the value of q to the file using 1-16 hexadecimal digits (the minimum necessary). If
the stdlib global underscores value (see the conversions module for details) contains true, then this function will
also print an underscore between each group of four digits.

HLA high-level calling sequence example:

MyOutputFile.puth64(qwordVar);

<object>.puth64Size(q:qword; width:dword; fill:char)

This procedure writes the value of q to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence example:

MyOutputFile.puth64Size(qwordVar, width, ‘ ‘);

<object>.puttb(tb:tbyte)

This procedure writes the value of tb to the file using exactly 20 hexadecimal digits (including leading zeros
if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

filePtr.puttb(tbyteVar);

<object>.puth80(tb:tbyte)

This procedure writes the value of tb to the file using 1-20 hexadecimal digits (the minimum necessary) and
an intervening underscores if underscore output is enabled).
Page 322 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

filePtr.puth80(tbyteVar);

<object>.puth80Size(tb:tbyte; width:dword; fill:char)

This procedure writes the value of tb to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth80Size(tbyteVar, width, ‘ ‘);

<object>.putl(l:lword)

This procedure writes the value of l to the file using exactly 32 hexadecimal digits (including leading zeros if
necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

MyOutputFile.putl(lwordVar);

<object>.puth128(l:lword)

This procedure writes the value of l to the file using 1-32 hexadecimal digits (the minimum necessary) and an
intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

filePtr.puth128(lwordVar);

<object>.puth128Size(l:lword; width:dword; fill:char)

This procedure writes the value of l to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

MyOutputFile.puth128Size(tbyteVar, width, ‘ ‘);

14.9 Signed Integer Numeric Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.
Released to the Public Domain Page 323

HLA Standard Library
These routines convert signed integer values to string format and write that string to the filevar file. The
<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.puti8(byteVar);

// If the character is in a register (AL):

MyOutputFile.puti8(al);

<object>.puti8Size (b:byte; width:int32; fill:char);

This function writes the eight-bit signed integer value you pass to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti8Size(byteVar, width, padChar);

<object>.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti16(wordVar);

// If the word is in a register (AX):

filePtr.puti16(ax);

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 324 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the specified output file using the width and
fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti16Size(wordVar, width, padChar);

<object>.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.puti32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.puti32(eax);

<object>.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.puti32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

filePtr.puti32Size(eax, width, cl);

<object>.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti64(qwordVar);
Released to the Public Domain Page 325

HLA Standard Library
<object>.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti64Size(qwordVar, width, ‘ ‘);

<object>.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti128(lwordVar);

<object>.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti128Size(lwordVar, width, ‘ ‘);

14.10 Unsigned Integer Numeric Output
These routines convert unsigned integer values to string format and write that string to the file. The

<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.putu8 (b:byte)

This function converts theeight-bit unsigned integer you pass as a parameter to a string and writes this string
to the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu8(byteVar);

// If the character is in a register (AL):

MyOutputFile.putu8(al);
Page 326 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putu8size(b:byte; width:int32; fill:char)

This function writes the unsigned eight-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

filePtr.putu8Size(byteVar, width, padChar);

<object>.putu16(w:word)

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu16(wordVar);

// If the word is in a register (AX):

MyOutputFile.putu16(ax);

<object>.putu16size(w:word; width:int32; fill:char)

This function writes the unsigned 16-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

filePtr.putu16Size(wordVar, width, padChar);

<object>.putu32(d:dword)

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.putu32(eax);

<object>.putu32Size(d:dword; width:int32; fill:char)

This function writes the unsigned 32-bit value you pass to the specified output file using the width and fill
values as specified above.
Released to the Public Domain Page 327

HLA Standard Library
HLA high-level calling sequence examples:

MyOutputFile.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

filePtr.putu32Size(eax, width, cl);

<object>.putu64(q:qword)

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu64(qwordVar);

<object>.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.putu64Size(qwordVar, width, ‘ ‘);

<object>.putu128(l:lword)

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu128(lwordVar);

<object>.putu128Size(l:lword; width:int32; fill:char);

This function writes the unsigned 128-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.putu128Size(lwordVar, width, ‘ ‘);
Page 328 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
14.11 Floating-Point Numeric Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the file that filevar specifies. There are two generic classes of
these routines: those that convert their values to exponential/scientific notation and those that convert their string
to a decimal form.

The <object>.pute80, <object>.pute64, and <object>.pute32 routines convert their values to a string using
scientific notation. These three routines each have two parameters: the value to output and the field width of the
result. These routines produce a string with the following format:

<object>.pute32(r:real32; width:uns32)

This function writes the 32-bit single precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a width value
that yeilds more than seven mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

MyOutputFile.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
filePtr.pute32(r32Temp, 12);

<object>.pute64(r:real64; width:uns32)

This function writes the 64-bit double precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 64-bit double precision floating point values support about 15 significant digits. So a width value that
yeilds more than 15 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

filePtr.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 329

HLA Standard Library
var
r64Temp:real64;
.
.
.

fstp(r64Temp);
filePtr.pute64(r64Temp, 12);

<object>.pute80(r:real80; width:uns32)

This function writes the 80-bit extended precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 80-bit extended precision floating point values support about 18 significant digits. So a width value
that yeilds more than 18 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

filePtr.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
MyOutputFile.pute80(r80Temp, 12);

14.12 Floating-Point Numeric Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA file class module also provides a set of
functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions come in two varieties. The first variety requires four parameters: the real value to convert,
the width of the converted value, the number of digit positions to the right of the decimal point, and a padding
character. The second variety only requires the first three parameters and assumes the padding character is a
space. These functions write their values using the following string format:

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Page 330 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)

This procedure writes a 32-bit single precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the fill value as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

filePtr.putr32(r32Var, width, decpts, fill);
filePtr.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
filePtr.putr32(r32Temp, 12, 2, al);

<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)

This procedure writes a 64-bit double precision floating point value to the filevar file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

MyOutputFile.putr64(r64Var, width, decpts, fill);
MyOutputFile.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
MyOutputFile.putr64(r64Temp, 12, 2, al);

<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

This procedure writes an 80-bit extended precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:
Released to the Public Domain Page 331

HLA Standard Library
filePtr.putr80(r80Var, width, decpts, fill);
filePtr.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
filePtr.putr80(r80Temp, 12, 2, al);

14.13 Generic File Output
<object>.put(parameter_list)

<object>.put is a macro that automatically invokes an appropriate <object> output routine based on the
type of the parameter(s) you pass it. This is a very convenient output routine and is probably the file class output
call you will use most often in your programs. Keep in mind that this macro is not a single function call; instead,
HLA translates this macro into a sequence of calls to procedures like <object>.puti32, <object>.puts, etc.

<object>.put is a macro that provides a flexible syntax for outputting data to the standard output device.
This macro allows a variable number of parameters. For each parameter present in the list, <object>.put will
call the appropriate routine to emit that data, according to the type of the parameter. Parameters may be
constants, registers, or memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of an <object>.put :

<object>.put("I=", i, " j=", j, nl);

The above is roughly equivalent to

<object>.puts("I=");
<object>.puti32(i);
<object>.puts(" j=");
<object>.puti32(j);
<object>.newln();

This assumes, of course, that i and j are int32 variables.
The <object>.put macro also lets you specify the minimum field width for each parameter you specify. To

print a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

<object>.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

<object>.put("Real value is ", f:10:3, nl);

The <object>.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, tbyte, lword).

If you specify a class variable (object) and that class defines a toString method, the <object>.put macro will
call the associated toString method and output that string to the file. Note that the toString method must
dynamically allocate storage for the string by calling str.alloc. This is because <object>.put will call str.free on
the string once it outputs the string.
Page 332 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
There is a known "design flaw" in the <object>.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and <object>.put cannot determine if you want to print reg32 using varname print positions
versus simply printing the non-local varname object. If you want to display non-local variables you must copy
the non-local object into a register, a static variable, or a local variable prior to using <object>.put to print it. Of
course, there is no problem using the other <object>.putXXXX functions to display non-local VAR objects, so
you can use those as well.

Important(!), don’t forget that method calls (e.g., the routines that <object>.put translates into) modify the
values in the ESI and EDI registers. Therefore, it never makes any sense to attempt to print the values of ESI and
EDI within the parameter list. All you will wind up doing is printing the address of the file variable (ESI) or the
address of its virtual method table (EDI). If you need to write these two values to a file, move them to another
register or a memory location first.

14.14 Generic File Input
The following file input routines behave just like their standard input and file input counterparts (unless

otherwise noted):

<object>.read(var buffer:var; count:dword)

This function reads count bytes from the file and stores them into memory starting with the first byte of the
buffer variable. This routine does not do any range checking. It is your responsibility to ensure that buffer is
large enough to hold the data read.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:

MyInputFile.read(buffer, count);
MyInputFile.read([eax], 1024);

<object>.readln;
This function reads and discards all characters up to and including the newline

sequence in the file.

HLA high-level calling sequence examples:

filePtr.readLn();

14.15 Character and String Input
The following functions read character data from an input file. Note that HLA’s file class module does not

provide the ability to read character set data directly from the user. However, you can always read a string and
then convert that string to a character set using the appropriate function in the cset module.

<object>.getc; @returns("al");

This function reads a single character from the file and returns that chraacter in the AL register. This
function assumes that the file you’ve opened is a text file. Note that <object>.getc does not return the end of line
sequence as part of the input stream. Use the <object>..eoln function to determine when you’ve reached the end
of a line of text. Because <object>..getc preprocesses the text file (removing end of line sequences) you should
not use it to read binary data, use it only to read text files.

HLA high-level calling sequence examples:

filePtr.getc();
Released to the Public Domain Page 333

HLA Standard Library
mov(al, charVar);

<object>.gets(s:string);

This function reads a sequence of characters from the current file position through to the next end of line
sequence and stores these characters (without the end of line sequence) into the string variable you pass as a
parameter. Before calling this routine, you must allocate sufficient storage for the string. If <object>.gets
attempts to read a larger string than the string’s MaxLen value, <object>.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a file class function will read from the file will be the first character of the
following line.

If the current file position is at the end of some line of text, then <object>.gets consumes the end of line and
stores the empty string into the s parameter.

HLA high-level calling sequence examples:

filePtr.gets(inputStr);
filePtr.gets(eax); // EAX contains string value

<object>.a_gets; @returns("eax");

Like <object>.gets, this function also reads a string from the file. However, rather than storing the string
data into a string you supply, this function allocates storage for the string on the heap and returns a pointer to this
string in the EAX register. You code should call str.free to release this storage when you’re done with the string
data.

The <object>.a_gets function imposes a line length limit of 4,096 characters. If this is a problem, you
should modify the source code for this function to raise the limit. This functions raises an exception if you
attempt to read a line longer than this internal limit.

HLA high-level calling sequence examples:

MyInputFile.a_gets();
mov(eax, inputStr);

14.16 Signed Integer Input
The functions in this group read numeric values from the file using a signed decimal integer format. These

functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

 <object>.geti8; @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti8 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range -128..+127. This function returns the binary
form of the integer in the AL register.

HLA high-level calling sequence examples:

filePtr.geti8();
Page 334 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(al, i8Var);

<object>.geti16; @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti16 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range -32768..+32767. This function returns the
binary form of the integer in the AX register.

HLA high-level calling sequence examples:

filePtr.geti16();
mov(ax, i16Var);

<object>.geti32; @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti32 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range plus or minus two billion. This function returns
the binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

filePtr.geti32();
mov(eax, i32Var);

<object>.geti64; @returns("edx:eax");

This function reads a signed 64-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geti64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in the EDX:EAX
register pair (it returns the H.O. dword in EDX and the L.O. dword in EAX).

HLA high-level calling sequence examples:

filePtr.geti64();
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));
Released to the Public Domain Page 335

HLA Standard Library
<object>.geti128(var l:lword);

This function reads a signed 128-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geti128 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range of a 128-bit signed integer. This function stores the 128-bit result into the lword
you pass as a reference parameter.

HLA high-level calling sequence examples:

filePtr.geti128(lwordVar);

14.17 Unsigned Integer Input
The functions in this group read numeric values from the file using a signed decimal integer format. These

functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

<object>.getu8; @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.getu8 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..255. This function returns the binary form of the integer in the AL register.

HLA high-level calling sequence examples:

MyInputFile.getu8();
mov(al, u8Var);

<object>.getu16; @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.getu16 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..65535. This function returns the binary form of the integer in the AX register.

HLA high-level calling sequence examples:

filePtr.getu16();
mov(ax, u16Var);

<object>.getu32; @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file. This function allows underscores in the interior of
the number. The <object>.getu32 function raises an appropriate exception if the input violates any of these rules
Page 336 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
or the value is outside the range 0..4,294,967,295. This function returns the binary form of the integer in the
EAX register.

HLA high-level calling sequence examples:

filePtr.getu32();
mov(eax, u32Var);

<object>.getu64; @returns("edx:eax");

This function reads an unsigned 64-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getu64 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..264-1. This function returns the binary form of the integer in EDX:EAX register pair (EDX
contains the H.O. dword, EAX holds the L.O. dword).

HLA high-level calling sequence examples:

filePtr.getu32();
mov(eax, (type dword u64Var));
mov(edx, (type dword u64Var[4]));

<object>.getu128(var l:lword);

This function reads an unsigned 128-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getu64 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..2128-1. This function returns the binary form of the integer in the lword parameter you pass
by reference.

HLA high-level calling sequence examples:

fileio.getu128(u128Var);

14.18 Hexadecimal Input
<object>.geth8; @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the file. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geth8 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..$FF. This function returns the binary form of the value in the AL register.

HLA high-level calling sequence examples:

filePtr.geth8();
Released to the Public Domain Page 337

HLA Standard Library
mov(al, h8Var);

<object>.geth16; @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the file. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not
have a leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.geth16 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..$FFFF. This function returns the binary form of the value in the AX register.

HLA high-level calling sequence examples:

MyInputFile.geth16();
mov(ax, h16Var);

<object>.geth32; @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the
value may not have a leading "$" unless you add this character to the delimiter character set. The number must
end with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geth32 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value in the EAX
register.

HLA high-level calling sequence examples:

filePtr.geth32();
mov(eax, h32Var);

<object>.geth64; @returns("edx:eax");

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the file.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geth64 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF. This function
returns the 64-bit result in the EDX:EAX register pair (EDX contains the H.O. dword, EAX contains the L.O.
dword).

HLA high-level calling sequence examples:

MyInputFile.geth64();
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));
Page 338 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.geth128(var l:lword);

This function reads a 128-bit hexadecimal integer in the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not have a
leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getq function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF . This function stores the 128-bit
result into the variable you pass as a reference parameter.

HLA high-level calling sequence examples:

filePtr.geth128(lwordVar);

14.19 Floating-Point Input
<object>.getf; @returns("st0");

This function reads an 80-bit floating point value in either decimal or scientific from from the file and leaves
the result sitting on the FPU stack. The number may begin with any number of delimiter characters (see the
conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an
optional minus sign and a sequence of characters that represent a floating point value. The number must end with
a valid delimiter character or the end of the file. This function allows underscores in the interior of the number.
This function raises an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

filePtr.getf();
fstp(fpVar);

14.20 Generic File Input
<object>.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The <object>.get macro
reads an input value for each item in the list and stores the resulting value in each corresponding variable. This
macro determines the type of each variable that you pass it and emits a call to the appropriate <object>.getxxx
function to read the actual value. As an example, consider the following call to <object>.get:

filePtr.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:

push(eax);
filePtr.geti32(i32);
filePtr.getc();
mov(al, charVar);
filePtr.geti16();
mov(ax, u16);
filePtr.gets(strVar);
pop(eax);
Released to the Public Domain Page 339

HLA Standard Library
Notice that <object>.get preserves the value in the EAX register even though various <object>.getxxx
functions use this register. Note that <object>.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that <object>.get only supports eight-, sixteen-, and thirty-two bit integer input. If you need to read
64-bit or 128-bit values, you must use the appropriate <object>.getx64 or <object>.getx128 function to achieve
this.
Page 340 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
15 The File I/O Module (fileio.hhf)

This unit contains routines that read data from and write data to files. The fileio functions can be broken
down into four generic categories: general functions that open and close files, file position functions that get or
set the current file position (or test the file position), output functions that write data to a file, and input functions
that read data from a file.

Note to stdlib v1.x users: Several routines originally found in the fileio package have been moved to the new
filesys package. The affected routines did not operate on file data, but on the file system itself. Examples include
file deletion, get working directory, and change directory. Please see the filesys.rtf documentation for a
description of those routines.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computung certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

15.1 Conversion Format Control
The fileio output functions that convert numeric values to hexadecimal, unsigned decimal, and signed

decimal output provide the ability to inject underscores between groups of three (decimal) or four (hexadecimal)
digits to make it easier to read large numbers. You enable and disable underscore output using the
conv.setUnderscores and conv.getUnderscores functions. Please refer to their documentation in the conv.rtf file
for more details.

When reading numeric data from a text file, the fileio functions use an internal delimiters character set to
determine which characters may legally end a sequence of numeric digits. You can change the complexion of
this character set using the conv.getDelimiters and conv.setDelimiters functions. Please refer to their
documentation in the conv.rtf file for more details.

When converting numeric values to string form for output, the fileio routines call the conversion functions
found in the conv (conversions) module. For detailed information on the actual conversions, please consult the
conv.rtf document.

15.2 General File I/O Functions
Here are the file output routines provided by the HLA fileio unit:

Note: fileio.open is part of the os_fileio module in v2.0 of the HLA stdlib. This function has not been updated yet
and the semantics may change during the conversion to v2.0.

 fileio.open(FileName: string; Access:dword); @returns("eax");

The fileio.open routine opens the file by the specified name. The Access parameter is one of the following:
• fileio.r
• fileio.w
• fileio.rw
• fileio.a

The fileio.r constant tells HLA to open the file for read-only access. The fileio.w constant tells HLA to open the
file for writing. Using the fileio.rw constant tells fileio.open to open the file for reading and writing. The fileio.a
option tells the fileio.open function to open the file for writing and append all written data to the end of the file.

This routine raise an exception if there is a problem opening the file (e.g., the file does not exist). If the file
is successfully opened, this function returns the file handle in the EAX register.
Released to the Public Domain Page 341

HLA Standard Library
HLA high-level calling sequence examples:

fileio.open("myfile.txt", fileio.r);
mov(eax, fileHandle);

// Note: the Access parameter is almost always a constant in
// calls to fileio.open. However, if you want to pass a variable
// value or a register value in this parameter, you may certainly
// do so:

fileio.open(filenameStr, accessVarByte);
mov(eax, fileHandle);

fileio.open(someStr, al);
mov(eax, fileHandle);

HLA low-level calling sequence examples:

// Constant Access value:

push(filenameStr);
pushd(fileio.r);
call fileio.open;
mov(eax, fileHandle);

// Access value in register (AL in this example)

push(filenameStr);
push(eax);
call fileio.open;
mov(eax, fileHandle);

// Access value is in a (byte) variable

push(filenameStr);
push((type dword accessValue)); //Not always safe!
call fileio.open;
mov(eax, fileHandle);

// Solution if accessing accessValue as a dword
// might cause a memory access error (last three
// bytes on a 4K page in memory, etc.):

push(filenameStr);
sub(4, esp);
push(eax);
movzx(accessValue, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.open;
mov(eax, fileHandle);

// Note: If you want to use a string literal, the best solution is
// to create a string object in the readonly section, e.g.,
//
// readonly
// filenameStr :string := "myfile.txt";
//
// and just use the "filenameStr" object you’ve created. You may also
Page 342 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// do the following if you have a register available:

lea(eax, "myfile.txt");
push(eax);
pushd(fileio.r);
call fileio.open;
mov(eax, fileHandle);

 fileio.openNew(FileName: string); @returns("eax");

This function opens a new file for writing. The single parameter specifies the file’s (path) name. This
function raises an exception if there is an error opening the file. If the file is opened successfully, this function
returns the file handle in the EAX register. If the file already exists, this function will successfully open the file
and delete any existing data in the file.

HLA high-level calling sequence examples:

fileio.openNew("myfile.txt");
mov(eax, fileHandle);

// If the filename string pointer is in a register (EAX):

fileio.openNew(eax);
mov(eax, fileHandle);

HLA low-level calling sequence examples:

push(filenameStr);
call fileio.openNew;
mov(eax, fileHandle);

// If the string pointer value is in a register (EAX
// in this example):

push(eax);
call fileio.openNew;
mov(eax, fileHandle);

fileio.open stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8 FileName :string

Access :dword
Released to the Public Domain Page 343

HLA Standard Library
// Note: If you want to use a string literal, the best solution is
// to create a string object in the readonly section, e.g.,
//
// readonly
// filenameStr :string := "myfile.txt";
//
// and just use the "filenameStr" object you’ve created. You may also
// do the following if you have a register available:

lea(eax, "myfile.txt");
push(eax);
call fileio.openNew;
mov(eax, fileHandle);

fileio.close(Handle:dword);

This function closes the file specfied by the handle passed as the parameter. You should close all files as
soon as you are done using them. Note that successful program termination automatically closes all files, but it is
exceeding poor programming practice to rely on the operating system to close any files you’ve left open. Were
the machine to crash, data could be lost; for this reason, you should close all files as soon as you are finished
reading and writing data.

HLA high-level calling sequence examples:

fileio.close(fileHandle);

// If the file handle is in a register (EAX):

fileio.close(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.close;

// If the file handle is in a register (EAX):

fileio.openNew stack diagram

Return Address

Byte

0123

ESP

ESP+4 FileName :string
Page 344 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax);
call fileio.close;

fileio.flush(Handle:dword);

This function flushes all pending data to the file (same operation as closing the file, without actually closing
it). Note that successful program termination automatically closes all files, but were a crash to occur, some data
might be lost. Flushing the file on a periodic basis can help prevent file data loss.

HLA high-level calling sequence examples:

fileio.flush(fileHandle);

// If the file handle is in a register (EAX):

fileio.flush(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.flush;

// If the file handle is in a register (EAX):

push(eax);
call fileio.flush;

fileio.putcSize stack diagram

Return Address

Byte

0123

ESP

ESP+4

c :charESP+8

Handle :dword

width :int32

fill :char

ESP+12

ESP+16
Released to the Public Domain Page 345

HLA Standard Library
fileio.eof(Handle:dword); @returns("al");

This function returns true (1) in AL if the specified file is at the end of file. It returns false (0) otherwise.
Note that this function actually returns true/false in EAX even though the "returns" value is "AL". So don’t
count on it preserving the value in AH or the upper 16 bits of EAX.

Warning: fileio.eof only functions properly for actual disk files. If you attempt to read data from an
interactive device like the system console (keyboard) or a serial port, fileio.eof’s behavior is incorrect (it will wind
up eating a character from the interactive input stream every time you call it). Unfortunately, neither Windows
nor Linux provides a way to test for EOF until after you’ve actually read a character from the input stream. A
better solution, which works fine with both interactive input streams and file data is to use HLA’s try..endtry
statement to trap and EOF error when it occurs. For example, rather than writing the following:
while(!fileio.eof(someHandle)) do

.

.

.
endwhile;

You should write the following:

try
forever

.

.

.
endfor;

 exception(ex.EndOfFile);

endtry;

Note: under Windows, fileio.eof always returns false for character device files (e.g., keyboard input) and it
returns false for all other non-disk file device types. Note that if the user presses ctrl-Z on the keyboard, fileio.eof
will not return true, but the system will return an ex.endOfFile exception. If there is any chance you’ll be reading
data from a device file rather than a disk file, always use the try..endtry block to test for EOF.

HLA high-level calling sequence examples:

while(!fileio.eof(fileHandle)) do

<<something while not at EOF>>

fileio.flush stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 346 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
endwhile;

HLA low-level calling sequence examples:

whileNotEOF:
push(fileHandle);
call fileio.flush;
cmp(al, true);
jne atEOF;

<< something while not at EOF>>

jmp whileNotEOF;
atEOF:

fileio.rewind(Handle:dword); @returns("eax");

The Handle parameter specifies the handle of an open file. This function positions the file pointer to the
beginning of the file (file position zero). This function returns the error code in EAX.

HLA high-level calling sequence examples:

fileio.rewind(fileHandle);

// If the file handle is in a register (EAX):

fileio.rewind(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.rewind;

// If the file handle is in a register (EAX):

push(eax);

fileio.eof stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 347

HLA Standard Library
call fileio.rewind;

fileio.append(handle:dword); @returns("eax");

This function positions the file pointer of the file specified by the handle parameter to the end of that file.
The file should have been opened for writing.

HLA high-level calling sequence examples:

fileio.append(fileHandle);

// If the file handle is in a register (EAX):

fileio.append(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.append;

// If the file handle is in a register (EAX):

push(eax);
call fileio.append;

fileio.rewind stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 348 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.position(Handle:dword); @returns("eax");

This function returns the file position (in bytes) of the file specified by the handle parameter. It returns the
file position offset in the EAX register.

HLA high-level calling sequence examples:

fileio.position(fileHandle);
mov(eax, (type dword filePosition));

// If the file handle is in a register (EAX):

fileio.position(eax);
mov(eax, (type dword filePosition));

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.position;
mov(eax, (type dword filePosition));

// If the file handle is in a register (EAX):

push(eax);
call fileio.position;
mov(eax, (type dword filePosition));

fileio.rewind stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 349

HLA Standard Library
fileio.seek(Handle:dword; offset:qword); @returns("eax");

This function sets the file position in the file specified by the Handle parameter to the position specified by
the offset parameter. The offset parameter specifies the file position in bytes from the beginning of the file. It
returns the error status in EAX.

HLA high-level calling sequence examples:

fileio.seek(fileHandle, qwordOffsetVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordOffsetVar[4]));
push((type dword qwordOffsetVar));
call fileio.seek;

// If the file handle is in a register (EAX):

push(eax);
push((type dword qwordOffsetVar[4]));
push((type dword qwordOffsetVar));
call fileio.seek;

// If the offset is in a register pair (EDX:EAX):

push(fileHandle);
push(edx); // H.O. dword of offset
push(eax); // L.O. dword of offset
call fileio.seek;

fileio.position stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 350 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.rSeek(Handle:dword; offset:qword); @returns("eax");

This function sets the file position in the file specified by the Handle parameter to the position specified by
the offset parameter. The offset parameter specifies the file position in bytes from the end of the file. It returns
the error status in EAX.

HLA high-level calling sequence examples:

fileio.rSeek(fileHandle, qwordOffsetVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordOffsetVar[4]));
push((type dword qwordOffsetVar));
call fileio.rSeek;

// If the file handle is in a register (EAX):

push(eax);
push((type dword qwordOffsetVar[4]));
push((type dword qwordOffsetVar));
call fileio.rSeek;

// If the offset is in a register pair (EDX:EAX):

push(fileHandle);
push(edx); // H.O. dword of offset
push(eax); // L.O. dword of offset
call fileio.rSeek;

fileio.seek stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
offset :qword

offset (H.O. dword)

offset (L.O. dword)
Released to the Public Domain Page 351

HLA Standard Library
fileio.truncate(Handle:dword); @returns("eax");

This function deletes all bytes in the file specified by the Handle parameter from the current file position to
the end of the file. It returns the error status in EAX.

HLA high-level calling sequence examples:

fileio.truncate(fileHandle);

// If the file handle is in a register (EAX):

fileio.truncate(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.truncate;

// If the file handle is in a register (EAX):

push(eax);
call fileio.truncate;

fileio.rseek stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
offset :qword

offset (H.O. dword)

offset (L.O. dword)
Page 352 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.size(Handle:dword); @returns("eax");

This function returns the current size of an open file whose handle you pass as a parameter. It returns the
size in the EAX register. Note the overloaded version below.

HLA high-level calling sequence examples:

fileio.size(fileHandle);
mov(eax, fileSize);

// If the file handle is in a register (EAX):

fileio.size(eax);
mov(eax, fileSize);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.size;
mov(eax, fileSize);

// If the file handle is in a register (EAX):

push(eax);
call fileio.size;
mov(eax, fileSize);

fileio.truncate stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 353

HLA Standard Library
15.3 File Output Routines
The file output routines in the fileio module are very similar to the file output routines in the file class

module as well as the output routines in the standard output library module. In general, these routines require (at
least) two parameters; the first is the file handle that you obtain via the fileio.open or fileio.openNew call, the
second parameter is usually the value to write to the file. Some function contain additional parameters that
provide formatting information. Note that these functions require that you’ve opened the file for writing, reading
and writing, for for appending. If the file is not open or you’ve only opened it for reading, these routines will
raise an appropriate exception.

 15.3.1 Miscellaneous Output Routines

 fileio.write(Handle:dword; var buffer:var; count:uns32);

This procedure writes the number of bytes specified by the count variable to the file. The bytes starting at the
address of the buffer byte are written to the file. No range checking is done on the buffer, it is your responsibility
to ensure that the buffer contains at least count valid data bytes. Note that buffer is an untyped reference
parameter. This means that fileio.write will take the address of whatever object you provide as this parameter
(including pointer variables, which may not be what you want). If you want to pass the value of a pointer variable
as the buffer address (rather than the address of the pointer variable) when using the high-level style calling
syntax, use the VAL keyword as a prefix to the parameter (see the following examples).

HLA high-level calling sequence examples:

fileio.write(fileHandle, buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the file:

fileio.write(fileHandle, val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the file (an unusual
// operation):

fileio.write(fileHandle, bufPtr, 4);

HLA low-level calling sequence examples:

fileio.size stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 354 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Assumes buffer is a static object at a fixed
// address in memory:

push(fileHandle);
pushd(&buffer);
push(count);
call fileio.write;

// If a 32-bit register is available and buffer
// isn’t at a fixed, static, address:

push(fileHandle);
lea(eax, buffer);
push(eax);
push(count);
call fileio.write;

// If a 32-bit register is not available and buffer
// isn’t at a fixed, static, address:

push(fileHandle);
sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call fileio.write;

// If bufPtr points at the buffer to write,
// then use code like this:

push(fileHandle);
push(bufPtr);
push(count);
call fileio.write;

// To write the 4 bytes at bufPtr to
// the file (unusual), you could use
// code like this:

push(fileHandle);
lea(eax, bufPtr);
push(eax);
pushd(4);
call fileio.write;
Released to the Public Domain Page 355

HLA Standard Library
 fileio.newln(Handle:dword)

This function writes a newline sequence (e.g., carriage return/line feed under Windows or line feed under
Linux) to the specified output file.

HLA high-level calling sequence examples:

fileio.newln(fileHandle);

// If the file handle is in a register (EAX):

fileio.newln(eax);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.newln;

// If the file handle is in a register (EAX):

push(eax);
call fileio.newln;

fileio.write stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12

buffer :pointer

count :uns32
Page 356 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 fileio.putbool(Handle:dword; b:boolean)

This procedure writes the string "true" or "false" to the output file depending on the value of the b parameter.

HLA high-level calling sequence examples:

fileio.putbool(fileHandle, boolVar);

// If the boolean is in a register (AL):

fileio.putbool(fileHandle, al);

HLA low-level calling sequence examples:

// If "boolVar" is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword boolVar));
call fileio.putbool;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(boolVar , eax); // Assume EAX is available
push(eax);
call fileio.putbool;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);

fileio.append stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 357

HLA Standard Library
movzx(boolVar , eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putbool;

// If the boolean value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume boolVar is in AL
call fileio.putbool;

// If the Boolean value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume boolVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call fileio.putbool;

 15.3.2 Character, String, and Character Set Output Routines

 fileio.putc(Handle:dword; c:char)

Writes the character specified by the c parameter to the file specified by the Handle parameter.

HLA high-level calling sequence examples:

fileio.putc(fileHandle, charVar);

// If the character is in a register (AL):

fileio.putc(fileHandle, al);

HLA low-level calling sequence examples:

fileio.putbool stack diagram

Return Address

Byte

0123

ESP

ESP+4

b :booleanESP+8

Handle :dword
Page 358 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If "charVar" is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword charVar));
call fileio.putc;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(charVar, eax); // Assume EAX is available
push(eax);
call fileio.putc;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(charVar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putc;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume charVar is in AL
call fileio.putc;

// If the character value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume charVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call fileio.putc;

fileio.putc stack diagram

Return Address

Byte

0123

ESP

ESP+4

c :charESP+8

Handle :dword
Released to the Public Domain Page 359

HLA Standard Library
fileio.putcSize(Handle:dword; c:char; width:int32; fill:char)

Outputs the character c to the file using at least width output positions. If the absolute value of width is
greater than one, then this function writes fill characters as padding characters during the output. If width is a
positive value greater than one, then fileio.putcSize writes c left justfied in a field of width characters; if width is a
negative value less than one, then fileio.putcSize writes c right justified in a field of width characters.

HLA high-level calling sequence examples:

fileio.putcSize(fileHandle, charVar, width, padChar);

HLA low-level calling sequence examples:

// If "charVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword charVar));
push(width);
push((type dword padChar));
call fileio.putcSize;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(charVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putcSize;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);
push(eax);
movzx(charVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putcSize;

// If "charVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume charVar is in AL
Page 360 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(width);
push(ebx); // Assume padChar is in BL
call fileio.putcSize;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(fileHandle);
xchg(al, ah); // Assume charVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call fileio.putcSize;

fileio.putcset(Handle:dword; cst:cset)

This function writes all the members of the cst character set parameter to the file specified by the Handle
variable.

HLA high-level calling sequence examples:

fileio.putcset(fileHandle, csVar);
fileio.putcset(fileHandle, [ebx]); // EBX points at the cset.

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword csVar[12])); // Push H.O. dword first
push((type dword csVar[8]));
push((type dword csVar[4]));
push((type dword csVar)); // Push L.O. dword last
call fileio.putcset;

fileio.putcSize stack diagram

Return Address

Byte

0123

ESP

ESP+4

c :charESP+8

Handle :dword

width :int32

fill :char

ESP+12

ESP+16
Released to the Public Domain Page 361

HLA Standard Library
fileio.puts(Handle:dword; s:string)

This procedure writes the value of the string parameter to the specified file. Remember, string values are
actually 4-byte pointers to the string’s character data.

HLA high-level calling sequence examples:

fileio.puts(fileHandle, strVar);
fileio.puts(fileHandle, ebx); // EBX holds a string value.
fileio.puts(fileHandle, "Hello World");

HLA low-level calling sequence examples:

// For string variables:

push(fileHandle);
push(strVar);
call fileio.puts;

// For string values held in registers:

push(fileHandle);
push(ebx); // Assume EBX holds the string value
call fileio.puts;

// For string literals, assuming a 32-bit register
// is available:

push(fileHandle);
lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
call fileio.puts;

fileio.putcset stack diagram

Return Address

Byte

0123

ESP

ESP+4

cs:cset

ESP+8

Handle :dword

ESP+12

ESP+16

ESP+20 cs (H.O. dword)

cs (L.O. dword)
Page 362 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

.

.

.
push(fileHandle);
push(literalString);
call fileio.puts;

fileio.putsSize(Handle:dword; s:string; width:int32; fill:char)

This function writes the s string to the file using at least width character positions. If the absolute value of
width is less than or equal to the length of s, then this function behaves exactly like fileio.puts. On the other hand,
if the absolute value of width is greater than the length of s, then fileio.putsSize writes width characters to the
output file. This procedure emits the fill character in the extra print positions. If width is positive, then
fileio.putsSize right justifies the string in the print field. If width is negative, then fileio.putsSize left justifies the
string in the print field. Generally, people expect the string to be left justified, so you should ensure that this
value is negative to achieve this.

HLA high-level calling sequence examples:

fileio.putsSize(fileHandle, strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

fileio.putsSize(fileHandle, ebx, ecx, al);

fileio.putsSize(fileHandle, "Hello World", 25, padChar);

HLA low-level calling sequence examples:

// For string variables:

push(fileHandle);
push(strVar);

fileio.puts stack diagram

Return Address

Byte

0123

ESP

ESP+4

s :stringESP+8

Handle :dword
Released to the Public Domain Page 363

HLA Standard Library
push(width);
pushd(‘ ‘);
call fileio.putsSize;

// For string values held in registers:

push(fileHandle);
push(ebx); // Assume EBX holds the string value
push(ecx); // Assume ECX holds the width
push(eax); // Assume AL holds the fill character
call fileio.putsSize;

// For string literals, assuming a 32-bit register
// is available:

push(fileHandle);
lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
pushd(25);
movzx(padChar, eax);
push(eax);
call fileio.putsSize;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

// Note: element zero is the actual pad character.
 // The other elements are just padding.
 padChar :char[4] := [‘.’, #0, #0, #0];

.

.

.
push(fileHandle);
push(literalString);
pushd(25);
push((type dword padChar));
call fileio.putsSize;

fileio.putsSize stack diagram

Return Address

Byte

0123

s :string

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 364 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 15.3.3 Hexadecimal Output Routines

fileio.putb(Handle:dword; b:byte)

This procedure writes the value of b to the file using exactly two hexadecimal digits (including a leading
zero if necessary).

HLA high-level calling sequence examples:

fileio.putb(fileHandle, byteVar);

// If the character is in a register (AL):

fileio.putb(fileHandle, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
call fileio.putb;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call fileio.putb;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putb;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume byteVar is in AL
call fileio.putb;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
Released to the Public Domain Page 365

HLA Standard Library
xchg(al, ah); // Restore al/ah
call fileio.putb;

fileio.puth8(Handle:dword; b:byte)

This procedure writes the value of b to the file using the minimum necessary number of hexadecimal digits.

HLA high-level calling sequence examples:

fileio.puth8(fileHandle, byteVar);

// If the character is in a register (AL):

fileio.puth8(fileHandle, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
call fileio.puth8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call fileio.puth8;

// If no register is available, do something
// like the following code:

push(fileHandle);

fileio.putb stack diagram

Return Address

Byte

0123

ESP

ESP+4

b :byteESP+8

Handle :dword
Page 366 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume byteVar is in AL
call fileio.puth8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call fileio.puth8;

fileio.puth8Size(Handle:dword; b:byte; size:dword; fill:char)

The fileio.puth8Size function writes an 8-bit hexadecimal value to a file allowing you specify a minimum
field width and a fill character.

HLA high-level calling sequence examples:

fileio.puth8Size(fileHandle, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

fileio.puth8 stack diagram

Return Address

Byte

0123

ESP

ESP+4

b :byteESP+8

Handle :dword
Released to the Public Domain Page 367

HLA Standard Library
push(fileHandle);
push((type dword byteVar));
push(width);
push((type dword padChar));
call fileio.puth8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth8Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);
push(eax);
movzx(byteVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth8Size;

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call fileio.puth8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call fileio.puth8Size;
Page 368 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putw(Handle:dword; w:word)

This procedure writes the value of w to the file using exactly four hexadecimal digits (including leading
zeros if necessary).

HLA high-level calling sequence examples:

fileio.putw(fileHandle, wordVar);

// If the word is in a register (AX):

fileio.putw(fileHandle, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
call fileio.putw;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call fileio.putw;

// If no register is available, do something
// like the following code:

push(fileHandle);

fileio.puth8Size stack diagram

Return Address

Byte

0123

b :byte

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Released to the Public Domain Page 369

HLA Standard Library
sub(4, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putw;

// If the word value is in a 16-bit register
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume wordVar is in AX
call fileio.putw;

fileio.puth16(Handle:dword; w:word)

This procedure writes the value of w to the file using the minimum necessary number of hexadecimal digits.

HLA high-level calling sequence examples:

fileio.puth16(fileHandle, wordVar);

// If the word is in a register (AX):

fileio.puth16(fileHandle, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
call fileio.puth16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like

fileio.putw stack diagram

Return Address

Byte

0123

w :word

Handle :dword

ESP

ESP+4

ESP+8
Page 370 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call fileio.puth16;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth16;

// If the word value is in a 16-bit register
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume wordVar is in AX
call fileio.puth16;

fileio.puth16Size(Handle:dword; w:word; size:dword; fill:char)

The fileio.puth16Size function writes a 16-bit hexadecimal value to a file allowing you specify a minimum
field width and a fill character.

HLA high-level calling sequence examples:

fileio.puth16Size(fileHandle, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

fileio.puth16 stack diagram

Return Address

Byte

0123

w :word

Handle :dword

ESP

ESP+4

ESP+8
Released to the Public Domain Page 371

HLA Standard Library
push(fileHandle);
push((type dword wordVar));
push(width);
push((type dword padChar));
call fileio.puth16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth16Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth16Size;

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call fileio.puth16Size;
Page 372 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putd(Handle:dword; d:dword)

This procedure writes the value of d to the file using exactly eight hexadecimal digits (including leading
zeros if necessary), if underscore output is not enabled. This routine will emit nine characters (eight digits plus an
underscore) if underscore output is enabled.

HLA high-level calling sequence examples:

fileio.putd(fileHandle, dwordVar);

// If the dword value is in a register (EAX):

fileio.putd(fileHandle, eax);

HLA low-level calling sequence examples:

push(fileHandle);
push(dwordVar);
call fileio.putd;

push(fileHandle);
push(eax);
call fileio.putd;

fileio.puth16Size stack diagram

Return Address

Byte

0123

w :word

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Released to the Public Domain Page 373

HLA Standard Library
fileio.puth32(Handle:dword; d:dword)

This procedure writes the value of d to the file using the minimum number of hexadecimal digits necessary.
If underscore output is enabled (see conv.setUnderscores and conv.getUnderscores) then this function will emit
an underscore between groups of four hexadecimal digits, starting from the least signficant digit.

HLA high-level calling sequence examples:

fileio.puth32(fileHandle, dwordVar);

// If the dword is in a register (EAX):

fileio.puth32(fileHandle, eax);

HLA low-level calling sequence examples:

push(fileHandle);
push(dwordVar);
call fileio.puth32;

push(fileHandle);
push(eax);
call fileio.puth32;

fileio.putd stack diagram

Return Address

Byte

0123

ESP

ESP+4

d :dwordESP+8

Handle :dword
Page 374 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.puth32Size(Handle:dword; d:dword; size:dword; fill:char)

 The fileio.puth32Size function outputs d as a hexadecimal string (including underscores, if enabled) and it
allows you specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

fileio.puth32Size(fileHandle, dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

fileio.puth32Size(fileHandle, eax, width, cl);

HLA low-level calling sequence examples:

push(fileHandle);
push(dwordVar);
push(width);
pushd(‘ ‘);
call fileio.puth32Size;

push(fileHandle);
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.puth32Size;

// Assume fill char is in CH

push(fileHandle);
push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.puth32Size;

fileio.puth32 stack diagram

Return Address

Byte

0123

ESP

ESP+4

d :dwordESP+8

Handle :dword
Released to the Public Domain Page 375

HLA Standard Library
// Alternate method of the above

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puth32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puth32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth32Size;

fileio.puth32Size stack diagram

Return Address

Byte

0123

d :dword

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 376 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putq(Handle:dword; q:qword)

This procedure writes the value of q to the file using exactly sixteen hexadecimal digits (including leading
zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.putq(fileHandle, qwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call fileio.putq;

fileio.puth64(Handle:dword; q:qword)

This procedure writes the value of q to the file using the minimum necessary number of hexadecimal digits
(including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.puth64(fileHandle, qwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call fileio.puth64;

fileio.putq stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 377

HLA Standard Library

fileio.puth64Size(Handle:dword; q:qword; size:dword; fill:char)

The fileio.putqSize function lets you specify a minimum field width and a fill character. The fileio.putq
routine uses a minimum size of two and a fill character of ’0’. Note that if underscore output is enabled, this
routine will emit 19 characters (16 digits plus three underscores).

HLA high-level calling sequence examples:

fileio.puth64Size(fileHandle, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.puth64Size;

push(fileHandle);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.puth64Size;

// Assume fill char is in CH

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.puth64Size;

fileio.puth64 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Page 378 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Alternate method of the above

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puth64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puth64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth64Size;
Released to the Public Domain Page 379

HLA Standard Library
fileio.puttb(Handle:dword; tb:tbyte)

This procedure writes the value of tb to the file using exactly 20 hexadecimal digits (including leading zeros
if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.puttb(fileHandle, tbyteVar);

HLA low-level calling sequence examples:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call fileio.puttb;

fileio.puth64Size stack diagram

Return Address

Byte

0123

a :qword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
q (H.O. dword)

q (L.O. dword)

fill :charESP+20
Page 380 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.puth80(Handle:dword; tb:tbyte)

This procedure writes the value of tb to the file using the minimum necessary number of hexadecimal digits
(including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.puth80(fileHandle, tbyteVar);

HLA low-level calling sequence examples:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call fileio.puth80;

fileio.puttb stack diagram

Return Address

Byte

0123

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Released to the Public Domain Page 381

HLA Standard Library
fileio.puth80Size(Handle:dword; tb:tbyte; size:dword; fill:char)

The fileio.puth80Size function lets you specify a minimum field width and a fill character. It writes the tbyte
value tb as a hexadecimal string to the specified file using the provided minimum size and fill character.

HLA high-level calling sequence examples:

fileio.puth80Size(fileHandle, tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.puth80Size;

// Assume fill char is in CH

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);

fileio.puth80 stack diagram

Return Address

Byte

0123

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Page 382 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call fileio.puth80Size;

// Alternate method of the above

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puth80Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth80Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puth80Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth80Size;
Released to the Public Domain Page 383

HLA Standard Library
fileio.putl(Handle:dword; l:lword)

This procedure writes the value of l to the file using exactly 32 hexadecimal digits (including leading zeros if
necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.putl(fileHandle, lwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call fileio.putl;

fileio.puth80Size stack diagram

Return Address

Byte

0123

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)

size :uns32

fill :char

ESP+20

ESP+24
Page 384 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.puth128(Handle:dword; l:lword)

This procedure writes the value of l to the file using the minimum necessary number of hexadecimal digits
(including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

fileio.puth128(fileHandle, lwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call fileio.puth128;

fileio.putl stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)ESP+20

l (L.O. dword)
Released to the Public Domain Page 385

HLA Standard Library

fileio.puth128Size(Handle:dword; l:lword; size:dword; fill:char)

The fileio.puth128Size function writes an lword value to the file and it lets you specify a minimum field width
and a fill character.

HLA high-level calling sequence examples:

fileio.puth128Size(fileHandle, tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.puth128Size;

// Assume fill char is in CH

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);

fileio.puth128 stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)ESP+20

l (L.O. dword)
Page 386 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call fileio.puth128Size;

// Alternate method of the above

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puth128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puth128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puth128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puth128Size;
Released to the Public Domain Page 387

HLA Standard Library
 15.3.4 Signed Integer Output Routines
These routines convert signed integer values to string format and write that string to the file specified by the

Handle parameter. The fileio.putxxxSize functions contain width and fill parameters that let you specify the
minimum field width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.
Note that unlike floating point values, these functions do not print a space in front of the value if it is non-

negative.

fileio.puti8 (Handle:dword; b:byte)

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.puti8(fileHandle, byteVar);

fileio.puth128Size stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)

fill :char

ESP+20

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 388 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the character is in a register (AL):

fileio.puti8(fileHandle, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
call fileio.puti8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call fileio.puti8;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume byteVar is in AL
call fileio.puti8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call fileio.puti8;
Released to the Public Domain Page 389

HLA Standard Library
fileio.puti8Size (Handle:dword; b:byte; width:int32; fill:char)

This function writes the eight-bit signed integer value you pass to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

fileio.puti8Size(fileHandle, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
push(width);
push((type dword padChar));
call fileio.puti8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puti8Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);
push(eax);

fileio.puti8 stack diagram

Return Address

Byte

0123

ESP

ESP+4

b :byteESP+8

Handle :dword
Page 390 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(byteVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti8Size;

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call fileio.puti8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call fileio.puti8Size;

fileio.puti16(Handle:dword; w:word)

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.puti8Size stack diagram

Return Address

Byte

0123

b :byte

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Released to the Public Domain Page 391

HLA Standard Library
fileio.puti16(fileHandle, wordVar);

// If the word is in a register (AX):

fileio.puti16(fileHandle, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
call fileio.puti16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call fileio.puti16;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti16;

// If the word value is in a 16-bit register
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume wordVar is in AX
call fileio.puti16;
Page 392 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.puti16Size(Handle:dword; w:word; width:int32; fill:char)

This function writes the 16-bit signed integer value you pass to the specified output file using the width and
fill values as specified above.

HLA high-level calling sequence examples:

fileio.puti16Size(fileHandle, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
push(width);
push((type dword padChar));
call fileio.puti16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puti16Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);

fileio.puti16 stack diagram

Return Address

Byte

0123

w :word

Handle :dword

ESP

ESP+4

ESP+8
Released to the Public Domain Page 393

HLA Standard Library
sub(12, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti16Size;

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call fileio.puti16Size;

fileio.puti32(Handle:dword; d:dword)

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.puti32(fileHandle, dwordVar);

// If the dword is in a register (EAX):

fileio.puti32(fileHandle, eax);

HLA low-level calling sequence examples:

fileio.puti16Size stack diagram

Return Address

Byte

0123

w :word

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 394 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(fileHandle);
push(dwordVar);
call fileio.puti32;

push(fileHandle);
push(eax);
call fileio.puti32;

fileio.puti32Size(Handle:dword; d:dword; width:int32; fill:char)

This function writes the 32-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

fileio.puti32Size(fileHandle, dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

fileio.puti32Size(fileHandle, eax, width, cl);

HLA low-level calling sequence examples:

push(fileHandle);
push(dwordVar);
push(width);
pushd(‘ ‘);
call fileio.puti32Size;

push(fileHandle);
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.puti32Size;

// Assume fill char is in CH

push(fileHandle);
push(eax);

fileio.puti32 stack diagram

Return Address

Byte

0123

ESP

ESP+4

d :dwordESP+8

Handle :dword
Released to the Public Domain Page 395

HLA Standard Library
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.puti32Size;

// Alternate method of the above

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puti32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puti32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puti32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti32Size;
Page 396 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 fileio.puti64(Handle:dword; q:qword)

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.puti64(fileHandle, qwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call fileio.puti64;

fileio.puth32Size stack diagram

Return Address

Byte

0123

d :dword

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

fileio.puti64 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 397

HLA Standard Library
fileio.puti64Size(Handle:dword; q:qword; width:int32; fill:char)

This function writes the 64-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

fileio.puti64Size(fileHandle, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.puti64Size;

push(fileHandle);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.puti64Size;

// Assume fill char is in CH

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.puti64Size;

// Alternate method of the above

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puti64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puti64Size;
Page 398 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puti64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.puti64Size;

fileio.puti128(Handle:dword; l:lword)

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.puti128(fileHandle, lwordVar);

fileio.puti64Size stack diagram

Return Address

Byte

0123

q :qword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
q (H.O. dword)

q (L.O. dword)

fill :charESP+20
Released to the Public Domain Page 399

HLA Standard Library
HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call fileio.puti128;

fileio.puti128Size(Handle:dword; l:lword; width:int32; fill:char)

This function writes the 128-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

fileio.puti128Size(fileHandle, lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.puti128Size;

// Assume fill char is in CH

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first

fileio.puti128 stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)ESP+20

l (L.O. dword)
Page 400 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.puti128Size;

// Alternate method of the above

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.puti128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.puti128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.puti128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
Released to the Public Domain Page 401

HLA Standard Library
pop(eax);
call fileio.puti128Size;

 15.3.5 Unsigned Integer Output Routines
These routines convert unsigned integer values to string format and write that string to the file specified by

the Handle parameter. The fileio.putxxxSize functions contain width and fill parameters that let you specify the
minimum field width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

fileio.putu8 (Handle:dword; b:byte)

This function converts the eight-bit unsigned integer you pass as a parameter to a string and writes this string
to the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.putu8(fileHandle, byteVar);

fileio.puti128Size stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)

fill :char

ESP+20

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 402 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the character is in a register (AL):

fileio.putu8(fileHandle, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
call fileio.putu8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call fileio.putu8;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume byteVar is in AL
call fileio.putu8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call fileio.putu8;
Released to the Public Domain Page 403

HLA Standard Library
fileio.putu8Size(Handle:dword; b:byte; width:int32; fill:char)

This function writes the unsigned eight-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

fileio.putu8Size(fileHandle, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword byteVar));
push(width);
push((type dword padChar));
call fileio.putu8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putu8Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);
push(eax);

fileio.putu8 stack diagram

Return Address

Byte

0123

ESP

ESP+4

b :byteESP+8

Handle :dword
Page 404 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(byteVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu8Size;

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call fileio.putu8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(fileHandle);
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call fileio.putu8Size;

fileio.putu16(Handle:dword; w:word)

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.putu16(fileHandle, wordVar);

fileio.putu8Size stack diagram

Return Address

Byte

0123

b :byte

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Released to the Public Domain Page 405

HLA Standard Library
// If the word is in a register (AX):

fileio.putu16(fileHandle, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
call fileio.putu16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call fileio.putu16;

// If no register is available, do something
// like the following code:

push(fileHandle);
sub(4, esp);
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu16;

// If the word value is in a 16-bit register
// then you can use code like the following:

push(fileHandle);
push(eax); // Assume wordVar is in AX
call fileio.putu16;
Page 406 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putu16Size(Handle:dword; w:word; width:int32; fill:char)

This function writes the unsigned 16-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

fileio.putu16Size(fileHandle, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(fileHandle);
push((type dword wordVar));
push(width);
push((type dword padChar));
call fileio.putu16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(fileHandle);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putu16Size;

// If no registers are available, do something
// like the following code:

push(fileHandle);
sub(12, esp);

fileio.putu16 stack diagram

Return Address

Byte

0123

w :word

Handle :dword

ESP

ESP+4

ESP+8
Released to the Public Domain Page 407

HLA Standard Library
push(eax);
movzx(wordVar, eax);
mov(eax, [esp+12]);
mov(width, eax);
mov(eax, [esp+8]);
movzx(padChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu16Size;

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(fileHandle);
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call fileio.putu16Size;

fileio.putu32(Handle:dword; d:dword)

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.putu32(fileHandle, dwordVar);

// If the dword is in a register (EAX):

fileio.putu32(fileHandle, eax);

HLA low-level calling sequence examples:

push(fileHandle);

fileio.putu16Size stack diagram

Return Address

Byte

0123

w :word

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 408 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(dwordVar);
call fileio.putu32;

push(fileHandle);
push(eax);
call fileio.putu32;

fileio.putu32Size(Handle:dword; d:dword; width:int32; fill:char)

This function writes the unsigned 32-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

fileio.putu32Size(fileHandle, dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

fileio.putu32Size(fileHandle, eax, width, cl);

HLA low-level calling sequence examples:

push(fileHandle);
push(dwordVar);
push(width);
pushd(‘ ‘);
call fileio.putu32Size;

push(fileHandle);
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.putu32Size;

// Assume fill char is in CH

push(fileHandle);
push(eax);

fileio.putu32 stack diagram

Return Address

Byte

0123

ESP

ESP+4

d :dwordESP+8

Handle :dword
Released to the Public Domain Page 409

HLA Standard Library
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.putu32Size;

// Alternate method of the above

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.putu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.putu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu32Size;
Page 410 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putu64(Handle:dword; q:qword)

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.putu64(fileHandle, qwordVar);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call fileio.putu64;

fileio.putu32Size stack diagram

Return Address

Byte

0123

d :dword

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

fileio.putu64 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 411

HLA Standard Library
fileio.putu64Size(Handle:dword; q:qword; width:int32; fill:char)

This function writes the unsigned 64-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

fileio.putu64Size(fileHandle, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.putu64Size;

push(fileHandle);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call fileio.putu64Size;

// Assume fill char is in CH

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.putu64Size;

// Alternate method of the above

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.putu64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putu64Size;
Page 412 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.putu64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call fileio.putu64Size;

fileio.putu128(Handle:dword; l:lword)

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the file (specified by Handle) using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

fileio.putu128(fileHandle, lwordVar);

fileio.putu64Size stack diagram

Return Address

Byte

0123

q :qword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
q (H.O. dword)

q (L.O. dword)

fill :charESP+20
Released to the Public Domain Page 413

HLA Standard Library
HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call fileio.putu128;

fileio.putu128Size(Handle:dword; l:lword; width:int32; fill:char)

This function writes the unsigned 128-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

fileio.putu128Size(fileHandle, lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call fileio.putu128Size;

// Assume fill char is in CH

push(fileHandle);

fileio.putu128 stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)ESP+20

l (L.O. dword)
Page 414 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call fileio.putu128Size;

// Alternate method of the above

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call fileio.putu128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call fileio.putu128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call fileio.putu128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(fileHandle);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
Released to the Public Domain Page 415

HLA Standard Library
mov(eax, [esp+4]);
pop(eax);
call fileio.putu128Size;

 15.3.6 Floating Point Output Routines
The HLA file I/O class provides several procedures you can use to write floating point files to a text file.

The following subsections describe these routines.

 15.3.6.1 Real Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the file that the Handle parameter specifies. There are two
generic classes of these routines: those that convert their values to exponential/scientific notation and those that
convert their string to a decimal form.

The fileio.pute80, fileio.pute64, and fileio.pute32 routines convert their values to a string using scientific
notation. These three routines each have two parameters: the value to output and the field width of the result.
These routines produce a string with the following format:

fileio.pute32(Handle:dword; r:real32; width:uns32)

This function writes the 32-bit single precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a

fileio.putu128Size stack diagram

Return Address

Byte

0123

l :lword

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

l (H.O. dword)

fill :char

ESP+20

l (L.O. dword)

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Page 416 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a width value
that yeilds more than seven mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

fileio.pute32(fileHandle, r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
fileio.pute32(fileHandle, r32Temp, 12);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword r32Var));
push(width);
call fileio.pute32;

push(fileHandle);
sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
call fileio.pute32;

fileio.pute64(Handle:dword; r:real64; width:uns32)

This function writes the 64-bit double precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 64-bit double precision floating point values support about 15 significant digits. So a width value that
yeilds more than 15 mantissa digits will produce garbage output in the low order digits of the number.

fileio.pute32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12

e32 :real32

width :uns32
Released to the Public Domain Page 417

HLA Standard Library
HLA high-level calling sequence examples:

fileio.pute64(fileHandle, r64Var, width);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
fileio.pute64(fileHandle, r64Temp, 12);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword r64Var[4]));
push((type dword r64Var[0]));
push(width);
call fileio.pute64;

push(fileHandle);
sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
call fileio.pute64;

fileio.pute80(Handle:dword; r:real80; width:uns32)

This function writes the 80-bit extended precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 80-bit extended precision floating point values support about 18 significant digits. So a width value that
yeilds more than 18 mantissa digits will produce garbage output in the low order digits of the number.

fileio.pute64 stack diagram

Return Address

Byte

0123

e64 :real64

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
e64 (H.O. dword)

e64 (L.O. dword)
Page 418 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

fileio.pute80(fileHandle, r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
fileio.pute80(fileHandle, r80Temp, 12);

HLA low-level calling sequence examples:

push(fileHandle);
pushw(0); // A word of padding.
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var[0]));
push(width);
call fileio.pute80;

push(fileHandle);
sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
call fileio.pute80;

fileio.pute80 stack diagram

Return Address

Byte

0123

Handle :dword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20
r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)
Released to the Public Domain Page 419

HLA Standard Library
 15.3.6.2 Real Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA fileio module also provides a set of
functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions come in two varieties. The first variety requires five parameters: the real value to convert,
the width of the converted value, the number of digit positions to the right of the decimal point, and a padding
character. The second variety only requires the first four parameters and assumes the padding character is a
space. These functions write their values using the following string format:

fileio.putr32(Handle:dword; r:real32; width:uns32; decpts:uns32; pad:char)

This procedure writes a 32-bit single precision floating point value to the filevar file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters. The number is right-justified within the output field (that is, this function prints the padding
characters before the string representation of the number).

HLA high-level calling sequence examples:

fileio.putr32(fileHandle, r32Var, width, decpts, fill);
fileio.putr32(fileHandle, r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
fileio.putr32(fileHandle, r32Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword r32Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call fileio.putr32;

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Page 420 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(fileHandle);
push((type dword r32Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call fileio.putr32;

push(fileHandle);
sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call fileio.putr32;

fileio.putr64(Handle:dword; r:real64; width:uns32; decpts:uns32; pad:char)

This procedure writes a 64-bit double precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

fileio.putr64(fileHandle, r64Var, width, decpts, fill);
fileio.putr64(fileHandle, r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.

fileio.putr32 stack diagram

Return Address

Byte

0123

r32 :real32

Handle :dword

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16 decpts :uns32

ESP+20
Released to the Public Domain Page 421

HLA Standard Library
.
fstp(r64Temp);
fileio.putr64(fileHandle, r64Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(fileHandle);
push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call fileio.putr64;

push(fileHandle);
push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call fileio.putr64;

push(fileHandle);
sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call fileio.putr64;

fileio.putr64 stack diagram

Return Address

Byte

0123

r64 :real64

Handle :dword

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
r64 (H.O. dword)

r64 (L.O. dword)

decpts :uns32ESP+20

ESP+24
Page 422 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.putr80(Handle:dword; r:real80; width:uns32; decpts:uns32; pad:char)

This procedure writes an 80-bit extended precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

fileio.putr80(fileHandle, r80Var, width, decpts, fill);
fileio.putr80(fileHandle, r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
fileio.putr80(fileHandle, r80Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(fileHandle);
pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call fileio.putr80;

push(fileHandle);
pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call fileio.putr80;

push(fileHandle);
sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call fileio.putr80;
Released to the Public Domain Page 423

HLA Standard Library
 15.3.7 Generic File Output Routine

fileio.put(list_of_items)

fileio.put is a macro that automatically invokes an appropriate fileio output routine based on the type of the
parameter(s) you pass it. This is a very convenient output routine and is probably the fileio output call you will
use most often in your programs. Keep in mind that this macro is not a single function call; instead, HLA
translates this macro into a sequence of calls to procedures like fileio.putu32, fileio.puts, etc.

fileio.put is a macro that provides a flexible syntax for outputting data to the standard output device. This
macro allows a variable number of parameters. For each parameter present in the list, fileio.put will call the
appropriate routine to emit that data, according to the type of the parameter. Parameters may be constants,
registers, or memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of fileio.put:

fileio.put(fileHandle, "I=", i, " j=", j, nl);

The above is roughly equivalent to

fileio.puts(fileHandle, "I=");
fileio.putu32(fileHandle, i);
fileio.puts(fileHandle, " j=");
fileio.putu32(fileHandle, j);
fileio.newln(fileHandle);

This assumes, of course, that i and j are int32 variables.
The fileio.put macro also lets you specify the minimum field width for each parameter you specify. To print

a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

fileio.put(fileHandle, "I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

fileio.putr80 stack diagram

Return Address

Byte

0123

Handle :dword

width :uns32

pad :char

decpts :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20
r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+24

ESP+28
Page 424 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

fileio.put(fileHandle, "Real value is ", f:10:3, nl);

The fileio.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, lword).

If you specify a class variable (object) and that class defines a "toString" method, then fileio.put macro will
call the associated toString method and output that string to the file. Note that the toString method must
dynamically allocate storage for the string by calling stralloc. This is because fileio.put will call strfree on the
string once it outputs the string.

There is a known "design flaw" in the fileio.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and fileio.put cannot determine if you want to print reg32 using varname print positions versus
simply printing the non-local varname object. If you want to display non-local variables you must copy the non-
local object into a register, a static variable, or a local variable prior to using fileio.put to print it. Of course, there
is no problem using the other fileio.putXXXX functions to display non-local VAR objects, so you can use those as
well.

15.4 File Input Routines
The HLA Standard Library provides a complementary set of file input routines. These routines behave in a

fashion quite similar to the stdin.XXXX routines. See those routines for a additional examples of these procedures.

 15.4.1 General File Input Routines

 fileio.read(Handle:dword; var buffer:byte; count:uns32)

This routine reads a sequence of count bytes from the specified file, storing the bytes into memory at the
address specified by buffer.

HLA high-level calling sequence examples:

fileio.read(fileHandle, buffer, count);
fileio.read(fileHandle, [eax], 1024);

HLA low-level calling sequence examples:

// If buffer is a static variable:

push(fileHandle);
pushd(&buffer);
push(count);
call fileio.read;

// If buffer is not static, 32-bit register available:

push(fileHandle);
lea(eax, buffer);
push(eax);
push(count);
call fileio.read;

// If buffer is not static, no register available:

push(fileHandle);
sub(4, esp);
Released to the Public Domain Page 425

HLA Standard Library
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call fileio.read;

fileio.readLn(Handle:dword);

This function reads, and discards, all characters in the file up to the next newline sequence (or end of file).

HLA high-level calling sequence examples:

fileio.readLn(fileHandle);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.readLn;

fileio.read stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

ESP+8

ESP+12

buffer :ptr

count :uns32
Page 426 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.eoln(Handle:dword); @returns("al");

This function returns true (1) in EAX if the file is at the end of a line (note that the "returns" value is "al"
even though this function returns its result in all of EAX). This function eats the newline sequence from the
input.

HLA high-level calling sequence examples:

fileio.eoln(fileHandle);
mov(al, eolnVar);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.eoln;
mov(al, eolnVar);

fileio.readLn stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

fileio.eoln stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 427

HLA Standard Library
 15.4.2 Character and String Input Routines
The following functions read character data from an input file specified by filevar. Note that HLA’s fileio

module does not provide the ability to read character set data directly from the user. However, you can always
read a string and then convert that string to a character set using the appropriate function in the cset module.

fileio.getc(Handle:dword); @returns("al");

This function reads a single character from the file and returns that chraacter in the AL register. This
function assumes that the file you’ve opened is a text file. Note that fileio.getc does not return the end of line
sequence as part of the input stream. Use the fileio.eoln function to determine when you’ve reached the end of a
line of text. Because fileio.getc preprocesses the text file (removing end of line sequences) you should not use it
to read binary data, use it only to read text files.

fileio.gets(Handle:dword; s:string);

This function reads a sequence of characters from the current file position through to the next end of line
sequence and stores these characters (without the end of line sequence) into the string variable you pass as a
parameter. Before calling this routine, you must allocate sufficient storage for the string. If fileio.gets attempts to
read a larger string than the string’s MaxStrLen value, fileio.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a fileio function will read from the file will be the first character of the
following line.

If the current file position is at the end of some line of text, then fileio.gets consumes the end of line and
stores the empty string into the s parameter.

HLA high-level calling sequence examples:

fileio.gets(fileHandle, inputStr);
fileio.gets(fileHandle, eax); // EAX contsins string value

HLA low-level calling sequence examples:

push(fileHandle);
push(inputStr);
call fileio.gets;

push(fileHandle);
push(eax);
call fileio.gets;

fileio.getc stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 428 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.a_gets(Handle:dword); @returns("eax");

Like fileio.gets, this function also reads a string from the file. However, rather than storing the string data
into a string you supply, this function allocates storage for the string on the heap and returns a pointer to this
string in the EAX register. You code should call strfree to release this storage when you’re done with the string
data.

The fileio.a_gets function imposes a line length limit of 1,024 characters. If this is a problem, you should
modify the source code for this function to raise the limit. This functions raises an exception if you attempt to
read a line longer than this internal limit.

HLA high-level calling sequence examples:

fileio.a_gets(fileHandle);
mov(eax, inputStr);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.a_gets;
mov(eax, inputStr);

fileio.gets stack diagram

Return Address

Byte

0123

ESP

ESP+4

s :stringESP+8

Handle :dword

fileio.a_gets stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 429

HLA Standard Library
 15.4.3 Signed Integer Input Routines

fileio.geti8(Handle:dword); @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal digits.
The number must end with a valid delimiter character or the end of the file. This function allows underscores in
the interior of the number. The fileio.geti8 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range -128..+127. This function returns the binary form of the integer in
the AL register.

HLA high-level calling sequence examples:

fileio.geti8(fileHandle);
mov(al, i8Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geti8;
mov(al, i8Var);

fileio.geti16(Handle:dword); @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal digits.
The number must end with a valid delimiter character or the end of the file. This function allows underscores in
the interior of the number. The fileio.geti16 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range -32768..+32767. This function returns the binary form of the integer
in the AX register.

HLA high-level calling sequence examples:

fileio.geti16(fileHandle);
mov(ax, i16Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geti16;

fileio.geti8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 430 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(ax, i16Var);

fileio.geti32(Handle:dword); @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The fileio.geti32 function raises an appropriate exception if the input
violates any of these rules or the value is outside the range plus or minus two billion. This function returns the
binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

fileio.geti32(fileHandle);
mov(eax, i32Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geti32;
mov(eax, i32Var);

fileio.geti16 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 431

HLA Standard Library
fileio.geti64(Handle:dword);

This function reads a signed 64-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The fileio.geti64 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in EDX:EAX.

HLA high-level calling sequence examples:

fileio.geti64(fileHandle);
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geti64;
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));

fileio.geti32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 432 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.geti128(Handle:dword; var dest:lword);

This function reads a signed 128-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The fileio.geti128 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range of a 128-bit signed integer. This function stores the 128-bit result in the lword you
pass as a reference parameter.

HLA high-level calling sequence examples:

fileio.geti128(fileHandle, lwordVar);

HLA low-level calling sequence examples:

// If lwordVar is a static variable:

push(fileHandle);
pushd(&lwordVar);
call fileio.geti128;

// If lwordVar is a not static variable
// and a 32-bit register is available:

push(fileHandle);
lea(eax, lwordVar); // Assume EAX is available
push(eax);
call fileio.geti128;

fileio.geti64 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 433

HLA Standard Library
 15.4.4 Unsigned Integer Input Routines

fileio.getu8(Handle:dword); @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The fileio.getu8 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..255. This function returns the binary form of the integer in the AL register.

HLA high-level calling sequence examples:

fileio.getu8(fileHandle);
mov(al, u8Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.getu8;
mov(al, u8Var);

fileio.geti128 stack diagram

Return Address

Byte

0123

ESP

ESP+4

var l :lword (ptr)ESP+8

Handle :dword

fileio.getu8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 434 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.getu16(Handle:dword); @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The fileio.getu16 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..65535. This function returns the binary form of the integer in the AX register.

HLA high-level calling sequence examples:

fileio.getu16(fileHandle);
mov(ax, u16Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.getu16;
mov(ax, u16Var);

fileio.getu32(Handle:dword); @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file. This function allows underscores in the interior of
the number. The fileio.getu32 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..4,294,967,295. This function returns the binary form of the integer in the EAX
register.

HLA high-level calling sequence examples:

fileio.getu32(fileHandle);
mov(eax, u32Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.getu32;

fileio.getu16 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 435

HLA Standard Library
mov(eax, u32Var);

fileio.getu64(Handle:dword);

This function reads an unsigned 64-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
fileio.getu64 function raises an appropriate exception if the input violates any of these rules or the value is outside
the range 0..264-1. This function returns the binary form of the integer in the the EDX:EAX registers.

fileio.getu128(Handle:dword; var dest:lword);

This function reads an unsigned 128-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
fileio.getu128 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..2128-1. This function returns the binary form of the integer in the lword parameter you pass
by reference.

HLA high-level calling sequence examples:

fileio.getu16 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword

fileio.getu32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 436 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.getu64(fileHandle);
mov(edx, (type dword u64Var[4]));
mov(eax, (type dword u64Var[0]));

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.getu64;
mov(edx, (type dword u64Var[4]));
mov(eax, (type dword u64Var[0]));

 15.4.5 Hexadecimal Input Routines

fileio.geth8(Handle:dword); @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the file. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details
on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not
have a leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
fileio.geth function raises an appropriate exception if the input violates any of these rules or the value is outside
the range 0..$FF. This function returns the binary form of the value in the AL register.

HLA high-level calling sequence examples:

fileio.geth8(fileHandle);
mov(al, h8Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geth8;
mov(al, h8Var);

fileio.getu128 stack diagram

Return Address

Byte

0123

ESP

ESP+4

var l :lword (ptr)ESP+8

Handle :dword
Released to the Public Domain Page 437

HLA Standard Library
fileio.geth16(Handle:dword); @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the file. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not
have a leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
fileio.geth16 function raises an appropriate exception if the input violates any of these rules or the value is outside
the range 0..$FFFF. This function returns the binary form of the value in the AX register (zero-extended into
EAX).

HLA high-level calling sequence examples:

fileio.geth16(fileHandle);
mov(ax, h16Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geth16;
mov(ax, h16Var);

fileio.geth8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 438 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.geth32(Handle:dword); @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The fileio.geth32 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value in the EAX
register.

HLA high-level calling sequence examples:

fileio.geth32(fileHandle);
mov(eax, h32Var);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geth32;
mov(eax, h32Var);

fileio.geth16 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 439

HLA Standard Library
fileio.geth64(Handle:dword);

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the file.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note
that the value may not have a leading "$" unless you add this character to the delimiter character set. The number
must end with a valid delimiter character or the end of the file. This function allows underscores in the interior of
the number. The fileio.geth64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF. This function returns the 64-bit result in the
EDX:EAX register pair.

HLA high-level calling sequence examples:

fileio.geth64(fileHandle);
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.geth64;
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

fileio.geth32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Page 440 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fileio.geth128(Handle:dword; var dest:lword);

This function reads a 128-bit hexadecimal integer in the range zero through
$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the file. The number may begin with any number of
delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by a string of one or more hexadecimal digits. Note that the value may not have a leading
"$" unless you add this character to the delimiter character set. The number must end with a valid delimiter
character or the end of the file. This function allows underscores in the interior of the number. The fileio.geth128
function raises an appropriate exception if the input violates any of these rules or the value is outside the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF. This function stores the 128-bit result into the
variable you pass as a reference parameter.

HLA high-level calling sequence examples:

fileio.geth128(fileHandle, lwordVar);

HLA low-level calling sequence examples:

// If lwordVar is a static variable:

push(fileHandle);
pushd(&lwordVar);
call fileio.geth128;

// If lwordVar is a not static variable
// and a 32-bit register is available:

push(fileHandle);
lea(eax, lwordVar); // Assume EAX is available
push(eax);
call fileio.geth128;

fileio.geth32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 441

HLA Standard Library
 15.4.6 Floating Point Input

fileio.getf(Handle:dword);

This function reads an 80-bit floating point value in either decimal or scientific from from the file and leaves
the result sitting on the FPU stack. The number may begin with any number of delimiter characters (see the
conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an optional
minus sign and a sequence of characters that represent a floating point value. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. This
function raises an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

fileio.getf(fileHandle);
fstp(fpVar);

HLA low-level calling sequence examples:

push(fileHandle);
call fileio.getf;
fstp(fpVar);

fileio.geth128 stack diagram

Return Address

Byte

0123

ESP

ESP+4

var l :lword (ptr)ESP+8

Handle :dword
Page 442 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 15.4.7 Generic File Input

fileio.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The fileio.get macro reads
an input value for each item in the list and stores the resulting value in each corresponding variable. This macro
determines the type of each variable that you pass it and emits a call to the appropriate fileio.getxxx function to
read the actual value. As an example, consider the following call to filevar.get:

fileio.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:
push(eax);
fileio.geti32(i32);
fileio.getc();
mov(al, charVar);
fileio.geti16();
mov(ax, u16);
fileio.gets(strVar);
pop(eax);

Notice that fileio.get preserves the value in the EAX and EDX registers even though various fileio.getxxx
functions use these registers. Note that fileio.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that fileio.get supports eight-bit, 16-bit, 32-bit, 64-bit, and 128-bit input values. It automatically selects
the approriate input routine based on the type of the variable you specify.

fileio.getf stack diagram

Return Address

Byte

0123

ESP

ESP+4 Handle :dword
Released to the Public Domain Page 443

HLA Standard Library
Page 444 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
16 The File System Module (filesys.hhf)

The filesys functions perform file system manipulations (as opposed to the fileio package that operates on
files).

16.1 Filename and Pathname String Functions
These functions test and manipulate pathname strings. Most of them do not do any actual file system access,

they simply modify a string passed to them.
The file and pathname string functions are relatively OS-neutral. As long as you avoid a few OS-specific

filename features (such as Win32 drive letter prefixes and the use of backslash [‘\’] characters in Unix-like OS
filenames), you’ll find that these functions are highly portable between various operating systems. These
functions automatically convert pathname separator characters to the native OS (except for the functions that
explicitly produce Win32-style or Unix-style pathnames). So you can write applications that process pathnames
and automatically work with whatever OS the application is running under.

This documentation will use the standard UNIX ‘/’ pathname separator character. Anywhere you see a "/"
used in the following examples, just note that you can also use a "\" and the function will still work properly (you
can even have a mixture of these two separator characters in the same pathname string and the function will
accept this). Keep in mind that most filesys pathname functions will convert all ‘/’ and ‘\’ characters to the native
directory separator character; take care if you expect to process Win32 filenames under a UNIX-like OS and you
need to keep the Win32 separator characters.

For the purposes of the filesys string functions, a pathname is considered to contain up to five components: a
UNC prefix, a path component, a filename component, a basename component, and an extension. These
components are not necessarily unique (that is, some of them overlap one another). Not all pathnames contain all
of these components. Consider the following valid pathname string:

fsType://computerName/SharedFolder/path1/path2/base.ext

This example pathname contains the following components:
UNC: fsType://computerName/SharedFolder
path: fsType://computerName/SharedFolder/path1/path2
filename:base.ext
basename:base
extensionext

UNC (Universal Naming Convention) names take two basic forms:
//computerName/sharedFolderName
fsType://computerName/sharedFolderName

UNC names contain an optional file system type name followed by a colon. All UNC names contain ‘//’
followed by a computer name which is then followed by a ‘/’ and a shared folder name.

Path components consist of everything to the left of the last ‘/’ appearing in a path name string. Note that a
UNC component is also part of a path component. Indeed, if a UNC immediately precedes a filename, then the
UNC sequence is the path component (note, however, that a path component may include other subdirectory
names in addition to the UNC character sequence). If there is nothing to the left of the last (i.e., only) ‘/’ in a
pathname string, then the "/" is the path component.

The filename component is everything appearing to the right of the last ‘/’ character in the pathname string,
or the whole pathname string if there is no ‘/’ character in the pathname string.

The basename and extension components are part of the filename. If the filename contains at least one
period and that period is not the first character of the filename, then everything to the left of the (last) period is
the basename and everything to the right of the (last) period is the extension. If a filename contains multiple
periods, then everything up to (but not including) the last period is the basename. If the filename contains only
one period and it begins with that period, then the filename has no extension and the basename is equal to the
filename. Likewise, if a filename contains no periods at all, it has no extension and the basename is equal to the
filename.

procedure filesys.hasDriveLetter(pathname:string); @returns("@c");

This function returns the Win32 drive letter if the pathname argument begins with a single alphabetic
character, immediately followed by a colon (‘:’) and the colon is not immediately followed by a pair of slashes
Released to the Public Domain Page 445

HLA Standard Library
(indicating a UNC name). Drive letters are Win32-specific, although this function can be called on any pathname
string. If a drive letter is present, this function returns the drive letter in AL, converted to uppercase, and also
returns with the carry flag set. If there is no drive letter at the beginning of the name (or if it looks like a UNC
name), then this function returns with EAX containing zero and the carry flag clear.

Note that the function "returns" value for this function is "@c" (that is, the carry flag) and not "AL". This
allows you to use the function call within a boolean expression (e.g., in an "if" statement) and test for true/false
return values.

HLA high-level calling sequence examples:

if(filesys.hasDriveLetter(somePath)) then

stdout.put("Drive is ", (type char al), nl);
str.delete(somePath, 0, 2);// Delete the drive letter

endif;

HLA low-level calling sequence example:

push(somePath);
call filesys.hasDriveLetter;
jnc noDriveLetter;

push(somePath);
pushd(0);
pushd(2);
call str.delete;

noDriveLetter:

procedure filesys.hasExtension(pathname:string); @returns("@c");

This function returns true if the filename component of the pathname argumen contains an extension. An
extension is the last part of a pathname following the last period in the filename. Note that if a filename begins
with a period and that is the only period in the filename, then the following characters are not an extension (and
the extension is the empty string for such a name). Note that periods found in the path to the filename are not
considered when this function searches for the extension. Extensions only belong to filename components, not to
path components.

Examples:
filesys.hasExtension("/path/file.ext");// true, extension = "ext"
filesys.hasExtension("file");// false
filesys.hasExtension(".ext");// false
filesys.hasExtension("file.ext");// true, extension = "ext"
filesys.hasExtension("file.abc.ext");// true, extension = "ext"
filesys.hasExtension("..ext");// true, extension = "ext"
filesys.hasExtension("path.ext/file");// false

The true/false result is returned both in the carry flag and in the EAX/AX/AL
register. The carry flag is set if the argument has an extension, it is clear
otherwise. Similarly, true (1) is returned in EAX/AX/AL if the argument has an
extension, false (0) is returned otherwise.

HLA high-level calling sequence examples:

filesys.hasExtension(somePath);
mov(al, somePathHasExtension);
if(@c) then

<< do something if somePath has an extension >>
Page 446 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
endif;

HLA low-level calling sequence example:

push(somePath);
call filesys.hasExtension;
jnc noExtension;

<< Do something if somePath has an extension>>

noExtension:

procedure filesys.hasUncName(pathname:string); @returns("@c");

This function tests the pathname argument to see if it begins with a UNC (universal naming convention)
pathname prefix. UNC prefixes take one of two forms (as far as this code is concerned):

//computername/sharedfolder/<path>
<type>://computername/sharedfolder/<path>

<type> can be any string of filename-compatible characters (length one or greater), such as ‘file’, ‘smb’, and
so on. <path> may be any OS-compatible pathname of length zero or greater (up to the maximum length
supported by the native OS). Portable code should not allow the pathname string (including the UNC) to except
about 250 characters.

This function returns true or false in the carry flag indicating whether a UNC, if present, is syntactically
correct. That is, this function returns carry clear if there is something that looks like a UNC but is syntactically
illegal. Note that a pathname, without an explicit "//computername/sharedfolder/" prefix is still a syntactically
correct pathname as far as this function is concerned. That is, this function returns true for pathnames like
"name" or "/path/name" even though an explicit UNC item is not present.

This function returns information about the UNC prefix in the EAX register. If this function returns with
EAX equal to zero and the carry set, then there is no UNC present in the pathname. If this function returns with
EAX containing a value other than zero (and the carry flag set), then a UNC is present and EAX contains an
offset into the string that is the start of the pathname just beyond the end of the UNC sequence (i.e., beyond the ‘/
’ or ‘\’ that marks the end of the UNC name).

Note: on failure (carry = 0), EAX will be returned containing zero.

HLA high-level calling sequence examples:

if(filesys.hasUncName(somePath) && eax <> 0) then

str.delete(somePath, 0, eax);// Delete the UNC prefix

endif;

HLA low-level calling sequence example:

push(somePath);
call filesys.hasUncName;
jnc noUNC;
test(eax, eax);
jz noUNC;

push(somePath);
pushd(0);
push(eax);
call str.delete;
Released to the Public Domain Page 447

HLA Standard Library
noUNC:

procedure filesys.hasPath(pathname:string); @returns("@c");

This function returns true if the pathname/filename argument contains a path component. Specifically, this
function returns true if the pathname string contains any directory separator characters (‘/’ or ‘\’). True is
returned in the carry flag (set) and in the EAX/AX/AL register (1). False is carry = 0 or the EAX/AX/AL register
equals 0. Note that UNC prefixes immediately before a filename are considered ‘paths’ and this function will
return true if a UNC is present.

Examples:
filesys.hasPath("/path/file.ext");// true
filesys.hasPath("file"); // false
filesys.hasPath(".ext"); // false
filesys.hasPath("file.ext");// false
filesys.hasPath("file.abc.ext");// false
filesys.hasPath("//machine/folder/file");// true
filesys.hasPath("/"); // true

HLA high-level calling sequence examples:

filesys.hasPath(somePath);
mov(al, somePathHasAPathComponent);
if(@c) then

<< do something if somePath has a path component>>

endif;

HLA low-level calling sequence example:

push(somePath);
call filesys.hasPath;
jnc noPath;

<< Do something if somePath has a path component>>

noPath:

procedure filesys.a_extractBase(pathname:string); @returns("c");

This function extracts and returns the base component of a filename. This function allocates storage for the
returned basename on the heap and returns a pointer to that string in the EAX register. If a basename exists, this
function returns true in the carry flag (set). If no basename exists (e.g., when the filename ends with ‘/’ so it
contains no filename component or if the pathname argument is the empty string), then this function returns a
pointer to an empty string allocated on the heap in EAX and it returns with the carry flag clear. It is the caller’s
responsibility to free the storage associated with the string when the caller is done using that string.

Note that this function’s "returns" value is "@c", not EAX. This allows you to use this function in an HLA
boolean expression (e.g., in an "if" statement) to test whether the basename is actually valid (that is, it’s not an
empty string). Don’t forget that you still have to free the storage associated with the string, even if it is the empty
string.

HLA high-level calling sequence examples:

filesys.a_extractBase(somePath);
Page 448 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(eax, basePtr);
if(@c) then

<<do something with the basename pointed at by basePtr>>

endif;
str.free(basePtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_extractBase;
mov(eax, basePtr);
jnc noPath;

<< Do something if somePath has a path component>>

noPath:
str.free(basePtr);

procedure filesys.extractBase(pathname:string; base:string);
@returns("c");

This function extracts and returns the base component of a filename. It extracts the base filename from the
pathname argument and stores the result into the string storage pointed at by the base argument. The base
argument must point at allocated storage sufficient to hold the base name string or this function will raise an
exception. This function returns with the carry flag set if it finds (and copies) a basename component of the
pathname. It returns with the carry flag clear if there is no base name component (which implies that pathname
ends wth a ‘/’ character or is the empty string).

HLA high-level calling sequence examples:

filesys.extractBase(somePath, baseName);
if(@c) then

<<do something with the basename held in baseName>>

endif;

HLA low-level calling sequence example:

push(somePath);
push(baseName);
call filesys.extractBase;
jnc noPath;

<< Do something if somePath has a path component>>

noPath:
Released to the Public Domain Page 449

HLA Standard Library
procedure filesys.a_extractExt(pathname:string); @returns("c");

This function extracts and returns the extension component of a filename. This function allocates storage
for the returned extension on the heap and returns a pointer to that string in the EAX register. If an extension
exists, this function returns true in the carry flag (set). If no extension exists (e.g., when the filename component
contains no periods), then this function returns a pointer to an empty string allocated on the heap in EAX and it
returns with the carry flag clear. It is the caller’s responsibility to free the storage associated with the string when
the caller is done using that string.

Note that this function’s "returns" value is "@c", not EAX. This allows you to use this function in an HLA
boolean expression (e.g., in an "if" statement) to test whether the extension is actually valid (that is, it’s not an
empty string). Don’t forget that you still have to free the storage associated with the string, even if it is the empty
string.

HLA high-level calling sequence examples:

filesys.a_extractExt(somePath);
mov(eax, extPtr);
if(@c) then

<<do something with the extension pointed at by extPtr>>

endif;
str.free(extPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_extractExt;
mov(eax, extPtr);
jnc noPath;

<< Do something if somePath has an extension component>>

noPath:
str.free(extPtr);

procedure filesys.extractExt(pathname:string; ext:string); @returns("c");

This function extracts and returns the extension component of a filename. It extracts the extension from the
pathname argument and stores the result into the string storage pointed at by the ext argument. The ext argument
must point at allocated storage sufficient to hold the extension string or this function will raise an exception.
This function returns with the carry flag set if it finds (and copies) an extension component of the pathname. It
returns with the carry flag clear if there is no extension component (which implies that filename component
contains no periods or is the empty string).

HLA high-level calling sequence examples:

filesys.extractExt(somePath, extName);
if(@c) then

<<do something with the extension held in extName>>

endif;

HLA low-level calling sequence example:

push(somePath);
Page 450 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(extName);
call filesys.extractExt;
jnc noPath;

<< Do something if somePath has an extension component>>

noPath:

procedure filesys.a_extractFilename(pathname:string); @returns("c");

This function extracts and returns the filename component of a pathname. This function allocates storage
for the returned filename on the heap and returns a pointer to that string in the EAX register. If a filename
component exists, this function returns true in the carry flag (set). If no filename exists (e.g., when the pathname
ends with a ‘/’ or is the empty string), then this function returns a pointer to an empty string allocated on the heap
in EAX and it returns with the carry flag clear. It is the caller’s responsibility to free the storage associated with
the string when the caller is done using that string.

Note that this function’s "returns" value is "@c", not EAX. This allows you to use this function in an HLA
boolean expression (e.g., in an "if" statement) to test whether the filename is actually valid (that is, it’s not an
empty string). Don’t forget that you still have to free the storage associated with the string, even if it is the empty
string.

HLA high-level calling sequence examples:

filesys.a_extractFilename(somePath);
mov(eax, fnPtr);
if(@c) then

<<do something with the filename pointed at by fnPtr>>

endif;
str.free(fnPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_extractFilename;
mov(eax, fnPtr);
jnc noPath;

<< Do something if somePath has a filename component>>

noPath:
str.free(fnPtr);

procedure filesys.extractFilename(pathname:string; filename:string);
@returns("c");

This function extracts and returns the filename component of a pathname. It extracts the filename from the
pathname argument and stores the result into the string storage pointed at by the filename argument. The
filename argument must point at allocated storage sufficient to hold the filename string or this function will raise
an exception. This function returns with the carry flag set if it finds (and copies) a filename component of the
pathname. It returns with the carry flag clear if there is no filename component (which implies that pathname
component ends with a ‘/’ or is the empty string).

HLA high-level calling sequence examples:
Released to the Public Domain Page 451

HLA Standard Library
filesys.extractFilename(somePath, filename);
if(@c) then

<<do something with the string held in filename>>

endif;

HLA low-level calling sequence example:

push(somePath);
push(filename);
call filesys.extractFilename;
jnc noPath;

<< Do something if somePath has a filename component>>

noPath:

procedure filesys.a_extractPath(pathname:string); @returns("c");

This function extracts and returns the path component of a pathname string. This function allocates storage
for the returned path on the heap and returns a pointer to that string in the EAX register. If a path component
exists, this function returns true in the carry flag (set). If no path component exists (e.g., when the pathname
argument contains no ‘/’ characters or is the empty string), then this function returns a pointer to an empty string
allocated on the heap in EAX and it returns with the carry flag clear. It is the caller’s responsibility to free the
storage associated with the string when the caller is done using that string.

Note that this function’s "returns" value is "@c", not EAX. This allows you to use this function in an HLA
boolean expression (e.g., in an "if" statement) to test whether the path is actually valid (that is, it’s not an empty
string). Don’t forget that you still have to free the storage associated with the string, even if it is the empty string.

HLA high-level calling sequence examples:

filesys.a_extractPath(somePath);
mov(eax, pathPtr);
if(@c) then

<<do something with the path pointed at by pathPtr>>

endif;
str.free(pathPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_extractPath;
mov(eax, pathPtr);
jnc noPath;

<< Do something if somePath has a path component>>

noPath:
str.free(pathPtr);
Page 452 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure filesys.extractPath(pathname:string; path:string);
@returns("c");

This function extracts and returns the path component of a pathname string. It extracts the path from the
pathname argument and stores the result into the string storage pointed at by the path argument. The path
argument must point at allocated storage sufficient to hold the string or this function will raise an exception. This
function returns with the carry flag set if it finds (and copies) a path component of the pathname. It returns with
the carry flag clear if there is no path component (which implies that pathname component contains no ‘/’
characters or is the empty string).

Note that the path string that this function returns will include any UNC prefixes and any Win32 drive letters
that are present in the original pathname. If you need a path result that doesn’t contain any drive letter prefixes,
call filesys.hasDriveLetter on the result and delete the first two character of the string if there is a drive letter
present. If you need a string without a UNC prefix present, then call filesys.hasUncName on the path result and
delete the first EAX characters from the path string if filesys.hasUncName reports that a UNC name is present.

HLA high-level calling sequence examples:

filesys.extractPath(somePath, pathComponent);
if(@c) then

<<do something with the string held in pathComponent >>

endif;

HLA low-level calling sequence example:

push(somePath);
push(pathComponent);
call filesys.extractPath;
jnc noPath;

<< Do something if somePath has a path component>>

noPath:

procedure filesys.a_joinPaths(leftPath:string; rightPath:string);
@returns("eax");

This function concatenates two path strings, adding a directory separator character between them (if
necessary). Because of the wide variety of special cases that can occur when concatenating two paths, this
function is fairly complex. The operation is described in the following table.

If leftPath… If rightPath… Then the resulting path
string…

Is empty Is empty Is empty.

Ends with ‘/’ Does not begin with ‘/’ Is just the concatenation of the
two strings.
Released to the Public Domain Page 453

HLA Standard Library
Note that, unlike many of the other filesys file/path string functions, this function does not return a failure/
success status in the carry flag. This function always succeeds (or it raises an exception if an exceptional
condition exists).

HLA high-level calling sequence examples:

filesys.a_joinPaths(leftPath, RightPath);
mov(eax, pathPtr);

<<do something with the path pointed at by pathPtr>>

str.free(pathPtr);

HLA low-level calling sequence example:

push(leftPath);
push(rightPath
call filesys.a_joinPaths;
mov(eax, pathPtr);

<< Do something with the string pointed at by pathPtr>>

str.free(pathPtr);

procedure filesys.joinPaths
(

leftPath:string;
rightPath:string;
joinedPath:string

);

This function combines the leftPath and rightPath strings to form a joinedPath string. For the exact details
on the concatenation operation, please see the table appearing in the description of the filesys.a_joinPaths
function. This function will raise an exception if the string storage pointed at by joinedPaths is not large enough
to hold the result. Note that the calculation for string overflow is computed as the sum of the lengths of leftPath
and rightPath plus one, even though (in some cases) the required length might need only be the sum of the
lengths of the leftPath and rightPath strings. Therefore, you should ensure that the storage allocated for the
joinedPath string is at least one character larger than the sum of the two substrings or this function may raise an
exception, even if joinedPath turns out to be large enough to hold the actual result.

Does not end with ‘/’ Begins with ‘/’ Is just the concatenation of the
two strings.

Ends with ‘/’ Begins with ‘/’ Is the concatenation of the two
strings with one of the ‘/’
characters removed.

Does not end with ‘/’ Does not begin with ‘/’ Is the concatenation of the
leftPath with ‘/’ and then the
rightPath string.
Page 454 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

filesys.joinPaths(leftPath, rightPath, newPath);

<<do something with the string held in newPath >>

HLA low-level calling sequence example:

push(leftPath);
push(rightPath);
push(newPath
call filesys.joinPaths;

<< Do something with newPath>>

procedure filesys.a_normalize(pathname:string); @returns("c");

This function normalizes the pathname passed as the argument and returns a pointer to the normalized
pathname in EAX. This function allocates storage for the normalized pathname on the heap; it is the caller’s
responsibility to free that storage when the application is done using the string.

A normalized pathname is one that has all the directory separators converted to the native format, has all
path components of the form "./" deleted from the path string, and has all path components of the form "path/../"
deleted from the path string. Note, however, that if "../" appears at the beginning of a path string, or "../" appears
immediately after a UNC path sequence, then the normalized result still contains the "../". Likewise, if there are
multiple "../" sequences within a path string and deleting the previous paths would delete a UNC component or
would attempt to delete a path sequence before any appearing in the path string, then this function leaves the "../
" component present (e.g., "path/../../name" produces the string "../name").

This function returns the carry flag set if it was able to produce a correct normalized string. This function
returns with the carry flag clear if the pathname argument contained an unparseable UNC name prefix or other
syntax error (in which case the function ignores the UNC prefix and treats the UNC like any other path
sequence).

HLA high-level calling sequence examples:

filesys.a_normalize(somePath);
mov(eax, pathPtr);
if(@c) then

<<do something with the path pointed at by pathPtr>>

endif;
str.free(pathPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_extractPath;
mov(eax, pathPtr);
jnc noPath;

<< Do something if somePath has a path component>>

noPath:
str.free(pathPtr);
Released to the Public Domain Page 455

HLA Standard Library
procedure filesys.normalize1(pathname:string);
@returns("c");

This function nornalizes, in place, the pathname string passed as an argument. On returns, the pathname
string contains the normalized result of the original string passed into this function. Note that normalized strings
are always the same length or shorter than the original string, so there is no chance of string overflow occuring
when normalizing a path string. For details on the normalization process, see the description of the
filesys.a_normalize function.

This function returns with the carry flag set if it successfully normalizes the pathname argument and there
are no UNC parse errors or other problems. If this function cannot parse a string that looks like it has a UNC
prefix, it will treat pathname as though it has no UNC prefix, normalize that, and return with the carry flag clear.

Because this function normalizes the string in place, the pathname argument must point at string data in
writeable memory or else this function will raise an exception.

HLA high-level calling sequence examples:

filesys.normalize1(somePath);
if(@c) then

<<do something with the string held in somePath >>

endif;

HLA low-level calling sequence example:

push(somePath);
call filesys.normalize1;
jnc noPath;

<< Do something with somePath>>

noPath:

procedure filesys.normalize2(pathname:string; path:string);
@returns("c");

This function nornalizes the pathname string passed as an argument and stores the normalized result into the
string object pointed at by path. The path object must have at least as much space allocated for it as the length of
the pathname argument or this function will raise an exception; this exception will be raised even if the actual
normalized string would be shorter than the length of pathname and path is actually large enough to hold the
actual normalized string. The test for string overflow takes place before the normalization operation begins
because this function first copies pathname to path and then performs the normalization operation on path. For
details on the normalization process, see the description of the filesys.a_normalize function.

This function returns with the carry flag set if it successfully normalizes the pathname argument and there
are no UNC parse errors or other problems. If this function cannot parse a string that looks like it has a UNC
prefix, it will treat pathname as though it has no UNC prefix, normalize that, and return with the carry flag clear.

HLA high-level calling sequence examples:

filesys.extractPath(somePath, pathComponent);
if(@c) then

<<do something with the string held in pathComponent >>

Page 456 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
endif;

HLA low-level calling sequence example:

push(somePath);
push(pathComponent);
call filesys.extractPath;
jnc noPath;

<< Do something if somePath has a path component>>

noPath:

procedure filesys.a_toUnixPath(pathname:string); @returns("eax");

This function converts a string to the Unix format. This entails converting all ‘\’ characters to ‘/’ characters
in the pathname string. Note that this function does not process any drive letter prefixes. If a drive letter prefix is
present in the pathname argument, this function returns that drive letter prefix in the result string.

This function returns a pointer to tne converted string, which is allocated on the heap, in the EAX register. It
is the caller’s responsibility to free the storage associated with this string when the caller is done using the string
data.

HLA high-level calling sequence examples:

filesys.a_toUnixPath(somePath);
mov(eax, unixPathPtr);

<<do something with the path pointed at by unixPathPtr >>

str.free(unixPathPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_toUnixPath;
mov(eax, unixPathPtr);

<< Do something with unixPathPtr>>

str.free(unixPathPtr);

procedure filesys.toUnixPath1(pathname:string);

This function converts the string argument to UNIX format by replacing all ‘\’ characters with ‘/’ ‘
characters. Note that this function does not process any drive letter prefixes. If a drive letter prefix is present in
the pathname argument, this function returns that drive letter prefix in the result string. Converted strings are
always the same length as the original string, so there is no chance of string overflow occuring when converting
a path string to UNIX format.

Because this function normalizes the string in place, the pathname argument must point at string data in
writeable memory or else this function will raise an exception.

HLA high-level calling sequence examples:
Released to the Public Domain Page 457

HLA Standard Library
filesys.toUnixPath1(somePath);

<<do something with the string held in somePath >>

HLA low-level calling sequence example:

push(somePath);
call filesys.toUnixPath1;

<< Do something with somePath>>

procedure filesys.toUnixPath2(pathname:string; unixPath:string);

This function converts the pathname string argument to UNIX format by replacing all ‘\’ characters with ‘/’
characters. It stores the resulting string into unixPath. Note that this function does not process any drive letter
prefixes. If a drive letter prefix is present in the pathname argument, this function returns that drive letter prefix
in the result string. Converted strings are always the same length as the original string, so the storage pointed at
by the unixPath argument must be able to hold at least as many characters as the current length of the pathname
argument or this function will raise an exception.

HLA high-level calling sequence examples:

filesys.toUnixPath2(somePath, unixPath);

<<do something with the string held in unixPath>>

HLA low-level calling sequence example:

push(somePath);
push(unixPath);
call filesys.toUnixPath2;

<< Do something with unixPath>>

procedure filesys.a_toWin32Path(pathname:string); @returns("eax");

This function converts a pathname string to the Windows format. This entails converting all ‘/’ characters to
‘\’ characters in the pathname string.

This function returns a pointer to the converted string, which is allocated on the heap, in the EAX register. It
is the caller’s responsibility to free the storage associated with this string when the caller is done using the string
data.

HLA high-level calling sequence examples:

filesys.a_toWin32Path(somePath);
mov(eax, win32PathPtr);

<<do something with the path pointed at by win32PathPtr >>
Page 458 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

str.free(win32PathPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_toWin32Path;
mov(eax, win32PathPtr);

<< Do something with win32PathPtr >>

str.free(win32PathPtr);

procedure filesys.toWin32Path1(pathname:string);

This function converts the pathname string argument to Windows format by replacing all ‘/’ characters with
‘\’ ‘ characters. Converted strings are always the same length as the original string, so there is no chance of
string overflow occuring when converting a path string to UNIX format.

Because this function normalizes the string in place, the pathname argument must point at string data in
writeable memory or else this function will raise an exception.

HLA high-level calling sequence examples:

filesys.toWin32Path1(somePath);

<<do something with the string held in somePath >>

HLA low-level calling sequence example:

push(somePath);
call filesys.toWin32Path1;

<< Do something with somePath>>

procedure filesys.toWin32Path2(pathname:string; windowsPath:string);

This function converts the pathname string argument to Windows format by replacing all ‘/’ characters with
‘\’ ‘ characters. It stores the resulting string into windowsPath. Converted strings are always the same length as
the original string, so the storage pointed at by the windowsPath argument must be able to hold at least as many
characters as the current length of the pathname argument or this function will raise an exception.

HLA high-level calling sequence examples:

filesys.toWin32Path2(somePath, windowsPath);

<<do something with the string held in windowsPath >>

HLA low-level calling sequence example:
Released to the Public Domain Page 459

HLA Standard Library
push(somePath);
push(windowsPath);
call filesys.toWin32Path2;

<< Do something with windowsPath >>

procedure filesys.a_toNativePath(pathname:string);
procedure filesys.toNativePath1(pathname:string);
procedure filesys.toNativePath2(pathname:string; windowsPath:string);

These functions are synonyms for either the toUnix functions or the toWin32 functions, depending upon the
operating system under which you’re compiling them. That is, under Windows, these functions are synonyms for
the filesys.a_toWin32Path, filesys.toWin32Path1, and filesys.toWin32Path2 functions. Under other Oses, these
functions are synonyms for the filesys.a_toUnixPath, filesys.toUnixPath1, and filesys.toUnixPath2 functions.

Functionally, this procedures convert the pathname passed as an argument to the native OS pathname
format. Note that these functions ignore drive letters if they are converting pathnames to UNIX format (that is,
the drive letters will still be present in the converted string).

procedure filesys.a_getFullPathName(partialPath:string); @returns("eax");

This function takes the partialPath passed as a parameter and converts it to a full, absolute, pathname. If
partialPath begins with a ‘/’ character, this function simply returns partialPath’s value as its result. If
partialPath does not begin with a ‘/’ character, then this function determines the working directory path and
concatenates (via filesys.joinPaths) partialPath to the end of the current working directory and returns that full
path string.

This function returns a pointer to the full pathname string, which is allocated on the heap, in the EAX
register. It is the caller’s responsibility to free the storage associated with this string when the caller is done using
the string data.

HLA high-level calling sequence examples:

filesys.a_getFullPath(somePath);
mov(eax, fullPathPtr);

<<do something with the path pointed at by fullPathPtr>>

str.free(fullPathPtr);

HLA low-level calling sequence example:

push(somePath);
call filesys.a_getFullPath;
mov(eax, fullPathPtr);

<< Do something with fullPathPtr >>

str.free(fullPathPtr);

procedure filesys.getFullPath(partialPath:string; resultPath:string);

This function takes the partialPath passed as a parameter and converts it to a full, absolute, pathname. If
partialPath begins with a ‘/’ character, this function simply returns partialPath’s value as its result. If
partialPath does not begin with a ‘/’ character, then this function determines the working directory path and
concatenates (via filesys.joinPaths) partialPath to the end of the current working directory and returns that full
path string. In any case, the resulting fully qualified pathname is stored into the resultPath string (raising an
exception if resultPath’s allocation is insufficient to hold the string).
Page 460 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

filesys.getFullPath(somePath, fullPath);

<<do something with the string held in fullPath>>

HLA low-level calling sequence example:

push(somePath);
push(fullPath);
call filesys.getFullPath;

<< Do something with fullPath>>

16.2 Directory and File Predicates
These functions test some condition about a file or directory and return true or false in the EAX register.

procedure filesys.exists(pathname:string); @returns("eax");

This function returns true if the file exists and the application can open the file (at least for reading). It
returns false in EAX if the file does not exist, is inaccessible, or there is some other error that occurs when
attemting to open the file.

HLA high-level calling sequence examples:

filesys.exists("someFilename");
mov(al, someFilenameExists);// someFileNameExists:boolean;

HLA low-level calling sequence examples:

someFilename:string := "someFileName";
.
.
.

push(someFileName);
call filesys.exists;
mov(al, someFilenameExists);

procedure filesys.isFile(FileName:string); @returns("eax");

This function returns true if the file exists and is actually a file (rather than a directory) and the application
can open the file (at least for reading). It returns false in EAX if the file does not exist, exists but is a directory, is
inaccessible, or there is some other error that occurs when attemting to open the file.

HLA high-level calling sequence examples:

filesys.isFile("someFilename");
mov(al, someFilenameExists);// someFileNameExists:boolean;

HLA low-level calling sequence examples:

someFilename:string := "someFileName";
.
.

Released to the Public Domain Page 461

HLA Standard Library
.
push(someFileName);
call filesys.isFile;
mov(al, someFilenameExists);

procedure filesys.isDir(FileName:string); @returns("eax");

This function returns true if the file exists and is a directory (rather than a regular file). It returns false in
EAX if the file does not exist, exists but is not a directory, is inaccessible, or there is some other error that occurs
when attemting to open the file.

HLA high-level calling sequence examples:

filesys.isDir("someDirName");
mov(al, someDirNameExists);// someDirNameExists:boolean;

HLA low-level calling sequence examples:

someDirName:string := "someDirName";
.
.
.

push(someDirName);
call filesys.isDir;
mov(al, someDirNameExists);

16.3 File Information Functions
These functions return some information about the file.

procedure filesys.size(Handle:dword); @returns("edx:eax");
procedure filesys.size(filename:string); @returns("edx:eax");

These (overloaded) functions return the current size of a file. They return the size in the EDX:EAX register
pair. There are two versions of this function – one that accepts a string parameter and one that accepts a dword
parameter. The first (dword) form expects you to pass it an open file handle; the second (string) form expects you
to pass it a string containing the filename of the file whose size you want to compute.

Note: HLA uses macros to implement overloading. If you really must make a low-level call to one of these
functions (or if you need to take the address of one of these functions), then you will need to refer to the actual
procedure names: filesys._sizeh_ is the name of the function expecting a file handle, filesys._sizen_ is the name
of the function expecting a filename string parameter.

HLA high-level calling sequence examples:

filesys.size("someFileName");
mov(eax, sizeOfSomeFileName);
filesys._sizen_("someOtherFileName");
mov(eax, sizeOfSomeOtherFile);

fileio.open("anotherFile", fileio.r);
mov(eax, fileHandle);
filesys.size(fileHandle);
mov(eax, sizeOfAnotherFile);

fileio.open("anotherFile2", fileio.r);
mov(eax, fileHandle2);
filesys._sizeh_(fileHandle2);
mov(eax, sizeOfAnotherFile2);
Page 462 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

someFileName:string := "someFileName";
anotherFile :string := "anotherFile";

.

.

.
push(someFileName);
callfilesys._sizen_;
mov(eax, sizeOfSomeOtherFile);

.

.

.
push(anotherFile);
pushd(fileio.r);
call fileio.open;
mov(eax, fileHandle);
push(eax);
call filesys._sizeh_;
mov(eax, sizeOfAnotherFile2);

16.4 Directory and File Manipulation Functions
procedure filesys.delete(filename:string); @returns("eax");

This function deletes the specified file. Obviously, use this function with care. If this function fails, it raises
the ex.CannotRemoveFile exception. Note that this function will only delete regular files. It will fail, and raise an
exception if you attempt to delete a directory.

HLA high-level calling sequence examples:

filesys.delete("someFileName");

HLA low-level calling sequence examples:

someFileName:string := "someFileName";
.
.
.

push(someFileName);
call filesys.delete;

procedure filesys.mkdir(dirname:string); @returns("eax");

This function creates a directory using the pathname you supply as a parameter. It returns the error status in
EAX. If this function fails, it raises the ex.CannotCreateDir exception.

HLA high-level calling sequence examples:

filesys.mkdir("newDirName");

HLA low-level calling sequence examples:

newDirName:string := "newDirName";
.

Released to the Public Domain Page 463

HLA Standard Library
.

.
push(newDirName);
call filesys.mkdir;

procedure filesys.cd(dirname:string);

This function sets the current working directory to the filename you pass as a parameter. If this function
fails, it raises the ex.CDFailed exception.

HLA high-level calling sequence examples:

filesys.cd("newWorkingDirectory");

HLA low-level calling sequence examples:

newWorkingDirectory:string := "newWorkingDirectory";
.
.
.

push(newWorkingDirectory);
call filesys.cd;

procedure filesys.gwd(dest:string);

This function returns a string containing the current working directory’s pathname in the string you pass as a
parameter. The string must have storage allocated for it and it must be large enough to hold the pathname or
HLA will raise a string overflow exception.

HLA high-level calling sequence examples:

filesys.gwd(allocatedStringVar);

HLA low-level calling sequence examples:

push(allocatedStringVar);
call filesys.gwd;

procedure filesys.rename(fromPath:string; toPath:string);

This function renames one file to another. The fromPath parameter specifies the file to rename, the toPath
parameter specifies the new name for the file. If the rename operation is unsuccessful, this function raises the
ex.CannotRenameFile exception.

HLA high-level calling sequence examples:

filesys.rename("oldName", "newName");

HLA low-level calling sequence examples:

oldName:string := "oldName";
newName:string := "newName";

.

.

Page 464 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
.
push(oldName);
push(newName);
call filesys.rename;

procedure filesys.rmdir(directory:string);

This function deletes the specified directory. The directory must be empty before you attempt to delete it or
this function will raise an exception. If this function fails, it raises the ex.CannotRemoveDir exception. Note that
this function will only delete directories. It will fail, and raise an exception if you attempt to delete a regular file.

HLA high-level calling sequence examples:

filesys.rmdir("dirToRemove");

HLA low-level calling sequence examples:

dirToRemove:string := "dirToRemove";
.
.
.

push(dirToRemove);
call filesys.rmdir;

iterator filesys.fileWithSuffix(directory:string; suffix:string);

This iterator, used within a foreach loop, will repeat once for each file in the directory specified by the
directory parameter that ends with the string specified by suffix. On each iteration of the foreach loop, this
function will provide a pointer to the full filename in the EAX register. Note that this function only iterates on
regular files, it will not iterate (nor return the string name) of any directory entries. The filesys.fileWithSuffix
function will allocate storage for the filename string on the heap and return the pointer to this string in EAX. It is
the foreach loop body’s responsibility to free up that storage when it is done with the string.

HLA high-level calling sequence examples:

foreach filesys.fileWithSuffix("dirToSearch", ".hla") do

// At this point, EAX points at a filename ending with ".hla"

mov(eax, filename);// filename:string

// Do something with that string…

// When we’re done with the string, free it.

str.free(filename);

endfor;

iterator filesys.fileIn(directory:string);

This iterator, used within a foreach loop, will repeat once for each file in the directory specified by the
directory parameter. On each iteration of the foreach loop, this function will provide a pointer to the full filename
in the EAX register. Note that this function only iterates on regular files, it will not iterate (nor return the string
name) of any directory entries. The filesys.fileIn function will allocate storage for the filename string on the heap
and return the pointer to this string in EAX. It is the foreach loop body’s responsibility to free up that storage
when it is done with the string.

HLA high-level calling sequence examples:
Released to the Public Domain Page 465

HLA Standard Library
foreach filesys.fileIn("dirToSearch") do

// At this point, EAX points at a filename of a file
// found in the "dirToSearch" directory.

mov(eax, filename);// filename:string

// Do something with the string…

// When we’re done with the string, free it.

str.free(filename);

endfor;

iterator filesys.fileInCwd;

This iterator, used within a foreach loop, will repeat once for each file in the current directory. On each
iteration of the foreach loop, this function will provide a pointer to the full filename in the EAX register. Note
that this function only iterates on regular files, it will not iterate (nor return the string name) of any directory
entries. The filesys.fileInCwd function will allocate storage for the filename string on the heap and return the
pointer to this string in EAX. It is the foreach loop body’s responsibility to free up that storage when it is done
with the string.

HLA high-level calling sequence examples:

foreach filesys.fileInCwd() do

// At this point, EAX points at a filename of a file
// found in the current working directory.

mov(eax, filename);// filename:string

// Do something with the string…

// When we’re done with the string, free it.

str.free(filename);

endfor;

iterato

This iterator, used within a foreach loop, will repeat once for each directory entry, whose name ends with
suffix, in the directory specified by the directory parameter. On each iteration of the foreach loop, this function
will provide a pointer to the full directory name in the EAX register. Note that this function only iterates on
directory files, it will not iterate (nor return the string name) of any regular file entries. The filesys.dirWithSuffix
function will allocate storage for the directory name string on the heap and return the pointer to this string in
EAX. It is the foreach loop body’s responsibility to free up that storage when it is done with the string.

HLA high-level calling sequence examples:

foreach filesys.dirWithSuffix("dirToSearch", "suffix") do

// At this point, EAX points at name of a directory
// that ends with "suffix" that was found in the "dirToSearch"
// directory.

mov(eax, dirname);// dirname :string

// Do something with the string…
Page 466 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// When we’re done with the string, free it.

str.free(dirname);

endfor;

iterator filesys.dirIn(directory:string);

This iterator, used within a foreach loop, will repeat once for each directory entry in the directory specified
by the directory parameter. On each iteration of the foreach loop, this function will provide a pointer to the full
directory name in the EAX register. Note that this function only iterates on directory files, it will not iterate (nor
return the string name) of any regular file entries. The filesys.dirIn function will allocate storage for the directory
string on the heap and return the pointer to this string in EAX. It is the foreach loop body’s responsibility to free
up that storage when it is done with the string.

HLA high-level calling sequence examples:

foreach filesys.dirIn("dirToSearch") do

// At this point, EAX points at name of a directory
// that was found in the "dirToSearch" directory.

mov(eax, dirname);// dirname :string

// Do something with the string…

// When we’re done with the string, free it.

str.free(dirname);

endfor;

iterator filesys.dirInCwd;

This iterator, used within a foreach loop, will repeat once for each directory entry in the current directory.
On each iteration of the foreach loop, this function will provide a pointer to the full directory name in the EAX
register. Note that this function only iterates on directory files, it will not iterate (nor return the string name) of
any regular file entries. The filesys.dirInCwd function will allocate storage for the directory string on the heap
and return the pointer to this string in EAX. It is the foreach loop body’s responsibility to free up that storage
when it is done with the string.

HLA high-level calling sequence examples:

foreach filesys.dirInCwd() do

// At this point, EAX points at name of a directory
// that was found in the current working directory.

mov(eax, dirname);// dirname :string

// Do something with the string…

// When we’re done with the string, free it.

str.free(dirname);

endfor;
Released to the Public Domain Page 467

HLA Standard Library
iterator filesys.itemWithSuffix(directory:string; suffix:string);

This iterator, used within a foreach loop, will repeat once for each entry, whose name ends with suffix, in the
directory specified by the directory parameter. On each iteration of the foreach loop, this function will provide a
pointer to the name in the EAX register. Note that this function iterates on both directory and regular file entries.
The filesys.itemWithSuffix function will allocate storage for the result string on the heap and return the pointer to
this string in EAX. It is the foreach loop body’s responsibility to free up that storage when it is done with the
string.

HLA high-level calling sequence examples:

foreach filesys.itemWithSuffix("dirToSearch", "suffix") do

// At this point, EAX points at a filename or a directory
// name ending with "suffix"

mov(eax, entryname);// entryname :string

// Do something with that string…

// When we’re done with the string, free it.

str.free(entryname);

endfor;

iterator filesys.itemInCwd;

This iterator, used within a foreach loop, will repeat once for each entry in the current directory. On each
iteration of the foreach loop, this function will provide a pointer to the name in the EAX register. Note that this
function iterates on both directory and regular file entries. The filesys.itemInCwd function will allocate storage
for the result string on the heap and return the pointer to this string in EAX. It is the foreach loop body’s
responsibility to free up that storage when it is done with the string.

HLA high-level calling sequence examples:

foreach filesys.itemInCwd() do

// At this point, EAX points at a filename or a directory
// name from the current working directory.

mov(eax, entryname);// entryname :string

// Do something with that string…

// When we’re done with the string, free it.

str.free(entryname);

endfor;
Page 468 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
17 HLA Related Macros and Constants (hla.hhf)

The HLA module contains numeric constants produced by some of the HLA symbol-table compile-time
functions. It also contains various macros to extend the HLA compile-time language and provide support for
other HLA stdlib modules.

17.1 The HLA Module
To use the HLA macros and constants in your application, you will need to include one of the following

statements at the beginning of your HLA application:
#include("hla.hhf")
or
#include("stdlib.hhf")

17.2 Classification Macros
The hla.hhf module contains some macros that test the type of an identifier at compile time. Here is a typical

invocation of these macros:

#if(hla.IsUns(uVar))
// do something if Uns object

#else
// Do something if not unsigned object

#endif

#macro hla.IsUns(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is an uns8, uns16,
uns32, uns64, or uns128 object.

#macro hla.IsInt(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is an int8, int16,
int32, int64, or int128 object.

#macro hla.IsHex(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is a byte, word,
dword, qword, tbyte, or lword object.

#macro hla.IsNumber(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is an uns8, uns16,
uns32, uns64, un128, int8, int16, int32, int64, int128, byte, word, dword, qword, tbyte, or lword object.

#macro hla.IsReal(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is a real32, real64,
or real80 object.
Released to the Public Domain Page 469

HLA Standard Library
#macro hla.IsNumeric(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is an uns8, uns16,
uns32, uns64, uns128, int8, int16, int32, int64, int128, byte, word, dword, qword, tbyte, lword, real32, real64, or
real80 object.

#macro hla.IsOrdinal(identifier);

This macro returns a compile-time expression that evaluates true if the specified identifier is an uns8, uns16,
uns32, uns64, uns128, int8, int16, int32, int64, int128, boolean, char, byte, word, dword, qword, tbyte, lword, or
enumerated data type object.

17.3 String to Integer Macros
The HLA module provides two macros, hla.asWord and hla.asDword, that let you treat a one to four-

character string as a 16-bit or 32-bit number. Specifically, these macros cram the 1-4 bytes of the strings into a
two-byte word constant or a 4-byte dword constant.

#macro hla.asWord("1 or 2 character string");

This macro places the first character of the string in the L.O. byte of the 16-bit result, and the second
character of the string in the H.O. byte of the result. If there is only one character in the string, the H.O. byte of
the result will be zero.

#macro hla.asDword("1 to 4 character string");

This macro places copies the first through fourth characters of the string to the L.O. to H.O. bytes of the
dword results. If there are fewer than 4 characters, the H.O. byte(s) of the result are filled with zeros.

17.4 Label Generation Macro
The hla.genlabel macro generates a sequence of strings that are unique, legal, HLA identifiers (within the

current compilation, do not use these as public symbols). Typically, you would take the string that this macro
returns and convert that string to an actual symbol using the @TEXT function.

Here’s the definition of hla.getLabel in the HLA header file:

val
 _hla_labelCnt_ := 0;

#macro genLabel;

 "_genLabel_" + string(hla._hla_labelCnt_) + "_"
 ?hla._hla_labelCnt_ := hla._hla_labelCnt_ + 1;

#endmacro;

17.5 Procedure Overloading Macro
The hla.overload macro allows you to provide the equivalent of "overloaded functions" in your HLA

programs. Note that this macro is somewhat obsolete as the HLA language now provides built-in overloading
(see the HLA Reference Manual for details). This macro is provided for compatibility with old code that is still
using it.

Overloaded functions are called by "signature" rather than by name. A signature is the combination of the
name of a function, the number of parameters, and the types of each of the parameters. As long as two separate
functions have unique signatures, they can be called using the same name. Of course, HLA requires each
Page 470 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure/iterator/method/macro to have a unique name within the current scope, but the overload macro lets
you define the name to use when calling these different functions.

As an example, consider the following three function prototypes:
procedure min8(val1:uns8; val2:uns8); @external;
procedure min16(val1:uns16; val2:uns16); @external;
procedure min32(val1:uns32; val2:uns32); @external;

We would like to call these three functions using the single name "min" and letting the different signatures
(the differing parameter types in this case) select the actual function to call. The hla.overload macro will write a
"min" macro for us that will determine the parameter types and call one of the functions above based on the
signature of the call. An overloaded definition looks like the following:

#macro min(_parms_[]);// Define "min", our overloaded procedure
 hla.overload(_parms_);

hla.signature(min8(uns8, uns8));
hla.signature(min16(uns16, uns16));
hla.signature(min32(uns32, uns32));

 hla.endoverload
#endmacro

The first thing to note is that you must create a macro that will be used as the "overloaded procedure". In this
example, that macro is the "min" macro. This macro must always have a single array (variable) parameter. The
name isn’t important, though "_parms_" is the conventional name to use here.

The body of the overloaded macro is actually going to be written by the hla.overload macro. The
hla.overload macro is an HLA context-free macro that begins with "hla.overload", ends with "hla.endoverload",
and contains a single "hla.signature" keyword macro invocation for each signature we want our overloaded
procedure to support. In this example, we want our min function to call one of three different functions based on
the types of the parameters passed to min, so there will be three signature invocations.

A signature keyword macro invocation takes the following form:

hla.signature(actualProcedureName(list_of_parameter_types));

where actualProcedureName is the name of the function we want to call if the signature matches and
list_of_parameter_types is a comma-separated list of HLA data type names, that correspond to the data types for
the signature.

The hla.overload macro will write the body of the min macro so that it will parse the parameters passed in
(via _parms_) and determine which of the three functions to call. For example:

min(u8, u8a); // calls min8(u8, u8a);
min(u16, u16a);// calls min16(u16, u16a);
min(u32, u32a); // calls min32(u32, u32a);

Here are some additional examples of overloaded macro definitions from the HLA stdlib:

#macro catsub(parms[]);

hla.overload(parms)

hla.signature(str.catsub4(string, dword, dword, string))
hla.signature(str.catsub5(string, dword, dword, string, string))

hla.endoverload

 #endmacro

procedure catsub4(src:string; start:dword; len:dword; dest:string);
external("STR_CATSUB4");

procedure catsub5
(

src2:string;
Released to the Public Domain Page 471

HLA Standard Library
start:dword;
len :dword;
src1:string;
dest:string

);
@returns("(type string eax)");
external("STR_CATSUB5");

#macro first(parms[]);

hla.overload(parms)

hla.signature(str.first2(string, dword))
hla.signature(str.first3(string, dword, string))

hla.endoverload

#endmacro

procedure first2
(

s :string;
len :dword

); external("STR_FIRST2");

procedure first3
(

s :string;
len :dword;
dest:string

); external("STR_FIRST3");

When you use an overloaded function (that is, you invoke the macro whose body was filled in by the
hla.overload macro), the code attempts to match the actual parameters against the signatures you’ve provided. If
no possible signature can match the actual parameter list, then the system will report an error. If two or more
signatures can be matched by the actual parameter list, the system will also report an error. Unfortunately, if the
actual parameter list provides an ambiguous footprint, then the system will report an error. Consider the
following overloaded function and a couple invocations of that function:

static
u8 :uns8;
u16 :uns16;
s :string;

#macro abc(_parms_[]);
hla.overload(_parms_)

hla.signature(abc1(uns8, string))
hla.signature(abc2(uns16, string))

hla.endoverload;
#endmacro

.

.

.
abc(u8, s); // Okay, calls abc1
abc(u8, "abc1");// Okay, calls abc1
abc(u16, s);// Okay, calls abc2
Page 472 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
abc(0, s);// Illegal – matches multiple signatures

The last example doesn’t work because the literal constant zero matches both the uns8 and uns16 types, so
this is an ambiguous signature match. Keep this limitation in mind when creating your signatures.

17.6 Generic PUT Macro
The hla.put macro provides a mechanism for creating generic "put" functions like the stdout.put, stderr.put,

fileio.put, and str.put macros found in the HLA standard library. Indeed, these macros were built using the
hla.put macro. By using the hla.put macro, you can easily create your own "put" macro that calls a variety of
different functions based on the types of the parameters passed to your "put" macro.

First of all, it’s important to realize that a user-defined "put" macro must appear inside a namespace. The
hla.put macro expects to find several objects defined in a namespace whose name you provide. The namespace
will contain all the procedures that the user-defined macro will ultimately call as well as a few additional
compile-time data structures that the hla.put macro will reference.

Within the namespace you’re defining a "put" macro for, there must be six constant array objects with
hla.sizePTypes elements each. These arrays must have the following names and types:

validPutType:boolean [@global:hla.sizePTypes];
validPutSizeType:boolean [@global:hla.sizePTypes];
validPutSize2Type:boolean [@global:hla.sizePTypes];
putFunc :string [@global:hla.sizePTypes];
putSizeFunc:string [@global:hla.sizePTypes];
putSize2Func:string [@global:hla.sizePTypes];

Assuming you’ve created a namespace called "myns", then myns.validPutType will tell the hla.put macro
which built-in data types it can process when you specify an unadorned argument to myns.put. For example, if i8
is an int8 object, then myns.put(i8); will call some function if the myns.validPutType entry indexed by
hla.ptInt8 contains true. Here is the validPutType table for the stdout namespace; most validPutType tables will
be a copy of this one (assuming you want your new "put" macro to handle all the same data types as stdout.put):
const

validPutType :boolean[@global:hla.sizePTypes] :=
[

@global:false,// Undefined
@global:true,// tBoolean //1
@global:false,// enum//2
@global:true,// tUns8,//3
@global:true,// tUns16,//4
@global:true,// tUns32,//5
@global:true,// tUns64,//6
@global:true,// tUns128,//7
@global:true,// tByte,//8
@global:true,// tWord,//9
@global:true,// tDWord,//10
@global:true,// tQWord,//11
@global:true,// tTByte,//12
@global:true,// tLWord,//13
@global:true,// tInt8,//14
@global:true,// tInt16,//15
@global:true,// tInt32,//16
@global:true,// tInt64,//17
@global:true,// tInt128,//18
@global:true,// tChar, //19
@global:false,// tWChar,//20
@global:true,// tReal32,//21
@global:true,// tReal64, //22
@global:true,// tReal80,//23
@global:false,// tReal128,//24
@global:true,// tString,//25
@global:false,// tZString,//26
Released to the Public Domain Page 473

HLA Standard Library
@global:false,// tWString,//27
@global:true,// tCset,//28
@global:false,// tArray,//29
@global:false,// tRecord,//30
@global:false,// tUnion,//31
@global:false,// tRegex//32
@global:true,// tClass,//33
@global:false,// tProcptr,//34
@global:false,// tThunk,//35
@global:true,// tPointer//36
@global:false,// tLabel//37
@global:false,// tProc//38
@global:false,// tMethod//39
@global:false,// tClassProc//40
@global:false,// tClassIter//41
@global:false,// tIterator//42
@global:false,// tProgram//43
@global:false,// tMacro//44
@global:false,// tText//45
@global:false,// tRegExMac//46
@global:false,// tNamespace//47
@global:false,// tSegment//48
@global:false,// tAnonRec//49
@global:false,// tAnonUnion//50
@global:false,// tVariant//51
@global:false// tError//52

];

Notice that each element of the array is indexed by the pType value for the data type.
The validPutSizeType array is very similar to the validPutType array (indeed, it is structurally identical to

the validPutType array). The difference between the two is that the hla.put macro uses the validPutSizeType
array to determine if it can call a "*Size" function when the "put" macro encounters an operand of the form
"xx:ss", where "ss" is a print width specfication. For example, if you write "myns.put(i8:4);" and i8 is an int8
variable, then the hla.put macro will check the hla.ptInt8 element of the validPutSizeType array to determine
whether it supports a field width for int8 output. Here is the stdout version of this array (again, most uses of the
hla.put macro will copy this, assuming they provide all the same output functionality as stdout.put):

validPutSizeType :boolean[@global:hla.sizePTypes] :=
[

@global:false,// Undefined
@global:true,// tBoolean //1
@global:false,// enum//2
@global:true,// tUns8,//3
@global:true,// tUns16,//4
@global:true,// tUns32,//5
@global:true,// tUns64,//6
@global:true,// tUns128,//7
@global:true,// tByte,//8
@global:true,// tWord,//9
@global:true,// tDWord,//10
@global:true,// tQWord,//11
@global:true,// tTByte,//12
@global:true,// tLWord,//13
@global:true,// tInt8,//14
@global:true,// tInt16,//15
@global:true,// tInt32,//16
@global:true,// tInt64,//17
@global:true,// tInt128,//18
@global:true,// tChar, //19
@global:false,// tWChar,//20
@global:true,// tReal32,//21
Page 474 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
@global:true,// tReal64, //22
@global:true,// tReal80,//23
@global:false,// tReal128,//24
@global:true,// tString,//25
@global:false,// tZString,//26
@global:false,// tWString,//27
@global:false,// tCset,//28
@global:false,// tArray,//29
@global:false,// tRecord,//30
@global:false,// tUnion,//31
@global:false,// tRegEx//32
@global:false,// tClass,//33
@global:false,// tProcptr,//34
@global:false,// tThunk,//35
@global:true,// tPointer//36
@global:false,// tLabel//37
@global:false,// tProc//38
@global:false,// tMethod//39
@global:false,// tClassProc//40
@global:false,// tClassIter//41
@global:false,// tIterator//42
@global:false,// tProgram//43
@global:false,// tMacro//44
@global:false,// tText//45
@global:false,// tRegExMac//46
@global:false,// tNamespace//47
@global:false,// tSegment//48
@global:false,// tAnonRec//49
@global:false,// tAnonUnion//50
@global:false,// tVariant//51
@global:false// tError//52

];

The validPutSize2Type array is very similar to the validPutSizeType array. The difference between the two
is that the hla.put macro uses the validPutSize2Type array to determine if it can call a "*Size" function when the
"put" macro encounters an operand of the form "xx:ww:dd", where "ww" is a print width specfication and "dd" is
a "number of decimal positions" value. This functionality is typically used for outputting real values in decimal
form. For example, if you write "myns.put(r80:14:2);" and r80 is an real80 variable, then the hla.put macro will
check the hla.ptReal80 element of the validPutSize2Type array to determine whether it supports a field width
and decimal count for real80 output. Here is the stdout version of this array (again, most uses of the hla.put
macro will copy this, assuming they provide all the same output functionality as stdout.put):

validPutSize2Type :boolean[@global:hla.sizePTypes] :=
[

@global:false,// Undefined
@global:false,// tBoolean //1
@global:false,// enum//2
@global:false,// tUns8,//3
@global:false,// tUns16,//4
@global:false,// tUns32,//5
@global:false,// tUns64,//6
@global:false,// tUns128,//7
@global:false,// tByte,//8
@global:false,// tWord,//9
@global:false,// tDWord,//10
@global:false,// tQWord,//11
@global:false,// tTByte,//12
@global:false,// tLWord,//13
@global:false,// tInt8,//14
@global:false,// tInt16,//15
@global:false,// tInt32,//16
Released to the Public Domain Page 475

HLA Standard Library
@global:false,// tInt64,//17
@global:false,// tInt128,//18
@global:false,// tChar, //19
@global:false,// tWChar,//20
@global:true,// tReal32,//21
@global:true,// tReal64, //22
@global:true,// tReal80,//23
@global:false,// tReal128,//24
@global:false,// tString,//25
@global:false,// tZString,//26
@global:false,// tWString,//27
@global:false,// tCset,//28
@global:false,// tArray,//29
@global:false,// tRecord,//30
@global:false,// tUnion,//31
@global:false,// tRegEx//32
@global:false,// tClass,//33
@global:false,// tProcptr,//34
@global:false,// tThunk,//35
@global:false,// tPointer//36
@global:false,// tLabel//37
@global:false,// tProc//38
@global:false,// tMethod//39
@global:false,// tClassProc//40
@global:false,// tClassIter//41
@global:false,// tIterator//42
@global:false,// tProgram//43
@global:false,// tMacro//44
@global:false,// tText//45
@global:false,// tRegExMac//46
@global:false,// tNamespace//47
@global:false,// tSegment//48
@global:false,// tAnonRec//49
@global:false,// tAnonUnion//50
@global:false,// tVariant//51
@global:false// tError//52

];

The putFunc, putSizeFunc, and putSize2Func arrays in your namespace must contain the names of the
functions to call if the corresponding entries in validPutType, validPutSizeType, and validPutSize2Type contain
true (respectively). These strings must be the name of the procedure to call without the namespace prefix. That is,
if you want to tell hla.put to call "myns.puti8" to print an 8-bit integer, then the entry at index hla.ptInt8 in
myns.putFunc should contain the string "puti8". Note that if the corresponding entry in the in validPutType,
validPutSizeType, or validPutSize2Type tables contain false, then it doesn’t matter what string appears in the
array as hla.put will never use it; by convention, the empty string is always put in unused entries. Here is the
stdout.putFunc table:

putFunc :string[@global:hla.sizePTypes] :=
[

"", // Undefined
"putbool",// tBoolean //1
"", // enum //2
"putu8", // tUns8,//3
"putu16",// tUns16,//4
"putu32",// tUns32,//5
"putu64",// tUns64,//6
"putu128",// tUns128,//7
"putb", // tByte,//8
"putw", // tWord,//9
"putd", // tDWord,//10
Page 476 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
"putq", // tQWord,//11
"puttb", // tLWord,//12
"putl", // tLWord,//13
"puti8", // tInt8,//14
"puti16",// tInt16,//15
"puti32",// tInt32,//16
"puti64",// tInt64,//17
"puti128",// tInt128,//18
"putc", // tChar, //19
"", // tWChar,//20
"_pute32",// tReal32,//21
"_pute64",// tReal64, //22
"_pute80",// tReal80,//23
"", // tReal128,//24
"puts", // tString,//25
"putz", // tZString,//26
"", // tWString,//27
"putcset",// tCset,//28
"", // tArray,//29
"", // tRecord,//30
"", // tUnion,//31
"", // tRegEx//32
"", // tClass,//33
"", // tProcptr,//34
"", // tThunk,//35
"putd", // tPointer//36
"", // tLabel//37
"", // tProc //38
"", // tMethod//39
"", // tClassProc//40
"", // tClassIter//41
"", // tIterator//42
"", // tProgram//43
"", // tMacro//44
"", // tText //45
"", // tRegExMac//46
"", // tNamespace//47
"", // tSegment//48
"", // tAnonRec//49
"", // tAnonUnion//50
"", // tVariant//51
"" // tError//52

];
ut.putFunc table:

Please see the stdout.hhf header file for examples of the other two tables.
Once you have set up the six constant arrays in your namespace, defining your own put macro using hla.put

is almost trivial. The hla.put macro processes a single "put" operand. The syntax for this macro is the following:

hla.put(<namespaceID>, <first param as string>, <single argument>);

where <namespace> is your namespace identifier, <first param as string> is the first parameter to be passed
to all your functions (this can be the empty string if you don’t have a first parameter [e.g., stdout or stderr], or it
can be whatever your output functions require; for example, the fileio.put macro specifies a file handle here, the
str.put macro specifies a string variable name here).

Because hla.put only handles a single output object, you must provide a simple put macro within your
namespace that calls hla.put for each of the actual arguments passed to your put macro. Here’s the stdout version
of that macro:

val
Released to the Public Domain Page 477

HLA Standard Library
stdoutParm:string;

#macro put(_parameters_[]);

#for(@global:stdout.stdoutParm in _parameters_)

@global:hla.put(stdout, "", @eval(@global:stdout.stdoutParm))

#endfor

#endmacro

Here’s the fileio version of this macro:

val
v :string;
curparm:string;

#macro put(_ileVar_, _parameters_[]);

?@global:fileio._v_ := @string:_ileVar_;
#for(@global:fileio._curparm_ in _parameters_)

@global:hla.put
(

fileio,
@global:fileio._v_,
@eval(@global:fileio._curparm_)

)

#endfor

#endmacro

17.7 @class Constants
The hla.hhf module contains some macros that test the type of an identifier at compile time. Here is a typical

invocation of these macros:
The HLA compile-time @class function returns the following values to denote the classification of an

identifier. If a symbol appears more than once in a program, the @class function returns the classification value
for the symbol currently in scope.

 @Class Return Values

Name Value Description

hla.cIllegal 0 Symbol doesn’t have a legal HLA classification.

hla.cConstant 1 Symbol was defined in the CONST section.

hla.cValue 2 Symbol was defined in the VAL section.

hla.cType 3 Symbol was defined in the TYPE section.

hla.cVar 4 Symbol was defined in the VAR section
Page 478 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
17.8 HLA pType Constants
The HLA @ptype compile-time function returns the values in the following table for the symbol you pass as

a parameter to the function. You should always use these symbol names rather than hard-coding the constants in
your programs. These values have changed in the past and they will likely change in the future with
improvements to the HLA language.

hla.cParm 5 Symbol is a parameter.

hla.cStatic 6 Symbol was defined in a STATIC, READONLY, or STORAGE
section.

hla.cLabel 7 Symbol is a statement label.

hla.cProc 8 Identifier is the name of a (non-class) procedure.

hla.cIterator 9 Identifier is the name of a (non-class) iterator.

hla.cClassProc 10 Identifier is the name of a class procedure.

hla.cClassIter 11 Identifier is the name of a class iterator.

hla.cMethod 12 Identifier is the name of a class method.

hla.cMacro 13 Symbol is a macro.

hla.cKeyword 14 Symbol is an HLA reserved word.

hla.cTerminator 15 Symbol is an HLA TERMINATOR macro.

hla.cRegex 16 Symbol is a regular expression macro

hla.cProgram 17 PROGRAM or UNIT identifier.

hla.cNamespace 18 Identifier is a name space ID.

hla.cSegment 19 Identifier is a segment name.

hla.cRegister 20 Identifier is an 80x86 register name.

hla.cNone 21 Reserved.

: @pType Return Values

Symbol Value Description

hla.ptIllegal 0 Symbol is undefined or is not an object to which a type
can be applied.

hla.ptBoolean 1 Symbol is of type boolean.

hla.ptEnum 2 Symbol is an enumerated type.

hla.ptUns8 3 Symbol is an UNS8 object.

hla.ptUns16 4 Symbol is an UNS16 object.
Released to the Public Domain Page 479

HLA Standard Library
hla.ptUns32 5 Symbol is an UNS32 object.

hla.ptUns64 6 Symbol is an UNS64 object.

Hla.ptUns128 7 Symbol is an UNS128 object.

hla.ptByte 8 Symbol is a BYTE object.

hla.ptWord 9 Symbol is a WORD object.

hla.ptDWord 10 Symbol is a DWORD object.

hla.ptQWord 11 Symbol is a QWORD object.

hla.ptTByte 12 Symbol is a TBYTE object.

hla.ptLWord 13 Symbol is a LWORD object.

hla.ptInt8 14 Symbol is an INT8 object.

hla.ptInt16 15 Symbol is an INT16 object.

hla.ptInt32 16 Symbol is an INT32 object.

hla.ptInt64 17 Symbol is an INT64 object.

hla.ptInt128 18 Symbol is an INT128 object.

hla.ptChar 19 Symbol is of type CHAR.

hla.ptWChar 20 Symbol is of type WCHAR.

hla.ptReal32 21 Symbol is a REAL32 object.

hla.ptReal64 22 Symbol is a REAL64 object.

hla.ptReal80 23 Symbol is a REAL80 object.

hla.ptReal128 24 Symbol is a REAL128 object.

hla.ptString 25 Symbol has the STRING type.

hla.ptZString 26 Symbol has the ZSTRING type.

hla.ptWString 27 Symbol has the WSTRING type.

hla.ptCset 28 Symbol’s type is CSET.

hla.ptArray 29 The symbol is an array object.

hla.ptRecord 30 The symbol is a record object.

hla.ptUnion 31 The symbol is a union object.

hla.ptRegex 32 The symbol is a regular expression object.

hla.ptClass 33 The symbol is a class object.

hla.ptProcptr 34 The symbol’s type is "pointer to a procedure".

hla.ptThunk 35 The symbol is a THUNK type.

hla.ptPointer 36 The symbol is a POINTER object.
Page 480 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Note that the HLA module provides a constant array, hla.ptypeStrs, that returns the associated HLA type
name when indexed by one of the above constants. Note that this is a compile-time constant array, not a run-time
array of strings. If you want a run-time string array, you can define one thusly:
static

ptypeStrs:string [@elements(hla.ptypeStrs)] := hla.ptypeStrs;

Do note that not every ptype value maps to a valid HLA data type. For example, hla.ptRecord maps to the
string "(record)". You cannot use this as a type in an HLA program.

17.9 @pclass Return Values
The HLA @pClass function expects a procedure’s parameter name as its sole parameter. It returns one of

the following constants that denotes the parameter passing mechanism for the parameter. Note that @pClass’
return values are defined only for parameter identifiers. These values have changed in the past and they will
likely change in the future with improvements to the HLA language, so always use these symbolic names rather
than hard-coded values.

hla.ptLabel 37 The symbol is a statement label object.

hla.ptProc 38 The symbol denotes a procedure.

hla.ptMethod 39 The symbol denotes a method.

hla.ptClassProc 40 The symbol is a procedure within a class.

hla.ptClassIter 41 The symbol denotes an iterator within a class.

hla.ptIterator 42 The symbol is an iterator name.

hla.ptProgram 43 The symbol is the program’s or unit’s identifier.

hla.ptMacro 44 The identifier is a macro.

hla.ptText 45 The identifier is a text object (note: @ptype does not
return this value since HLA expands the text prior to
processing by @ptype).

Hla.ptRegExMac 46 The symbol is a regular expression macro.

hla.ptNamespace 47 The identifier is a namespace ID.

hla.ptSegment 48 The identifier is a segment ID.

hla.ptAnonRec 49 The identifier is an anonymous record within a union
(internal use only, @ptype will never return this value).

hla.ptAnonUnion 50 The identifier is an anonymous union within a record
(internal use only, @ptype will never return this value).

hla.ptVariant 51 This value is reserved for internal use by HLA.

hla.ptError 52 This value indicates a cascading error in an expression.
Generally, you will not get this value from @ptype unless
there was some sort of error in the parameter to pass to
@ptype.
Released to the Public Domain Page 481

HLA Standard Library
17.10 @section Return Values
The following constants correspond to bits in the value returned by @section. They denote the current

position of the compiler in the code. These values have changed in the past and they will likely change in the
future with improvements to the HLA language, so always use these symbolic names rather than hard-coded
values.

 @pClass Return Values

Symbol Value Description

hla.illegal_pc 0 May be returned if the symbol is not a parameter.

hla.valp_pc 1 Returned if parameter is passed by value.

hla.refp_pc 2 @pClass returns this value if you pass the parameter by
reference.

hla.vrp_pc 3 Denotes that you’ve passed the parameter by value/result.

hla.result_pc 4 This value means that you’ve passed the parameter by
result.

hla.name_pc 5 This value indicates that you’ve passed the parameter by
name.

hla.lazy_pc 6 This value indicates that you’ve passed the parameter by
lazy evaluation.

 @section Constants

Symbol Value Description

hla.inConst 1 Bit zero is set if HLA is current processing
definitions in a CONST section.

hla.inVal 2 Bit one is set if HLA is current processing definitions
in a VAL section.

hla.inType 4 Bit two is set if HLA is current processing definitions
in a TYPE section.

hla.inVar 8 Bit three is set if HLA is current processing
definitions in a VAR section.

hla.inStatic $10 Bit four is set if HLA is current processing
definitions in a STATIC section.

hla.inReadonly $20 Bit five is set if HLA is current processing definitions
in a READONLY section.

hla.inStorage $40 Bit six is set if HLA is current processing definitions
in a STORAGE section.
Page 482 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
hla.inMain $1000 Bit 12 is set if HLA is current processing statements
in the main program.

hla.inProcedure $2000 Bit 13 is set if HLA is current processing statements
in a procedure.

hla.inMethod $4000 Bit 14 is set if HLA is current processing statements
in a method.

hla.inIterator $8000 Bit 15 is set if HLA is current processing statements
in an iterator.

hla.inMacro $1_0000 Bit 16 is set if HLA is current processing statements
in a macro.

hla.inKeyword $2_0000 Bit 17 is set if HLA is current processing statements
in a keyword macro.

hla.inTerminator $4_0000 Bit 18 is set if HLA is current processing statements
in a terminator macro.

hla.inThunk $8_0000 Bit 19 is set if HLA is current processing statements
in a thunk’s body.

hla.inUnit $80_0000 Bit 23 is set if HLA is current processing statements
in a unit.

hla.inProgram $100_0000 Bit 24 is set if HLA is current processing statements
in a program (not a unit).

hla.inRecord $200_0000 Bit 25 is set if HLA is current processing declarations
in a record definition.

hla.inUnion $400_0000 Bit 26 is set if HLA is current processing declarations
in a union.

hla.inClass $800_0000 Bit 27 is set if HLA is current processing declarations
in a class.

hla.inNamespace $1000_0000 Bit 28 is set if HLA is current processing declarations
in a union.
Released to the Public Domain Page 483

HLA Standard Library
Page 484 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
18 The Linux Module (linux.hhf)

The hll.hhf library module adds a switch/case/default/endswitch statement that is similiar to the Pascal case
statement and the C/C++ switch statement.

18.1 The Linux Module
To use the Linux functions in your application, you will need to include one of the following statements at

the beginning of your HLA application:

#include("linux.hhf")

Note that including stdlib.hhf does not automatically include the linux.hhf header file. You must explicitly
include the linux.hhf header file to make use of its functionality.

18.2 The Linux Header File

The Linux module contains constants, data types, procedure prototypes, and other declarations needed to
make Linux system calls. Obviously, only HLA/Linux users should be making calls to this module. Warning:
it is perfectly possible to compile the Linux module under Windows and attempt to run the resulting code.
However, this will surely crash the system.

Linux systems calls are made via the INT($80) instruction. The HLA Linux module provides wrappers for
all these calls so you can invoke them using a high level syntax. Calling the HLA Linux wrappers is a much
better idea than embedding INT($80) invocations directly in your code. Sometimes the Linux system calls
change (hopefully for the better). Although the Linux developers have done a good job of maintaining older
calls in the kernel, your programs that make these older calls may not benefit from additional functionality added
to the kernal. On the other hand, if all your programs call the HLA wrapper routines for Linux, then you’ve only
got to change the call in one location (in the wrapper), rather than throughout all your projects, whenever a
system call changes.

This section will not attempt to document each of the Linux calls that HLA’s Linux module provides. You
can read all about these functions in Linux use the "man -S 2 function_name" command. The calling sequence is
(usually) identical to the "C" interface, so there is no need to regurgitate that information here. Because C and
HLA have different sets of reserved words, there were a few conflicts between the standard (C-based) function
names and the names that HLA uses, this section will elaborate on those. Also, C’s structs and functions use a
different namespace and the Linux (UNIX) kernel programmers have employed the dubious style of using the
same name for functions and structures. Since HLA doesn’t allow this, some type names have been changed, as
well. Finally, to prevent namespace pollution in HLA programs, HLA actually uses a NAMESPACE to hold the
Linux identifiers (much like other library modules in HLA), so common Linux function names and datatypes
will require a "linux." prefix.

It is not good programming style to use all uppercase within identifiers (despite the long-standing C/Unix
tradition). Therefore, most all-uppercase constant identifiers you’d normally find in a Linux header file use the
HLA convention of lowercase (which is easier to read). Generally, when there is a conflict between a C
identifier and an HLA reserved word, the conflict is resolved by prepending an underscore. For example, the
Linux system call "exit" becomes "_exit" in HLA (since exit is an HLA reserved word). The two common
exceptions to this rule are for the identifiers "name" and "value" (both HLA reserved words) which are usually
converted to "theName" or "theValue" in the linux.hhf header file.

Whenever a type name conflicts with a procedure name, the linux.hhf header file appends "_t" to the type
name. This is a common Unix practice and one wonders why these structure names didn’t have the "_t" suffix to
begin with.

Certain Linux functions are overloaded allowing one, two, or possibly three parameters. The linux.hhf
header file contains two or three prototypes for each function, each with a fixed number of parameters.
However, you can still call the functions using the standard C syntax because HLA provides macros to simulate
function overloading (i.e., a variable number of parameters) for these particular functions. Generally, the macro
uses the standard C/Linux name (e.g. linux.sysfs) while the actual HLA procedures use a numeric suffix to
denote the number of parameters (e.g., linux.sysfs1, linux.sysfs2, and linux.sysfs3).

Please see the "linux.hhf" header file for more details on the spelling of Linux constants, types, and function
names.
Released to the Public Domain Page 485

HLA Standard Library
You should also note that there is a list of constants that begin with "sys_" at the end of the header file.
These are the function opcodes that one passes in EAX to the INT($80) system call. If you’re going to make the
INT($80) calls directly yourself, you should, at least, use these symbol names (e.g., "sys_exit").
Page 486 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
19 Lists Module (lists.hhf)

The list.bodyhhf library module provides a class data type and a set of functions to manipulate linked lists
within a program.

19.1 The Lists Module
To use the list functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:
#include("lists.hhf")
or
#include("stdlib.hhf")

 19.1.0.1 List Data Types
The HLA Standard Library provides a generic list abstract data type via the lists module. The lists module

provides two classes: a generic list class and a generic, abstract, node_t class. These classes have
(approximately) the following definitions:

 nodePtr_t :pointer to node_t;
node_t:
 class

 var
 Prev: pointer to node_t;
 Next: pointer to node_t;

 procedure create; @returns("esi"); @external;
 method destroy; @abstract;
 method cmpNodes(n:nodePtr_t); @abstract;

 endclass;

list_t:
 class

 var
 Head: pointer to node_t;
 Tail: pointer to node_t;
 Cnt: uns32;
 align(4);

procedure create; @returns("esi");
method destroy;
method numNodes; @returns("eax");
method append_index(var n:node_t; posn: dword);

@returns("esi");

method append_node(var n:node_t; var after: node_t);
 @returns("esi");

method append_last(var n:node_t); @returns("esi");
method insert_index(var n:node_t; posn:dword); @returns("esi");
method insert_node(var n:node_t; var before:node_t);

@returns("esi");

method insert_first(var n:node_t); @returns("esi");
Released to the Public Domain Page 487

HLA Standard Library
method delete_index(posn:dword);
method delete_node(var n:node_t);
method delete_first;
method delete_last;
method index(posn:dword);
method xchgNodes(n1:nodePtr_t; n2:nodePtr_t);
method sort;
method reverse;
method search(cmpThunk:thunk);
iterator nodeInList;
iterator nodeInListReversed;
iterator filteredNodeInList(t:thunk);
iterator filteredNodeInListReversed(t:thunk);

 endclass;

The node_t class is an abstract base class from which you must derive a node type for the nodes in your list.
You would normally override the node_t.create procedure and write a procedure that specifically allocates
storage for an object of type node_t and initializes any important data fields. If you like, your overloaded create
procedure can call node_t.create to initialize the link fields of the node you create, although this is not strictly
necessary.

The node_t.destroy method is an abstract method that you must override. The list_t.destory method calls
node_t.destroy (or, at least, your overloaded version of it) in order to free the storage associated with a given
node. A typical concrete implementation of this function looks like the following:

method MyNode.destroy; @nodisplay; @noframe;
begin destroy;

// On entry, ESI points at the current node object.
// Free the storage associated with this node.

if(isInHeap(esi)) then

free(esi);

endif;

end destroy;

The node_t.cmpNodes method is another abstract method you may need to override. This method compares
the current node (referenced by this) against the node whose address the caller passes as the single argument.
This method compares the two nodes and sets the carry and zero flags in a manner consistent with an unsigned
integer comparison (that is, it sets the carry flag if the this node is less than the parameter node; it sets the zero
flag if the two nodes are equal; it clears these two flags if the opposite conditions hold). The list_t.sort and
list_t.search functions use node_t.cmpNodes; if you use either of these functions in the list_t objects you create,
you will need to provide a concrete implementation of the node_t.cmpNodes method. Note that because
node_t.cmpNodes is an abstract method, there is no default implementation for this function – you must provide
a concrete implementation if you call it or you call some other function that calls it. Here is a sample
implementation that demonstrates this:

method MyNode.cmpNodes;
var

thisSave
begin cmpNodes;

// Assume there is a "keyID" signed integer field in MyNode and
// when we compare the two nodes we simply compare the int32 values
// and set the flags for an unsigned comparison.

push(eax);
Page 488 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(n, eax);
mov((type MyNode [eax]).keyID, eax);
cmp(eax, this.keyID);
if(@l) then

stc();// Make @b. Note that Z is clear

else

clc();// Make @nb.

// Note that Z is set appropriately at this point.

endif;
pop(eax);

end cmpNodes;

For a typical example of an overloaded node_t class, see the listDemo.hla example in the HLA examples
subdirectory.

The list_t class is an abstract data type used to maintain lists of nodes. Internally, the list_t class represents
lists of nodes using a doubly-linked list, although your applications should not be aware of the internal
implementation. Likewise, for efficiency reasons the list_t class maintains a pointer to the head of the list, a
pointer to the tail of the list, and a count of the number of nodes currently in the list. Your applications should
ignore these fields (note that you can obtain the number of nodes in the list by calling the numNodes method) and
treat the fields as private to the class.

19.2 List_t Class Function Types
In most HLA classes, there are three types of functions: (static) procedures, (dynamic), and (dynamic)

iterators. The only difference between a method and a procedure is how the program actually calls the function:
the program calls procedures directly, it calls methods indirectly through an entry in the virtual method table
(VMT). Static procedure calls are very efficient, but you lose the benefits of inheritence and functional
polymorphism when you define a function as a static procedure in a class. Methods, on the other hand, fully
support polymorphic calls, but introduce some efficiency issues.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and links in the code for each method in the class. This can make your program a little larger because it may be
including several date class functions that you don’t actually call.

The second effiency issue concerning method calls is that they use the EDI register to make the indirect call
(static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and available
before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though exteremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The HLA Standard Library predefines two classes: list_t and virtualList_t. They differ in how they define
the functions appearing in the class types. The list_t type uses static procedures for all functions, the virtualList_t
type uses methods for all class functions. Therefore, list_t objects will make direct calls to all the functions (and
only link in the procedures you actually call); however, list_t objects do not support function polymorphism in
derived classes. The virtualList_t type does support polymorphism for all the class methods, but whenever you
use this data type you will link in all the methods (even if you don’t call them all) and calls to these methods will
require the use of the EDI register.

It is important to understand that list_t and virtualList_t are two separate types. Neither is derived from the
other. Nor are the two types compatible with one another. You should take care not to confuse objects of these
two types if you’re using both types in the same program (better yet, don’t use both types in the same program –
use virtualList_t if you need polymorphism).
Released to the Public Domain Page 489

HLA Standard Library
19.3 Creating New List Class Types
As it turns out, the only difference between a method and a procedure (in HLA) is how that method/

procedure is called. The actual function code is identical regardless of the declaration (the reason HLA supports
method and procedure declarations is so that it can determine how to populate the VMT and to determine how to
call the function). By pulling some tricks, it’s quite possible to call a procedure using the method invocation
scheme or call a method using a direct call (like a static procedure). The Standard Library list class module takes
advantage of this trick to make it possible to create new list classes with a user-selectable set of procedures and
methods. This allows you to create a custom list type that uses methods for those functions you want to override
(as methods) and use procedures for those functions you don’t call or will never override (as virtual methods).
Indeed, the list_t and virtualList_t data types were created using this technique. The list_t data type was created
specifying all functions as procedures, the virtualList_t data type was created specifying all functions as
methods. By using the _hla.make_listClass macro, you can create new date data types that have any
combination of procedures and methods.

_hla.make_listClass(className, "<list of methods>")

_hla.make_listClass is a macro that generates a new data type. As such, you should only invoke this macro
in an HLA type declaration section. This macro requires two arguments: a class name and a string containing the
list of methods to use in the new data type. The method list string must contain a sequence of method names
(typically separated by spaces, though this isn’t strictly necessary) from the following list:
destroy
numNodes
appendIndex
appendNode
appendLast
insertIndex
insertNode
insertFirst
deleteIndex
deleteNode
deleteFirst
deleteFast
index
xchgNodes
sort
reverse
search

Here is _hla.make_listClass macro invocation that creates the virtualList type:

type

_hla.make_listClass
(

virtualList_t,
"destroy"
"numNodes"
"appendIndex"
"appendNode"
"appendLast"
"insertIndex"
"insertNode"
"insertFirst"
"deleteIndex"
"deleteNode"
"deleteFirst"
"deleteFast"
"index"
"xchgNodes"
"sort"
"reverse"
"search"

);
Page 490 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
(For those unfamiliar with the syntax, HLA automatically concatenates string literals that are separated by
nothing but whitespace; therefore, this macro contains exactly two arguments, the virtualList_t name and a single
string containing the concatenation of all the strings above.)

From this macro invocation, HLA creates a new data type using methods for each of the names appearing in
the string argument. If a particular date function’s name is not present in the _hla.make_listClass macro
invocation, then HLA creates a static procedure for that function. As a second example, consider the declaration
of the list_t data type (which uses static procedures for all the list functions):
type

 _hla.make_listClass(list_t, " ");

Because the function string does not contain any of the list function names, the _hla.make_listClass macro
generates static procedures for all the list functions.

The list_t type is great if you don’t need to create a derived list class that allows you to polymorphically
override any of the list functions. If you do need to create methods for certain functions and you don’t mind
linking in all the list class functions (and you don’t mind the extra overhead of a method call, even for those
functions you’re not overloading), the virtualList_t data type is convenient to use because it makes all the
functions virtual (that is, methods). Probably 99% of the time you won’t be calling the list functions very often,
so the overhead of using method invocations for all list functions is irrelevant. In those rare cases where you do
need to support polymorphism for a few list functions but don’t want to link in the entire set of list functions, or
you don’t want to pay the overhead for indirect calls to functions that are never polymorphic, you can create a
new list class type that specifies exactly which functions require polymorphism.

For example, if you want to create a date class that overrides the definition of the sort and search functions,
you could declare that new type thusly:

type
 _hla.make_listClass

 (
 MyListClass,
 "sort"
 "search"
);

This new class type (MyListClass) has two methods, sort and search, and all the other list functions are static
procedures. This allows you to create a derived class that overloads the sort and search methods and access
those methods when using a generic MyListClass pointer, e.g.,

type
 derivedMyListClass :

class inherits(MyListClass);

override method sort;
override method search;

endclass;

Again, it is important for you to understand that types created by _hla.make_listClass are base types. They
are not derived from any other class (e.g., virtualList is not derived from list or vice-versa). The types created by
the _hla.make_listClass macro are independent and incompatible types. For this reason, you should avoid using
different base list class types in your program. Pick (or create) a base list class and use that one exclusively in an
application. You’ll avoid confusion by following this rule.

19.4 List Procedures, Methods, and Iterators
Because you can create your own list data types, describing list functions as procedures or methods is

somewhat inaccurate. In the sections that follow, a function is described as a "procedure" if it is always a static
procedure and you cannot override that (this only applies to the constructor); a function is described as a
"method" if you can create a new data type and define that function to be a static procedure or a dynamic method
via the hla.make_listClass macro. Note that the four iterators defined in the list class (list_t.nodeInList,
Released to the Public Domain Page 491

HLA Standard Library
list_t.nodeInlistReversed, list_t.filteredNodeInList, and list_t.filteredNodeInListReversed) are always dynamic
iterators, you cannot change their definition.

As is typical for the Standard Library documentation when describing classes and objects, this chapter does
not provide any examples of low-level assembly language calls to the various methods in the list_t class. The
assumption here is that someone who is doing object-oriented programming in assembly language is perfectly
happy using the high-level method calls (particularly as the low-level method invocations are rather messy). If
you’re an exception to this rule, please consult the HLA documentation for details on making direct (low-level)
calls to class methods and iterators.

The calling sequence examples appearing throughout this chapter use the following object declarations:

static
sList:virtualList_t;
pList:pointer to virtualList_t;

Note that the calling sequences are exactly the same for static and virtual objects. That is, you could replace
the two virtualList_t data types above with list_t and the examples would all still be syntactically correct.

When discussing methods, the following sections claim that any call to a method will wipe out the value in
the EDI register. This is true if the class data type actually uses methods. If you’ve created a new list data type
using _hla.make_listClass and you’ve defined a function to be a procedure rather than a method, then the call is
direct and it does not necessarily disturb the value of the EDI register. However, you should not make this
assumption. Some methods might actually assume that it’s okay to disturb the value in EDI as it was used to hold
the VMT address for the call. Better safe than sorry – assume that if it’s a method, EDI’s value gets modifed.

19.5 List Constructor and Destructor
procedure list_t.create; @returns("esi");

This is the standard constructor for the list class. If you call this class procedure via list_t.create() it will
allocate storage for a new list_t object, initialize the fields of that object (to the empty list), and return a pointer to
that list_t object in ESI. If you call this class procedure via someListVarName.create() then this procedure will
initialize the (presumably) allocated list_t object (again, to the empty list).

HLA high-level calling sequence examples:

// Constructor call that allocates storage for a list object:

virtualList_t.create();
mov(esi, pList);

// Constructor call that initializes an already-allocated object:

sList.create();

method list_t.destroy;

This method frees the storage associated with each node in the list (if the individual nodes were allocated on
the heap), it then frees the storage associated with the list_t object itself, assuming the list was allocated on the
heap. Note that successful execution of this method requires that you create a derived class from the abstract
base class node_t and that you’ve overridden the node_t.destroy method. The list_t.destroy method deallocates
the nodes in the list by calling the node_t.destroy method for each node in the list.

HLA high-level calling sequence examples:

sList.destroy();
pList.destroy();
Page 492 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
19.6 Accessor Functions

method list_t.numNodes; @returns("eax");

This function returns the number of nodes currently in the list in the EAX register. You should always call
this routine rather than access the list_t.Cnt field directly.

HLA high-level calling sequence examples:

sList.numNodes();
mov(eax, sNumNodes);

pList.numNodes();
mov(eax, pNumNodes);

 19.6.0.1 Adding Nodes to a List

#macro list_t.append(node, posn);
#macro list_t.append(node, node);
#macro list_t.append(node);

The list_t.append macro provides function overloading on the list_t.append_index, list_t.append_node, and
list_t.appendLast functions. The list_t.append macro checks the number and type of the parameters and calls the
appropriate list_t.append_* function whose signature matches the argument list. See the discussion of the
following three methods for details on the specific calls.

method list_t.append_index(var n:node_t; posn: dword); @returns("esi");

This method appends node n to the list after node posn in the list. If posn is greater than or equal to the
number of nodes in the list, then this method appends node n to the end of the list. Normally, you would not call
this method directly. Instead, you would use the

sList.append(n,posn);

macro to call this method. This function returns a pointer to node n in ESI. As with most method invocations,
this call wipes out the value in EDI.

HLA high-level calling sequence examples:

sList.append_index(MyNodePtr, 4);// Append after fifth node
pList.append(MyNodePtr, 5);// Append after sixth node

method list_t.append_node(var n:node_t; var after: node_t);
@returns("esi");

This method inserts node n in the object list immediately after node after in that list. This method assumes
that after is a node in the object’s list; it does not validate this fact. Therefore, you must ensure that after is a
member of the object’s list. Normally, you would not call this function directly; instead, you would invoke the

listVar.append(n, after);

macro to do the work. This function returns a pointer to node n in ESI. As with most method invocations, this
call wipes out the value in EDI.
Released to the Public Domain Page 493

HLA Standard Library
HLA high-level calling sequence examples:

// Append NewNode after the NodeInList node:

sList.append_node(NewNode, NodeInList);

// Append anotherNewNode after someNodeInpList:

pList.append(AnotherNewNode, someNodeInpList);

method list_t.append_last(var n:node_t); @returns("esi");

This method appends node n to the end of the object list. Normally you would not call this method directly,
instead you would just invoke the macro:

listVar.append(n);

This function returns a pointer to node n in ESI. As with most method invocations, this call wipes out the
value in EDI.

HLA high-level calling sequence examples:

// Append NewNode at the end of the list:

sList.append_last(NewNode);

// Append anotherNewNode at the end of the pList:

pList.append(AnotherNewNode);

#macro list_t.insert(node, posn);
#macro list_t.insert(node, node);
#macro list_t.insert(node);

The list_t.insert macro provides function overloading on the list_t.insert_index, list_t.insert_node, and
list_t.insertFirst functions. The list_t.insert macro checks the number and type of the parameters and calls the
appropriate list_t.insert_* function whose signature matches the argument list. See the discussion of the
following three methods for details on the specific calls.

method list_t.insert_index(var n:node_t; posn:dword); @returns("esi");

This method inserts node n before the posnth node in the list. If posn is greater than or equal to the number
of nodes in the list, this method simply appends the node to the end of the list (remember, nodes are numbered
from 0..Cnt-1; so if posn=Cnt then that would imply inserting the node at the end of the list). Normally you
would not call this method directly; instead, you’ll invoke the

listVar.insert(n, posn);

macro to do the job. This function returns a pointer to node n in ESI. As with most method invocations, this call
wipes out the value in EDI.

HLA high-level calling sequence examples:

sList.insert_index(MyNodePtr, 4);// Insert before fifth node
pList.insert(MyNodePtr, 5);// Insert before sixth node
Page 494 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
method list_t.insert_node(var n:node_t; var before:node_t);
@returns("esi");

This method inserts node n before node before in the object’s list. This method assumes that before is an
actual member of the list, it does not verify this prior to insertion. You would not normally call this routine
directly. Instead, invoke the listVar.insert(n, before) macro to do th actual work. This function returns a pointer
to node n in ESI. As with most method invocations, this call wipes out the value in EDI.

HLA high-level calling sequence examples:

// Insert NewNode before the NodeInList node:

sList.insert_node(NewNode, NodeInList);

// Insert anotherNewNode before someNodeInpList:

pList.insert(AnotherNewNode, someNodeInpList);

method list_t.insert_first(var n:node_t); @returns("esi");

This function inserts node n at the beginning of the object’s list. You would not normally call this method
directly; you should normally invoke the listVar.insert(n) macro and let it do all the work. This function
returns a pointer to node n in ESI. As with most method invocations, this call wipes out the value in EDI.

HLA high-level calling sequence examples:

// Insert NewNode at the beginning of the list:

sList.insert_last(NewNode);

// Insert anotherNewNode at the start of the pList:

pList.insert(AnotherNewNode);

19.7 Removing Nodes From a List
#macro list_t.delete(posn);
#macro list_t.delete(node);
#macro list_t.delete();

These macros overload the list_t.delete_index, list_t.delete_node, and list_t.delete_first methods in the list
class. The macro determines which of these methods to call by testing the number and types of the macro’s
arguments. Note that this macro does not overload the list_t.delete_last method as it does not have a unique
signature (i.e., list_t.delete_last’s signature would be identical to list_t.delete_first’s).

method list_t.delete_index(posn:dword); @returns("esi");

This method removes the posnth node from the list and returns a pointer to this node in ESI. Normally you
would invoke the

list_t.delete(posn);

macro rather than calling this method directly.

HLA high-level calling sequence examples:
Released to the Public Domain Page 495

HLA Standard Library
sList.delete_index(4);// Delete the fifth node
pList.insert(ecx);// Delete the node whose index is in ECX

method list_t.delete_node(var n:node_t); @returns("esi");

This method removes node n from the list and returns a pointer to this node in ESI. This method assumes
that node n actually is in the list; it does not verify this. Normally, you would invoke the

list_t.delete(n);

macro rather than call this method directly.

HLA high-level calling sequence examples:

// Delete the deleteMe node:

sList.delete_node(deleteMe);
mov(esi, deleted_node);

// Delete anotherUselessNode:

pList.delete(anotherUselessNode);
mov(esi, deleted_node_too);

method list_t.delete_first; @returns("esi");

This method removes the first node from the list and returns a pointer to this node in ESI. Normally you
would not call this method directly but you would invoke the

list_t.delete();

macro instead.

HLA high-level calling sequence examples:

// Delete the node at the beginning of the list:

sList.delete_first();
mov(esi, deleted_node);

pList.delete();
mov(esi, deleted_node_too);

method list_t.delete_last; @returns("esi");

This method removes the last node from the list and returns a pointer to this node in ESI.

HLA high-level calling sequence examples:

// Delete the node at the end of the list:

sList.delete_last();
mov(esi, deleted_node);
Page 496 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
19.8 Accessing Nodes in a List

method list_t.index(posn:dword); @returns("esi");

This method returns a pointer to the posnth node in the list in the ESI register. It returns NULL if the list is
empty. It returns the address of the last node in the list if posn >= Cnt.

HLA high-level calling sequence examples:

// Access the 5th node in the list:

sList.index(4);
mov(esi, fifth_node);

iterator list_t.nodeInList;

This iterator returns a pointer to each node in a list in the ESI register. This iterator traverses the list forward
– from the beginning of the list to the end of the list. Like most iterators, you normally use this iterator within a
FOREACH loop.

HLA high-level calling sequence examples:

// Traverse the entire list:

foreach sList.nodeInList() do

<< Do something with the node pointer in ESI… >>

endfor;

foreach pList.nodeInList() do

<< Do something with the node pointer in ESI… >>

endfor;

iterator list_t.nodeInListReversed;

This iterator returns a pointer to each node in a list in the ESI register. This iterator traverses the list
backward, from the end of the list to the beginning of the list. Like most iterators, you normally use this iterator
within a FOREACH loop.

HLA high-level calling sequence examples:

// Traverse the entire list backwards:

foreach sList.nodeInListReversed() do

<< Do something with the node pointer in ESI… >>

endfor;

foreach pList.nodeInListReversed() do

<< Do something with the node pointer in ESI… >>
Released to the Public Domain Page 497

HLA Standard Library
endfor;

iterator list_t.filteredNodeInList(t:thunk);

This iterator traverses the list and returns a pointer to each node that is "approved" by the thunk t. This
iterator traverses the list forward – from the beginning of the list to the end of the list. Like most iterators, you
normally use this iterator within a FOREACH loop.

On each FOREACH loop iteration, the list_t.filteredNodeInList iterator will call the t thunk and pass it a
pointer to the current node in ESI. The (caller-defined) thunk will test that node (application-specific) and return
true in AL if the FOREACH loop should iterate on that particular node; the thunk should return false in AL if the
FOREACH loop should skip that particular node in the interation sequence.

HLA high-level calling sequence examples:

// Traverse the list and operate on all nodes whose
// "j" field is greater than or equal to 10:

foreach
sList.filteredNodeInList
(

thunk
#{

xor(eax, eax);
cmp((type MyNode [esi]).j, 10);
setae(al);

}#
)

do

<< Do something with the node pointer in ESI… >>

endfor;

// Traverse the list and operate on all nodes whose
// "j" field is equal to the "k" field:

foreach
sList.filteredNodeInList
(

thunk
#{

mov((type MyNode [esi]).j, eax);
cmp(eax, (type MyNode [esi]).k);
mov(0, eax);
sete(al);

}#
)

do

<< Do something with the node pointer in ESI… >>

endfor;

iterator list_t.filteredNodeInListReversed(t:thunk);

This iterator behaves just like list_t.filteredNodeInList except that it traverses the list backwards. As for
list_t.filteredNodeInList, you must provide a thunk that approves or rejects each node in the list. Only approved
Page 498 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
nodes are passed along to the body of the FOREACH loop. Like most iterators, you normally use this iterator
within a FOREACH loop.

HLA high-level calling sequence examples:

// Traverse the list and operate on all nodes whose
// "j" field is greater than or equal to 10:

foreach
sList.filteredNodeInListReversed
(

thunk
#{

xor(eax, eax);
cmp((type MyNode [esi]).j, 10);
setae(al);

}#
)

do

<< Do something with the node pointer in ESI… >>

endfor;

// Traverse the list and operate on all nodes whose
// "j" field is equal to the "k" field:

foreach
sList.filteredNodeInListReversed
(

thunk
#{

mov((type MyNode [esi]).j, eax);
cmp(eax, (type MyNode [esi]).k);
mov(0, eax);
sete(al);

}#
)

do

<< Do something with the node pointer in ESI… >>

endfor;

19.9 Miscellaneous List Functions

method list_t.reverse;

This method reverses the nodes in the list. That is, the first node becomes the last node, the second node
becomes the second to the last node, …, and the last node becomes the first node. This function only changes the
(private) Next and Prev pointers in each node, it does not physically move the nodes around in memory (so
pointers to the nodes remain valid) nor does it change any other data in the nodes in the list.

HLA high-level calling sequence examples:

// Reverse the lists:
Released to the Public Domain Page 499

HLA Standard Library
sList.reverse();
pList.reverse();

method list_t.xchgNodes(n1:nodePtr_t; n2:nodePtr_t);

This method exchanges two nodes in the list. Specifically, this function swaps the nodes’ (private) Next and
Prev fields and, if necessary, updates the beginning and ending node pointers in the list object. The n1 and n2
parameters must contain pointers to nodes within the list or this function will produce undefined results. This
function does not check n1 or n2 to verify that they are within the list, it is the caller’s responsibility to ensure
this.

HLA high-level calling sequence examples:

// Exchange the 4th and 7th nodes in the list:

sList.index(3);

mov(eax, ebx); // Get address of the 4th node.

sList.index(6);// Get the address of the 7th node.
sList.xchgNodes(eax, ebx);// Exchange the two nodes.

method list_t.sort;

This method sorts the nodes in the list in ascending order. This function invokes the node_t class cmpNodes
method in order to sort the list, so if you use this function you must provide a concrete implementation of the
cmpNodes method or the HLA run-time system will raise an "Abstract Method Executed" exception.

Note that if you want to sort the list in descending order, and you don’t otherwise need to sort it in ascending
order, you can define the node_t.cmpNodes method to reverse the state of the carry flag (that is, return carry set
on greater than and carry clear on less than or equal). However, be careful if you do this as those semantics will
exist for all lists that try to sort the particular node_t class you’ve defined this way. Perhaps a better solution
would be to overload the list class you’ve defined and create a new sort procedure that sorts the data in
descending order. Or simply modify the list class source code and add a list_t.sortReverse function.

HLA high-level calling sequence examples:

// Sort the lists:

sList.sort();
pList.sort();

method list_t.search(cmpThunk:thunk); @returns("eax");

This method searches for a specific node in the list (starting at the front of the list and sequentially searching
toward the end of the list). It executes the cmpThunk thunk on each node until either the thunk returns true in AL
(that is, it does not return false in AL) or it reaches the end of the list. If the thunk ever returns true, then this
function returns a pointer to the associated node in the EAX register. If the search function scans the entire list
and cmpThunk always returns false, then this function will return NULL (zero) in EAX upon reaching the end of
the list.

This function is very similar to the list_t.filteredNodeInList function except that it does not iterate on every
matching node in the list. Instead, this function returns only the first matching occurrence found in the list.

HLA high-level calling sequence examples:

// Search for the first node whose
// "j" field is equal to 10:
Page 500 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sList.search
(

thunk
#{

xor(eax, eax);
cmp((type MyNode [esi]).j, 10);
sete(al);

}#
);
if(eax <> NULL) then

<< do something with the node pointed at by EAX… >

endif;
Released to the Public Domain Page 501

HLA Standard Library
Page 502 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
20 Math Module (math.hhf)

The HLA math library module provides several large integer arithmetic/logical, trigonometric, and
logarithmic routines that extend those provided directly in the CPU and FPU. Note that many of the
transcendental functions place strict limits on the values of their parameters. See a reasonable math text or the
Intel documentation for details.

A Note About the FPU: The Standard Library code (and the math module in particular) makes use of the
FPU when computing certain mathematical functions. You should exercise caution when using MMX
instructions in a program that makes use of the Standard Library. In particular, you should ensure that you are
always in FPU mode (by executing an EMMS instruction) after you are finished using MMX instructions. Better
yet, you should avoid the MMX instruction set altogether and use the improved SSE instruction set that
accomplishes the same tasks (and doesn’t disturb the FPU).

20.1 The Math Module
To use the math functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:
#include("math.hhf")
or
#include("stdlib.hhf")

20.2 Math Data Types
The math module of the HLA standard library works with seven different data types: 64-bit integers (signed

or unsigned), 128-bit integers (signed or unsigned), and real values (32-bit, 64-bit, and 80 bits). Each function
specifies the operand data types it expects to use.

20.3 64-Bit Arithmetic and Logical Operations
The HLA Standard Library provides a complete set of arithmetic and logical operations for 64-bit integers.

Extended precision arithmetic (especially 64-bit) is fairly straight forward and an in-line coding of most of these
functions will generally be faster than calling these functions. For example, a full 64-bit extended precision
addition requires about the same number of instructions as it takes to simply pass the parameters to the
math.addq routine. Therefore, do not call these routines if performance is important, use in-line code instead.

 Another reason (beyond the procedure call overhead) that these procedures are slower than the in-line code
is that the standard extended precision add sequence does not set the zero flag properly; these procedures have to
execute several additional instructions to preserve the carry, sign, and overflow flags as well as properly set the
zero flag. So, for example, if you don’t use the value of the zero flag upon return, all this extra work goes to
waste.

These procedures are convenient to use and are perfectly acceptable when performance is not an issue.
Another advantage is that these routines work memory to memory and don’t disturb the values in any registers;
and also, these routines use a "three-address" form that allows a different destination address (i.e., the destination
does not have to be the same as one of the source operands. Of course, as already mentioned, these functions
tend to set the flags the same way the basic machine instructions would set them, a big advantage if you are
testing the flags after extended-precision arithmetic operations.

 math.addq(left:qword; right:qword; var dest:qword);

This routine adds two quad-word 64-bit integer values and stores the result in a 64-bit destination memory
location. The values may be signed or unsigned. This routine computes the following:

dest := left + right;

This function sets the 80x86 flags exactly the same way that the standard ADD instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags denote unsigned or signed overflow (respectively).

HLA high-level calling sequence example:
Released to the Public Domain Page 503

HLA Standard Library
// Compute Sum64 := i64 + j64:

math.addq(i64, j64, Sum64);

HLA low-level calling sequence example:

// Compute Sum64 := i64 + j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Sum64);
push(eax);
call math.addq;

math.subq(left:qword; right:qword; var dest:qword);

This function subtracts two 64-bit integer values and stores their difference in dest. The values may be
signed or unsigned. This function computes the following:

dest := left - right;

This function sets the 80x86 flags exactly the same way that the standard SUB instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags denote unsigned or signed overflow (respectively).

HLA high-level calling sequence example:

// Compute Dif64 := i64 - j64:

math.subq(i64, j64, Dif64);

HLA low-level calling sequence example:

// Compute Dif64 := i64 - j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dif64);
push(eax);
call math.subq;

math.divq(left:qword; right:qword; var dest:qword);

This routine divides one unsigned 64-bit value by another. It computes the following:

dest := left div right;

Since the 80x86 flags don’t contain useful values after the execution of the DIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.
Page 504 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Note that the discussion of the triviality of 64-bit arithmetic does not apply to division. Calling this function
(versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning given
earlier.

Also note that this function does not automatically compute the remainder (as the x86 DIV instruction does).
The math module provides the math.modq function if you need to compute the remainder of the division of two
64-bit values.

HLA high-level calling sequence example:

// Compute Quo64 := i64 div j64:

math.divq(i64, j64, Quo64);

HLA low-level calling sequence example:

// Compute Quo64 := i64 div j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Quo64);
push(eax);
call math.divq;

 math.idivq(left:qword; right:qword; var dest:qword);

This routine divides one signed 64-bit value by another. It computes the following:

dest := left idiv right;

Since the 80x86 flags don’t contain useful values after the execution of the IDIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 64-bit arithmetic does not apply to division. Calling this function
(versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning given
earlier.

Also note that this function does not automatically compute the remainder (as the x86 IDIV instruction
does). The math module provides the math.modq function if you need to compute the remainder of the division
of two 64-bit values.

HLA high-level calling sequence example:

// Compute Quo64 := i64 idiv j64:

math.idivq(i64, j64, Quo64);

HLA low-level calling sequence example:

// Compute Quo64 := i64 idiv j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Quo64);
push(eax);
Released to the Public Domain Page 505

HLA Standard Library
call math.idivq;

 math.modq(left:qword; right:qword; var dest:qword);

This routine divides one unsigned 64-bit value by another and stores the remainder into a destination
variable. It computes the following:

dest := left & right;// Unsigned modulo

Since the 80x86 flags don’t contain useful values after the execution of the DIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 64-bit arithmetic does not apply to division. Calling this function
(versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning given
earlier.

HLA high-level calling sequence example:

// Compute Rem64 := i64 % j64:

math.modq(i64, j64, Rem64);

HLA low-level calling sequence example:

// Compute Rem64 := i64 % j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Rem64);
push(eax);
call math.modq;

 math.imodq(left:qword; right:qword; var dest:qword);

This routine divides one signed 64-bit value by another and stores the remainder into a destination variable.
It computes the following:

dest := left % right;// Signed modulo

Since the 80x86 flags don’t contain useful values after the execution of the IDIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 64-bit arithmetic does not apply to division. Calling this function
(versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning given
earlier.

HLA high-level calling sequence example:

// Compute Rem64 := i64 % j64:

math.imodq(i64, j64, Rem64);

HLA low-level calling sequence example:
Page 506 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Compute Rem64 := i64 % j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Rem64);
push(eax);
call math.imodq;

 math.mulq(left:qword; right:qword; var dest:qword);

This routine multiplies one unsigned 64-bit value by another and stores the product into a destination
variable. It computes the following:

dest := left * right;// Unsigned multiplication

This function sets the carry and overflow flags if there was an unsigned overflow during the operation.

HLA high-level calling sequence example:

// Compute Prod64 := i64 * j64:

math.mulq(i64, j64, Prod64);

HLA low-level calling sequence example:

// Compute Prod64 := i64 % j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Prod64);
push(eax);
call math.mulq;

 math.imulq(left:qword; right:qword; var dest:qword);

This routine multiplies one signed 64-bit value by another and stores the signed product into a destination
variable. It computes the following:

dest := left * right;// Signed multiplication

This function sets the carry and overflow flags if there was an unsigned overflow during the operation.

HLA high-level calling sequence example:

// Compute Prod64 := i64 * j64:

math.imulq(i64, j64, Prod64);

HLA low-level calling sequence example:
Released to the Public Domain Page 507

HLA Standard Library
// Compute Prod64 := i64 % j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Prod64);
push(eax);
call math.imulq;

math.negq(source:qword; var dest:qword);

This function negates (two’s complement) the source operand and stores the result into the destination
operand. It computes the following:

dest := -source;

This function leaves the 80x86 flags containing the same values one would expect after the execution of the NEG
instruction

HLA high-level calling sequence example:

// Compute Neg64 := -i64:

math.negq(i64, Neg64);

HLA low-level calling sequence example:

// Compute Neg64 := -i64:

push((type dword i64[4]));
push((type dword i64));
lea(eax, Neg64);
push(eax);
call math.negq;

math.andq(left:qword; right:qword; var dest:qword);

This routine logically ANDs two quad-word 64-bit integer values. It computes the following:

dest := left & right;// "&" implies bitwise AND operation

This routine sets the 80x86 flags exactly the same way that the standard AND instruction does. In particular, you
may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a negative
result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest64 := i64 & j64:

math.andq(i64, j64, Dest64);

HLA low-level calling sequence example:

// Compute Dest64 := i64 & j64:
Page 508 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dest64);
push(eax);
call math.andq;

math.orq(left:qword; right:qword; var dest:qword);

This function logically ORs two 64-bit values and stores the result into a 64-bit destination variable. It
computes the following:

dest := left | right;

These routines set the 80x86 flags exactly the same way that the standard OR instruction does. In particular, you
may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a negative
result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest64 := i64 | j64:

math.orq(i64, j64, Dest64);

HLA low-level calling sequence example:

// Compute Dest64 := i64 | j64:

push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dest64);
push(eax);
call math.orq;

math.xorq(left:qword; right:qword; var dest:qword);

This function logically XORx two 64-values and stores the result into a 64-bit variable. It computes the
following:

dest := left ^ right;

This function sets the 80x86 flags exactly the same way that the standard XOR instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest64 := i64 ^ j64:

math.xorq(i64, j64, Dest64);

HLA low-level calling sequence example:

// Compute Dest64 := i64 ^ j64:
Released to the Public Domain Page 509

HLA Standard Library
push((type dword i64[4]));
push((type dword i64));
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dest64);
push(eax);
call math.xorq;

math.notq(source:qword; var dest:qword);

This function inverts all the bits in the source operand and stores the result into the destination operand. It
computes the following:

dest := ~source;

This function leaves the 80x86 flags containing the same values one would expect after the execution of the NOT
instruction. Extended precision NOT is an especially trivial operation to compute manually; you should
carefully consider whether you really want to use this function. Consistent flag results is probably the only good
reason for using this function.

HLA high-level calling sequence example:

// Compute Neg64 := not(i64):

math.notq(i64, Not64);

HLA low-level calling sequence example:

// Compute Neg64 := not(i64):

push((type dword i64[4]));
push((type dword i64));
lea(eax, Not64);
push(eax);
call math.notq;

math.shlq(count:uns32; source:qword; var dest:qword);

This function logically shifts left a 64-bit value the number of bits specified by the count operand. It stores
the result into the 64-bit dest operand. It computes the following:

dest := source << count;// Logical shift left operation

These routines set the 80x86 flags exactly the same way that the standard SHL instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry flag contains the last carry out of the H.O. bit, and the overflow flag is set if the last
shift caused a sign change.

HLA high-level calling sequence example:

// Compute Dest64 := j64 << i32:

math.shlq(i32, j64, Dest64);

HLA low-level calling sequence example:
Page 510 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Compute Dest64 := j64 << i32:

push(i32);
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dest64);
push(eax);
call math.shlq;

math.shrq(count:uns32; source:qword; var dest:qword);

This function logically shifts right a 64-bit value the number of bits specified by the count operand. It stores
the result into the 64-bit dest operand. It computes the following:

dest := source >> count;// Logical shift right operation

These routines set the 80x86 flags exactly the same way that the standard SHR instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry flag contains the last carry out of the H.O. bit, and the overflow flag is set if the last
shift caused a sign change.

HLA high-level calling sequence example:

// Compute Dest64 := j64 >> i32:

math.shrq(i32, j64, Dest64);

HLA low-level calling sequence example:

// Compute Dest64 := j64 >> i32:

push(i32);
push((type dword j64[4]));
push((type dword j64));
lea(eax, Dest64);
push(eax);
call math.shrq;

20.4 128-Bit Arithmetic and Logical Operations
The HLA Standard Library provides a complete set of arithmetic and logical operations for 128-bit integers.

Extended precision arithmetic is fairly straight forward and an in-line coding of some of these functions will
generally be faster than calling these functions

Another reason (beyond the procedure call overhead) that these procedures are slower than the in-line code
is that the standard extended precision add sequence does not set the zero flag properly; these procedures have to
execute several additional instructions to preserve the carry, sign, and overflow flags as well as properly set the
zero flag. So, for example, if you don’t use the value of the zero flag upon return, all this extra work goes to
waste.

These procedures are convenient to use and are perfectly acceptable when performance is not an issue.
Another advantage is that these routines work memory to memory and don’t disturb the values in any registers;
and also, these routines use a "three-address" form that allows a different destination address (i.e., the destination
does not have to be the same as one of the source operands. Of course, as already mentioned, these functions
tend to set the flags the same way the basic machine instructions would set them, a big advantage if you are
testing the flags after extended-precision arithmetic operations.
Released to the Public Domain Page 511

HLA Standard Library
 math.addl(left:lword; right:lword; var dest:lword);

This routine adds two 128-bit integer values and stores the result in a 128-bit destination memory location.
The values may be signed or unsigned. This routine computes the following:

dest := left + right;

This function sets the 80x86 flags exactly the same way that the standard ADD instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags denote unsigned or signed overflow (respectively).

HLA high-level calling sequence example:

// Compute Sum128 := i128 + j128:

math.addl(i128, j128, Sum128);

HLA low-level calling sequence example:

// Compute Sum128 := i128 + j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Sum128);
push(eax);
call math.addl;

math.subl(left:lword; right:lword; var dest:lword);

This function subtracts two 128-bit integer values and stores their difference in dest. The values may be
signed or unsigned. This function computes the following:

dest := left - right;

This function sets the 80x86 flags exactly the same way that the standard SUB instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags denote unsigned or signed overflow (respectively).

HLA high-level calling sequence example:

// Compute Dif128 := i128 - j128:

math.subl(i128, j128, Dif128);

HLA low-level calling sequence example:

// Compute Dif128 := i128 - j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
Page 512 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dif128);
push(eax);
call math.subl;

math.divl(left:lword; right:lword; var dest:lword);

This routine divides one unsigned 128-bit value by another. It computes the following:

dest := left div right;

Since the 80x86 flags don’t contain useful values after the execution of the DIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 128-bit arithmetic does not apply to division. Calling this
function (versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning
given earlier.

Also note that this function does not automatically compute the remainder (as the x86 DIV instruction does).
The math module provides the math.modl function if you need to compute the remainder of the division of two
128-bit values.

HLA high-level calling sequence example:

// Compute Quo128 := i128 div j128:

math.divl(i128, j128, Quo128);

HLA low-level calling sequence example:

// Compute Quo128 := i128 div j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Quo128);
push(eax);
call math.divl;

 math.idivl(left:lword; right:lword; var dest:lword);

This routine divides one signed 128-bit value by another. It computes the following:

dest := left idiv right;

Since the 80x86 flags don’t contain useful values after the execution of the IDIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.
Released to the Public Domain Page 513

HLA Standard Library
Note that the discussion of the triviality of 128-bit arithmetic does not apply to division. Calling this
function (versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning
given earlier.

Also note that this function does not automatically compute the remainder (as the x86 IDIV instruction
does). The math module provides the math.modl function if you need to compute the remainder of the division of
two 128-bit values.

HLA high-level calling sequence example:

// Compute Quo128 := i128 idiv j128:

math.idivl(i128, j128, Quo128);

HLA low-level calling sequence example:

// Compute Quo128 := i128 idiv j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Quo128);
push(eax);
call math.idivl;

 math.modl(left:lword; right:lword; var dest:lword);

This routine divides one unsigned 128-bit value by another and stores the remainder into a destination
variable. It computes the following:

dest := left & right;// Unsigned modulo

Since the 80x86 flags don’t contain useful values after the execution of the DIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 128-bit arithmetic does not apply to division. Calling this
function (versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning
given earlier.

HLA high-level calling sequence example:

// Compute Rem128 := i128 % j128:

math.modl(i128, j128, Rem128);

HLA low-level calling sequence example:

// Compute Rem128 := i128 % j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
Page 514 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Rem128);
push(eax);
call math.modl;

 math.imodl(left:lword; right:lword; var dest:lword);

This routine divides one signed 128-bit value by another and stores the remainder into a destination variable.
It computes the following:

dest := left % right;// Signed modulo

Since the 80x86 flags don’t contain useful values after the execution of the IDIV instruction, these routines also
leave the flags scrambled and you can’t count on flag values upon return. This routines will raise an
ex.DivideError exception if you attempt a division by zero.

Note that the discussion of the triviality of 128-bit arithmetic does not apply to division. Calling this
function (versus attempting an in-line implementation) is reasonably efficient and you needn’t heed the warning
given earlier.

HLA high-level calling sequence example:

// Compute Rem128 := i128 % j128:

math.imodl(i128, j128, Rem128);

HLA low-level calling sequence example:

// Compute Rem128 := i128 % j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Rem128);
push(eax);
call math.imodl;

 math.mull(left:lword; right:lword; var dest:lword);

This routine multiplies one unsigned 128-bit value by another and stores the product into a destination
variable. It computes the following:

dest := left * right;// Unsigned multiplication

This function sets the carry and overflow flags if there was an unsigned overflow during the operation.

HLA high-level calling sequence example:

// Compute Prod128 := i128 * j128:
Released to the Public Domain Page 515

HLA Standard Library
math.mull(i128, j128, Prod128);

HLA low-level calling sequence example:

// Compute Prod128 := i128 % j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Prod128);
push(eax);
call math.mull;

 math.imull(left:lword; right:lword; var dest:lword);

This routine multiplies one signed 128-bit value by another and stores the signed product into a destination
variable. It computes the following:

dest := left * right;// Signed multiplication

This function sets the carry and overflow flags if there was an unsigned overflow during the operation.

HLA high-level calling sequence example:

// Compute Prod128 := i128 * j128:

math.imull(i128, j128, Prod128);

HLA low-level calling sequence example:

// Compute Prod128 := i128 % j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Prod128);
push(eax);
call math.imull;

math.negl(source:lword; var dest:lword);

This function negates (two’s complement) the source operand and stores the result into the destination
operand. It computes the following:

dest := -source;
Page 516 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This function leaves the 80x86 flags containing the same values one would expect after the execution of the NEG
instruction

HLA high-level calling sequence example:

// Compute Neg128 := -i128:

math.negl(i128, Neg128);

HLA low-level calling sequence example:

// Compute Neg128 := -i128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
lea(eax, Neg128);
push(eax);
call math.negl;

math.andl(left:lword; right:lword; var dest:lword);

This routine logically ANDs two 128-bit values. It computes the following:

dest := left & right;// "&" implies bitwise AND operation

This routine sets the 80x86 flags exactly the same way that the standard AND instruction does. In particular, you
may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a negative
result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest128 := i128 & j128:

math.andl(i128, j128, Dest128);

HLA low-level calling sequence example:

// Compute Dest128 := i128 & j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dest128);
push(eax);
call math.andl;
Released to the Public Domain Page 517

HLA Standard Library
math.orl(left:lword; right:lword; var dest:lword);

This function logically ORs two 128-bit values and stores the result into a 128-bit destination variable. It
computes the following:

dest := left | right;// "|" implies bitwise logical OR

This function sets the 80x86 flags exactly the same way that the standard OR instruction does. In particular, you
may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a negative
result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest128 := i128 | j128:

math.orl(i128, j128, Dest128);

HLA low-level calling sequence example:

// Compute Dest128 := i128 | j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dest128);
push(eax);
call math.orl;

math.xorl(left:lword; right:lword; var dest:lword);

This function logically XORs two 128-values and stores the result into a 128-bit variable. It computes the
following:

dest := left ^ right;// "^" denotes bitwise exclusive-OR.

This function sets the 80x86 flags exactly the same way that the standard XOR instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry and overflow flags are both clear.

HLA high-level calling sequence example:

// Compute Dest128 := i128 ^ j128:

math.xorl(i128, j128, Dest128);

HLA low-level calling sequence example:

// Compute Dest128 := i128 ^ j128:

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
Page 518 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword i128));
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dest128);
push(eax);
call math.xorl;

math.notl(source:lword; var dest:lword);

This function inverts all the bits in the source operand and stores the result into the destination operand. It
computes the following:

dest := ~source;

This function leaves the 80x86 flags containing the same values one would expect after the execution of the NOT
instruction. Extended precision NOT is an especially trivial operation to compute manually; you should
carefully consider whether you really want to use this function. Consistent flag results is probably the only good
reason for using this function.

HLA high-level calling sequence example:

// Compute Neg128 := not(i128):

math.notl(i128, Not128);

HLA low-level calling sequence example:

// Compute Neg128 := not(i128):

push((type dword i128[12]));
push((type dword i128[8]));
push((type dword i128[4]));
push((type dword i128));
lea(eax, Not128);
push(eax);
call math.notl;

math.shll(count:uns32; source:lword; var dest:lword);

This function logically shifts left a 128-bit value the number of bits specified by the count operand. It stores
the result into the 128-bit dest operand. It computes the following:

dest := source << count;// Logical shift left operation

This function sets the 80x86 flags exactly the same way that the standard SHL instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry flag contains the last carry out of the H.O. bit, and the overflow flag is set if the last
shift caused a sign change.

HLA high-level calling sequence example:

// Compute Dest128 := j128 << i32:

math.shll(i32, j128, Dest128);
Released to the Public Domain Page 519

HLA Standard Library
HLA low-level calling sequence example:

// Compute Dest128 := j128 << i32:

push(i32);
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dest128);
push(eax);
call math.shll;

math.shrl(count:uns32; source:lword; var dest:lword);

This function logically shifts right a 128-bit value the number of bits specified by the count operand. It
stores the result into the 128-bit dest operand. It computes the following:

dest := source >> count;// Logical shift right operation

This function sets the 80x86 flags exactly the same way that the standard SHR instruction does. In particular,
you may test the zero flag afterwards for a zero result, you can test the sign flag to determine if there was a
negative result, the carry flag contains the last carry out of the H.O. bit, and the overflow flag is set if the last
shift caused a sign change.

HLA high-level calling sequence example:

// Compute Dest128 := j128 >> i32:

math.shrl(i32, j128, Dest128);

HLA low-level calling sequence example:

// Compute Dest128 := j128 >> i32:

push(i32);
push((type dword j128[12]));
push((type dword j128[8]));
push((type dword j128[4]));
push((type dword j128));
lea(eax, Dest128);
push(eax);
call math.shrl;

20.5 Transcendental, Logarithmic, and Other Floating-Point
Operations

The HLA Standard Library contains a wide variety of transcendental and logarithmic functions. All of these
instructions use the FPU for their computations, they do not use SSE-type floating-point instructions. These
functions all assume that the CPU is in floating-point mode (that is, you’ve not executed any MMX instructions
in your program or you haven’t executed any MMX instructions since you last executed an EMMS instruction)
and that the FPU stack is valid.

Because the x86 FPU supports three different real data types, each of the functions in the HLA Standard
Library Math module provide variants that work on single-precision (32-bit), double-precision (64-bit), and
extended-precision (80-bit) memory operands. The library also includes a version of each function that operates
Page 520 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
on the (80-bit) value currently on the FPU’s top of stack. If "fcn" represents a specific mathematical function
name, then the HLA Standard Library generally provides the following four actual functions:

fcn32(r32:real32);// Expects a real32 operand
fcn64(r64:real64);// Expects a real64 operand
fcn80(r80:real80);// Expects a real80 operand
_fcn(); // Expects a real80 operand on the FPU top of stack

In addition to these four functions, the standard library will also provide a macro, simply named "fcn", that
overloads these four functions and will automatically select the appropriate function to call based on the number
of operands (zero or one) and the type of the operand (real32, real64, or real80).

Some of the functions in the Math module mirror x86 FPU instructions. The purpose of such functions is to
handle range reduction and other operations needed to guarantee a correct or most precise result.

All of these functions leave an 80-bit result sitting on the top of the floating-point stack (except the
math.sincos function, which leaves two values sitting on the FPU stack). In general, you should not count on any
more significant bits than the number of bits in the original operand. That is, if you pass a 32-bit or 64-bit value
to one of these functions, then you should save the result in a like-sized destination variable. Arithmetic precision
is only as good as the original operand(s), so avoid false precision and store the results in appropriately-sized
destination variables.

To save space, this document describes each class of functions that compute the same transcendental/
logarithmic value (except for size) in a single section.

#macro math.sin; @returns("st0");// Overloads the following functions:
procedure math._sin; @returns("st0");
procedure math.sin32(r32: real32); @returns("st0");
procedure math.sin64(r64: real64); @returns("st0");
procedure math.sin80(r80: real80); @returns("st0");

These five functions compute the sine of their parameter value. The parameter value must specify an angle
in radians.

The math.sin function is actually a macro that overloads the remaining four functions. If a math.sin
invocation doesn’t contain any parameters, then this macro expands to a call to the math._sin function which
computes the sine of the value on the FPU stack (ST0). With a single parameter of the appropriate type, the
macro expands to one of the other three functions with the appropriate parameter type.

The math._sin(); call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the CPU stack using the standard HLA parameter passing mechanism.

The purpose of this function (which has a corresponding FPU instruction) is to get out-of-range values into
the legal range before computing the sine via the FPU FSIN instruction.

HLA high-level calling sequence examples:

// Compute y := sin(x):

math.sin32(x32);
fstp(y32);

math.sin64(x64);
fstp(y64);

math.sin80(x80);
fstp(y80);

fld(x80);
math._sin();
fstp(y80);

// Using the math.sin macro:
Released to the Public Domain Page 521

HLA Standard Library
math.sin(x32);
fstp(y32);

math.sin(x64);
fstp(y64);

math.sin(x80);
fstp(y80);

fld(x80);
math.sin();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := sin(x):

push(x32);
call math.sin32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.sin64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.sin80;
fstp(y80);

fld(x80);
call math.sin;
fstp(y80);

#macro math.cos; @returns("st0"); // Overloads the following functions:
procedure math._cos; @returns("st0");
procedure math.cos32(r32: real32); @returns("st0");
procedure math.cos64(r64: real64); @returns("st0");
procedure math.cos80(r80: real80); @returns("st0");

These five functions compute the cosine of their parameter value. The parameter value must specify an
angle in radians.

The math.cos function is actually a macro that overloads the remaining four functions. If a math.cos
invocation doesn’t contain any parameters, then this macro expands to a call to the math._cos function which
computes the cosine of the value on the FPU stack (ST0). With a single parameter of the appropriate type, the
macro expands to one of the other three functions with the appropriate parameter type.

The math._cos(); call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the CPU stack using the standard HLA parameter passing mechanism.

The purpose of this function (which has a corresponding FPU instruction) is to get out-of-range values into
the legal range before computing the cosine via the FPU FCOS instruction.
Page 522 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

// Compute y := cos(x):

math.cos32(x32);
fstp(y32);

math.cos64(x64);
fstp(y64);

math.cos80(x80);
fstp(y80);

fld(x80);
math._cos();
fstp(y80);

// Ucosg the math.cos macro:

math.cos(x32);
fstp(y32);

math.cos(x64);
fstp(y64);

math.cos(x80);
fstp(y80);

fld(x80);
math.cos();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := cos(x):

push(x32);
call math.cos32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.cos64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.cos80;
fstp(y80);

fld(x80);
call math.cos;
fstp(y80);
Released to the Public Domain Page 523

HLA Standard Library
#macro math.tan; @returns("st0"); // Overloads the following functions:
procedure math._tan; @returns("st0");
procedure math.tan32(r32: real32); @returns("st0");
procedure math.tan64(r64: real64); @returns("st0");
procedure math.tan80(r80: real80); @returns("st0");

These five functions compute the tangent of their parameter value. The parameter value must specify an
angle in radians.

The math.tan function is actually a macro that overloads the remaining four functions. If a math.tan
invocation doesn’t contain any parameters, then this macro expands to a call to the math._tan function which
computes the tangent of the value on the FPU stack (ST0). With a single parameter of the appropriate type, the
macro expands to one of the other three functions with the appropriate parameter type.

The math._tan(); call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the CPU stack using the standard HLA parameter passing mechanism.

The purpose of this function (which has a corresponding FPU instruction) is to get out-of-range values into
the legal range before computing the cosine via the FPU FTAN instruction.

HLA high-level calling sequence examples:

// Compute y := tan(x):

math.tan32(x32);
fstp(y32);

math.tan64(x64);
fstp(y64);

math.tan80(x80);
fstp(y80);

fld(x80);
math._tan();
fstp(y80);

// Utang the math.tan macro:

math.tan(x32);
fstp(y32);

math.tan(x64);
fstp(y64);

math.tan(x80);
fstp(y80);

fld(x80);
math.tan();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := tan(x):

push(x32);
call math.tan32;
fstp(y32);

push((type dword x64[4]));
Page 524 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword x64[0]));
call math.tan64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.tan80;
fstp(y80);

fld(x80);
call math.tan;
fstp(y80);

#macro math.sincos; // Overloads the following functions:
procedure math._sincos;
procedure math.sincos32(r32: real32);
procedure math.sincos64(r64: real64);
procedure math.sincos80(r80: real80);

These five functions compute the sine and cosine of their parameter value. The parameter value must
specify an angle in radians.

The math.sincos function is actually a macro that overloads the remaining four functions. If a math.sincos
invocation doesn’t contain any parameters, then this macro expands to a call to the math._sincos function which
computes the sine and cosine of the value on the FPU stack (ST0). With a single parameter of the appropriate
type, the macro expands to one of the other three functions with the appropriate parameter type.

The math._sincos(); call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the CPU stack using the standard HLA parameter passing mechanism.

The purpose of this function (which has a corresponding FPU instruction) is to get out-of-range values into
the legal range before computing the sine and cosine via the FPU FSINCOS instruction.

This function computes two return results (the sine and the cosine) and leaves the two values on the FPU
stack at ST0 and ST1.

HLA high-level calling sequence examples:

// Compute y := sincos(x):

math.sincos32(x32);
fstp(y32);

math.sincos64(x64);
fstp(y64);

math.sincos80(x80);
fstp(y80);

fld(x80);
math._sincos();
fstp(y80);

// Usincosg the math.sincos macro:

math.sincos(x32);
fstp(y32);

math.sincos(x64);
Released to the Public Domain Page 525

HLA Standard Library
fstp(y64);

math.sincos(x80);
fstp(y80);

fld(x80);
math.sincos();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := sincos(x):

push(x32);
call math.sincos32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.sincos64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.sincos80;
fstp(y80);

fld(x80);
call math.sincos;
fstp(y80);

#macro math.atan; @returns("st0"); // Overloads the following functions:
procedure math._atan; @returns("st0");

procedure math.atan32(r32: real32); @returns("st0");
procedure math.atan64(r64: real64); @returns("st0");
procedure math.atan80(r80: real80); @returns("st0");

These five functions compute the arc tangent of their parameter value. The parameter value must specify an
angle in radians.

The math.atan function is actually a macro that overloads the remaining four functions. If a math.atan
invocation doesn’t contain any parameters, then this macro expands to a call to the math._atan function which
computes the arc tangent of the value on the FPU stack (ST0). With a single parameter of the appropriate type,
the macro expands to one of the other three functions with the appropriate parameter type.

The math._atan(); call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the CPU stack using the satandard HLA parameter passing mechanism.

The purpose of this function (which has a corresponding FPU instruction) is to get out-of-range values into
the legal range before computing the cosine via the FPU FATAN instruction.

HLA high-level calling sequence examples:

// Compute y := atan(x):

math.atan32(x32);
Page 526 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fstp(y32);

math.atan64(x64);
fstp(y64);

math.atan80(x80);
fstp(y80);

fld(x80);
math._atan();
fstp(y80);

// Uatang the math.atan macro:

math.atan(x32);
fstp(y32);

math.atan(x64);
fstp(y64);

math.atan(x80);
fstp(y80);

fld(x80);
math.atan();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := atan(x):

push(x32);
call math.atan32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.atan64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.atan80;
fstp(y80);

fld(x80);
call math.atan;
fstp(y80);

#macro math.cot; @returns("st0"); // Overloads the following functions:
procedure math._cot; @returns("st0");
procedure math.cot32(r32: real32); @returns("st0");
Released to the Public Domain Page 527

HLA Standard Library
procedure math.cot64(r64: real64); @returns("st0");
procedure math.cot80(r80: real80); @returns("st0");

These five functions compute the cotangent (1/tan) of their parameter value. The parameter value must
specify an angle in radians.

The math.cot function is actually a macro that overloads the remaining four functions. If a math.cot
invocation doesn’t contain any parameters, then this macro expands to a call to the math._cot function which
computes the cotangent of the value on the FPU stack (ST0). With a single parameter of the appropriate type, the
macro expands to one of the other three functions with the appropriate parameter type.

The math._cot(); call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the CPU stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := cot(x):

math.cot32(x32);
fstp(y32);

math.cot64(x64);
fstp(y64);

math.cot80(x80);
fstp(y80);

fld(x80);
math._cot();
fstp(y80);

// Using the math.cot macro:

math.cot(x32);
fstp(y32);

math.cot(x64);
fstp(y64);

math.cot(x80);
fstp(y80);

fld(x80);
math.cot();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := cot(x):

push(x32);
call math.cot32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.cot64;
fstp(y64);

pushw(0); // Must dword align operand
Page 528 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.cot80;
fstp(y80);

fld(x80);
call math.cot;
fstp(y80);

#macro math.csc // Macro that overloads the following four functions:
procedure math._csc; @returns("st0");
procedure math.csc32(r32:real32); @returns("st0");
procedure math.csc64(r64: real64); @returns("st0");
procedure math.csc80(r80: real80); @returns("st0");

These five functions compute the cosecant (1/sin) of their parameter value. The parameter value must
specify an angle in radians.

The math.csc function is actually a macro that overloads the remaining four functions. If a math.csc
invocation doesn’t contain any parameters, then this macro expands to a call to the math._csc function which
computes the cosecant of the value on the FPU stack (ST0). With a single real parameter, the macro expands to
one of the other three functions with the appropriate parameter type.

The "math._csc();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := csc(x):

math.csc32(x32);
fstp(y32);

math.csc64(x64);
fstp(y64);

math.csc80(x80);
fstp(y80);

fld(x80);
math._csc();
fstp(y80);

// Using the math.csc macro:

math.csc(x32);
fstp(y32);

math.csc(x64);
fstp(y64);

math.csc(x80);
fstp(y80);

fld(x80);
math.csc();
fstp(y80);
Released to the Public Domain Page 529

HLA Standard Library
HLA low-level calling sequence example:

// Compute y := csc(x):

push(x32);
call math.csc32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.csc64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.csc80;
fstp(y80);

fld(x80);
call math.csc;
fstp(y80);

#macro math.sec;// Macro that overloads the following four functions:
procedure math._sec; @returns("st0");
procedure math.sec32(r32:real32); @returns("st0");
procedure math.sec64(r64: real64); @returns("st0");
procedure math.sec80(r80: real80); @returns("st0");

These five functions compute the secant (1/cos) of their parameter value. The parameter value must specify
an angle in radians.

The math.sec function is actually a macro that overloads the remaining four functions. If a math.sec
invocation doesn’t contain any parameters, then this macro expands to a call to the math._sec function which
computes the secant of the value on the FPU stack (ST0). With a single real parameter, the macro expands to one
of the other three functions with the appropriate parameter type.

The "math._sec();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := sec(x):

math.sec32(x32);
fstp(y32);

math.sec64(x64);
fstp(y64);

math.sec80(x80);
fstp(y80);

fld(x80);
math._sec();
fstp(y80);
Page 530 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Using the math.sec macro:

math.sec(x32);
fstp(y32);

math.sec(x64);
fstp(y64);

math.sec(x80);
fstp(y80);

fld(x80);
math.sec();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := sec(x):

push(x32);
call math.sec32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.sec64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.sec80;
fstp(y80);

fld(x80);
call math.sec;
fstp(y80);

#macro math.asin // Macro that overloads the following four functions:
procedure math._asin; @returns("st0");
procedure math.asin32(r32:real32); @returns("st0");
procedure math.asin64(r64: real64); @returns("st0");
procedure math.asin80(r80: real80); @returns("st0");

These five functions compute the arc sine (sin-1) of their parameter value. They return an angle in radians.
The math.asin function is actually a macro that overloads the remaining four functions. If a math.asin

invocation doesn’t contain any parameters, then this macro expands to a call to the math._asin function which
computes the arc sin of the value on the FPU stack (ST0). With a single real parameter, the macro expands to
one of the other three functions with the appropriate parameter type.

The "math._asin();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:
Released to the Public Domain Page 531

HLA Standard Library
// Compute y := asin(x):

math.asin32(x32);
fstp(y32);

math.asin64(x64);
fstp(y64);

math.asin80(x80);
fstp(y80);

fld(x80);
math._asin();
fstp(y80);

// Using the math.asin macro:

math.asin(x32);
fstp(y32);

math.asin(x64);
fstp(y64);

math.asin(x80);
fstp(y80);

fld(x80);
math.asin();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := asin(x):

push(x32);
call math.asin32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.asin64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.asin80;
fstp(y80);

fld(x80);
call math.asin;
fstp(y80);

#macro math.acos // Macro to overload the following four functions:
procedure math._acos; @returns("st0");
Page 532 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure math.acos32(r32:real32); @returns("st0");
procedure math.acos64(r64: real64); @returns("st0");
procedure math.acos80(r80: real80); @returns("st0");

These five functions compute the arc cosine (cos-1) of their parameter value. They return an angle in
radians.

The math.acos function is actually a macro that overloads the remaining four functions. If a math.acos
invocation doesn’t contain any parameters, then this macro expands to a call to the math._acos function which
computes the arc cosine of the value on the FPU stack (ST0). With a single real parameter, the macro expands to
one of the other three functions with the appropriate parameter type.

The "math._acos();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := acos(x):

math.acos32(x32);
fstp(y32);

math.acos64(x64);
fstp(y64);

math.acos80(x80);
fstp(y80);

fld(x80);
math._acos();
fstp(y80);

// Using the math.acos macro:

math.acos(x32);
fstp(y32);

math.acos(x64);
fstp(y64);

math.acos(x80);
fstp(y80);

fld(x80);
math.acos();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := acos(x):

push(x32);
call math.acos32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.acos64;
fstp(y64);
Released to the Public Domain Page 533

HLA Standard Library
pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.acos80;
fstp(y80);

fld(x80);
call math.acos;
fstp(y80);

#macro math.acot// Macro that overloads the following four functions:
procedure math._acot; @returns("st0");
procedure math.acot32(r32:real32); @returns("st0");
procedure math.acot64(r64: real64); @returns("st0");
procedure math.acot80(r80: real80); @returns("st0");

These five functions compute the arc cotangent (cot-1) of their parameter value. They return an angle in
radians.

The math.acot function is actually a macro that overloads the remaining four functions. If a math.acot
invocation doesn’t contain any parameters, then this macro expands to a call to the math._acot function which
computes the arc cotangent of the value on the FPU stack (ST0). With a single real parameter, the macro
expands to one of the other three functions with the appropriate parameter type.

The "math._acot();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := acot(x):

math.acot32(x32);
fstp(y32);

math.acot64(x64);
fstp(y64);

math.acot80(x80);
fstp(y80);

fld(x80);
math._acot();
fstp(y80);

// Using the math.acot macro:

math.acot(x32);
fstp(y32);

math.acot(x64);
fstp(y64);

math.acot(x80);
fstp(y80);

fld(x80);
math.acot();
fstp(y80);
Page 534 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

// Compute y := acot(x):

push(x32);
call math.acot32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.acot64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.acot80;
fstp(y80);

fld(x80);
call math.acot;
fstp(y80);

#macro math.acsc// Overload macro that expands to one of the following:
procedure math._acsc; @returns("st0");
procedure math.acsc32(r32:real32); @returns("st0");
procedure math.acsc64(r64: real64); @returns("st0");
procedure math.acsc80(r80: real80); @returns("st0");

These five functions compute the arc cosecant (csc-1) of their parameter value. They return an angle in
radians.

The math.acsc function is actually a macro that overloads the remaining four functions. If a math.acsc
invocation doesn’t contain any parameters, then this macro expands to a call to the math._acsc function which
computes the arc cosecant of the value on the FPU stack (ST0). With a single real parameter, the macro expands
to one of the other three functions with the appropriate parameter type.

The "math._acsc();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := acsc(x):

math.acsc32(x32);
fstp(y32);

math.acsc64(x64);
fstp(y64);

math.acsc80(x80);
fstp(y80);

fld(x80);
math._acsc();
fstp(y80);
Released to the Public Domain Page 535

HLA Standard Library
// Using the math.acsc macro:

math.acsc(x32);
fstp(y32);

math.acsc(x64);
fstp(y64);

math.acsc(x80);
fstp(y80);

fld(x80);
math.acsc();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := acsc(x):

push(x32);
call math.acsc32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.acsc64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.acsc80;
fstp(y80);

fld(x80);
call math.acsc;
fstp(y80);

#macro math.asec // Overloading macro that expands to one of:
procedure math._asec; @returns("st0");
procedure math.asec32(r32:real32); @returns("st0");
procedure math.asec64(r64: real64); @returns("st0");
procedure math.asec80(r80: real80); @returns("st0");

These five functions compute the arc secant (sec-1) of their parameter value. They return an angle in
radians.

The math.asec function is actually a macro that overloads the remaining four functions. If a math.asec
invocation doesn’t contain any parameters, then this macro expands to a call to the math._asec function which
computes the arc secant of the value on the FPU stack (ST0). With a single real parameter, the macro expands to
one of the other three functions with the appropriate parameter type.

The "math._asec();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:
Page 536 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Compute y := asec(x):

math.asec32(x32);
fstp(y32);

math.asec64(x64);
fstp(y64);

math.asec80(x80);
fstp(y80);

fld(x80);
math._asec();
fstp(y80);

// Using the math.asec macro:

math.asec(x32);
fstp(y32);

math.asec(x64);
fstp(y64);

math.asec(x80);
fstp(y80);

fld(x80);
math.asec();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := asec(x):

push(x32);
call math.asec32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.asec64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.asec80;
fstp(y80);

fld(x80);
call math.asec;
fstp(y80);
Released to the Public Domain Page 537

HLA Standard Library
#macro math.twoToX // Macro that overloads the following functions:
procedure math._twoToX; @returns("st0");
procedure math.twoToX32(r32: real32); @returns("st0");
procedure math.twoToX64(r64: real64); @returns("st0");

procedure math.twoToX80(r80: real80); @returns("st0");

These five functions compute 2x of their parameter value (which is the value of x).
The math.twoToX function is actually a macro that overloads the remaining four functions. If a

math.twoToX invocation doesn’t contain any parameters, then this macro expands to a call to the math._twoToX
function which computes 2x of the value on the FPU stack (ST0). With a single real parameter, the macro
expands to one of the other three functions with the appropriate parameter type.

The "math._twoToX();" call expects the parameter on the FPU stack, the other three forms pass their
parameter by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := 2**x:

math.twoToX32(x32);
fstp(y32);

math.twoToX64(x64);
fstp(y64);

math.twoToX80(x80);
fstp(y80);

fld(x80);
math._twoToX();
fstp(y80);

// Using the math.twoToX macro:

math.twoToX(x32);
fstp(y32);

math.twoToX(x64);
fstp(y64);

math.twoToX(x80);
fstp(y80);

fld(x80);
math.twoToX();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := twoToX(x):

push(x32);
call math.twoToX32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.twoToX64;
fstp(y64);
Page 538 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.twoToX80;
fstp(y80);

fld(x80);
call math.twoToX;
fstp(y80);

#macro math.TenToX // Overloads the following functions:
procedure math._tenToX; @returns("st0");
procedure math.tenToX32(r32:real32); @returns("st0");
procedure math.tenToX64(r64: real64); @returns("st0");
procedure math.tenToX80(r80: real80); @returns("st0");

These five functions compute 10x of their parameter value (which is the value of x).
The math.tenToX function is actually a macro that overloads the remaining four functions. If a math.tenToX

invocation doesn’t contain any parameters, then this macro expands to a call to the math._tenToX function which
computes the 10x of the value on the FPU stack (ST0). With a single real parameter, the macro expands to one of
the other three functions with the appropriate parameter type.

The "math._tenToX();" call expects the parameter on the FPU stack, the other three forms pass their
parameter by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := 10**x:

math.tenToX32(x32);
fstp(y32);

math.tenToX64(x64);
fstp(y64);

math.tenToX80(x80);
fstp(y80);

fld(x80);
math._tenToX();
fstp(y80);

// Using the math.tenToX macro:

math.tenToX(x32);
fstp(y32);

math.tenToX(x64);
fstp(y64);

math.tenToX(x80);
fstp(y80);

fld(x80);
math.tenToX();
fstp(y80);
Released to the Public Domain Page 539

HLA Standard Library
HLA low-level calling sequence example:

// Compute y := tenToX(x):

push(x32);
call math.tenToX32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.tenToX64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.tenToX80;
fstp(y80);

fld(x80);
call math.tenToX;
fstp(y80);

#macro math.exp // Overloads the following functions:
procedure math._exp; @returns("st0");
procedure math.exp32(r32:real32); @returns("st0");
procedure math.exp64(r64: real64); @returns("st0");
procedure math.exp80(r80: real80); @returns("st0");

These five functions compute ex of their parameter value (which is the value of x).
The math.exp function is actually a macro that overloads the remaining four functions. If a math.exp

invocation doesn’t contain any parameters, then this macro expands to a call to the math._exp function which
computes ex of the value on the FPU stack (ST0). With a single real parameter, the macro expands to one of the
other three functions with the appropriate parameter type.

The "math._exp();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := e**x:

math.exp32(x32);
fstp(y32);

math.exp64(x64);
fstp(y64);

math.exp80(x80);
fstp(y80);

fld(x80);
math._exp();
fstp(y80);

// Using the math.exp macro:
Page 540 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
math.exp(x32);
fstp(y32);

math.exp(x64);
fstp(y64);

math.exp(x80);
fstp(y80);

fld(x80);
math.exp();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := e**x:

push(x32);
call math.exp32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.exp64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.exp80;
fstp(y80);

fld(x80);
call math.exp;
fstp(y80);

#macro math.ytoX // Macro that overloads the following functions:
procedure math._yToX; // Y is at ST1, X is at ST0.
procedure math.yToX32(y32Var, x32Var); @returns("st0");
procedure math.yToX64(y64Var, x64Var); @returns("st0");
procedure math.yToX80(y80Var, x80Var); @returns("st0");

These five functions compute Yx of their parameter values (which are the values of y and x).
The math.yToX function is actually a macro that overloads the remaining four functions. If a math.yToX

invocation doesn’t contain any parameters, then this macro expands to a call to the math._yToX function which
computes Yx using the values on the FPU stack (ST0). With a single real parameter, the macro expands to one of
the other three functions with the appropriate parameter type.

The "math._yToX();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

Because this function uses logarithms to compute its result, the y argument must be a non-negative value.

HLA high-level calling sequence examples:

// Compute z := y**x:
Released to the Public Domain Page 541

HLA Standard Library
math.yToX32(y32, x32);
fstp(z32);

math.yToX64(y64, x64);
fstp(z64);

math.yToX80(y80, x80);
fstp(z80);

fld(y80);
fld(x80);
math._yToX();
fstp(z80);

// Using the math.yToX macro:

math.yToX(y32, x32);
fstp(z32);

math.yToX(y64, x64);
fstp(z64);

math.yToX(y80, x80);
fstp(z80);

fld(y80);
fld(x80);
math.yToX();
fstp(z80);

HLA low-level calling sequence example:

// Compute z := yToX(y, x):

push(y32);
push(x32);
call math.yToX32;
fstp(z32);

push((type dword x64[4]));
push((type dword x64[0]));
push((type dword y64[4]));
push((type dword y64[0]));
call math.yToX64;
fstp(z64);

pushw(0); // Must dword align operand
push((type word y80[8]));
push((type dword y80[4]));
push((type dword y80[0]));
pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.yToX80;
fstp(z80);

fld(y80);
Page 542 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
fld(x80);
call math.yToX;
fstp(z80);

#macro math.log // Overloads the following functions:
procedure math._log; @returns("st0");
procedure math.log32(r32: real32); @returns("st0");
procedure math.log64(r64: real64); @returns("st0");
procedure math.log80(r80: real80); @returns("st0");

These five functions compute log10(x) of their parameter value (which is the value of x).

The math.log function is actually a macro that overloads the remaining four functions. If a math.log
invocation doesn’t contain any parameters, then this macro expands to a call to the math._log function which
computes the base 10 log of the value on the FPU stack (ST0). With a single real parameter, the macro expands
to one of the other three functions with the appropriate parameter type.

The "math._log();" call expects the parameter on the FPU stack, the other three forms pass their parameter
by value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := log(x):

math.log32(x32);
fstp(y32);

math.log64(x64);
fstp(y64);

math.log80(x80);
fstp(y80);

fld(x80);
math._log();
fstp(y80);

// Using the math.log macro:

math.log(x32);
fstp(y32);

math.log(x64);
fstp(y64);

math.log(x80);
fstp(y80);

fld(x80);
math.log();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := log(x):

push(x32);
call math.log32;
Released to the Public Domain Page 543

HLA Standard Library
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.log64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.log80;
fstp(y80);

fld(x80);
call math.log;
fstp(y80);

#macro math.ln // Overloads the following functions:
procedure math._ln; @returns("st0");
procedure math.ln32(r32: real32); @returns("st0");
procedure math.ln64(r64: real64); @returns("st0");
procedure math.ln80(r80: real80); @returns("st0");

ln(x) [loge(x)]

These five functions compute loge(x) of their parameter value (which is the value of x).

The math.ln function is actually a macro that overloads the remaining four functions. If a math.ln invocation
doesn’t contain any parameters, then this macro expands to a call to the math._ln function which computes the
base e log of the value on the FPU stack (ST0). With a single real parameter, the macro expands to one of the
other three functions with the appropriate parameter type.

The "math._ln();" call expects the parameter on the FPU stack, the other three forms pass their parameter by
value on the stack using the standard HLA parameter passing mechanism.

HLA high-level calling sequence examples:

// Compute y := ln(x):

math.ln32(x32);
fstp(y32);

math.ln64(x64);
fstp(y64);

math.ln80(x80);
fstp(y80);

fld(x80);
math._ln();
fstp(y80);

// Using the math.ln macro:

math.ln(x32);
fstp(y32);

math.ln(x64);
fstp(y64);
Page 544 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
math.ln(x80);
fstp(y80);

fld(x80);
math.ln();
fstp(y80);

HLA low-level calling sequence example:

// Compute y := ln(x):

push(x32);
call math.ln32;
fstp(y32);

push((type dword x64[4]));
push((type dword x64[0]));
call math.ln64;
fstp(y64);

pushw(0); // Must dword align operand
push((type word x80[8]));
push((type dword x80[4]));
push((type dword x80[0]));
call math.ln80;
fstp(y80);

fld(x80);
call math.ln;
fstp(y80);
Released to the Public Domain Page 545

HLA Standard Library
Page 546 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
21 Memory-Mapped I/O (mmap.hhf)

The HLA Standard Library provides a set of routines for creating and manipulating memory-mapped files.
Memory-mapped files are very efficient because they use the underlying operating systems’ virtual memory
subsystem for file I/O. When you open a memory-mapped file, the OS maps the entire file into the process’
address space. Reading data from the file consists of nothing more than a memory access. Indeed, random file
access is trivial in a memory mapped file system (you can treat the entire file as one huge array of characters
from your software’s point of view).

Although memory-mapped file access is very fast, the HLA Standard Library implementation does have a
couple of limitations that make it unacceptable for some applications. First of all, as the operating system maps
the file into your process’ address space, memory-mapped files cannot exceed 2GBytes in size (in fact, the
operating system might not even support files that large). Second, when processing existing files, you cannot
extend the file’s size. You may modify any data that already exists in the file, but you cannot append data to the
end of the file. Third, when creating a new file, you must specify the size of the file when you first create it. You
cannot open the file and then arbitrarily extend it during program execution as you can with a standard file.

21.1 MMAP Module
 To call functions in the MMap module, you must include one of the following statements in your HLA

application:
#include("mmap.hhf")
or
#include("stdlib.hhf")

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

21.2 Class Fields
Note that the memory-mapping module in the HLA Standard Library is implemented as a class. This class

(mmap) defines the following public fields:

filePtr:dword;

This field holds a pointer to the first byte of the file in memory. You must not access any data in the file prior
to this address. When you create a mmap_t object (but haven’t yet opened a memory mapped file), or after you
close the memory-mapped file (using the close method described below), the mmap_t class initializes this field
with NULL.

fileSize:dword;

This field holds the size of the file when it is mapped into memory. The memory mapping module initializes
this field with zero when you don’t have a currently opened memory-mapped file.

endFilePtr:string;

This field holds a pointer to the first byte beyond the end of the file in memory. You must not access any
data in the file equal to or beyond this address. When you create a mmap_t object (but haven’t yet opened a
memory mapped file), or after you close the memory-mapped file (using the close method described below), the
mmap_t class initializes this field with NULL.

The mmap_t class also contains several private fields. Your applications must not modify the values of these
private fields. The class does provide accessor methods if you wish to test the values of these private fields.

21.3 Class Procedures and Methods
Because the HLA stdlib implements the mmap_t functions as a class, this document will not provide low-

level calling sequence examples (which aren’t especially practical for object-oriented function calls). Those who
insist on making low-level calls to these functions should consult the HLA reference manual for information on
making direct (low-level) calls to object-oriented functions.
Released to the Public Domain Page 547

HLA Standard Library
 procedure mmap_t.create(); @returns("ESI");

This procedure is the static class constructor. If you call this procedure using the class name (i.e.,
mmap_t.create();) then this constructor will allocate storage for a new mmap_t object on the heap, initialize that
object, and return a pointer to the object in the ESI register. If you call this procedure via an object variable
reference (e.g., mmapVar.create();) then this procedure will simply initialize the fields of that object.

As with all objects in HLA, you must call the mmap_t.create constructor before using the object. Failure to
do so will cause the system to crash whenever you attempt to call any of this class’ methods.

HLA high-level calling sequence example:

mmap_t.create();
mov(esi, mmapObjPtr);

 method mmap_t.destroy();

This is the class destructor. It deinitializes the mmap_t object, closes any memory-mapped file left open, and
deallocates the storage for the object if it was allocated on the heap. Note that you should not rely upon the
destructor to close your memory-mapped files - you should always explicitly call the mmap_t.close method to do
this.

Because mmap_t.destroy is a method, you must only call this function after initializing some mmap_t object
and you must only call this function via the object invocation mechanism. If you try to call mmap_t.destroy on an
uninitialized mmap_t object, or if you try to call mmap_t.destroy directly, you will likely cause a program crash.

HLA high-level calling sequence examples:

mmapObjPtr.destroy();
mmapStaticVar.destroy();

 method mmap_t.openNew(filename:string; maxSize:dword);

This method opens a new memory-mapped file. The filename parameter specifies the name of the file on the
disk. If the file already exists, this call will delete the file before opening a new file by that name. The filename
string must be a valid pathname. The maxSize parameter specifies the size of the file (in bytes) that this call will
create. You must specify the size of the memory-mapped file when you open it. This method updates the object’s
fields, including the filePtr, endFilePtr, and fileSize fields. This procedure does not return the pointer to the file
in EAX, use the filePtr field to obtain the address of the mapped file object. Note that this method always opens
the file for reading and writing.

Because mmap_t.openNew is a method, you must only call this function after initializing some mmap_t
object and you must only call this function via the object invocation mechanism. If you try to call
mmap_t.openNew on an uninitialized mmap_t object, or if you try to call mmap_t.openNew directly, you will
likely cause a program crash.

HLA high-level calling sequence examples:

mmapObjPtr.openNew("AMemMappedFile", 8192);
mmapStaticVar.openNew("AnewFile", 16384);

 method mmap_t.open(filename:string; Access:dword);

This method maps an existing file into the process’ address space. The filename parameter is a string
specifying the pathname of the file to open. The Access parameter is either fileio.r or fileio.rw and specifies
whether you’re opening the file as a read-only or read/write object. This call maps the entire file into the process’
address space (assuming the file is small enough to fit into the address space, of course). This method call
initializes the filePtr, endFilePtr, and fileSize fields of the object as appropriate for the file.

Because mmap_t.open is a method, you must only call this function after initializing some mmap_t object
and you must only call this function via the object invocation mechanism. If you try to call mmap_t.open on an
uninitialized mmap_t object, or if you try to call mmap_t.open directly, you will likely cause a program crash.
Page 548 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

mmapObjPtr.open("AMemMappedFile", fileio.r);
mmapStaticVar.open("AnExistingFile", fileio.rw);

 method mmap_t.close();

This method unmaps the file and closes it. It also resets the object’s fields to their default values (e.g.,
filePtr=NULL, endFilePtr=NULL, and fileSize=0). You may not access data in the memory mapped file after
closing the file. Note that you may re-open the same (or a different) file using mmap_t.open or mmap_t.openNew
after you close a file (and you don’t need to call mmap_t.create unless you also call mmap_t.destroy after calling
mmap_t.close).

Because mmap_t.close is a method, you must only call this function after initializing some mmap_t object
and you must only call this function via the object invocation mechanism. If you try to call mmap_t.close on an
uninitialized mmap_t object, or if you try to call mmap_t.close directly, you will likely cause a program crash.

HLA high-level calling sequence examples:

mmapObjPtr.close();
mmapStaticVar.close();

 method mmap_t.getFileName();

This is an accessor function that returns the filename string (pointer) in the EAX register. The program must
not modify this string in any way. Note that this is a pointer to the string data held in the object itself, this is not
a copy of the string. You should make a copy of this string if you intend to modify its data.

Because mmap_t.getFileName is a method, you must only call this function after initializing some mmap_t
object and you must only call this function via the object invocation mechanism. If you try to call
mmap_t.getFileName on an uninitialized mmap_t object, or if you try to call mmap_t.getFileName directly, you
will likely cause a program crash.

HLA high-level calling sequence example:

mmapObjPtr.getFileName();
mov(eax, fileNameString);

 method mmap_t.getOpen();

This is an accessor function that returns a boolean value in AL: false if the file is not currently open, true if
there is a file mapped into the process’ address space. This field is only valid after you call mmap_t.create.

Because mmap_t.getOpen is a method, you must only call this function after initializing some mmap_t
object and you must only call this function via the object invocation mechanism. If you try to call
mmap_t.getOpen on an uninitialized mmap_t object, or if you try to call mmap_t.getOpen directly, you will
likely cause a program crash.

HLA high-level calling sequence example:

mmapObjPtr.getOpen();
if(al) then

// Do something if the file is open

endif;
Released to the Public Domain Page 549

HLA Standard Library
 method mmap_t.getMalloc();

This is an accessor function that returns true if the object is allocated dynamically on the heap, it returns
false if the object is a static or automatic variable.

Because mmap_t.getMalloc is a method, you must only call this function after initializing some mmap_t
object and you must only call this function via the object invocation mechanism. If you try to call
mmap_t.getMalloc on an uninitialized mmap_t object, or if you try to call mmap_t.getMalloc directly, you will
likely cause a program crash.

HLA high-level calling sequence example:

mmapObjPtr.getOpen();
if(al) then

// Do something if the file is open

endif;
Page 550 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
22 Memory (memory.hhf)

The memory unit (header file is memory.hhf) contains the routines used to allocate and deallocate dynamic
storage on the heap. There are a set of routines that allocate storage for general objects and a set of routines used
to specifically allocate storage for strings.

As of HLA v1.69, the "allocation granularity" is eight bytes (that is, these routines always allocate data in
multiples of eight byte chunks) and there is a 24-byte metadata overhead associated with each allocation.
Therefore, you should avoid doing a large number of small allocations if you want to use memory efficiently.
Note that these values are subject to change in future versions of the library.

These memory allocation routines associate a reference counter with each block. Whenever you first
allocate a block on the heap, the reference counter is initialized with one. A "mem.newref" call instructs the heap
management routines to increment this reference counter. The reference counter tracks how many different
pointers in an application are referring to a single block of memory in the heap. When you call the mem.free
routine to return storage to the heap, the heap management code will decrement the reference counter and only
free up the storage when the reference counter decrements to zero. This can help avoid dangling pointers if you
use the mem.newref routine in an appropriate fashion.

A Note About Thread Safety: The memory management routines maintain a couple of static global
variables that track free and in-use blocks of memory. Currently, these values apply to all threads in a process. As
such, the current implementation is not thread-safe. When the process module is added to the standard library,
the memory management system will be modified to be thread safe. Until then, you should explicitly
synchronize access to the HLA memory manager if you are writing multi-threaded applications.

22.1 Memory Module
 To call functions in the Memory module, you must include one of the following statements in your HLA

application:
#include("memory.hhf")
or
#include("stdlib.hhf")

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

22.2 Deprecated Names
The HLA Standard Library has inherited some older, deprecated, names from the HLA stdlib v1.x. If you

look at the include files for the Standard Library, those names might still be present. This document, however,
will not describe those deprecated names from the v1.x library.

22.3 Generic Memory Allocation
The following functions allocate, deallocate, and operate on blocks of memory that may contain arbitrary

data.

mem.alloc overloads mem.alloc1 and mem.alloc2

If you invoke mem.alloc with one parameter, it calls mem.alloc1; if you call mem.alloc with two parameters,
it calls mem.alloc2.

procedure mem.alloc1(size:dword); @returns("eax");

The mem.alloc1 routine allocates the requested number of bytes. If successful, this routine returns a pointer
to the allocated storage in the EAX register. This routine raises an ex.MemoryAllocationFailure exception or an
ex.MemoryAllocationCorruption exception if it fails. Note that this function does not initialize the block of
memory to any particular value when it allocates it. In particular, do not count on this function setting the block
of memory to zeros.

HLA high-level calling sequence example:
Released to the Public Domain Page 551

HLA Standard Library
mem.alloc1(1024);
mov(eax, memBlkPtr);

HLA low-level calling sequence example:

pushd(1024);
call mem.alloc1;
mov(eax, memBlkPtr);

procedure mem.alloc2(size:dword; callback:thunk);
@returns("eax");

This function is very similar to mem.alloc1 with one major difference: after allocating the block, it will call
the callback thunk. This allows the caller to track memory usage, initialize the memory block, or perform any
other activity before returning from mem.alloc2. On entry into the thunk, ECX will contain the block size and
EAX will point at the memory block. The direction flag will be clear . Anything you do in the thunk is entirely
up to you, but you will want to return a pointer to an appropriately sized memory block in the EAX register. You
can use the other registers (ebx, ecx, edx, esi, and edi) as you see fit.

HLA high-level calling sequence example:

mem.alloc2(2048, thunk #{ call savePtrInEAX; }#);
mov(eax, memBlkPtr);

HLA low-level calling sequence example:

pushd(2048);
push(ebp);// Thunk pointer
pushd(&thunkCode);
jmp callrealloc2;
thunkCode:

call savePtrInEAX;
ret();

callrealloc2:
call mem.alloc2;
mov(eax, memBlkPtr);

procedure mem.zalloc(size:dword); @returns("eax");

The mem.zalloc routine allocates the requested number of bytes and zeros out the data storage allocated. If
successful, this routine returns a pointer to the allocated storage in the EAX register. This routine raises an
ex.MemoryAllocationFailure exception or an ex.MemoryAllocationCorruption exception if it fails.

HLA high-level calling sequence example:

mem.zalloc(1024);
mov(eax, memBlkPtr);

HLA low-level calling sequence example:

pushd(1024);
call mem.zalloc;
mov(eax, memBlkPtr);

Page 552 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure mem.free(memptr:dword);

This function frees up storage previously allocated by the mem.alloc routine. A pointer returned from
mem.alloc must be passed as the parameter to this function. This routine actually decrements a reference counter
and only frees the storage when the reference counter becomes zero. See the discussion of mem.newref for more
details.

HLA high-level calling sequence example:

mem.free(memBlkPtr);

HLA low-level calling sequence example:

push(memBlkPtr);
call mem.free;

mem.realloc overloads mem.realloc1 and mem.realloc2

If you invoke mem.realloc with two parameters, it calls mem.realloc1; if you call mem.realloc with three
parameters, it calls mem.realloc2.

procedure mem.realloc1(memptr:dword; newsize:dword); @returns("eax");

The mem.realloc1 routine resizes a previous allocated block of memory. The first parameter is the pointer to
the original block, the second parameter is the new size. If the new block is smaller, this routine truncates the
data beyond the new size. If the new block is larger, this routine will copy the data if it cannot expand the block
in-place.

If the address of the block does not change, then the block created by mem.realloc1 inherits the reference
counter value from the original block. However, if the mem.realloc1 function must create a new block and copy
the data to that new block, then the reference counter of the new block is set to one. If the reference counter of the
original block was not one prior to the realloc operation, then the system simply decrements the original
reference counter and does not deallocate the original storage. It is important to realize that the mem.realloc1
operation may leave two allocated blocks and any previous pointers (noted by mem.newref calls) are still valid
and still point at the original data. The pointer returned by mem.realloc1 points at the new block.

HLA high-level calling sequence example:

mem.realloc1(memBlkPtr, 2048);
mov(eax, memBlkPtr);

HLA low-level calling sequence example:

push(memBlkPtr);
pushd(2048);
call mem.realloc1;
mov(eax, memBlkPtr);

procedure mem.realloc2(memptr:dword; newsize:dword; copycallback:thunk);
@returns("eax");

This function is very similar to mem.realloc1 with one major difference: if, during the reallocation
operation, mem.realloc2 needs to copy a block of data because it cannot expand the existing block in-place, it
will call the copycallback thunk to handle the copy operation. This allows the caller to readjust application-
dependent pointers and do other activities if the block has to be moved during a realloc operation. On entry into
the thunk, ECX will contain the block size, ESI will point at the source block, and EDI will point at the
destination block. The direction flag will be clear and you can assume that the blocks do not overlap. You
should, at the very least, execute a "rep.movsb;" instruction to copy the source block to the destination block.
Released to the Public Domain Page 553

HLA Standard Library
Anything else you do in the thunk is entirely up to you, but typically, you will want to adjust any pointers in your
application that point at the source block so that they point at the destination block.

HLA high-level calling sequence example:

mem.realloc2(memBlkPtr, 2048, thunk #{ rep.movsb }#);
mov(eax, memBlkPtr);

HLA low-level calling sequence example:

push(memBlkPtr);
pushd(2048);
push(ebp);// Thunk pointer
pushd(&thunkCode);
jmp callrealloc2;
thunkCode:

rep.movsb();
ret();

callrealloc2:
call mem.realloc2;
mov(eax, memBlkPtr);

#macro mem.talloc(size); (returns "eax" as macro result)

This is a macro that "temporarily" allocates the specified storage. This macro allocates the specified storage
on the stack and returns the address of the storage (i.e., the ESP value) in the EAX register. The address is
always dword aligned; mem.talloc will allocate up to three additional bytes to ensure dword alignment.

You may use the mem.talloc call anywhere a single instruction is legal (including using mem.talloc as an
operand to another instruction).

There is no corresponding "tfree" routine since leaving the current procedure automatically deallocates the
storage. That is, when a standard procedure exits, it resets the stack pointer, automatically removing the
mem.talloc’d data. If you would like to explicitly free the data, then you should save the value of ESP prior to
calling mem.talloc and this restore ESP from this saved value when you want to "free" the storage.

Warning: in order for a function to properly free the storage allocated by mem.talloc, the function must
have a standard activation record or must otherwise restore ESP to the value it held prior to the invocation of
mem.talloc. HLA procedures that generate a standard activation record (e.g., those that don’t have the
@noframe option) do this automatically. But if you write a procedure that has the @noframe option, you must
take responsibility for restoring ESP’s value to deallocate the storage set aside by mem.talloc.

Obviously, you cannot continue referencing the data allocated by mem.talloc once the enclosing procedure
returns.

HLA high-level calling sequence example:

mem.talloc(128);
mov(eax, memBlkPtr);

Note: Because this is a macro, there is no low-level calling sequence.

procedure mem.isInHeap(memptr:dword);

This function returns false (NULL) in EAX if the memptr parameter does not point at a valid (allocated)
object on the heap. It returns a pointer to the start of the data block on the heap if memptr does point within the
data area of a valid block. You can use this function to determine whether an object was previously allocated via
a call to mem.alloc (and should be free’d via a call to mem.free). Note that this function only returns non-NULL
if the block is currently allocated. If you’ve free’d all instances of the block, this function will return NULL. In
older versions of this routine, the function simply returned true or false. Assuming older code treated false as
zero and true as anything else, that code will continue to function with this new version of the routine.
Page 554 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

HLA high-level calling sequence example:

mem.isInHeap(memBlkPtr);
if(eax <> NULL) then

mem.free(eax);

endif;

HLA low-level calling sequence example:

push(memBlkPtr);
call mem.isInHeap;
test(eax, eax);
jz noFree;

push(eax);
call mem.free;

noFree:

procedure mem.size(memptr:dword);

This function returns the amount of storage allocated in the block pointed at by memptr. The value of
memptr must be a value returned by mem.alloc, mem.realloc, or mem.realloc2. Note that the value that mem.size
returns might be slightly larger than the original request. This function returns the actual size of the allocated
block, including any padding bytes added to the end of the block for alignment purposes.

HLA high-level calling sequence example:

mem.size(memBlkPtr);
mov(eax, blockSize);

HLA low-level calling sequence example:

push(memBlkPtr);
call mem.size;

mov(eax, blockSize);

procedure mem.stat;

This funtion returns statistics concerning the heap space in use by the memory allocation routines. This
function returns the following values:

EAX - Total amount of space currently in use by the heap (this may not be contiguous!).
EBX - Total amount of free space in the heap.
ECX - Largest block of contiguous free space in the heap.
EDX - Number of blocks on the heap (free and in use).
EDI - Number of free blocks on the heap.
Note that the value in EBX, the total amount of free space in the heap, does not indicate the maximum

amount of space that you can allocate. This simply indicates the amount of space that was previously allocated
and has been freed. Generally, it is quite possible to allocate more storage than is available in the heap at any one
time. Indeed, prior to the first mem.alloc operation, the mem.stat function will return zero in all these registers.

Released to the Public Domain Page 555

HLA Standard Library
HLA high-level calling sequence example:

mem.stat();
mov(eax, spaceInUse);
mov(ebx, freeSpace);
mov(ecx, largestBlock);
mov(edx, numBlocks);
mov(edi, numFreeBlocks);

HLA low-level calling sequence example:

call mem.stat;
mov(eax, spaceInUse);
mov(ebx, freeSpace);
mov(ecx, largestBlock);
mov(edx, numBlocks);
mov(edi, numFreeBlocks);

mem.newref(memblk:dword);

This funtion increments a reference counter for the memory block whose address you pass as the parameter
(this must be a block allocated by mem.alloc). The heap routines will not deallocate storage for a block of
memory until you’ve called mem.free the number of times specified by the reference counter. The mem.alloc call
initializes the reference counter to one, calls to mem.newref increment this value by one, calls to mem.free
decrement this value by one (and frees the storage once the reference counter hits zero).

HLA high-level calling sequence example:

mem.newref(memPtr);

HLA low-level calling sequence example:

push(memPtr);
call mem.newref;

 mem.getref(memblk:dword);

This funtion returns the reference counter value for the specified memory block. This function raises an
ex.PointerNotInHeap exception if memblk does not point within a valid memory block. Note that if the block has
been deallocated, this function returns zero, it does not raise an exception.

HLA high-level calling sequence example:

mem.getref(memPtr);
mov(eax, refCnt);

HLA low-level calling sequence example:

push(memPtr);
call mem.getref;
mov(eax, refCnt);
Page 556 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 iterator mem.blockInHeap;

This is an iterator (used in a foreach loop) that returns the following information for each block (free and in-
use) in the heap, one block per iteration:

EAX - Size of block
EBX - Address of data block
ECX - Reference count for block
This function is mainly intended for debugging purposes.

HLA high-level calling sequence example:

foreach mem.blockInHeap() do

stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);

endfor;

HLA low-level calling sequence example:

pushd(&endLoopBody);
call mem.blockInHeap;
stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);
ret();

endLoopBody:

 iterator mem.allocBlockInHeap;

This iterator is similar to mem.blockInHeap except it only iterates over the allocated blocks in the heap.
This function is mainly intended for debugging purposes.

HLA high-level calling sequence example:

foreach mem.allocBlockInHeap() do

stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);

endfor;
Released to the Public Domain Page 557

HLA Standard Library
HLA low-level calling sequence example:

pushd(&endLoopBody);
call mem.allocBlockInHeap;
stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);
ret();

endLoopBody:

 iterator mem.freeBlockInHeap;

This iterator is similar to mem.blockInHeap except it only iterates over the free blocks in the heap.
This function is mainly intended for debugging purposes.

HLA high-level calling sequence example:

foreach mem.freeBlockInHeap() do

stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);

endfor;

HLA low-level calling sequence example:

pushd(&endLoopBody);
call mem.freeBlockInHeap;
stdout.put
(

"size=$", eax,
" adrs=$", ebx,
" refcnt=$", ecx,
nl
);
ret();

endLoopBody:

22.4 String Memory Allocation
The memory-related functions in this category are used to allocate, deallocate, and manipulate dynamic

string data. The main difference between these functions and the "standard" memory allocation functions is the
pointer values these function manipulate. Because HLA string pointers must contain an address that is eight
bytes into the string data structure (unlike standard memory allocation functions that work with pointers that
point at the beginning of the memory block), these string functions automatically add or subtract that offset.
Page 558 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Because the calls to these functions are identical to the standard memory functions boasting the same names,
please see the calling sequence examples given earlier.

procedure str.alloc(size:dword); @returns("eax");
procedure str.realloc(strPtr:dword; size:dword); @returns("eax");
procedure str.free(strPtr:dword);
procedure str.isInHeap(strPtr:dword); @returns("eax");

The string allocation routines are used just like the general memory allocation routines except they allocate
storage for a string variable and initialize the string object’s maxlength and length fields. They return a pointer to
the first character position of the string’s data (that is, the address of the byte just beyond the maxlength and
length fields). Note that the str.isInHeap function returns a pointer to the start of the string’s data (the first
character in the string) if it determines that the string has been allocated on the heap. See the discussion of
mem.realloc to understand how str.realloc affects the reference counter for a string on the heap.

#macro str.talloc(size); (returns pointer to new string in EAX).

This is a macro that initializes storage on the stack for a string capable of holding size characters. This
routine has the same benefits and drawbacks as the mem.talloc routine.

Note that the size parameter is the actual number of characters needed. the str.talloc routine automatically
bumps this value up by nine to make room for the length, maxLength, and zero terminator fields of the string
object. This macro also ensures that the stack (and, therefore, the string) is dword aligned in memory (it does this
by adding up to three additional bytes to the string).

procedure str.newref(strPtr:dword);

This funtion increments a reference counter for the memory block whose address you pass as the parameter
(this must be a block allocated by str.alloc). The heap routines will not deallocate storage for a block of memory
until you’ve called str.free the number of times specified by the reference counter. The str.alloc call initializes
the reference counter to one, calls to str.newref increment this value by one, calls to str.free decrement this value
by one (and frees the storage once the reference counter hits zero).

str.getref(strPtr:dword);

This funtion returns the reference counter value for the specified string memory block. This function raises
an exception if strPtr does not point within a valid memory block allocated for a string. Note that if the string has
been deallocated, this function returns zero, it does not raise an exception.
Released to the Public Domain Page 559

HLA Standard Library
Page 560 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
23 OS Module (os.hhf)

The OS module contains a couple functions that do OS-related tasks.

23.1 The OS Module
To use the OS functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:
#include("os.hhf")
or
#include("stdlib.hhf")

23.2 Executing Shell Commands

procedure os.system(cmdStr:string);

The os.system function executes a single program and waits for the execution of that command before
returning. Here is the syntax for the os.system call:
os.system("system command");

The string you pass as the single parameter roughly corresponds to a command shell command (e.g., the
Windows command line prompt or the Linux/FreeBSD/MacOS Shell prompt). This consists of the program
name followed by any command line parameters, separated by spaces.

The first thing to note about this function is that the results are system-specific. Although this function is
available in all operating systems that the HLA Standard Library supports, the semantics of the commands you
pass to this function vary by operating system. Therefore, programs that call this function will not usually be
portable between operating systems.

Special notes for Windows users: the os.system function does not directly allow the execution of intrinsic
(built-in) cmd.exe commands. If you want to execute a command like DIR, CD, MD, etc., that aren’t actual
programs, but simply commands that cmd.exe executes directly, you have to run an instance of the command
interpreter to pull this off, e.g.,

os.system("cmd /C dir"); // Executes ’DOS’ directory command

Please see the description of the Windows "cmd.exe" program for more details (type "help cmd" at the command
line prompt). Also note that Windows will use the current PATH environment variable to locate the executable
program, if it is not in the current subdirectory.

Special notes for Linux/FreeBSD users: If the program name appearing at the beginning of the string does
not specify the path to a file that Linux/FreeBSD can find, Linux/FreeBSD will prefix the name with "/bin/" and
then "/usr/bin/" in an attempt to locate the file.

The function fails silently if it cannot find or execute the specified program.

HLA high-level calling sequence examples:

os.system("ls"); // Under Linux or FreeBSD
os.system("HLA t.hla");// Runs HLA compiler on the "t.hla" file.

HLA low-level calling sequence examples:

static
cmd :string := "HLA t.hla";

.

.

.
push(cmd);
call os.system;
Released to the Public Domain Page 561

HLA Standard Library
23.3 Delaying Program Execution
The OS module provides two functions that will suspend (put to sleep) a process for a short period of time.

The first function (sleep) lets you specify the suspension time in seconds, the other (mSleep) lets you specify the
time in milliseconds. It is important for you to realize that the underlying operating systems do not guarantee that
the delay will be exactly equivalent to the duration you specify. Most operating systems only guarantee that they
will suspend the program for at least as long as you specify – they might actually delay the program even longer.

procedure os.sleep(secs:dword);

This function suspends the program for at least secs seconds. After at least secs seconds have transpired, the
OS will place the program back into the run queue and the process will begin execution after the call to os.sleep
on the next regularly-scheduled time quantum.

Specifying an argument value of zero may have no effect (that is, the os.sleep call may immediately return),
but many operating systems will cause the current process to give up the remainder of it’s time slice when you
call os.sleep in this fashion. You should, however, not count on such semantics in your program.

procedure os.mSleep(msecs:dword);

This function suspends the program for at least msecs milliseconds. After at least msecs milliseconds have
transpired, the OS will place the program back into the run queue and the process will begin execution after the
call to os.sleep on the next regularly-scheduled time quantum.

Specifying an argument value of zero may have no effect (that is, the os.sleep call may immediately return),
but many operating systems will cause the current process to give up the remainder of it’s time slice when you
call os.sleep in this fashion. You should, however, not count on such semantics in your program.
Page 562 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
24 Patterns Module (patterns.hhf)

The HLA Standard Library provides a set of string/pattern matching routines that are similar in use to those
provided by the SNOBOL4 and Icon programming languages. These pattern matching routines support
recursion and backtracking, allowing the specification of context-free grammars as well as regular expressions.

Note: Because many of the "functions" in the pattern-matching library are actually macro invocations, this
document does not provide examples of low-level pattern-matching function calls.

Warning: unlike most HLA Standard Library functions, the pattern matching functions do not preserve all
the registers they modify. In fact, EDX is the only register whose value may be preserved; almost all the other
registers are used by the pattern matching code and you should expect their values to be modified by the pattern
matching functions whenever you call them.

24.1 The Patterns Module
To use the pattern functions in your application, you will need to include one of the following statements at

the beginning of your HLA application:
#include("patterns.hhf")
or
#include("stdlib.hhf")

24.2 An Introduction to Pattern Matching (a tutorial)
The HLA pattern matching library scans for patterns of characters within a string or within some sequence

of characters. A pattern matching operation consists of a sequence of pattern matching commands that execute
on the sequence. The result of a pattern matching operation is either success (meaning all the pattern matching
commands succeeded) or failure (meaning at least one of the commands failed to match). The success or failure
of a pattern matching operation directs program execution to one of two different locations in the code (not
unlike an IF/ELSE/ENDIF statement) so the program can perform different operations based on the success or
failure of a pattern match.

You must understand that the HLA Standard Library pattern matching functions don’t return true or false
that you can test in a conditional expression (e.g., in an IF or WHILE statement). Instead, the pattern matching
functions and macros actual introduce a new control structure in the HLA language. Within this control
structure, the successful execution of each pattern matching operation allows the program to continue execution
with the next successive statement in the control structure. However, if the pattern matching operation fails, then
control transfers to a different location in the pattern matching control construct. In a sense, this is very similar to
HLA’s try..exception..endtry statement. A failed pattern matching operation transfers control to some distinct
failure location (just like an exception occuring in a try..endtry block); successful pattern matching operations
fall through to the next command or, if all commands in a pattern matching command sequence are successful,
control transfers to the first statement after the pattern matching control structure.

The pattern matching control sequence is delimited by the pat.match and pat.endmatch macro invocations.
Between these two statements, exactly one pat.if_failure macro invocation must appear. The template of a
pattern matching statement is the following:

pat.match(<<character sequence to match>>);

<< Sequence of match operations>>

<< Code to execute on a successful match >>

 pat.if_failure

<< Code to execute if the match fails >>

pat.endmatch;

The "sequence of match operations" appearing in this control structure is a set of zero or more pattern
matching function calls. As noted above, if a given function succeeds, the control falls through to the next
command in the control structure (or through to the "code to execute on a successful match" if all of the matching
commands succeed). If a match operation fails, the the program immediately transfers control to the code
following the pat.if_failure statement.
Released to the Public Domain Page 563

HLA Standard Library
The pat.match statement supports two difference syntaxes. The first form accepts a single HLA string object
as a parameter. This form is invoked thusly:

pat.match(StringValue);

Technically, you could supply a string variable or a string constant as this argument. However, it would
never make any sense (other than for testing or demonstration purposes) to supply a literal string constant as this
argument. The purpose of the pattern matching functions is to determine if some unknown string matches a given
pattern. If the string’s value is known while you’re writing the program, there really isn’t any need to do the
pattern matching operation – you can do the pattern matching operation in your head and skip the execution of
the code. Nevertheless, many of the examples in this document will use literal string constants as the test string
in order to make the examples easier to understand.

The second form of the pat.match statement expects two arguments. The first is a pointer to the first
character of some character sequence you wish to match and the second argument is a pointer to the first byte
beyond the end of the character sequence you wish to match. This invocation takes the following form:

pat.match(StartOfSequence, EndOfSequence);

Note that internally, the pat.match macro actually uses the start and end of sequence pointers. If you pass the
pat.match function a single string argument, pat.match uses the string pointer as the StartOfSequence pointer and
it adds the strings length to the StartOfSequence value to obtain the EndOfSequence address. For the sake of
discussion, we’ll call the string (or sequence of characters) we’re trying to match the match sequence.

During a pattern matching operation, there are three important pointers the functions use: a pointer to the
first character of the character sequence, a pointer to the first byte beyond the character sequence, and a cursor
pointer that points at the next character under consideration. When you invoke pat.match, the macro begins by
initializing the cursor with the address of the first character in the match sequence (e.g., the StartOfSequence
value). The pattern matching commands operate on the character data at the current cursor position through the
end of the sequence (that is, up to the byte before the address held in the end of sequence pointer). If the cursor’s
value is ever greater than or equal to the end of sequence value and the program attempts to execute a pattern
matching function that would advance the cursor, then the pattern matching operation fails (and control transfers
to the pat.if_failure statement).

Let’s consider a concrete example. The pat.oneChar function accepts a single character argument. If the
cursor’s value is less than the end of sequence value and the character that the cursor points at matches
pat.oneChar’s argument, then the pat.oneChar function succeeds and increments the cursor value to skip over
the character in the sequence that it matched. The following pattern matching operation succeeds and prints
"Encountered ‘c’":

pat.match("c");

pat.oneChar(‘c’);
stdout.put("Encountered ‘c’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’" nl);

pat.endmatch;

The following code, however, prints "Failed to match ‘c’" because the cursor (initialized with the address of
the ‘d’ character) doesn’t point at a byte containing ‘c’:

pat.match("d");

pat.oneChar(‘c’);
stdout.put("Encountered ‘c’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’" nl);

pat.endmatch;
Page 564 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Whenever a pattern matching function such as pat.oneChar succeeds, it advances the cursor over the
character(s) it matches. Upon return from the pattern matching function, any successive calls to a pattern
matching function will attempt to match the character(s) immediately after those already matched. For example,
consider the following pattern matching construct:

pat.match("cd");

pat.oneChar(‘c’);
pat.oneChar(‘d’);
stdout.put("Encountered ‘cd’" nl);

 pat.if_failure

stdout.put("Failed to match ‘cd’" nl);

pat.endmatch;

The first call to pat.oneChar matches the ‘c’ in the match sequence and advances the cursor by one position
(so that it now points at the ‘d’ character). The second call to pat.oneChar in this example matches the ‘d’
character in the match sequence, increments the cursor to point at the byte beyond the "cd" string, and then
returns and prints "Encountered ‘cd’".

As noted earlier, if a sequence of pattern matching commands advances the cursor to the point it "runs off
the end" of the character sequence, then the pattern matching sequence fails. The following example
demonstrates this (it will print "Failed to match ‘cd’"):

pat.match("c");

pat.oneChar(‘c’);
pat.oneChar(‘d’);
stdout.put("Encountered ‘cd’" nl);

 pat.if_failure

stdout.put("Failed to match ‘cd’" nl);

pat.endmatch;

Note, however, that a pattern matching operation does not fail if it doesn’t consume all the characters in the
match sequence (that is, it doesn’t advance the cursor to the end of the match sequence). The following example
succeeds and prints "Encountered ‘c’" even though it doesn’t consume all the characters in the match sequence:

pat.match("cd");

pat.oneChar(‘c’);
stdout.put("Encountered ‘c’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’" nl);

pat.endmatch;

If you’re wondering why this shouldn’t fail, just note that you can build up complex pattern matching
function by making nested and recursive pat.match invocations, in such cases you don’t want to fail if you’ve not
reached the end of the match sequence because further calls to pat.match may handle the remaining characters in
the match sequence. In those cases where you really do want to fail if you don’t match the entire match
sequence, the HLA pattern matching module provides a special function, pat.EOS, that explicitly checks for the
Released to the Public Domain Page 565

HLA Standard Library
end of the match sequence. The following modification to the previous example will display "Failed to match
‘c’":

pat.match("cd");

pat.oneChar(‘c’);
pat.EOS();
stdout.put("Encountered ‘c’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’" nl);

pat.endmatch;

Earlier, this document suggested that a pat.match..pat.if_failure..pat.endmatch statement was similar to an
IF/ELSE/ENDIF statement insofar as there are two sections of code where you can wind up based on success or
failure of the match. In fact, the pat.match..pat.endmatch statement is actually closer to an IF/ELSEIF/ELSE/
ENDIF statement. If the sequence of pattern matching operations immediately after the pat.match statement fail,
it is possible to transfer control to another pattern matching operation that will try to succeed. This is known as
alternation (that is, seeking an alternative match). If the pat.alternate statement appears between the pat.match
and the pat.if_failure, then this will supply an alternate pattern matching sequence to try if the main matching
sequence fails. Only if both the main and alternate patterns fail will the entire pattern matching operation fail.
Consider the following example:

pat.match("cd");

pat.oneChar(‘c’);
pat.EOS();
stdout.put("Encountered ‘c’" nl);

 pat.alternate

pat.oneChar(‘c’);
pat.oneChar(‘d’);
pat.EOS();
stdout.put("Encountered ‘cd’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’ or ‘cd’" nl);

pat.endmatch;

This pattern succeeds and prints "Encountered ‘cd’". It begins by trying to match against ‘c’ (which
succeeds) followed by the end of string (which fails). When failure occurs, the pat.match statement resets the
cursor to the start of the sequence (that is, to the beginning of the "cd" string) and transfers control to the
pat.alternate statement). This sequence of match operations will match the ‘c’, the ‘d’, and the end of the string,
and then print "Encountered ‘cd’".

A pat.match..pat.endmatch statement can have any number of pat.alternate clauses in it (just as an IF/
ELSEIF/ELSE statement can have any number of ELSEIF clauses). The pat.match statement will transfer
control to the first pat.alternate section if the main pattern matching command set fails; it will transfer control to
the second pat.alternate section if both the main pattern matching sequence and the first alternate sequence fail;
a fourth pat.alternate section will execute if the main and first two alternate seetions fail; etc. The pat.if_failure
section will only execute if the main section and all the alternate sections fail to match their patterns.

Note that the pat.if_failure section must follow all the pat.alternate sections in the pat.match..pat.endmatch
statement. HLA will report an error if any pat.alternate sections follow the pat.if_failure. Also remember: the
pat.if_failure section is not optional. HLA will report an error if a pat.if_failure section is not present in a
pat.match..pat.endmatch statement.
Page 566 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
24.3 Pattern Matching Functions Versus User Code
The discussion in the previous section may have led you to believe that a pattern matching section (either the

main section or an alternate section) consisted of two parts: the pattern matching code sequence and the user
code to execute upon successfully matching the pattern:

pat.match(<<character sequence to match>>);

<<Sequence of match operations>>

<<Code to execute on a successful match>>

 pat.if_failure

<< Code to execute if the match fails >>

pat.endmatch;

In fact, there is no distinction between <<Sequence of match operations>> and <<Code to execute on a
successful match>>. The program is going to execute the statements in a matching section until either failure
occurs (in which case control transfers to the next pat.alternate section, or to the pat.if_failure section if there is
no alternate), or the execution sequence reaches a pat.alternate or pat.if_failure statement (at which point control
transfers to the first program statement following the pat.endmatch clause). The pattern matching functions
themselves are really nothing more than 80x86 code that know how to transfer control to some failure clause if
the matching function fails. So although most pattern matching statements are organized as described earlier
(with the pattern matching operations appearing first and the statements to execute on a successful match
occuring afterward), it is possible to inject standard machine instructions and other HLA statements between the
pattern matching operations. However, you must exercise extreme caution when doing so.

Consider the following example;

pat.match(testString);

pat.oneChar(‘c’);
stdout.put("Encountered ‘c’" nl);
pat.EOS();
stdout.put("Encountered EOS" nl);

 pat.alternate

pat.oneChar(‘c’);
stdout.put("Encountered ‘c’" nl);
pat.oneChar(‘d’);
stdout.put("Encountered ‘d’" nl);
pat.EOS();
stdout.put("Encountered EOS" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’ or ‘cd’ followed by EOS" nl);

pat.endmatch;

If testString turns out to have the value "c", then the main matching section succeeds and prints

Encountered ‘c’
Encountered EOS

So far, so good. Now, however, suppose that testString holds the value "cd". In this case, the alternate
section succeeds and the program prints the following:
Released to the Public Domain Page 567

HLA Standard Library
Encountered ‘c’
Encountered ‘c’
Encountered ‘d’
Encountered EOS

No, this is not a typographical error. Yes, it prints "Encountered ‘c’" twice. This happens because the main
pattern matching seetion doesn’t fail until after it executes the stdout.put statement that prints "Encountered ‘c’".
Generally, failed matches should be transparent; that is, they should not affect the system by printing or
changing values. This is why most pattern matching sequences appear before any user code (technically called
the "semantic action") in a pattern matching sequence. You never want to do something that cannot be undone
(such as print data to the console) should the pattern matching operation fail.

24.4 Register and Stack Usage in Pattern Matching
Statements

During a pattern matching operation (that is, between the pat.match and pat.endmatch statements), the
pattern matching code makes use of most of the 80x86’s registers to maintain value such as the cursor, end of
sequence pointer, and other values. Therefore, you cannot assume that any register values will be preserved
across pattern matching function calls and, even more importantly, you must not play around with the register
values between pattern matching function calls as these functions communicate between one another using the
registers. Even the stack pointer is not sacrosant. Many pattern matching functions will actually leave data on
the stack upon return (to implement a facility known as backtracking, which you’ll read about a little later).
Therefore, you must exercise caution when mixing user statements and pattern matching statements in the same
code sequence (that is, this is yet another good reason to put all your "semantic actions" after all the pattern
matching operations). This section will discuss how the pattern matching code uses registers and and stack, so
you can deal with the issue accordingly.

The pat.match statement initializes the ESI register with the cursor value (that is, the address of the first
character in the match sequence) and EDI with the address of the byte just beyond the end of the match sequence
(the EndOfSequence value). Whenever a pattern matching function successfully returns, EBX will contain the
original cursor value (upon entry into that function) and ESI will contain the new cursor value (that is, it will
point beyond all the characters that the function matched). Therefore, EBX..(ESI-1) will be the sequence of
characters matched by the function.

Almost all pattern matching functions scramble the value in the EAX register prior to returning (actually,
"scramble" is a bad term, most functions actually load the return address for the function into EAX and return by
jumping indirectly through EAX’s value rather than by executing a RET instruction). Many pattern matching
functions modify ECX’s value (e.g., for use as a "repeat count" when used with the string instructions). Most of
the original Standard Library functions preserve the value held in the EDX register, but because the pattern
matching library is extensible, it’s dangerous to assume that EDX is preserved.

The one register you can count on being preserved is EBP. Upon return from a pattern matching function,
you can count on EBP containing the address of your stack frame (assuming you use EBP for this purpose).

As noted earlier, many (most) pattern matching functions do not preserve the value of ESP when they return.
In particular, most pattern matching functions actually leave data sitting on the stack when they return. This data
may get used by later pattern matching functions should failure occur. Of course, the pattern matching code will
eventually clean up after itself; in particular, when you execute the pat.endmatch statement the code will clean
up the stack and leave it in the same state it was when the program executed the corresponding pat.match
statement. There are two important implications of this:

You cannot use PUSH and POP instructions to preserve values across a pattern matching function. The
following will not work:

pat.match("c");

push(eax);
pat.oneChar(‘c’);
pat.EOS();
pop(eax);

pat.if_failure

stdout.put("did not match ‘c’" nl);

pat.endmatch;
Page 568 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The problem is that pat.oneChar and pat.EOS may leave extra data sitting on the stack when they return.
Therefore, the POP(EAX); instruction will not be popping the EAX data originally pushed, instead it will pop
off some data left on the stack by the pattern matching functions.

Of course, in a sequence of statements you write, that do not call any pattern matching functions (or
anything else that doesn’t preserve ESP’s value), you may certainly use PUSH and POP in a traditional manner.
In particular, if you put all your user code after all the pattern matching function calls, then you can use PUSH
and POP to your heart’s content. However, be aware that pushing and popping data round pattern matching
function calls may not work as you expect.

Because the pat.endmatch clause is responsible for cleaning up the stack, removing any data left on the stack
by pattern matching functions, you should never exit out of a pat.match..pat.endmatch statement by jumping out
of the middle of the code to some label outside the pat.match..pat.endmatch sequence. For example, don’t do the
following:

pat.match("c");

push(eax);
pat.oneChar(‘c’);
jmp cIsGoodEnough;

pat.if_failure

stdout.put("did not match ‘c’" nl);

pat.endmatch;

cIsGoodEnough:// Junk may be left on the stack here.

The one exception to this rule is exception-handling code. If an exception occurs in the
pat.match..pat.endmach statement, the exception handling system will automatically clean up the stack for you
before transfering control to your exception handling code sequence. Other than exit by exception, the only way
you should leave a pat.match..pat.endmatch statement is by "running off the end" of a pattern matching section
(that is, by encountering a pat.alternate or pat.if_failure clause during the normal sequential execution of the
pattern matching section).

One other big piece of advice: avoid using any form of control structures, especially loop control structures,
within the pattern matching sequence. In practice, there isn’t much need to put a series of pattern matching
functions inside a WHILE or FOR loop or inside an IF statement. As you’ll discover, the HLA pattern matching
module provides a rich variety of functions that automatically process repetitive data or conditionally match one
sequence or another (e.g., by using alternation).

Ultimately, the best advice you can follow is to adhere to the original syntax given for the
pat.match..pat.endmatch statement:

pat.match(<<character sequence to match>>);

<< Sequence of match operations>>

<< Code to execute on a successful match >>

 pat.if_failure

<< Code to execute if the match fails >>

pat.endmatch;

That is, put all your pattern matching function calls at the beginning of a match section and put the "Code to
execute on a successful match" (the "semantic action") after those function calls. Within the semantic action, you
can feel free to write any 80x86 code you like (as long as it doesn’t make any pattern matching function calls that
are part of the current pattern you’re matching), use whatever control structures you like, etc. The only restriction
is that you shouldn’t jump out of the pat.match..pat.endmatch statement, as just you were just warned against.
Released to the Public Domain Page 569

HLA Standard Library
Warning: Do not write a short HLA procedure that contains a sequence of pattern matching function calls
that you except to call from within a pat.match..pat.endmatch statement. The proper return address may not be
sitting on the top of stack when you attempt to return back to the pat.match..pat.endmatch statement. and the
usual "arrrgh! The stack is messed up!" chaos will ensue. It is possible to write your own pattern matching
functions, but they have to be written in a special way. There are instructions on how to do this at the end of this
chapter. Although you cannot create a simple procedure in this manner, invoking macros should be okay as long
as the expanded text would work properly at the point of the invocation.

24.5 Nesting Pattern Matching Statements
Suppose, using only the pat.oneChar pattern matching function, you wanted to match one of the following

strings: "c", "cd", "ce", or "cde". You could solve this problem thusly:

pat.match(testString);

pat.oneChar(‘c’);
pat.EOS();
stdout.put("Encountered ‘c’" nl);

 pat.alternate

pat.oneChar(‘c’);
pat.oneChar(‘d’);

pat.EOS();
stdout.put("Encountered ‘cd’" nl);

 pat.alternate

pat.oneChar(‘c’);
pat.oneChar(‘e’);

pat.EOS();
stdout.put("Encountered ‘ce’" nl);

 pat.alternate

pat.oneChar(‘c’);
pat.oneChar(‘d’);
pat.oneChar(‘e’);

pat.EOS();
stdout.put("Encountered ‘cde’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

However, you’ll notice that there is a bit of duplicated code here. This makes your program unnecessarily
larger and slower. For example, supposed that testString holds the value "x". The code above will try the main
pattern and all three alternates before failing. Furthermore, note that all of these patterns begin with the character
‘c’. Wouldn’t it be nice to factor out the test for ‘c’ and have only a single call to test for this character? Well, as
it turns out, this is quite easy to accomplish – pat.match..pat.endmatch statements are nestable and recursive, so
factoring out subpatterns is fairly easy.

Before discussing how to nest pat.match statements, we need to make a quick detour and discuss the pat.fail
function call. This function does exactly what its name implies: if you execute it within a matching section, that
section immediately fails. If you’ve been told (as you have) not to use control structures like IF/ELSE within the
pattern matching code and that you should only use straight-line code sequences, you might wonder about the
Page 570 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
purpose of the pat.fail function. After all, if some pattern matching sequence contains a call to pat.fail, that
sequence is always going to fail even if all the functions prior to that point succeed. So why even bother
executing the sequence at all? Well, although you should not execute control structures like an IF statement
within a pattern matching sequence, don’t forget that the pat.match..pat.endmatch is, essentially, an IF/ELSE
statement. And, as the title of this subsection suggests, you can nest pat.match statements inside other pat.match
statements. Therefore, you do have an IF statement – the pat.match statement. Consider the following (non-
functional) first attempt at using a pat.match statement nested inside another to solve the problem given earlier:

pat.match(testString);

pat.oneChar(‘c’);
pat.match(????);

pat.EOS();
stdout.put("matched ‘c’" nl);

pat.alternate;

pat.oneChar(‘d’);
pat.match(?????);

pat.oneChar(‘e’);
pat.EOS();
stdout.put("matched ‘cde’" nl);

pat.alternate

pat.EOS();
stdout.put("matched ‘cd’" nl);

pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

pat.alternate

pat.oneChar(‘e’);
pat.EOS();
stdout.put("Matched ‘ce’" nl);

pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

There are two obvious problems with this code sequence. First of all, the easy one: what do we pass the
second and third pat.match calls? We cannot pass it the original string because we need to pass it a sequence
consisting of the characters after the first ‘c’ that we’ve already matched. That is, we need to pass this statement
the current cursor position (which is in ESI) and the current end of sequence address (which is in EDI).
Therefore, we can use the following code to achieve this:
Released to the Public Domain Page 571

HLA Standard Library
pat.match(testString);

pat.oneChar(‘c’);
pat.match(esi, edi);

pat.EOS();
stdout.put("matched ‘c’" nl);

pat.alternate;

pat.oneChar(‘d’);
pat.match(esi, edi);

pat.oneChar(‘e’);
pat.EOS();
stdout.put("matched ‘cde’" nl);

pat.alternate

pat.EOS();
stdout.put("matched ‘cd’" nl);

pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

pat.alternate

pat.oneChar(‘e’);
pat.EOS();
stdout.put("Matched ‘ce’" nl);

pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

The second problem is a bit more difficult to solve. Specifically, we still haven’t properly factored out the
failure cases. Notice that there are three separate failure cases, all printing the same message. We’d like to have a
single failure case than handles everything. As you may have guessed, this is where the pat.fail function comes
in.

Although you can nest pat.match statements, a pat.match..pat.endmatch statement, by itself, is not a pattern
matching function. It’s just a "semantic action" that should appear after all your other pattern matching function
calls. However, by the judicial use of the pat.fail function, we can turn it into a bonafide pattern matching
function. Now a call to pat.fail within a pattern matching section isn’t going to be very interesting. That’s simply
going to transfer control to the pat.match’s associated pat.if_failure section. However, what happens if we put
the call to pat.fail inside the pat.if_failure section? The pat.if_failure section is not a pattern matching section. If
you execute any pattern matching function inside a pat.if_failure section, they will not be processed within that
pat.match..pat.endmatch statement. Instead, they will be processed by any enclosing pat.match..pat.endmatch
statement. The following example demonstrates how to use pat.fail to simplify the previous code:
Page 572 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pat.match(testString);// 1

pat.oneChar(‘c’);
pat.match(esi, edi);// 2

pat.EOS();
stdout.put("matched ‘c’" nl);

pat.alternate;

pat.oneChar(‘d’);
pat.match(esi, edi);//3

pat.oneChar(‘e’);
pat.EOS();
stdout.put("matched ‘cde’" nl);

pat.alternate

pat.EOS();
stdout.put("matched ‘cd’" nl);

pat.if_failure

pat.fail(); // Fails to pat.match #2’s if_failure section

pat.endmatch;

pat.alternate

pat.oneChar(‘e’);
pat.EOS();
stdout.put("Matched ‘ce’" nl);

pat.if_failure

pat.fail();// Fails to pat.match #1’s if_failure section

pat.endmatch;

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

By the way, you would never actually want to match these four strings this say. There is a pat.matchStr
function that provides a much better solution for this problem. Just so you don’t walk away thinking these pattern
matching functions are terrible, here’s a better solution:

pat.match(testString);// 1

 pat.matchStr("c");
 pat.EOS();
 stdout.put("matched c" nl);

 pat.alternate
Released to the Public Domain Page 573

HLA Standard Library
 pat.matchStr("cd");
 pat.EOS();
 stdout.put("matched cd" nl);

 pat.alternate

 pat.matchStr("ce");
 pat.EOS();
 stdout.put("matched ce" nl);

 pat.alternate

 pat.matchStr("cde");
 pat.EOS();
 stdout.put("matched cde" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

Obviously, this solution is a lot easier to read and understand (and more efficient, too). The previous
examples are present to demonstrate nested invocations of the pat.match statement.

24.6 Cleanly Nesting Patterns
The previous section demonstrated how to nest patterns and handle the failure case by using the pat.fail

function. In fact, there are several problems with this approach. In particular, the pat.match..pat.endmatch
statement is not a pattern matching function (from the perspective of the pat.match statement), therefore, for
reasons already noted and many unstated, it’s not a good idea to use this statement outside the user code
("semantic action") in a pattern matching section. Fortunately, the HLA Standard Library pattern matching
module provides a macro that allows you to collect a sequence of pattern matching functions and treat them as
though they were a single pattern matching function: the pat.onePat..pat.endOnePat statement. The syntax for
this statement is the following:
pat.onePat;

<<sequence of pattern matching functions>>

pat.endOnePat;

The pat.onePat..pat.endOnePat statement is quite similar to the pat.match..pat.endmatch statement with
three major differences:

There is no pat.if_failure section in a pat.onePat statement (though pat.alternate sections are perfectly
allowable).

You don’t pass the match sequence parameter(s) to
pat.onePat – it uses the current cursor and end of sequence pointers.
You generally don’t put any user code inside the
pat.onePat..pat.endOnePat sequence (you could, but it’s equivalent to putting user statements in the middle

of your pattern matching code).
The pat.onePat statement can be thought of as a parenthetical pattern matching expression. That is, it

groups together a sequence of pattern matching functions and the success of pat.onePat depends entirely upon the
success (or failure) of the group of pattern matching statements it encloses. We can use the pat.onePat statement
to provide another example of a "clean" version of the code in the previous section:

static
index:dword;
Page 574 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
msg :string[4] :=
[

"matched ‘c’" nl,
"matched ‘cd’" nl,
"matched ‘ce’" nl,
"matched ‘cde’" nl

];

pat.match(testString);// 1

// Match the leading ‘c’:

pat.oneChar(‘c’);
mov(0, index);// matched ‘c’
pat.onePat;

// See if a ‘d’ follows the ‘c’:

pat.oneChar(‘d’);

// See if an ‘e’ follows the ‘d’:

pat.onePat;

pat.oneChar(‘e’);
mov(3, index);// matched ‘cde’

 pat.alternate

// Note: in the absence of a pattern
// matching function, this pattern
// always succeeds.

mov(1, index);// matched ‘cd’

pat.endOnePat;

 pat.alternate

// See if an ‘e’ follows the ‘c’:

pat.oneChar(‘e’);
mov(2, index); // matched ‘ce’

pat.endOnePat;
pat.EOS();

mov(index, eax);
stdout.put("Matched ‘", msg[eax*4], "’" nl);

 pat.if_failure

stdout.put("Failed to match ‘c’, ‘cd’, ‘ce’, or ‘cde’" nl);

pat.endmatch;

True, this isn’t quite as clean as the string example, but you cannot always convert a complex pattern to a
few string compares.

Probably the most famous example of a pattern matching sequence is the following, which takes advantage
of alternation and parenthetical patterns (i.e., pat.onePat):
Released to the Public Domain Page 575

HLA Standard Library
pat.match(someString);

pat.onePat;

pat.matchStr("black");

pat.alternate

pat.matchStr("blue");

pat.endOnePat;
pat.oneChar(‘ ‘);
pat.onePat;

pat.matchStr("berry");

pat.alternate

pat.matchStr("bird");

pat.endOnePat;
stdout.put("matched" nl);

 pat.if_failure

stdout.put("Failed to match" nl);

pat.endmatch;

This example matches the string "black berry", "blue berry", "black bird", and "blue bird".

24.7 Backtracking
One extremely important facility that the HLA Standard Library pattern matching routines provide is

backtracking. To understand why backtracking is important, we must expand your pattern matching function
repretoire. Up to this point, you’ve seen pat.oneChar that matches exactly one character and pat.matchStr that
matches a specific string of characters. These functions always match a fixed number of characters (one in the
case of pat.oneChar and n characters, where n is the length of the parameter string, in the case of pat.matchStr).
Some stdlib pattern matching functions, however, match an arbitrary number of characters. For example,
consider pat.oneOrMoreChar; as its name implies, this function matches one or more occurrences of the same
character. That is, a call such as "pat.oneOrMoreChar(‘a’);" will succeed if it can match at least one ‘a’
character, but it will consume as many ‘a’ character as it finds in the input stream. The pat.oneOrMoreChar
eagerly matches characters. That is, it will match as many characters as it finds starting at the cursor position
through to the end of the match sequence. Generally, this is desirable for a function with a name like
pat.oneOrMoreChar, but it can lead to some problems. Consider the following example:

pat.match("aaaa");

 pat.oneOrMoreChar(‘a’);
 pat.oneChar(‘a’);
 pat.EOS();
 stdout.put("matched a string of two or more a’s" nl);

 pat.if_failure

stdout.put("Failed to match a string of two or more a’s" nl);
Page 576 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pat.endmatch;

In the absence of backtracking, this example would fail and print the message in the pat.if_failure section.
This would happen because the pat.oneOrMoreChar function would eagerly match all the characters in the
match sequence (stopping at the end of the sequence) and the next call to pat.oneChar would fail because all of
the characters have been consumed. Logically, however, this pattern match should succeed. After all, "aaa"
certainly matches the pat.oneOrMoreChar(‘a’); function call so there is no reason that this pattern shouldn’t
succeed. The call to pat.oneOrMoreChar should match the first three ‘a’ characters, the call to pat.oneChar
should match the fourth, and then the call to pat.EOS should match the end of the sequence. In the presence of
backtracking, this is exactly what happens.

The HLA Standard Library pattern matching functions that match a variable number of characters all
support backtracking. Here’s how backtracking works in the previous example:

The pat.oneOrMoreChar function eagerly matches as many characters as it can.
The
pat.oneChar attempts to match a single ‘a’ character. It fails. Control does not immediately transfer to the

failure section, however, because the pat.oneOrMoreChar function has set up a backtracking frame on the stack
(this is the extra stuff that pattern matching functions leave on the stack). In the presence of a backtracking frame
on the stack, control transfers back inside the function that pushed the backtracking information
(pat.oneOrMoreChar in this case).

Inside
pat.oneOrMoreChar, the code backs off one character position, so now it matches only "aaa" rather than

"aaaa" and returns as before (still leaving a backtrack frame on the stack, in case it’s needed).
Because
pat.oneOrMoreChar has backed up one character at the end of the string, the cursor now points at a single

‘a’ character, which the pat.oneChar function matches.
After
pat.oneChar matches the ‘a’ character, the cursor is left at the end of the string and the pat.EOS function call

matches, so the whole statement matches the string.
One area where you can get into big trouble with backtracking is the inclusion of user code ("semantic

actions") within the pattern matching code. Because backtracking will cause the reexecution of various
instructions within the pattern matching sequence, you can get unexpected results if backtracking occurs.
Consider the following example:

pat.match("ccc");
pat.oneOrMoreChar('c');
stdout.put("Matched first 'c'" nl);
pat.oneOrMoreChar('c');
stdout.put("Matched second 'c'" nl);
pat.oneOrMoreChar('c');
stdout.put("Matched third 'c'" nl);

pat.if_failure

stdout.put("failed" nl);

pat.endmatch;

This code produces the following output because of backtracking:

Matched first 'c'
Matched first 'c'
Matched second 'c'
Matched first 'c'
Matched second 'c'
Matched second 'c'
Matched third 'c'
Released to the Public Domain Page 577

HLA Standard Library
For an explaination of this output, see the section on "Lazy / Eager Evaluation and Pattern Matching
Performance" a little later in this document. What’s important to realize here is that burying user statements
(especially those that affect the outside world, such as output statements) is a very bad idea.

24.8 Pattern Components
Thus far, you’ve see four different types of pattern objects: parenthetical patterns, characters, strings, and the

end of sequence. The HLA Standard Library pattern matching module provides several additional pattern object
types. Specifically, the patterns module provides pattern matching functions that test the following:

Character set membership
Characters (case sensitive)
Characters (case insensitive)
Strings (case sensitive)
Strings (case insensitive)
Words (strings delimited by special characters, case sensitive)
Words (case insensitive)
Whitespace
End of string/sequence
Arbitrary character matching
Subpatterns
Cursor position within a match sequence

In addition to these built-in patterns, it is possible for you to extend the pattern matching module by writing
your own pattern matching functions. A later section in this document will describe how that is done.

The character and character set pattern matching functions are, by far, the most flexible and powerful of the
bunch. Each of these three groups (character sets, case-sensitive characters, and case-insensitive characters)
about 20 functions that let you:

Match the character at the cursor position without advancing the cursor (peekCset, peekChar, peekiChar)
Match the character at the cursor position and advance the cursor (oneCset, oneChar, oneiChar).
Match an abitrary number of characters up to the first occurrence of some character (upToCset, upToChar,

upToiChar).
Match zero or one characters (zeroOrOneCset, zeroOrOneChar, zeroOrOneiChar).
Match zero or more characters (zeroOrMoreCset, zeroOrMoreChar, zeroOrMoreiChar).
Match one or more characters (oneOrMoreCset, oneOrMoreChar, oneOrMoreiChar).
Match exactly
n characters (firstNCset, exactlyNCset, firstNChar, exactlyNChar, firstNiChar, exactlyNiChar), where n is a

parameter value.
Match
n or fewer characters (norLessCset, norLessChar, norLessiChar), where n is a parameter value.
Match
n or more characters (norMoreCset, norMoreChar, norMoreiChar), where n is a parameter value.
Match between
n and m characters (ntoMCset, exactlyNtoMCset, ntoMChar, exactlyNtoMChar, ntoMiChar,

exactlyNtoMiCar), where n and m are parameter values.
There are also lazy versions of many of the functions in the above list. We’ll discuss the lazy functions in the

next section on Eager and Lazy evaluation. As for the specifics of these functions, we’ll discuss them in the
reference section later in this document.

The important thing to note is that many of these pattern matching function match an arbitrary or
parameterized number of characters. For example, a call like the following:

pat.exactlyNCset({‘a’,’b’,’c’}, 5);

matches exactly five characters and all of them must be members of the set {‘a’, ‘b’, ‘c’}. The functions that
begin with "zeroOrOne…" will either match a single character, or they will succeed without advancing the
cursor. The "zeroOrMore…" functions will match as many copies of the character as they can, or they will
Page 578 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
succeed without matching any characters. The "oneOrMore…" functions must match at least one character, but
will happily match any number of characters afterwards, as well. The "firstN…" functions will match exactly n
copies of the specified character (set); the "exactlyN…" functions also match exactly n characters, but they differ
from the "firstN…" functions insofar as the "firstN…" functions don’t care what character (if any) appears in the
n+1st position. The "exactlyN…" functions require the n+1st character to either be nonexistent (i.e., there were
only n characters in the string) or it must not be the character (or in the character set) that the function matches.
The "norLess…" functions match between zero and n copies of a character. The "norMore…’ functions match,
you guessed it, n or more characters in the string. The "nToM…" and "exactlyNtoM…" functions match between
n and m copies of the character in the match sequence; the difference between the two is that the "ntoM…"
functions allow the m+1st character to match the pattern whereas the "exactlyNtoM…" functions fail if the m+1st
character matches. With all of these functions, it’s pretty easy to concoct some pattern matching sequence that
can match just about anything.

Though there aren’t quite as many string matching functions as there are character and character set
functions, there are still a useful variety of functions available. You can match a string (as you’ve already seen)
with the pat.matchStr function. There’s a corresponding pat.matchiStr function that does a case insensitive
comparison. You can also match all the characters up to (and including) a string with the pat.upToStr function
(pat.upToiStr is the case-insensitive version); pat.matchToStr and pat.matchToiStr are similar except they match
all characters up to, but not including, the string you pass as a parameter.

There are several other string matching functions you’ll want to use. Please consult the reference section at
the end of this document for more details on those (especially the whitespace matching functions).

24.9 Lazy / Eager Evaluation and Pattern Matching
Performance

Although backtracking is an incredibly useful feature to have, in some very degenerate cases backtracking
can produce very slow results. Consider the following example:

pat.match("aaaaaa")

pat.zeroOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
pat.oneOrMoreChar(‘a’);
stdout.put("succeeded" nl);

 pat.if_failure

stdout.put("failed" nl);

pat.endmatch;

Now this particular pattern will succeed. It does so by having the first function match zero characters and all the
remaining functions match a single character. This looks simple enough, but if you look closely, you discover
that it takes a huge amount of CPU time to match this string. Let’s consider what happens here:

The call to pat.zeroOrMoreChar eagerly matches the entire string.

The first call to pat.oneOrMoreChar fails because the first call has consumed all the characters. So backtracking
occurs and zeroOrMoreChar releases one character, which the first call to oneOrMoreChar succeeds in matching
(this is the second call to that function, by the way).

Control transfers to the second pat.oneOrMoreChar function. It fails because the previous two functions have
consumed all the characters in the string. So back tracking occurs. The second call to oneOrMoreChar backtracks
to the first call, which tries to give up a character. But when it does, it fails to match, so it back tracks back up to
the zeroOrMoreChar call, which backs up a second character and control transfers back to the first
oneOrMoreChar call, with the string "aa". The first oneOrMoreChar call matches

both of these characters, so when the call to the second oneOrMoreChar takes place, it fails again. Once again
backtracking occurs, this time, however, the first oneOrMoreChar call can give up one character and still
Released to the Public Domain Page 579

HLA Standard Library
succeed. So control flows back to the second oneOrMoreChar call and it succeeds. Then control falls through to
the third oneOrMoreChar call and it fails, and the process starts all over again. To make a (very) long story short,
backtracking is going to have exponential worst-case time complexity (that is, it will take on the order of 2n
operations to perform the character match operation.

Though such degenerate cases rarely occur in practice, eager evaluation can be quite expensive when such
conditions arise. The solution to this particular problem is to use lazy evaluation rather than eager evaluation.
For all the functions that match an arbitrary number of characters, there is usually a complementary function that
begins with "l_" that performs the same test using lazy evaluation. In the example above, the complementary
functions are pat.l_zeroOrMoreChar and pat.l_oneOrMoreChar. The difference between the eager and the lazy
functions is that the eager functions will attempt to match as many characters as the possibly can when first
called, and will back off only when backtracking occurs. Lazy functions, on the other hand, will match as few
characters as possible and will match more characters only when backtracking occurs. Consider the following
rework of the previous example:

pat.match("aaaaaa")

pat.l_zeroOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
pat.l_oneOrMoreChar(‘a’);
stdout.put("succeeded" nl);

 pat.if_failure

stdout.put("failed" nl);

pat.endmatch;

This function will succeed, just as before, but it won’t consume much CPU time at all. The first call matches
the minimum number of characters (zero), the remaining functions also match the minimum number of
characters (one each), so this code matches the string in one pass without any backtracking.

Lazy evaluation does not completely solve the problem. It is perfectly possible to create a degenerate string
that causes lazy evaluation to require exponential time complexity (i.e., run very slow). Indeed, eager evaluation
is probably best as the default case. Nonetheless, if you have a good idea of what your match sequences (input
strings) will be like, then you can choose eager or lazy evaluation as appropriate to produce the best
performance.

In the absense of user code ("semantic actions"), lazy and eager evaluation always produce the same result
(even if the performance characteristics are different). That is, if one pattern using eager evaluation matches, then
the comparable pattern using lazy evaluation will also match. However, once you embed user statements
between the pattern matching functions, the recurring execution of those statements can be greatly affected by
your choice of lazy versus eager evaluation. One more reaon to avoid, as much as possible, embedding user
instructions in the pattern matching sequences.

Another way to view eager versus lazy evaluation is that eager evaluation always attempts a maximal match
(matching as many characters as possible) whereas lazy evaluation does a minimal match (matching as few
characters as possible). In the absence of backtracking, the two approaches could match entirely different
strings; but with backtracking present, either method will match a string (though the way they match, and the
execution of the associated semantic actions, might be different). If lazy and eager evaluation techniques match a
string by matching different substrings during the matching process (that is, if there are two or more ways the
code can match the string), we say that the matching operation is ambiguous.

24.10 Regular Expressions
If you are familiar with regular expression syntax (e.g., from Unix shell interpreters, various editors, or

programs like grep), you may find the HLA Standard Library pattern matching routines easier to understand if
they are explained in terms of a regular expression syntax. This section will draw some parallels between the
HLA Standard Library pattern matching functions and the typical syntaxes that regular expressions use.
Page 580 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
In a simple regular expression language, there are two types of characters: metasymbols and alphabetic
characters. Metasymbols have special meaning to the regular expression language and typically include symbols
such as ‘*’, ‘+’, ‘?’, ‘.’, ‘(‘, ‘)’, and ‘|’. Alphabetic characters are symbols from a predefined alphabet (an
alphabet is simply a set of characters, it isn’t necessarily the characters ‘a’..’z’ from the English alphabet). In
most computer systems, the alphabetic is the set of ASCII or UNICODE (UTF-8) characters, sans the
metasymbols. For the HLA Standard Library, the alphabet is the set of all 7-bit ASCII characters except the NUL
character (ASCII code 0).

In a typical regular expression language (e.g., grep’s regular expression language), the metasymbols are
typically:

. ? * + | () [] ^ \ ‘ "

The alphabet is the set of all other characters in the system’s native character set (e.g., 7-bit ASCII
characters). In the event you want to specify one of the metasymbols (which are valid ASCII characters) as
standard characters in the alphabet rather than as metasymbols, you can escape the meaning of the symbol by
prefacing it with a ‘\’ character. For example, the character sequence ‘*’ represents a single asterisk character,
‘\(‘ represents a single left parenthesis character, and ‘\\’ represents a single backslash character. When a
character has an escape prefix on it, it is treated as any other character in the alphabet.

We can define a regular expression with the following rules:
If a is any single character from the alphabet (or an escaped character), then a is a regular expression and it

matches the single character a1.
If a is any single character from the alphabet, then ‘a’ is a regular expression and it matches the single

character a. In many regular expression languages, a can actually be a metacharacter (other than ‘) and quoting
the character also escapes it.

If b is sequence of zero or more characters from the alphabet, then "b" is a regular expression and it matches
the string b.

The ‘.’ metasymbol represents any character in the character set and is a regular expression. Note the
difference between ‘.’ and

a from the previous rule. The a represents any single character from the character set whereas ‘.’ is the actual
period character. The regular expression a matches only the character represented by a, the regular expression
represented by ‘.’ will match any character in the alphabet.

If r is a regular expression and s is a regular expression, then the concatentation of r+s is also a regular
expression and it matches the sequence of characters matched by r immediately followed by the sequence of
characters matched by s. In regular expression terms, this is generally written as rs. Note that we may apply this
rule recursively to generate strings of any length to match. For example, the string "hello" can be generated as
follows:

regex = rs (by definition)
rs = rss (by substituting rs, a regular expression for r)
rss = rsss (by substituting rs for r).
rsss = rssss (by substituting rs for r).
rssss = hello (by substituting ‘h’ for r, and ‘ello’ for each of the regular subexpressions ssss, respectively).
If r is a regular expression, then r? is also a regular expression and it represents zero or one occurrences of r

(that is, it optionally matches r).
If r is a regular expression, then r* is a regular expression and it matches zero or more concatenated

occurrences of r. Note that r can be any regular expression, not just a single character. For example, the regular
expression ‘.*" matches zero or more characters from the alphabet whereas ‘t*’ only matches zero or more ‘t’
characters.

If r is a regular expression, then r+ is also a regular expression and matches one or more instances of the
regular expression r. This is actually a shorthand notation for rr* (that is, one instance of r followed by zero or
more instances of r).

If r and s are regular expressions, then r|s is also a regular expression and it will match exactly one
occurrence of r or s (alternation).

1. Technically speaking, regular expressions generate strings rather than recognize strings.
However, from the theory of computation we can easily show that generation and recognition are
equivalent operations, so as this document discusses pattern matching we’ll use the term
"recognize" or "match" when discussing the behavior of a regular expression.
Released to the Public Domain Page 581

HLA Standard Library
If r is a regular expression, then (r) is also a regular expression and it matches the same strings that r
matches. As for arithmetic expressions, parenthesis are normally used to override precedence and group
expessions.

[charset] is a regular expression and matches exactly one character from the specified character set.
Character sets have the following definition:

A single character a, from the alphabet, is a legal character set and the character set [a] matches this single
character.

A character set of the form
[a-b], where a and b are both characters in the alphabet with a’s ordinal value being less than or equal to b’s

ordinal value, is a character set and will match a single character whose value is between a’s and b’s ordinal
values (inclusive).

If [c] and [d] are valid character set formulations from items (1) and (2) above, then [cd] is a valid character
set and matches any character in the union of the two sets c and d. For example, [a-zA-Z] is the union of [a-z]
and [A-Z] and represents the set of all (ASCII/English) alphabetic characters.

If [c] is a valid character set, then [^c] is also a valid character set and represents the complement of the
character set c. For example, [^a-zA-Z] represents the set of all non-alphabetic characters (in the ASCII character
set, anyway). Note that the "^" symbol must appear immediately after the "[" and this is the only place that the
"^" symbol has special meaning.

These few rules are (more than) sufficient to define all regular expressions. Sometimes, however, it is
convenient to define a few extra rules to make it easy to specify some complex patterns. In some regular
expression languages, for example, an expression of the form r:[n], where r is a regular expression and n is an
integer value, will match exactly n occurrences of the regular expression r. A regular expression of the form
r:[n,m], where r is some regular expression and n and m are integer values with n <= m will match between n and
m occurrences of the regular expression r.

Here are some common regular expressions and the strings they match:
[a-zA-Z_][a-zA-Z_0-9]* HLA identifier
[0-9]+ Unsigned integer constant
[0-9] ([_0-9]* [0-9])? HLA unsigned integer
(\+ | -)? [0-9]+ Signed integer constant
[\+ -]? [0-9]+ (\.[0-9]*)? ([eE] (\+ | -)? [0-9]+)?Real constant
if HLA reserved word "if"
Though it would certainly be possible to write some HLA macro that processes regular expressions using the

standard syntax given above (for grep-like regular expressions), most pattern-matching operations in the HLA
Standard Library pattern matching module are accomplished using function calls. This is a bit more typing (and
a bit more text to read), but the result is easier to read and understand than a cryptic regular expression,
particularly if the regular expression is complex. Of course, the other main difference is that HLA’s syntax
allows the incorporation of semantic actions (user code to execute on a match), something that traditional regular
expression languages do not provide.

It should go without saying, given the number of functions present in the HLA Standard Library pattern
matching module, that the stdlib provides a rich set of functions that allow you to process any type of regular
expression that you can express using a grep-like notation. Let’s cover the conversion of grep-like regular
expressions to HLA Standard Library pattern matching code.

If a represents a single character (either a character literal constant or a character variable in HLA), then
pat.oneChar(a); will succeed if the character at the cursor position matches a, it will fail otherwise. Note that
other than ‘ and ", HLA does not have any metacharacters. You either supply a character variable or a character
constant as the pat.oneChar operand.

If b represents a string of characters (either a string variable or an HLA literal or manifest string constant)
then pat.matchStr(b); will succeed if the character sequence at the cursor matches the character string b. It fails
otherwise.

The HLA stdlib pattern matching module provides several ways to match an arbitrary character. The
standard way is with the pat.skip(n) function, where n is an unsigned integer. This function succeeds if there are
at least n characters left in the match sequence string starting at the cursor position. It fails if there are fewer than
n charcters left in the string. To match a single arbitrary character, you would simply supply the value one as the
function’s argument: pat.skip(1); You could also take the complete of the empty set (which is the entire character
set) and pass that to the pat.oneCset function: pat.oneCset(-{}); Note, however, that the pat.skip function call is
more efficient.

Concatentation of two regular expressions is handled by making sequential function calls to the
corresponding functions that implement the sub-regular expressions. For example, if function pat.RRRRR
implements regular expression r and funciton pat.SSSSS implements regular expression s, then the following
statements implement the regular expression rs:
Page 582 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pat.RRRRR(…);
pat.SSSSS(…);

Note that you do not have to build string matches up from individual character matches. Just use the
pat.matchStr function when matching a sequence of (known) characters.

To match zero or more occurrences of a generic regular expression r, the HLA stdlib pattern matching
module provides the pat.zeroOrMorePat…pat.endZeroOrMorePat statement. You place the statement(s) that
implement the regular expression r in the body of the pat.zeroOrMorePat…pat.endZeroOrMorePat statement
and the pattern matching code will attempt to match zero or more occurrences (note that such regular expressions
always succeed, as matching zero occurrences is legal).

The HLA stdlib pattern matching module also provides several special case functions that will match zero or
more occurrences of:

Any single character (case sensitive or case insensitive)
Any character from a character set
Any white space character
Using these special functions is far more efficient than using the

pat.zeroOrMorePat…pat.endZeroOrMorePat statement, so you should call these functions if appropriate. For
example, to match zero or more alphabetic characters, you’d probably want to use the built-in
pat.zeroOrMoreCset function thusly:

pat.zeroOrMoreCset({‘a’..’z’, ‘A’..’Z’});

To match one or more occurrences of a generic regular expression r, the HLA stdlib pattern matching
module provides the pat.oneOrMorePat…pat.endOneOrMorePat statement. You place the statement(s) that
implement the regular expression r in the body of the pat.oneOrMorePat…pat.endOneOrMorePat statement and
the pattern matching code will attempt to match one or more occurrences. The statement fails if there is not at
least one occurrence of the regular expression

The HLA stdlib pattern matching module also provides several special case functions that will match one or
more occurrences of:

Any single character (case sensitive or case insensitive)
Any character from a character set
Any white space character
Using these special functions is far more efficient than using the

pat.oneOrMorePat…pat.endOneOrMorePat statement, so you should call these functions if appropriate. For
example, to match an integer value consisting of one or more decimal digits, you’d probably want to use the
built-in pat.oneOrMorePatfunction thusly:

pat.oneOrMoreCset({‘0’..’9’});

Alternation is handled by the HLA stdlib pattern matching pat.alternate statement. For simple regular
expressions where the alternation occurs at the outermost level (that is, having the lowest precedence in the
regular expression) you can simply use the pat.alternate statement within the outermost pat.match..pat.endmatch
statement. For more complex regular expressions, when the alternation appears inside parenthetical expressions,
your best bet is to use the pat.onePat..pat.alternate..pat.endOnePat statement to achieve the alternation. the
earlier (black|blue)(berry|bird) regular expression example comes to mind here:

pat.match(someString);

pat.onePat;

pat.matchStr("black");

pat.alternate

pat.matchStr("blue");

pat.endOnePat;
pat.oneChar(‘ ‘);
pat.onePat;
Released to the Public Domain Page 583

HLA Standard Library
pat.matchStr("berry");

pat.alternate

pat.matchStr("bird");

pat.endOnePat;
stdout.put("matched" nl);

 pat.if_failure

stdout.put("Failed to match" nl);

pat.endmatch;

Parenthetical regular expressions are handled by the pat.onePat..pat.endOnePat statement in HLA’s pattern
matching module. The statements inside this block are executed with higher precedence than the outside code.
Consider the following regular expression that matches "blackbird", "bluebird", or "canary":

canary | (black|blue) bird

Had this been written as "canary | black | blue bird" it wouldn’t match the correct strings (it would match
"canary", "black", or "blue bird"). Parentheses adjust the precedence of the expression ("|" normally has the
lowest precedence of all the regular expression operators, concatenation has very high precedence) to give us the
expression we want. To implement the correct regular expression in HLA code, we use the pat.onePat and
pat.endOnePat as our parentheses around the subexpressions:

pat.match(someString);

pat.matchStr("canary");

pat.alternate

pat.onePat

pat.matchStr("black");

pat.alternate

pat.matchStr("blue");

pat.endOnePat;
pat.matchStr("bird");

pat.endmatch;

The HLA language provides character sets as a built-in data type, so if you want to match a character set you
simply call one of the pat.*Cset function and pass a character set as the function’s argument. If you want to
match against the complement of a character set, you can take the complement by using the set negation (‘-‘)
operator, e.g.,

// Match non-alpha chars

pat.zeroOrMoreCset(-{‘a’..’z’, ‘A’..’Z’});

See the function reference for a complete description of all the HLA pattern matching functions.
Page 584 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
24.11 Pattern Matching Statements
 The HLA Standard Library pattern matching module basically breaks up the pattern matching operations

into two different categories: statements and functions. Statements are always implemented as macros, functions
might be macros or HLA procedures. This section will describe the statements, the next section will describe all
the pattern matching functions.

pat.match and pat.endmatch Syntax

The HLA pat.match and pat.endmatch macros provide the basic tools for pattern matching. These macro
statement allow one of the following two syntaxes:

// Match syntax #1:

pat.match(StringValue);
<< Sequence of match functions>>
<< Code to execute on a successful match >>

 pat.if_failure

<< Code to execute if the match fails >>

pat.endmatch;

StringValue is either an HLA string variable or a string constant.

// Match syntax #2:

pat.match(StartOfStr, EndOfStr);
<< Sequence of match functions>>
<< Code to execute on a successful match >>

 pat.if_failure

<< Code to execute if the match fails >>

pat.endmatch;

The StartOfStr and EndOfStr parameters (in syntax #2) must be dword pointers to characters. StartOfStr
points at the first character of a sequence of characters to match against. EndOfStr must point at the first byte
beyond the last character in the sequence to consider.

The pat.match statement, along with many of the matching functions, pushes data onto the stack that may
not be cleaned up until execution of the pat.endmatch statement. Therefore, you must never jump into a
pat.match..pat.endmatch block. Likewise, unless you are prepared to clean up the stack yourself, you should not
jump out of a pat.match..pat.endmatch block2.

During a normal match operation, the pat.match block executes the sequence of string matching functions.
If all the functions in the list execute and successfully match their portion of the string, control falls through to
the statements after the match sequence. This code should do whatever is necessary if the pattern matches.

On the other hand, if a failure occurs and the pattern matching routines cannot match the specified string,
then control transfers to the pat.if_failure section and the associated statements execute. Like an
IF..THEN..ELSE statement, the program automatically jumps over the pat.if_failure section if the "successful
match" statements execute.

Consider the following example that matches a string containing a single HLA identifier:

pat.match(StrToTest);

2. If an exception occurs, the exception handling code will clean up the stack, so exceptions are a legitimate way to
prematurely leave a pat.match..pat.endmatch block.
Released to the Public Domain Page 585

HLA Standard Library
 pat.oneCset({ ’a’..’z’, ’A’..’Z’, ’_’});
 pat.zeroOrMoreCset({ ’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’});
 pat.EOS;

 stdout.put("The string is a valid HLA identifier" nl);

 pat.if_failure

 stdout.put("The string is not a valid HLA id" nl);

pat.endmatch;

The pat.oneCset function matches a single character in StrToTest that is a member of the character set
appearing in the parameter list. This call requires that the first character of StrToTest be an alphabetic character
or an underscore.

After pat.oneCset matches a character, the pattern matching routines advance a cursor into StrToTest so that
it points just beyond the character matched by pat.oneCset. Indeed, all pattern matching routines operate in this
manner, they maintain a cursor (in ESI) that points beyond the characters just matched. So had StrToTest
contained the string "Hello", ESI would be pointing at the "e" in "Hello" immediately after the execution of the
pat.oneCset pattern matching routine.

The HLA pattern matching routines also return EBX pointing at the first character matched by the routine.
In the current example being considered, EBX would be returned pointing at the "H" in "Hello" by the
pat.oneCset routine.

The pat.zeroOrMoreCset routine continues where pat.oneCset leaves off. It matches zero or more
characters (starting at the location pointed at by ESI). In this particular example, pat.zeroOrMoreCset matches
zero or more alphanumeric and underscore characters, hence the code will match "ello" in "Hello".

The pat.EOS macro matches the end of the string, just to make sure there aren’t any other illegal
(nonalphanumeric) characters in the string. Note that pat.zeroOrMoreCset stops upon encountering the first
non-alphanumeric character. The remainder of the pattern (EOS, in this case) must verify that
pat.zeroOrMoreCset didn’t stop on an illegal character.

Had the StrToTest variable contained the string "Hello", then the pattern would successfully match the string
and the program would print "The string is a valid HLA identifier" and continue execution after the
pat.endmatch statement.

Because of the way HLA pattern matching routines implement backtracking, each matching routine may
leave data on the stack when it successfully returns. This information is necessary to implement backtracking.
Although the pat.endmatch code cleans up the stack upon exit, it is important to realize that stack is not static. In
particular, you cannot push data on the stack before one pattern matching routine and expect to pop it off the
stack when that matching routine returns. Instead, you’ll pop the data that the matching routine left on the stack
(which will probably crash the system if backtracking occurs). It is okay to manipulate the stack in the code
section following all the matching functions (or in the failure section), but you must leave the stack intact
between calls to pattern matching routines3.

24.12 Alternation
Another way to handle failure is with the pat.alternate macro. A pat.match..pat.endmatch macro invocation

may optionally contain one or more pat.alternate sections before the (required) pat.if_failure section. The
pat.alternate sections "intercept" failures from the previous section(s) and allow an attempt to rematch the string
with a different pattern (somewhat like the ELSEIF clause of an IF..THEN..ELSEIF..ELSE..THEN statement).
The following example demonstrates how you could use this:

pat.match(StrToTest);

 pat.oneCset({ ’a’..’z’, ’A’..’Z’, ’_’});
 pat.zeroOrMoreCset({ ’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’});
 pat.EOS;

3. Note that it is okay to push data onto the stack, do some calculations, and then pop that data off the stack between calls
to the pattern matching routines. However, you must ensure that the stack is unchanged since the last pattern matching
routine (or since pat.match) or the pattern matching routines will malfunction.
Page 586 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stdout.put("The string is a valid HLA identifier" nl);

 pat.alternate

pat.oneOrMoreCset({’0’..’9’, ’_’});
pat.EOS;

stdout.puta
(

"The string is a valid HLA unsigned integer constant" nl
);

 pat.if_failure

stdout.put
(

"The string is not a valid HLA id or integer constant" nl
);

pat.endmatch;

In this example, if the pattern fails to match an HLA identifier, the pattern matching code attempts to see if it
matches an integer constant (in the pat.alternate section). If this fails as well, then the whole pattern fails to
match.

24.13 Pattern Matching Macros
The HLA patterns library implements several of the pattern matching routines as keyword macros within the

pat.match macro. These include pat.EOS, pat.position, pat.atPos, pat.skip, pat.getPos, pat.fail, pat.fence,
pat.zeroOrOnePat, pat.zeroOrMorePat, and pat.oneOrMorePat. The following sections describe each of these
functions.

pat.EOS

 pat.match
<< pattern matching statements >>
pat.EOS;
// Note that it doesn’t make sense to have any more pattern
// matching statements here because they would never match
// anything.

 pat.endMatch;

The pat.EOS macro matches the end of the string. It succeeds if the current "cursor" value (ESI) is pointing
at the end of the string to match. It fails otherwise. This macro is great for forcing a string match to consume an
entire string. Specifically, by placing a pat.EOS macro invocation at the end of a sequence of pattern matching
function calls, you cause the current pattern match to succeed only if the pattern matches the entire string.

 pat.position(n)

 pat.match
<< pattern matching statements >>
pat.position(5);// Set cursor position to 5, succeed if

// match string is at least 5 chars long.
<< pattern matching statements >>

 pat.endMatch;

This function repositions the cursor to character n in the string that pat.match is processing. This function
fails if repositioning the cursor would move it outside the bounds of the string. Note that the index of the first
character in the string is zero. The macro is great when you need to match a subpattern that begins at some fixed
character position within the string.
Released to the Public Domain Page 587

HLA Standard Library
 pat.atPos(n)

 pat.match
<< pattern matching statements >>
pat.atPos(5);// Succeeds if above matches five characters.
<< pattern matching statements >>

 pat.endMatch;

This function succeeds if the cursor is currently at position n in the string that pat.match is processing. It
fails otherwise. This statement is useful when you need to verify that a recursive pattern doesn’t exceed some
bound in the string.

 pat.skip(n)

 pat.match
<< pattern matching statements >>
pat.skip(5);// Succeeds at least five chars left in

// match string and advances cursor by
// five positions.

<< pattern matching statements >>
 pat.endMatch;

This function advances the cursor n positions from its current location. This function succeeds if the new
cursor position is within the bounds of the string; it fails otherwise. This function is comparable to matching a
specific number of characters in the string. However, this function is much faster than pat.arb or one of the
character set matching functions.

 pat.getPos(var dest:dword)

 pat.match
<< pattern matching statements >>
pat.getPos(i);// Succeeds and puts current cursor position

// into ‘i’ variable.
<< pattern matching statements >>

 pat.endMatch;

This function places the current cursor position in the specified destination operand. This function always
succeeds. It does not affect the cursor position. This function stores zero into the dest variable if the cursor is at
the beginning of the string.

 pat.fail

 pat.match
<< pattern matching statements >>
pat.onePat

<< pattern matching statements >>
pat.alternate

<< pattern matching statements >>
pat.fail;//Always fails if we get to this point.

pat.endOnePat;
<< pattern matching statements >>

 pat.alternate
<< pattern matching statements >>

 pat.endMatch;

This forces an immediate failure, backtracking if necessary. This macro is useful for handling exceptional
conditions that shouldn’t match. That is, if you’ve matched to some point in the string and you don’t want the
whole pattern to succeed, executing pat.fail will force an immediate failure. Obviously, this macro invocation
only makes sense if alternation is being used in the pattern.

 pat.fence

 pat.match
<< pattern matching statements >>
Page 588 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pat.fence;// Don’t backtrack into previous statements
pat.onePat

<< pattern matching statements >>
pat.endOnePat;
<< pattern matching statements >>

 pat.alternate
<< pattern matching statements >>

 pat.endMatch;

This function cleans all the backtracking information off the stack. Any pattern matching function
following fence will not be able to backtrack to the routines immediately preceding fence in the current
pat.match statement.

 pat.onePat;

 pat.onePat;
<< pattern matching statements >>

 pat.endOnePat;

<< pattern matching statements >> are some statements that correspond to an HLA pattern sequence (it
may contain pattern matching function calls, x86 code, and pat.alternate sections; it may not contain a
pat.if_failure section or a pat.fence invocation). The program evaluates the pattern. If it succeeds, control falls
to the next statement following the pat.pattern call. If it fails, then control transfers directly to the pat.if_failure
section in the surrounding pat.match call.

This macro is primarily used to create "parenthetical patterns" as a convenience when creating complex
patterns. Here’s an example:

pat.match(SomeString);

pat.onePat

pat.matchStr("Black");

pat.alternate

pat.matchStr("Blue");

pat.endOnePat;

pat.onePat;

pat.matchStr("bird");

pat.alternate

pat.matchStr("berry");

pat.endOnePat;

stdout.put
(

"It was ’blackbird’, ’bluebird’, ’blackberry’, or ’blueberry’",
nl

);

 pat.if_failure

stdout.put("Failed to match the pattern" nl);

pat.endmatch;
Released to the Public Domain Page 589

HLA Standard Library
Immediately after the pat.endOnePat statement, EBX points at the start of the text associated with the
pattern match between the pat.onePat and pat.endOnePat calls. Therefore, you can call functions like
pat.extract to extract the entire string matched by the pattern between the pat.onePat and pat.endOnePat calls.
This function fully supports backtracking, even across the patterns within the parenthetical pattern expression.

 pat.zeroOrOnePat;

 pat.zeroOrOnePat;
<< pattern matching statements >>

 pat.endZeroOrOnePat;

<< pattern matching statements >> are some statemennts that correspond to an HLA pattern sequence (it
may contain pattern matching function calls, x86 code, and pat.alternate sections; it may not contain a
pat.if_failure section or a pat.fence invocation). This call invokes the pattern matching function zero or one
times to match additional characters in the current string. This function always succeeds since it can match zero
times. This function fully supports backtracking.

 pat.zeroOrMorePat;

 pat.zeroOrMorePat;
<< pattern matching statements >>

 pat.endZeroOrMorePat

Pattern is sequence of pattern matching function calls (just like pat.pattern above; including allowing a
pat.alternate section but not allowing a pat.if_failure section). This call invokes the pattern matching function
zero or more times to match additional characters in the current string.

 pat.oneOrMorePat

 pat.oneOrMorePat
<< pattern matching statements >>

 pat.endOneOrMorePat

<< pattern matching statements >> are some statemennts that correspond to an HLA pattern sequence (it
may contain pattern matching function calls, x86 code, and pat.alternate sections; it may not contain a
pat.if_failure section or a pat.fence invocation). This call invokes the pattern matching function one or more
times to match additional characters in the current string. It must match at least one occurrence of the pattern in
order to succeed.

24.14 Character Set Matching Functions
The following sections describe each of the character set matching functions provided by the HLA patterns

module. These functions take (at the minimum) a character set object. The characters in the match string (at the
cursor position) are tested against the characters in the set. These functions succeed if, as appropriate for the
specific function, they match characters in the parameterized character set.

You’ll notice that there are no "not in character set" type functions in this set. You can easily test to see if a
string does not match any characters in a given character set by using the negation of the character set.

procedure pat.peekCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.peekCset({‘0’..’9’}); // Matches, but does not consume

// a numeric character.
<< pattern matching statements >>

 pat.endMatch

Succeeds if the following character is in the specified set. Fails otherwise. This function does not affect the
cursor position of the match.

procedure pat.oneCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.oneCset({‘0’..’9’}); // Matches and consumes a numeric char
<< pattern matching statements >>

 pat.endMatch
Page 590 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Succeeds, and advances the cursor by one position, if the character at the cursor position is in cst. Fails
otherwise. If this function fails, it does not affect the cursor position.

The following example succeeds and advances the cursor by one position if the character at the current
cursor position is an alphabetic character:

pat.oneCset({‘a’..’z’, ‘A’..’Z’});

The following example succeeds and advances the cursor if the current character is not an alphabetic
character:

pat.oneCset(-{‘a’..’z’, ‘A’..’Z’}); // Note: "-" operator negates cset.

procedure pat.upToCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.upToCset({‘0’..’9’}); // Match all chars up to a numeric char
<< pattern matching statements >>

 pat.endMatch;

Advances the cursor until it finds a character in cst. Fails if none of the characters following the cursor
position (to the end of the string) are in cst. This advances the cursor position to the character found in the cst
parameter. Therefore, the next matching function will begin with the character that was present in the set. Note
that this function succeeds and skips zero characters if the cursor was pointing at a character in cst when this
function was called.

This function is great for skipping over some arbitrary number of characters until a character in the given
character set is found. If you call the pat.extract function immediately after this function call, you’ll retrieve the
characters skipped over by this function.
 pat.match

<< pattern matching statements >>
pat.upToCset({‘0’..’9’}); // Match all chars up to a numeric char
pat.extract(s); // Extract matched chars to ‘s’ string
<< pattern matching statements >>

 pat.endMatch;

procedure pat.zeroOrOneCset(cst:cset)

 pat.match
<< pattern matching statements >>
pat.zeroOrOneCset({‘0’..’9’});
<< pattern matching statements >>

 pat.endMatch;

Optionally matches a single character in the string. If the following character is in the character set, this
routine advances the cursor and signals success. If the following character is not in the string, this routine simply
signals successh without advancing the cursor.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match the
character before returning. If doing so would cause a following match routine to fail, this routine will backtrack
one character and retry the following match routine. If the following match routine still fails, then this routine
fails.

procedure pat.l_ZeroOrOneCset(cst:cset)

 pat.match
<< pattern matching statements >>
pat.l_ZeroOrOneCset({‘0’..’9’});
Released to the Public Domain Page 591

HLA Standard Library
<< pattern matching statements >>
 pat.endMatch;

Optionally matches a single character in the string. If the following character is in the character set, this
routine advances the cursor and signals success. If the following character is not in the string, this routine simply
signals success without advancing the cursor.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will start by matching zero
characters in the string. If doing so would cause a following match routine to fail, this routine will backtrack and
match one character (if possible) and then retry the following match routine. If the following routine still fails,
then this routine signals failure.

procedure pat.zeroOrMoreCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.zeroOrMoreCset({‘0’..’9’});
<< pattern matching statements >>

 pat.endMatch;

Matches zero or more characters in the specified character set. Because this function can match zero
characters, it will always succeed. It advances the cursor beyond all the characters that it successfully matches.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up beyond the
original cursor position (in which case this routine backtracks to previous functions) or the following match
routine(s) succeed.

procedure pat.l_ZeroOrMoreCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.l_ZeroOrMoreCset({‘0’..’9’});
<< pattern matching statements >>

 pat.endMatch;

Matches zero or more characters in the specified character set. Because this function can match zero
characters, it will always succeed. It advances the cursor beyond all the characters that it successfully matches.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine backtracks to previous functions) or the
following match routine(s) succeed.

procedure pat.oneOrMoreCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.oneOrMoreCset({‘0’..’9’});
<< pattern matching statements >>

 pat.endMatch;

Matches one or more characters in the specified character set. Immediately fails if there isn’t at least one
character in cst. It advances the cursor beyond all the characters that it successfully matches.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position plus one (in which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_OneOrMoreCset(cst:cset);

 pat.match
<< pattern matching statements >>
pat.l_OneOrMoreCset({‘0’..’9’});
<< pattern matching statements >>
Page 592 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 pat.endMatch;

Matches one or more characters in the specified character set. Immediately fails if there isn’t at least one
character in cst. It advances the cursor beyond all the characters that it successfully matches.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., one). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine fails) or the following match routine(s)
succeed.

procedure pat.exactlyNCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNCset({‘0’..’9’}, 4);
<< pattern matching statements >>

 pat.endMatch;

Matches exactly n characters that are members of cst. If any of the next n characters in the match string are
not in cst, this routines returns failure. This function advances the cursor by n positions if it succeeds.

Note: The character at position (n+1) must not be a member of cst or this routine fails.

procedure pat.firstNCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.firstNCset({‘0’..’9’}, 4);// Matches 4 numeric chars in string
<< pattern matching statements >>

 pat.endMatch;

Matches n characters that are members of cst. On success this function advances the cursor by n positions.
Note: The character at position (n+1) may be a member of cst. Whether or not it is, this routine succeeds if

the first n characters are members of cst.

procedure pat.norLessCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norLessCset({‘0’..’9’}, i); // Matches 0..i numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches n or fewer characters belonging to the cst set. This function always succeeds as it can
match zero character (which are less than n characters).

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string (up to n). If doing so would cause a following match routine to fail, this
routine will backtrack one character and retry the following match routine. This continues until it backs up to the
original cursor position (in which case this routine backtracks through any previous pattern matching functions)
or the following match routine(s) succeed.

procedure pat.l_NorLessCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorLessCset({‘0’..’9’}, i); // Matches 0..i numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches n or fewer characters belonging to the cst set. This function always succeeds as it can
match zero character (which are less than n characters).

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
Released to the Public Domain Page 593

HLA Standard Library
until it advances beyond the end of the string (in which case this routine backtracks through any previous pattern
matching functions) or the following match routine(s) succeed.

procedure pat.norMoreCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norMoreCset({‘0’..’9’}, i); // Matches i..? numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches at least n characters belonging to the cst set. If fewer than n characters match the set,
this routine returns failure. If this function succeeds, it advances the cursor beyond all the characters it matches in
cst.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine backtracks through any previous pattern matching functions) or the
following match routine(s) succeed.

procedure pat.l_NorMoreCset(cst:cset; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorMoreCset({‘0’..’9’}, i); // Matches i..? numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches at least n characters belonging to the cst set. If fewer than n characters match the set,
this routine returns failure. If this function succeeds, it advances the cursor beyond all the characters it matches in
cst.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond the end of the string (in which case this routine backtracks through any previous pattern
matching functions) or the following match routine(s) succeed.

procedure pat.ntoMCset(cst:cset; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.ntoMCset({‘0’..’9’}, i, j); // Matches i..j numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches at least n characters and no more than m characters belonging to the cst set. If fewer
than n characters match the set, this routine returns failure. This routine does not fail if more than m characters
belong to the set. However, it only matches through position m.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine backtracks through any previous pattern matching functions) or the
following match routine(s) succeed.

procedure pat.l_NtoMCset(cst:cset; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NtoMCset({‘0’..’9’}, i, j); // Matches i..j numeric chars
<< pattern matching statements >>

 pat.endMatch;
Page 594 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This routine matches at least n characters and no more than m characters belonging to the cst set. If fewer
than n characters match the set, this routine returns failure. This routine does not fail if more than m characters
belong to the set. However, it only matches through position m.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine backtracks through any previous pattern matching
functions) or the following match routine(s) succeed.

procedure pat.exactlyNtoMCset(cst:cset; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNtoMCset({‘0’..’9’}, i, j); // Matches i..j numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches at least n characters and no more than m characters belonging to the cst set. If fewer
than n characters match the set, this routine returns failure. This routine fails if more than m characters belong to
the set.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine backtracks through any previous pattern matching functions) or the
following match routine(s) succeed.

procedure pat.l_ExactlyNtoMCset(cst:cset; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_ExactlyNtoMCset({‘0’..’9’}, i, j); // Matches i..j

// numeric chars
<< pattern matching statements >>

 pat.endMatch;

This routine matches at least n characters and no more than m characters belonging to the cst set. If fewer
than n characters match the set, this routine returns failure. This routine fails if more than m characters belong to
the set.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine backtracks through any previous pattern matching
functions) or the following match routine(s) succeed.

24.15 Character Matching Functions
The following sections describe each of the character matching functions provided by the HLA patterns

module. These functions take (at the minimum) a character object. The characters in the match string (at the
cursor position) are tested against the character. These functions succeed if, as appropriate for the specific
function, they match the parameterized character.

You’ll notice that there are no "not equal to character " type functions in this group. You can easily test to
see if a string does not match any character using the character set pattern matching functions.

procedure pat.peekChar(c:char);

 pat.match
<< pattern matching statements >>
pat.peekChar(‘a’); // Matches ‘a’
<< pattern matching statements >>

 pat.endMatch;
Released to the Public Domain Page 595

HLA Standard Library
This routine succeeds if the character pointed at by the cursor (ESI) is equal to c; it fails otherwise. This
routine does not advance the cursor if it succeeds.

procedure pat.oneChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneChar(‘a’); // Matches ‘a’
<< pattern matching statements >>

 pat.endMatch;

This routine succeeds if the character pointed at by the cursor (ESI) is equal to c; it fails otherwise. If it
succeeds, this routine advances the cursor over the character it matches.

procedure pat.upToChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneChar(ch); // Matches char in ch register
<< pattern matching statements >>

 pat.endMatch;

This routine matches all characters in a string from the cursor position up to the specified parameter. It fails
if the specified character is not in the string. Note that this routine leaves the cursor pointing at the character
specified by the parameter (i.e., it still remains to be matched). A call to pat.extract immediately after this
function will create a string with all the characters up to, but not including, the character passed as the parameter.

procedure pat.zeroOrOneChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrOneChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or one occurrences of the character parameter. Because it can match zero
characters, this function always succeeds. This function is great for matching an optional character in a pattern.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match one
character in the string. If doing so would cause a following match routine to fail, this routine will backtrack one
character and retry the following match routine.

procedure pat.l_ZeroOrOneChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrOneChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or one occurrences of the character parameter. In other words, it lets you check
for the presence of an optional character. Because this function can match zero characters, it always succeeds.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. If that fails, then
this routine fails.

procedure pat.zeroOrMoreChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;
Page 596 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This routine matches zero or more occurrences of the character parameter. It leaves the cursor pointing at
the end of the string or the first character that is not equal to c. Because this function can match zero characters,
it always succeeds.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_ZeroOrMoreChar(c:char);

 pat.match
<< pattern matching statements >>
pat.l_ZeroOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or more occurrences of the character parameter. It leaves the cursor pointing at
the end of the string or the first character that is not equal to c. Because this function can match zero characters,
it always succeeds.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine fails) or the following match routine(s)
succeed.

procedure pat.oneOrMoreChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches one or more occurrences of the character parameter. It leaves the cursor pointing at the
end of the string or the first character that is not equal to c. It fails if there isn’t at least one copy of c at the cursor
position.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the cursor
position of the first character it matched (in which case this routine fails) or the following match routine(s)
succeed.

procedure pat.l_OneOrMoreChar(c:char);

 pat.match
<< pattern matching statements >>
pat.l_OneOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches one or more occurrences of the character parameter. It leaves the cursor pointing at the
end of the string or the first character that is not equal to c. It fails if there isn’t at least one copy of c at the cursor
position.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., one). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case following functions fail and this function returns the
failure on back up the invocation chain) or the following match routine(s) succeed.

procedure pat.exactlyNChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNChar(c, n); // Matches char in c variable
<< pattern matching statements >>
Released to the Public Domain Page 597

HLA Standard Library
 pat.endMatch;

This routine matches exactly n copies of the character c in the string. If more, or less, copies of c appear in
the string at the current cursor position then this routine fails. Note that the character at cursor position (n+1)
must not be equal to c or this function fails even if the first n characters do match.

procedure pat.firstNChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.firstNChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches n copies of the character c in the string. If fewer than n copies of c appear in the string,
this routine fails. If more copies of c appear in the string, this routine succeeds, however, it only matches the
first n copies.

procedure pat.norLessChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norLessChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or fewer copies of c in the current string. If additional copies of c appear in the
string, this routine still succeeds but it only matches the first n copies.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_NorLessChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorLessChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or fewer copies of c in the current string. If additional copies of c appear in the
string, this routine still succeeds but it only matches the first n copies.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine passes back the failure returned by the
following matching functions) or the following match routine(s) succeed.

procedure pat.norMoreChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norMoreChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or more copies of c in the current string. It fails if there are fewer than n copies of
c.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.
Page 598 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure pat.l_NorMoreChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorMoreChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or more copies of c in the current string. It fails if there are fewer than n copies of
character c in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond the end of the string (in which case this routine returns the failure reported by the following
match routines) or the following match routine(s) succeed.

procedure pat.ntoMChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.ntoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position. This routine succeeds even if there are more than m copies of the character, however, it will only match
the first m characters in the string.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_NtoMChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position. This routine succeeds even if there are more than m copies of the character, however, it will only match
the first m characters in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine returns the failure) or the following match routine(s)
succeed.

procedure pat.exactlyNtoMChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position. This routine fails if there are more than m copies (or fewer than n copies) of the character in the string.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.
Released to the Public Domain Page 599

HLA Standard Library
procedure pat.l_ExactlyNtoMChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_ExactlyNtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position. This routine fails if there are more than m copies (or fewer than n copies) of the character in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine fails) or the following match routine(s) succeed.

24.16 Case Insensitive Character Matching Routines
These routines are semantically identical to the above routines with one difference- when they compare the

characters they use a case insensitive comparison. Please see the descriptions above for an explanation of these
routines.

procedure pat.peekiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.peekChar(‘a’); // Matches ‘a’
<< pattern matching statements >>

 pat.endMatch;

This routine succeeds if the character pointed at by the cursor (ESI) is equal to c using a case insenstive
comparison; it fails otherwise. This routine does not advance the cursor if it succeeds.

procedure pat.oneiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneChar(‘a’); // Matches ‘a’
<< pattern matching statements >>

 pat.endMatch;

This routine succeeds if the character pointed at by the cursor (ESI) is equal to c using a case insenstive
comparison; it fails otherwise. If it succeeds, this routine advances the cursor over the character it matches.

procedure pat.upToiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneChar(ch); // Matches char in ch register
<< pattern matching statements >>

 pat.endMatch;

This routine matches all characters, using a case insenstive comparison, in a string from the cursor position
up to the specified parameter. It fails if the specified character is not in the string. Note that this routine leaves
the cursor pointing at the character specified by the parameter (i.e., it still remains to be matched). A call to
pat.extract immediately after this function will create a string with all the characters up to, but not including, the
character passed as the parameter.

procedure pat.zeroOrOneiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrOneChar(c); // Matches char in c variable
<< pattern matching statements >>
Page 600 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 pat.endMatch;

This routine matches zero or one occurrences of the character parameter using a case insenstive comparison.
Because it can match zero characters, this function always succeeds. This function is great for matching an
optional character in a pattern.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match one
character in the string. If doing so would cause a following match routine to fail, this routine will backtrack one
character and retry the following match routine.

procedure pat.l_ZeroOrOneiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrOneChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or one occurrences of the character parameter using a case insenstive comparison.
In other words, it lets you check for the presence of an optional character. Because this function can match zero
characters, it always succeeds.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. If that fails, then
this routine fails.

procedure pat.zeroOrMoreiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.zeroOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or more occurrences of the character parameter using a case insenstive
comparison. It leaves the cursor pointing at the end of the string or the first character that is not equal to c.
Because this function can match zero characters, it always succeeds.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_ZeroOrMoreiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.l_ZeroOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or more occurrences of the character parameter using a case insenstive
comparison. It leaves the cursor pointing at the end of the string or the first character that is not equal to c.
Because this function can match zero characters, it always succeeds.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine fails) or the following match routine(s)
succeed.

procedure pat.oneOrMoreiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.oneOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>
Released to the Public Domain Page 601

HLA Standard Library
 pat.endMatch;

This routine matches one or more occurrences of the character parameter using a case insenstive
comparison. It leaves the cursor pointing at the end of the string or the first character that is not equal to c. It
fails if there isn’t at least one copy of c at the cursor position.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the cursor
position of the first character it matched (in which case this routine fails) or the following match routine(s)
succeed.

procedure pat.l_OneOrMoreiChar(c:char);

 pat.match
<< pattern matching statements >>
pat.l_OneOrMoreChar(c); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches one or more occurrences of the character parameter using a case insenstive
comparison. It leaves the cursor pointing at the end of the string or the first character that is not equal to c. It
fails if there isn’t at least one copy of c at the cursor position.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., one). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case following functions fail and this function returns the
failure on back up the invocation chain) or the following match routine(s) succeed.

procedure pat.exactlyNiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches exactly n copies of the character c in the string using a case insenstive comparison. If
more, or less, copies of c appear in the string at the current cursor position then this routine fails. Note that the
character at cursor position (n+1) must not be equal to c or this function fails even if the first n characters do
match.

procedure pat.firstNiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.firstNChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This routine matches n copies of the character c in the string using a case insenstive comparison. If fewer
than n copies of c appear in the string, this routine fails. If more copies of c appear in the string, this routine
succeeds, however, it only matches the first n copies.

procedure pat.norLessiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norLessChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or fewer copies of c in the current string using a case insenstive comparison. If
additional copies of c appear in the string, this routine still succeeds but it only matches the first n copies.
Page 602 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to the original
cursor position (in which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_NorLessiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorLessChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or fewer copies of c in the current string using a case insenstive comparison. If
additional copies of c appear in the string, this routine still succeeds but it only matches the first n copies.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., zero). If doing so would cause a following match routine to fail, this
routine will backtrack and advance one character and then retry the following match routine. This continues
until it advances beyond the end of the string (in which case this routine passes back the failure returned by the
following matching functions) or the following match routine(s) succeed.

procedure pat.norMoreiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.norMoreChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or more copies of c in the current string using a case insenstive comparison. It
fails if there are fewer than n copies of c.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_NorMoreiChar(c:char; n:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NorMoreChar(c, n); // Matches char in c variable
<< pattern matching statements >>

 pat.endMatch;

This procedure matches n or more copies of c in the current string using a case insenstive comparison. It
fails if there are fewer than n copies of character c in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond the end of the string (in which case this routine returns the failure reported by the following
match routines) or the following match routine(s) succeed.

procedure pat.ntoMiChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.ntoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position, using a case insenstive comparison. This routine succeeds even if there are more than m copies of the
character, however, it will only match the first m characters in the string.
Released to the Public Domain Page 603

HLA Standard Library
This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_NtoMiChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_NtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position, using a case insenstive comparison. This routine succeeds even if there are more than m copies of the
character, however, it will only match the first m characters in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine returns the failure) or the following match routine(s)
succeed.

procedure pat.exactlyNtoMiChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.exactlyNtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position, using a case insenstive comparison. This routine fails if there are more than m copies (or fewer than n
copies) of the character in the string.

This function uses an "aggressive" or "eager" pattern matching algorithm. It will attempt to match as many
characters as possible in the string. If doing so would cause a following match routine to fail, this routine will
backtrack one character and retry the following match routine. This continues until it backs up to position n (in
which case this routine fails) or the following match routine(s) succeed.

procedure pat.l_ExactlyNtoMiChar(c:char; n:uns32; m:uns32);

 pat.match
<< pattern matching statements >>
pat.l_ExactlyNtoMChar(c, n, m);
<< pattern matching statements >>

 pat.endMatch;

This procedure matches between n and m copies of the character c starting at the current cursor (ESI)
position, using a case insenstive comparison. This routine fails if there are more than m copies (or fewer than n
copies) of the character in the string.

This function uses a "deferred" or "lazy" pattern matching algorithm. It will attempt to match as few
characters as possible in the string (i.e., n). If doing so would cause a following match routine to fail, this routine
will backtrack and advance one character and then retry the following match routine. This continues until it
advances beyond position m (in which case this routine fails) or the following match routine(s) succeed.

String Matching Functions

procedure pat.matchStr(s:string);

 pat.match
<< pattern matching statements >>
pat.matchStr(someString);
<< pattern matching statements >>

 pat.endMatch;
Page 604 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
If the sequence of characters at the current cursor position (ESI) match the specified string, this routine
succeeds, otherwise it fails. Note that additional characters may appear in the match string after the characters
matched by s.

procedure pat.matchiStr(s:string);

 pat.match
<< pattern matching statements >>
pat.matchiStr(someString);
<< pattern matching statements >>

 pat.endMatch;

Like pat.matchStr, except this routine does a case insensitive comparison.

procedure pat.matchToStr(s:string);

 pat.match
<< pattern matching statements >>
pat.matchToStr(someString);
<< pattern matching statements >>

 pat.endMatch;

This routine matches all characters up to, and including, the parameter string s. If it matches a string and a
following pattern matching routine fails, this routine handles the backtracking and searches for the next string
that matches. The backtracking is lazy insofar is this routine will always match the minimum number of
characters up to s in the string in order to succeed. When backtracking occurs, this function will skip over the
string it has matched and search for another occurrence. This function will fail if it cannot find another
occurrence of s in the match string.

procedure pat.upToStr(s:string);

 pat.match
<< pattern matching statements >>
pat.upToStr(someString);
<< pattern matching statements >>

 pat.endMatch;

This routine matches all characters up to, but not including, the parameter string s. If it matches a string and
a following pattern matching routine fails, this routine handles the backtracking and searches for the next string
that matches. The backtracking is lazy insofar is this routine will always match the minimum number of
occurrences of s in the string in order to succeed.

procedure pat.matchToiStr(s:string);

 pat.match
<< pattern matching statements >>
pat.matchToiStr(someString);
<< pattern matching statements >>

 pat.endMatch;

Like pat.matchToStr, except this routine does a case insensitive comparison.

procedure pat.upToiStr(s:string);

 pat.match
<< pattern matching statements >>
pat.upToiStr(someString);
<< pattern matching statements >>

 pat.endMatch;

Like pat.upToStr, except this routine does a case insensitive comparison.

procedure pat.matchWord(s:string);

 pat.match
<< pattern matching statements >>
Released to the Public Domain Page 605

HLA Standard Library
pat.matchWord(someString);
<< pattern matching statements >>

 pat.endMatch;

This routine is similar to pat.matchStr except that it requires a delimiter character after the string it matches.
The delimiter character is a member of the WordDelims character set (internal to the patterns.hhf code).
WordDelims is, by default, the character set "-{’a’..’z’, ’A’..’Z’, ’0’..’9’, ’_’}" (that is, all character except the
alphanumeric characters and the underscore). See the getWordDelims and setWordDelims procedures if you are
interested in changing the word delimiters set.

procedure pat.matchiWord(s:string);

 pat.match
<< pattern matching statements >>
pat.matchiWord(someString);
<< pattern matching statements >>

 pat.endMatch;

Just like pat.matchWord, except this routine does a case insensitive comparison.

procedure pat.getWordDelims(var cst:cset);

 pat.getWordDelims(destinationCSet);

This function makes a copy of the internal WordDelims character set and places this copy in the specified cst
parameter. Note that you do not have to call this function inside a pat.match..pat.endMatch sequence (though it’s
perfectly okay to do so).

procedure pat.setWordDelims(cst:cset);

 pat.setWordDelims(newDelimsCSet);

This function stores the value of the cst character set into the WordDelims character set. This allows you to
change the WordDelims character set to your liking. Note that you do not have to call this function inside a
pat.match..pat.endMatch sequence (though it’s perfectly okay to do so).

24.17 String Extraction Functions
procedure pat.extract(s:string);

 pat.match
<< pattern matching statements >>
pat.extract(someAllocatedStringObject);
<< pattern matching statements >>

 pat.endMatch;

Whenever a pattern matching routine successfully matches zero or more characters in the string, the pattern
matching routine returns a pointer to the start of the matched characters in EBX and a pointer to the position just
beyond the last matched position in ESI. You may use the pat.extract procedure to create an HLA-compatible
string of these matched characters. This routine will raise an exception if the destination string isn’t big enough
to hold the extracted characters.

Note that pat.extract will only extract those characters that the immediately previous string matching
function matched. If you want to extract a string from a sequence of match functions, use the
pat.onePat..pat.endOnePat sequence to group the functions whose matched string you want to extract.

Be careful about making calls to pat.extract when backtracking can occur. Though pat.extract will work fine
in the event of backtracking, you will take a big performance hit if the system has to make a copy of the same
string over and over again if backtracking occurs frequently.

Warning: pat.extract should only be called in the "success" section of a pat.match..pat.endmatch block.
Any other invocation could create a problem. In general, you must ensure that EBX and ESI point at reasonable
spots within the same string. Note that pattern match failure does not guarantee that EBX contains a reasonable
value. Therefore, you should not use pat.extract at a point where string failure could have occurred unless you
explicitly set up EBX (and, possibly, ESI) yourself.
Page 606 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure pat.a_extract(var s:string);

 pat.match
<< pattern matching statements >>
pat.a_extract();
mov(eax, stringVariable);
<< pattern matching statements >>

 pat.endMatch;

Whenever a pattern matching routine successfully matches zero or more characters in the string, the pattern
matching routine returns a pointer to the start of the matched characters in EBX and a pointer to the position just
beyond the last matched position in ESI. You may use the pat.a_extract procedure to create an HLA-compatible
string of these matched characters. pat.a_extract will allocate storage for the string on the heap, copy the
matched characters to this string, and then store a pointer to the new string in the string variable passed as a
reference parameter to pat.a_extract.

Be careful about making calls to pat.a_extract when backtracking can occur. Though pat.a_extract will
work fine in the event of backtracking, you will take a big performance hit if the system has to make a copy of
the same string over and over again if backtracking occurs frequently. Also, note that unless you take care to free
the string data allocated on a previous call to pat.a_extract (before the backtracking occurs), you’ll wind up with
a "memory leak". For this reason, you should use pat.extract on a preallocated string rather than calling
pat.a_extract to allocate the string.

Warning: pat.a_extract should only be called in the "success" section of a pat.match..pat.endmatch block.
Any other invocation could create a problem. In general, you must ensure that EBX and ESI point at reasonable
spots within the same string. Note that pattern match failure does not guarantee that EBX contains a reasonable
value. Therefore, you should not use pat.a_extract at a point where string failure could have occurred unless you
explicitly set up EBX (and, possibly, ESI) yourself.

24.18 Whitespace and End of String Matching Functions

These convenient routines match a sequence of whitespace characters as well as the end of the current string.
By default, these routines assume that whitespace consists of all the control characters, the ASCII space (#$20),
and the del code (#$7f). You can change this definition using the pat.getWhiteSpace and pat.setWhiteSpace
procedures.

procedure pat.getWhiteSpace(var cst:cset);

 pat.getWhiteSpace(destinationCSet);

This function returns the current value of the internal WhiteSpace character set. It stores the result in the
reference parameter cst. Note that you do not have to call this function inside a pat.match..pat.endMatch
sequence (though it’s perfectly okay to do so).

procedure pat.setWhiteSpace(cst:cset);

 pat.setWhiteSpace(newCSet);

This procedure copies the specified character set to the internal WhiteSpace character set. All future
whitespace matching procedures will use this new value when matching white space characters. Note that you do
not have to call this function inside a pat.match..pat.endMatch sequence (though it’s perfectly okay to do so).

procedure pat.zeroOrMoreWS;

 pat.match
<< pattern matching statements >>
pat.zeroOrMoreWS();
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero more more whitespace characters. This routine uses an "eager" matching
algorithm.
Released to the Public Domain Page 607

HLA Standard Library
procedure pat.oneOrMoreWS;

 pat.match
<< pattern matching statements >>
pat.oneOrMoreWS();
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero more more whitespace characters. This routine uses an "eager" matching
algorithm; it will backtrack over matched white space characters at the end if the following match functions
require some whitespace characters to succeed. If there isn’t at least one whitespace character at the cursor
position, this function fails. Otherwise, it succeeds.

procedure pat.WSorEOS;

 pat.match
<< pattern matching statements >>
pat.WSorEOS();
<< pattern matching statements >>

 pat.endMatch;

This routine matches a single whitespace character or the end of the string. It fails if there are characters left
in the string and the character at the cursor position is not a white space character.

procedure pat.WSthenEOS;

 pat.match
<< pattern matching statements >>
pat.WSthenWS();
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or more white space characters that appear at the end of the current string. It fails
if there are any other characters before the end of the string.

procedure pat.peekWS;

 pat.match
<< pattern matching statements >>
pat.peekWS();
<< pattern matching statements >>

 pat.endMatch;

This routine succeeds if the next character in the string is a whitespace character. However, it does not
advance the cursor over the character.

procedure pat.peekWSorEOS;

 pat.match
<< pattern matching statements >>
pat.peekWSorEOS();
<< pattern matching statements >>

 pat.endMatch;

This routine succeeds if the next character in the string is a white space character or if there are no more
characters in the string. It does not advance the cursor.

24.19 Matching an Arbitrary Sequence of Characters
procedure pat.arb;

 pat.match
<< pattern matching statements >>
Page 608 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pat.arb();
<< pattern matching statements >>

 pat.endMatch;

This routine matches zero or more characters. It uses an "aggressive" or "eager" matching algorithm,
immediately matching all the remaining characters in the string. If following matching routines fail, this routine
backtracks one character at a time until reaching the initial starting position (in which case this routine fails) or
the following matching routine(s) succeed.

procedure pat.l_arb; external;

 pat.match
<< pattern matching statements >>
pat.l_arb();
<< pattern matching statements >>

 pat.endMatch;

This is a "lazy" or "deferred" version of the above routine. It matches zero characters and succeeds; if a
following match routine fails, this routine backtracks by advancing the cursor one position for each failure. If
this routine advances beyond the end of the string during backtracking, it reports failure.

24.20 Writing Your Own Pattern Matching Routines
Although HLA provides a wide variety of pattern matching functions, from which you can probably

synthesize any pattern you desire, there are several reasons why you might want to write your own pattern
matching routines. Some common reasons include: (1) You would like a more efficient pattern matching
function than is possible by composing existing pattern matching functions. (2) You need a particular pattern
matching routine to produce a side effect and the standard matching routines do not produce the desired side
effect. A common example is a pattern matching routine that returns an attribute value for an item it matches.
For example, a routine that matches a string of decimal digits may return the numeric equivalent of that string as
an attribute of that pattern. (3) You need a pattern matching routine that considers other machine states (i.e.,
variable values) besides the string the pattern is processing. (4) You need to handle some context-sensitive
issues. (5) You want to understand how the pattern matching algorithm works. Writing your own pattern
matching functions can achieve all these goals and many more.
 The first issue you must address when writing your own pattern matching routine is

whether or not the routine supports backtracking. Generally, this decision depends
upon whether the function matches strings that are always a fixed length or can
match strings of differing lengths. For example, the pat.oneCset routine always
matches a string of length one whereas the pat.zeroOrMoreCset function can match strings
of any length. If a function can only match strings having a fixed length, then the
function does not need to support backtracking. Generally, pattern matching

functions that can match strings of varying lengths should support backtracking4.
Since supporting backtracking is more work and less efficient, you should only
support it when necessary.
 Once you’ve decided that you’re going to support backtracking in a matching

function, the next issue that concerns you is whether the function supports eager
evaluation or lazy/deferred evaluation. (Note: when writing general matching
routines for library use, it’s generally a good idea to supply two functions, one
that supports eager evaluation and one that supports lazy/deferred evaluation.)
A function that supports eager evaluation tries to match the longest possible

string when the program calls the function. If the function succeeds and a later
matching functions fails (invoking the backtracking operation), then the matching
function backs off the maximum number of characters that will still match. This
process continues until the following code succeeds or the function backs off so
much that it, too, fails.
If function that support lazy/deferred evaluations tries to match the shortest

possible string. Once it matches the shortest string it can, it passes control on
to the following pattern matching functions. If they fail and back tracking returns

4. Although this is your decision. If for some reason you don’t want to support backtracking in such functions, that is
always an option you can choose.
Released to the Public Domain Page 609

HLA Standard Library
control to the function, it tries to match the next smallest string larger than the
one it currently matches. This process repeats until the following match functions
succeed or the current function fails to match anything.
Note that the choice of eager vs. lazy/deferred evaluation does not generally

affect whether a pattern will match a given string5. It does, however, affect the
efficiency of the pattern matching operation. Backtracking is a relatively slow
operation. If an eager match causes the following pattern functions to fail until
the current pattern matching function backs off to the shortest possible string it
can match, the program will run much slower than one that uses lazy evaluation for
the function (since it starts with the shortest possible string to begin with). On
the other hand, if a function needs to match the longest possible string in order
for the following matching functions to succeed, choosing lazy evaluation will run
much more slowly than eager evaluation. Therefore, the choice of which form is best
to use is completely data dependent. If you have no idea which evaluation form
should be better, choose eager evaluation since it is more intuitive to those
defining the pattern to match.
 All pattern matching routines have two implicit parameters passed to them in the

ESI and EDI registers. ESI is the current cursor position while EDI points at the
byte immediately after the last character available for matching. That is, the
characters between locations ESI and (EDI-1) form the string to match against the
pattern.
The primary purpose of a pattern matching function is to return "success" or

"failure" depending upon whether the pattern matches the characters in the string
(or however else you define "success" versus "failure"). In addition to returning
success or failure, pattern matching functions must also return certain values in
some of the registers. In particular, the function must preserve the value in EDI
(that is, it must still point at the first byte beyond the end of the string to
match). If the function succeeds, it must return EBX pointing at the start of the
sequence it matched (i.e., EBX must contain the original value in ESI) and ESI must
point at the first character beyond the string matched by the function (so the
string matched is between addresses EBX and ESI-1). If the function fails, it must
return the original values of ESI and EDI in these two registers. EBX’s value is
irrelevant if the function fails. Except for EBP, the routine need not preserve any
other register values (and, in fact, a pattern matching function can use the other

registers to return attribute values to the calling code)6.
Pattern matching routines that do not support backtracking are the easiest to

create and understand. Therefore, it makes sense to begin with a discussion of
those types of pattern matching routines.
A pattern matching routine that does not support backtracking succeeds by simply

returning to its caller (with the registers containing the appropriate values noted
above). If the function fails to match the characters between ESI and (EDI-1), it
must call the pat._fail_ function passing the pat.FailTo object as its parameter, e.g.,

pat._fail_(pat.FailTo);

As a concrete example, consider the following implementation of the pat.matchStr function:

unit patterns;
#include("pat.hhf");

procedure pat.matchStr(s:string); @nodisplay; @noframe;
begin matchStr;

5. The one exception has to do with fences. If you set a fence after the pattern matching routine, then backtracking cannot
return into the pattern matching function. In this one case, the choice of deferred vs. eager evaluation will have an impact on
whether the whole pattern will match a given string.
6. The HLA Standard Library Pattern Matching routines preserve EDX, so this is probably a good convention to follow so
you don’t surprise your users.
Page 610 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 push(ebp); // must do this ourselves since noframe
 mov(esp, ebp); // is specified as an option.
 cld();

 // Move a copy of ESI into EBX since we need to return
 // the starting position in EBX if we succeed.

 mov(esi, ebx);

 // Compute the length of the remaining
 // characters in the sequence we are attempting
 // to match (i.e., EDI-ESI) and compare this against
 // the length of the string passed as a parameter.
 // If the parameter string is longer than the number
 // of characters left to match, then we can immediately
 // fail since there is no way the string is going to
 // to match the string parameter.

 mov(s, edx);
 mov((type str.strRec [edx]).length, ecx);
 mov(edi, eax);
 sub(esi, eax);
 if(ecx > eax) then

 // At this point, there aren't enough characters left
 // in the sequence to match s, so fail.

 pat._fail_(pat.FailTo);

 endif;

 // Okay, compare the two strings up to the length of s
 // to see if they match.

 push(edi);
 mov(edx, edi);
 repe.cmpsb();
 pop(edi);
 if(@ne) then

 // At this point, the strings are unequal, so fail.
 // Note that this code must restore ESI to its
 // original value if it returns failure.

 mov(ebx, esi);
 pat._fail_(pat.FailTo);

 endif;

 // Since this routine doesn't have to handle backtracking,
 // a simple return indicates success.

 pop(ebp);
 ret();

end matchStr;
end patterns;

 If your function needs to support backtracking, the code will be a little more complex. First of all, your
function cannot return to its caller by using the RET instruction. To support backtracking, the function must
leave its activation record on the stack when it returns. This is necessary so that when backtracking occurs, the
Released to the Public Domain Page 611

HLA Standard Library
function can pick up where it left off. It is up to the pat.match macro to clean up the stack after a sequence of
pattern matching functions successfully match a string.

If a pattern matching function supports backtracking, it must preserve the values of ESP, ESI, and EDI upon
initial entry into the code. It will also need to maintain the currrent cursor position during backtracking and it
will need to reserve storage for a special pat.FailRec data structure. Therefore, almost every pattern matching
routine you’ll write that supports backtracking will have the following VAR objects:

var
cursor: misc.pChar; // Save last matched posn here.
startPosn: misc.pChar; // Save start of str here.
endStr: misc.pChar; // End of string goes here.
espSave: dword; // To clean stk after back trk.
FailToSave:pat.FailRec;// Save global FailTo value here.

Warning: you must declare these variables in the VAR section; they must not be static objects.

Upon reentry from backtracking, the ESP register will not contain an appropriate value. It is your code’s
responsibility to clean up the stack when backtracking occurs. The easiest way to do this is to save a copy of
ESP upon initial entry into your function (in the espSave variable above) and restore ESP from this value
whenever backtracking returns control to your function (you’ll see how this happens in a moment). Likewise,
upon reentry into your function via backtracking, the registers are effectively scrambled. Therefore, you will
need to save ESI’s value into the startPosn variable and EDI’s value into the endStr variable upon initial entry into
the function. The startPosn variable contains the value that EBX must have whenever your function returns
success. The cursor variable contains ESI’s value after you’ve successfully matched some number of characters.
This is the value you reload into ESI whenever backtracking occurs. The FailToSave data structure holds
important pattern matching information. The pattern matching library automatically fills in this structure when
you signal success; you are only responsible for supplying this storage, you do not have to initialize it.

You signal failure in a function that supports backtracking the same way you signaled failure in a routine
that does not support backtracking: by invoking pat._fail_(pat.FailTo); Since your code is failing, the caller
will clean up the stack (including removing the local variables you’ve just allocated and initialized). If the
pattern matching system calls your pattern matching function after backtracking occurs, it will reenter your
function at its standard entry point where you will, once again, allocate storage for the local variables above and
initialize them as appropriate.

If your function succeeds, it usually signals success by invoking the pat._success_ macro. This macro
invocation takes the following form:

pat._success_(FailToSave, FailToHere);

The first parameter is the pat.FailRec object you declared as a local variable in your function. The
pat._success_ macro stores away important information into this object before returning control to the caller. The
FailToHere symbol is a statement label in your function. If backtracking occurs, control transfers to this label in
your function (i.e., this is the backtracking reentry point). The code at the FailToHere label must immediately
reload ESP from espSave, EDI from endStr, EBX from startPosn, and ESI from cursor. Then it does whatever is
necessary for the backtrack operation and attempts to succeed or fail again.

The pat._success_ macro (currently) takes the following form7:

// The following macro is a utility for
// the pattern matching procedures.
// It saves the current global "FailTo"
// value in the "FailRec" variable specified
// as the first parameter and sets up
// FailTo to properly return control into
// the current procedure at the "FailTarget"
// address. Then it jumps indirectly through
// the procedure's return address to transfer
// control to the next (code sequential)
// pattern matching routine.

#macro _success_(_s_FTSave_, _s_FailTarget_);

7. This code was copied out of the "patterns.hhf" file at the time this document was written. You might want to take a look
at the patterns.hhf header file to ensure that this code has not changed since this document was written.
Page 612 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Preserve the old FailTo object in the local
// FailTo variable.

mov(pat.FailTo.ebpSave, _s_FTSave_.ebpSave);
mov(pat.FailTo.jmpAdrs, _s_FTSave_.jmpAdrs);

// Save current EBP and failto target address
// in the global FailTo variable so backtracking
// will return the the current routine.

mov(ebp, pat.FailTo.ebpSave);
mov(&_s_FailTarget_, pat.FailTo.jmpAdrs);

// Push the return address onto the stack (so we
// can return to the caller) and restore
// EBP to the caller’s value. Then jump
// back to the caller without cleaning up
// the current routine’s stack.

push([ebp+4]);
mov([ebp], ebp);
ret();

#endmacro

As you can see, this code copies the global pat.FailTo object into the FailToSave data structure you’ve
created. The FailTo structure contains the EBP value and the reentry address of the most recent function that
supports backtracking. You code must save these values in the event your code (ultimately) fails and needs to
backtrack to some previous pattern matching function.

After preserving the old value of the global pat.FailTo variable, the code above copies EBP and the address
of the FailToHere label you’ve specified into the global pat.FailTo object.

Finally, the code above returns to the user, without cleaning up the stack, by pushing the return address (so
it’s on the top of the stack) and restoring the caller’s EBP value. The RET instruction above returns control to
the function’s caller (note that the original return address is still on the stack, the pattern matching routines will
never use it).

Should backtracking occur and the program reenters your pattern matching function, it will reenter at the
address specified by the second parameter of the pat._success_ macro (as noted above). You should restore the
appropriate register (as noted above) and use the value in the cursor variable to determine how to proceed with
the backtracking operation. When doing eager evaluation, you will generally need to decrement the value
obtained from cursor to back off on the length of the string your program has matched (failing if you decrement
back to the value in startPosn). When doing lazy evaluation, you generally need to increment the value obtained
from the cursor variable in order to match a longer string (failing if you increment cursor to the point it becomes
equal to endStr).

When executing code in the reentry section of your procedure, the failure and success operations are a little
different. Prior to failing, you must manually restore the value in pat.FailTo that pat._success_ saved into the
FailToSave local variable. You must also restore ESI with the original starting position of the string. The
following instruction sequence will accomplish this:

// Need to restore FailTo address because it
// currently points at us. We want to jump
// to the correct location.

mov(startPosn, esi);
mov(FailToSave.ebpSave, pat.FailTo.ebpSave);
mov(FailToSave.jmpAdrs, pat.FailTo.jmpAdrs);
pat._fail_(pat.FailTo);

Likewise, succeeding in the backtrack reentry section of your program is a little different. You do not want
to invoke the pat._success_ macro because it will overwrite the FailToSave value with the global pat.FailTo.
The global value, however, points at your routine; were you to overwrite this value you’d never be able to fail
Released to the Public Domain Page 613

HLA Standard Library
back to previous matching functions in the current pattern match. Therefore, you should always execute code
like the following when succeeding in the reentry section of your code:

mov(esi, cursor); //Save current cursor value.
push([ebp+4]); //Make a copy of the rtn adrs.
mov([ebp], ebp); //Restore caller’s EBP value.
ret(); //Return to caller.

The following is the code for the pat.oneOrMoreCset routine (that does an eager evaluation) that
demonstrates pattern matching with backtracking.

unit patterns;
#include("pat.hhf");

/**/
/* */
/* OneOrMoreCset- */
/* */
/* Matches one or more characters in a string from */
/* the specified character set. */
/* */
/* Disposition: Eager */
/* BackTrackable: Yes */
/* */
/* Entry Parameters: */
/* */
/* ESI: Pointer to sequence of characters to match. */
/* EDI: Pointer to byte beyond last char to match. */
/* cst: Character set to match with. */
/* */
/* Exit Parameters (if success): */
/* */
/* EBX: Points at the start of matched sequence. */
/* ESI: Points at first character not in cst. */
/* EDI: Unchanged from entry value. */
/* */
/* Exit Parameters (if failure): */
/* */
/* EDI: Unchanged from entry value. */
/* */
/* Unless noted, assume all other registers can be modified */
/* by this code. */
/* */
/**/

procedure pat.oneOrMoreCset(cst:cset); @nodisplay;
var
 cursor: misc.pChar; // Save last matched posn here.
 startPosn: misc.pChar; // Save start of str here.
 endStr: misc.pChar; // End of string goes here.
 espSave: dword; // To clean stk after back trk.
 FailToSave: pat.FailRec; // Save global FailTo value here.

begin oneOrMoreCset;

 // If some routine after this one fails and transfers
 // control via backtracking to this code, the stack
Page 614 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 // will be a mess. So save esp so we can clean up
 // the stack if backtracking is necessary.

 mov(esp, espSave);

 // Save the pointer to the start of the string
 // to match. This is used as a "fence" value
 // to prevent backtracking past the start of
 // the string if things go really wrong.

 mov(esi, startPosn);
 mov(esi, ebx);

 // Save pointer to end of string to match.
 // This is needed to restore this value when
 // backtracking occurs.

 mov(edi, endStr);

 // Okay, eagerly match as many characters in
 // the character set as possible.

 xor(eax, eax);
 dec(esi);
 repeat

 inc(esi); // Move to next char in string.
 breakif(esi >= edi); // Stop at end of string.
 mov([esi], al); // Get the char to test.
 bt(eax, (type dword cst)); // See if in cst.

 until(@nc); // Carry is set if al in cst.

 // So we can easily back track, save a pointer
 // to the first non-matching character.

 mov(esi, cursor);

 // If we matched at least one character, then
 // succeed by jumping to the return address, without
 // cleaning up the stack (we need to leave our
 // activation record laying around in the event
 // backtracking is necessary).

 if(esi > ebx) then

 pat._success_(FailToSave, FailToHere);

 endif;

 // If we get down here, we didn't match at
 // least one character. So transfer control
 // to the previous routine that supported
 // backtracking.

 mov(startPosn, esi);
 pat._fail_(pat.FailTo);
Released to the Public Domain Page 615

HLA Standard Library
 // If someone after us fails and invokes
 // backtracking, control is transfered to
 // this point. First, we need to restore
 // ESP to clean up the junk on the stack.
 // Then we back up one character, failing
 // if we move beyond the beginning of the
 // string. If we don't fail, we jump to
 // the code following the call to this
 // routine (having backtracked one character).

 FailToHere:

 mov(espSave, esp); // Clean up stack.

 mov(cursor, esi); // Get last posn we matched.
 dec(esi); // Back up to prev matched char.
 mov(endStr, edi);
 mov(startPosn, ebx);
 if(esi <= ebx) then

 // We've backed up to the beginning of
 // the string. So we won't be able to
 // match at least one character.

 mov(ebx, esi);
 mov(FailToSave.ebpSave, pat.FailTo.ebpSave);
 mov(FailToSave.jmpAdrs, pat.FailTo.jmpAdrs);
 pat._fail_(pat.FailTo);

 endif;

 // If we drop down here, there is at least one
 // character left in the string that we've
 // matched, so call the next matching routine
 // (by jumping to the return address) to continue
 // the pattern match.

 mov(esi, cursor);
 mov([ebp+4], eax);
 mov([ebp], ebp);
 jmp(eax);

end oneOrMoreCset;

end patterns;

The following example code demonstrates the pat.l_OneOrMoreCset routine. This is the same routine as
the code above except this code supports lazy/deferred evaluation rather than eager evaluation.

unit patterns;
#include("pat.hhf");

/**/
/* */
/* l_OneOrMoreCset- */
Page 616 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
/* */
/* Matches one or more characters in a string from */
/* the specified character set. Matches the shortest */
/* possible string that yields (overall) success. */
/* */
/* Disposition: Deferred */
/* BackTrackable: Yes */
/* */
/* Entry Parameters: */
/* */
/* ESI: Pointer to sequence of characters to match. */
/* EDI: Pointer to byte beyond last char to match. */
/* cst: Character set to match with. */
/* */
/* Exit Parameters (if success): */
/* */
/* ESI: Points at first character not in cst. */
/* EDI: Unchanged from entry value. */
/* */
/* Exit Parameters (if failure): */
/* */
/* EDI: Unchanged from entry value. */
/* ESI: Unchanged from entry value. */
/* */
/* Unless noted, assume all other registers can be modified */
/* by this code. */
/* */
/**/

procedure pat.l_OneOrMoreCset(cst:cset); @nodisplay;
var
 cursor: misc.pChar; // Save last matched posn here.
 startPosn: misc.pChar; // Save start of str here.
 endStr: misc.pChar; // End of string goes here.
 espSave: dword; // To clean stk after back trk.
 FailToSave: pat.FailRec; // Save global FailTo value here.

begin l_OneOrMoreCset;

 // If some routine after this one fails and transfers
 // control via backtracking to this code, the stack
 // will be a mess. So save esp so we can clean up
 // the stack if backtracking is necessary.

 mov(esp, espSave);

 // Save the pointer to the start of the string
 // to match. This is used as a "fence" value
 // to prevent backtracking past the start of
 // the string if things go really wrong.

 mov(esi, startPosn);
 mov(esi, ebx);

 // Save pointer to end of string to match.
 // This is needed to restore this value when
 // backtracking occurs. If we're already
 // beyond the end of the chars to test, then
 // fail right away.
Released to the Public Domain Page 617

HLA Standard Library
 mov(edi, endStr);
 if(esi >= edi) then

 pat._fail_(pat.FailTo);

 endif;

 // Okay, this is a deferred version. So match as
 // few characters as possible. For this routine,
 // that means match exactly one character.

 xor(eax, eax);
 mov([esi], al); // Get the char to test.
 bt(eax, (type dword cst)); // See if in cst.
 if(@nc) then

 pat._fail_(pat.FailTo);

 endif;

 // So we can easily back track, save a pointer
 // to the next character.

 inc(esi);
 mov(esi, cursor);

 // Save existing FailTo address and
 // point FailTo at our back tracking code,
 // then transfer control to the success
 // address (jump to our return address).

 pat._success_(FailToSave, FailToHere);

 // If someone after us fails and invokes
 // backtracking, control is transfered to
 // this point. First, we need to restore
 // ESP to clean up the junk on the stack.
 // Then we need to advance one character
 // and see if the next char would match.

 FailToHere:

 mov(espSave, esp); // Clean up stack.

 mov(cursor, esi); // Get last posn we matched.
 mov(endStr, edi); // Restore to original value.

 // If we've exceeded the maximum limit on the string,
 // or the character is not in cst, then fail.

 xor(eax, eax);
 if
 {
 cmp(esi, edi);
 jae true;
 mov([esi], al);
 bt(eax, (type dword cst));
Page 618 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 jc false;
 }

 // Need to restore FailTo address because it
 // currently points at us. We want to jump
 // to the correct location.

 mov(startPosn, esi);
 mov(FailToSave.ebpSave, pat.FailTo.ebpSave);
 mov(FailToSave.jmpAdrs, pat.FailTo.jmpAdrs);
 pat._fail_(pat.FailTo);

 endif;

 // If we drop down here, there is at least one
 // character left in the string that we've
 // matched, so call the next matching routine
 // (by jumping to the return address) to continue
 // the pattern match.

 mov(startPosn, ebx);
 inc(esi); // Advanced to next posn
 mov(esi, cursor); // save for backtracking,
 mov([ebp+4], eax); // and call next routine.
 mov([ebp], ebp);
 jmp(eax);

end l_OneOrMoreCset;

end patterns;
Released to the Public Domain Page 619

HLA Standard Library
Page 620 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
25 Random Number Generator Module (rand.hhf)

The rand.hhf header file contains definitions for HLA’s random number generators. These functions
provide a variety of pseudo-random number generators and support routines.

25.1 The Random Module
To use the random number generator functions in your application, you will need to include one of the

following statements at the beginning of your HLA application:
#include("rand.hhf")
or
#include("stdlib.hhf")

25.2 The Random Number Generators

procedure rand.randomize;

This function "randomizes" the seed used by the random number generators. If you call rand.randomize, the
random number generators should begin generating a sequence starting at a random point in the normal sequence
put out by the random number generator.

The randomization function is based on the number of CPU clock cycles that have occurred since the CPU
was last powered up. This function uses the Pentium’s RDTSC instruction, hence you should only call this
function on machines that have this instruction available (Intel Pentium and later as well as other manufacturer’s
CPUs that have this instruction).

Because of the nature of the RDTSC instruction, you should not call rand.randomize frequently or you will
compromise the quality of the random numbers (indeed, it’s generally not a good idea to "randomize" a random
number generator more than once per program invocation). Similarly, you should avoid calling this function
from a fixed script after power-on since that may also degrade the quality of the randomization. (These two
suggestions are only important to those who are extremely concerned about the quality of the randomness of the
generated numbers).

HLA high-level calling sequence example:

rand.randomize();

HLA low-level calling sequence example:

call rand.randomize;

procedure rand.uniform; @returns("eax");

This function generates a new random number on each call. This function returns a new 32-bit value in the
EAX register on each call (bit 31 is randomly set, you may choose to interpret this value as a signed or unsigned
integer). This function generates uniformly-distributed random numbers.

This functions uses an algorithm from Knuth’s The Art of Computer Programming for details (and
limitations) on this type of random number generator.

HLA high-level calling sequence example:

rand.uniform();
mov(eax, randomValue);

HLA low-level calling sequence example:
Released to the Public Domain Page 621

HLA Standard Library
call rand.uniform;
mov(eax, randomValue);

procedure rand.urange(startRange:int32; endRange:int32); @returns("eax");

This function generates a uniformly distributed random number in the range "startRange..endRange"
(inclusive). This function generates its random numbers using the rand.uniform function. This function returns
the value in the EAX register. This uses the same random-number generator algorithm that rand.uniform uses.

HLA high-level calling sequence example:

rand.urange(minValue, maxValue);
mov(eax, randomValue);

HLA low-level calling sequence example:

push(minValue);
push(maxValue);
call rand.urange;
mov(eax, randomValue);

procedure rand.random; @returns("eax");

This function generates a uniformly distributed random number using a linear congruential random number
generator. This function returns a new 32-bit value in the EAX register on each call (bit 31 is randomly set, you
may choose to interpret this value as a signed or unsigned integer). This function generates uniformly-
distributed random numbers.

See Knuth’s The Art of Computer Programming for details (and limitations) on linear congruential random
number generators.

HLA high-level calling sequence example:

rand.random();
mov(eax, randomValue);

HLA low-level calling sequence example:

call rand.random;
mov(eax, randomValue);

procedure rand.range(startRange:int32; endRange:int32); @returns("eax");

This function generates a uniformly distributed random number in the range "startRange..endRange"
(inclusive) using a linear congruential random number generator. This function returns the value in the EAX
register. This uses the same random-number generator algorithm that rand.random uses.

HLA high-level calling sequence example:

rand.range(minValue, maxValue);
mov(eax, randomValue);

HLA low-level calling sequence example:
Page 622 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(minValue);
push(maxValue);
call rand.range;
mov(eax, randomValue);

iterator rand.deal(count:uns32);

The rand.deal iterator returns a sequence of count unique randomly arranged values in the range 0..count-1.
Therefore, it returns all values in the range 0..count-1, but in a random order.

Since rand.deal is an iterator, you must only use it within a FOREACH loop, e.g.,

foreach deal(52) do

<< EAX contains a value in the range 0..51 here>>

endfor;

This function uses the rand.uniform function to randomly arrange the values.
Released to the Public Domain Page 623

HLA Standard Library
Page 624 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
26 Sockets Module (sockets.hhf)

The HLA Standard Library provides two mechanisms that support network communications via sockets: a
low-level library (whose functions appear in the sock namespace) and a higher-level socket class that makes it
almost trivial to create client/server applications. The low-level sock library provides a thin veneer over the low-
level OS calls (largely to make the calls portable across all OSes). Those wanting to write networking
applications using traditional BSD-style socket calls should consider using the sock module rather the low-level
OS calls.

Note: HLA also provides access to certain low-level OS API primitives that directly access the native OS’
networking code. Please see the discussions of the native OS functions for more details on such low-level
network access.

26.1 The SOCK Module
The sock namespace in the HLA standard library contains a fair set of functions that behave largely like the

original BSD socket functions (that most OSes support). These functions, by and large, work just like the low-
level socket calls that most OSes support. Largely, these function smooth out some data type differences
between various OSes (e.g., the definition of the fd_set_t data type) so that function calls (and the data types of
their arguments) are consistent across all OSes, regardless of the underlying data types a particular OS might use.

26.2 Socket Initialization and Cleanup
Before using any socket functions, you must first call the sock.socketInit function to initialize the socket

library. When you are done using sockets in an application, you must call sock.socketCleanup to free system
resources and shut down the socket system. These are HLA standard library functions that are not particularly
related to the underlying OS socket API. You must call these function before any other socket operations and
when you’re done using the sockets.

sock.socketInit;

This function initializes the socket library for the HLA standard library. You must call this function exactly
one in any application that makes other low-level socket calls (before making those calls). Note that this function
may increment an internal reference counter, so make sure you make a corresponding call to sock.socketCleanup
before your application terminates.

sock.socketInit();

sock.socketCleanup;

This function undoes the effects of sock.socketInit and frees up any system resources reserved by
sock.socketInit. You must call it exactly once when your application is done using sockets.

sock.socketCleanup();

26.3 Generic Socket Functions
A few functions in the sock namespace provide conversions on socket metadata. These functions include

sock.a_adrsToStr, sock.adrsToStr, and sock.strToAdrs.

sock.a_adrsToStr(a:bigEndianDW); @returns("eax");
sock.adrsToStr(a:bigEndianDW; s:string);

These functions take a dword parameter in network byte order (big endian form) and convert the address to
the form "ddd.ddd.ddd.ddd" (where each "ddd" represents exactly three decimal digits). The sock.a_adrsToStr
function allocates storage for the 15-character string on the heap and returns a pointer to the new string in the
EAX register. The sock.adrsToStr function stores the string result into the string object passed as the second
argument (s). The sock.adrsToStr function will raise an exception if s doesn’t have sufficient storage to hold a
15-character strong.
Released to the Public Domain Page 625

HLA Standard Library
sock.a_adrsToStr($01020304); // Produces "004.003.002.001"
sock.adrsToStr($04030201, s); // Stores "001.002.003.004" into s

sock.strToAdrs(s:string); @returns("eax");

This function take a string parameter of the form "ddd.ddd.ddd.ddd" (where each "ddd" represents exactly
three decimal digits) and converts it to a double word in network byte order (big endian form) and returns this
value in the EAX register. This function raises an exception of there is a conversion error.

sock.strToAdrs("001.002.003.004");// Produces $04030201 in EAX

26.4 Low-Level BSD-Style Socket Functions
The functions in this category correspond to the Berkeley (BSD) sockets functions. You should not assume

that the data types passed to these functions are identical to those in BSD sockets. Some data types have been
changed in order to make the HLA sockets module compatible across all the OSes that the HLA stdlib supports.
It is the responsibility of all of these functions to do any necessary conversion prior to calling the OS-level socket
API functions.

This documentation will not describe the functionality for each of these functions. See a discussion of the
BSD sockets API (on the internet) for more details. If you are unfamiliar with low-level socket calls, you should
either use the HLA standard library socket classes (which simplify network programming) or pick up a good
book on making networking calls via the BSD sockets API. You can also look at the source code for the socket
server and client classes in the HLA standard library for examples of these calls.

sock.accept
(

s :dword;
var addr :sock.sockaddr;
var addrlen :sock.socklen_t

);

The argument s is a socket that has been created with sock.socket, bound to an address with sock.bind, and is
listening for connections after a sock.listen call. The sock.accept function extracts the first connection request
on the queue of pending connections, creates a new socket with the same properties of s and allocates a new file
descriptor for the socket. If no pending connections are present on the queue, and the socket is not marked as
non-blocking, sock.accept blocks the caller until a connection is present. If the socket is marked non-blocking
and no pending connections are present on the queue, sock.accept returns an error as described below. The
accepted socket may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in which the
communication is occurring. The addrlen is a value-result parameter; it should initially contain the amount of
space pointed to by addr; on return it will contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types, currently with sock.SOCK_STREAM.

 It is possible to sock.select a socket for the purposes of doing a sock.accept by selecting it for read.
This function raises an ex.SocketError exception if any error occurs.

sock.bind
(

sockfd :dword;
var addr :sockaddr;

addrlen :socklen_t
);

sock.bind assigns a name (that is, an IP address) to an unnamed socket. When a socket is created with
sock.socket it exists in a name space (address family) but has no name (IP address) assigned. sock.bind requests
that name (IP address) be assigned to the socket.

This function raises an ex.SocketError exception if any error occurs.
Page 626 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sock.connect
(

s :dword;
var serv_addr :sockaddr;

addrlen :socklen_t
);

The parameter s is a socket. If it is of type sock.SOCK_DGRAM, this call specifies the peer with which the
socket is to be associated; this address is that to which datagrams are to be sent, and the only address from which
datagrams are to be received. If the socket is of type sock.SOCK_STREAM, this call attempts to make a
connection to another socket. The other socket is specified by name (i.e., IP address), which is an address in the
communications space of the socket. Each communications space interprets the name parameter in its own way.
Generally, stream sockets may successfully connect only once; datagram sockets may use sock.connect multiple
times to change their association. Datagram sockets may dissolve the association by connecting to an invalid
address, such as a null address or an address with the address family set to sock.AF_UNSPEC .

This function raises an ex.SocketError exception if any error occurs.

sock.close(s:dowrd);

sock.close closes the socket whose handle is specified by the s descriptor passed as a parameter.
This function raises an ex.SocketError exception if any error occurs.

sock.listen
(

s :dword;
backlog :dword

);

To accept connections, a socket is first created with sock.socket, a willingness to accept incoming
connections and a queue limit for incoming connections are specified with sock.listen, and then the connections
are accepted with sock.accept. The sock.listen call applies only to sockets of type sock.SOCK_STREAM or
sock.SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client may receive an error, or, if the underlying protocol
supports retransmission, the request may be ignored so that retries may succeed.

This function raises an ex.SocketError exception if any error occurs.

sock.recv
(

s :dword;
var buf :var;

len :dword;
flags :dword

); @returns("eax");

sock.recvfrom
(

s :dword;
var buf :var;

len :dword;
flags :dword;

var from :sockaddr;
Released to the Public Domain Page 627

HLA Standard Library
var fromlen :socklen_t
); @returns("eax");

sock.recvfrom is used to receive messages from a socket, and may be used to receive data on a socket
whether or not it is connection oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is filled in.
Fromlen is a value-result parameter, initialized to the size of the buffer associated with from, and modified on
return to indicate the actual size of the address stored there.

The sock.recv call is normally used only on a connected socket (see sock.connect) and is identical to
sock.recvfrom with a NJLL from parameter.

 On successful completion, both routines return the number of message bytes read in the EAX register. If
a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket
the message is received from (see sock.socket). Note that if these functions read fewer bytes from the socket than
specified by the len parameter, these functions do not raise an end-of-file exception (as is common for the socket
class input routines).

 The receive calls normally return any data available, up to the requested amount, rather than waiting for
receipt of the full amount requested; this behavior is affected by the socket-level options sock.SO_RCVLOWAT
and sock.SO_RCVTIMEO described in sock.getsockopt.

 The sock.select call may be used to determine when more data arrives.
 The flags argument to a sock.recv call is formed by or'ing one or more of the values:
 sock.MSG_OOB process out-of-band data
 sock.MSG_PEEK peek at incoming message
 sock.MSG_WAITALL wait for full request or error
 The sock.MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal

data stream. Some protocols place expedited data at the head of the normal data queue, and thus this flag cannot
be used with such protocols. The sock.MSG_PEEK flag causes the receive operation to return data from the
beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call will
return the same data. The sock.MSG_WAITALL flag requests that the operation block until the full request is
satisfied. However, the call may still return less data than requested if a signal is caught, an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

This function raises an ex.SocketError exception if any error occurs.

sock.select
(

nfds :dword;
var readSet :sock.fd_set_t;
var writeSet :sock.fd_set_t;
var exceptSet :sock.fd_set_t;
var timeout :sock.timeval

); @returns("eax");

The sock.select function examines the I/O descriptor sets whose addresses are passed in readfds, writefds,
and exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or have an
exceptional condition pending, respectively. The first nfds descriptors are checked in each set; i.e., the
descriptors from 0 through nfds-1 in the descriptor sets are examined. (Example: If you have set two file
descriptors "4"and "17", nfds should not be "2", but rather "17 + 1" or "18".) On return, sock.select replaces the
given descriptor sets with subsets consisting of those descriptors that are ready for the requested operation.

 Select() returns the total number of ready descriptors in all the sets in the EAX register.
Note that the sock.fd_set_t data type may not be equivalent to the fd_set data type used by the underlying

operating system. In particular, you should not assume that this is a bit map. The function may choose to ignore
the nfds parameter (which is present for historical reasons), but you should still set it up properly.

If timeout is a non-nil pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a NULL pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be non-
NULL, pointing to a zero-valued sock.timeval structure. Timeout is not changed by sock.select, and may be
reused on subsequent calls, however it is good style to re-initialize it before each invocation of sock.select.

Any of readfds, writefds, and exceptfds may be given as nil pointers ifno descriptors are of interest.
The sock.select function returns the number of ready descriptors that are contained in the descriptor sets. If

the time limit expires, sock.select returns 0. If sock.select raises an exception, the descriptor sets will be
unmodified.

This function raises an ex.SocketError exception if any error occurs.
Page 628 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sock.send
(

s :dword;
var buf :var;

len :dword;
flags :dword // MSG_* constants

); @returns("eax");

sock.sendto
(

s :dword;
var buf :var;

len :dword;
flags :dword // MSG_* constants

var _to :sock.sockaddr;
tolen :sock.socklen_t

); @returns("eax");

 The sock.end and sock.sendto functions are used to transmit a message to another
 socket. The sock.send function may be used only when the socket is in a connected state, while

sock.sendto may be used at any time.
 The address of the target is given by to with tolen specifying its size. The length of the message is given

by len. If the message is too long to pass atomically through the underlying protocol, the function raises an
ex.SocketError exception and the message is not transmitted.

 No indication of failure to deliver is implicit in a sock.send call.
 If no messages space is available at the socket to hold the message to be transmitted, then sock.send

normally blocks, unless the socket has been placed in non-blocking I/O mode. The sock.select call may be used
to determine when it is possible to send more data.

 The flags parameter may include one or more of the following:

 sock.MSG_OOB /* process out-of-band data */
 sock.MSG_DONTROUTE/* bypass routing, use direct interface */

The flag sock.MSG_OOB is used to send ``out-of-band'' data on sockets that support this notion (e.g.

sock.SOCK_STREAM); the underlying protocol must also support ``out-of-band'' data.
sock.MSG_DONTROUTE is usually used only by diagnostic or routing programs.

The call returns the number of characters sent in the EAX register.
This function raises an ex.SocketError exception if any error occurs.

sock.socket(int domain, int type, int protocol);@returns("eax");

sock.socket creates an endpoint for communication and returns a descriptor. The domain parameter
specifies a communications domain within which communication will take place; this selects the protocol family
which should be used. These families are defined in the include file sockets.hhf.

 The currently understood formats are

 sock.AF_UNIX (UNIX internal protocols),
 sock.AF_INET (ARPA Internet protocols),

The socket has the indicated type, which specifies the semantics of communication. Currently defined types
are:

 sock.SOCK_STREAM
 sock.SOCK_DGRAM
Released to the Public Domain Page 629

HLA Standard Library
A sock.SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism may be supported. A sock.SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small) maximum length).

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. However, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol number
to use is particular to the communication domain in which communication is to take place.

Sockets of type sock.SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must
be in a connected state before any data may be sent or received on it. A connection to another socket is created
with a sock.connect call. Once connected, data may be transferred using some variant of the sock.send and
sock.recv calls. When a session has been completed a sock.close may be performed. Out-of-band data may also
be transmitted as described in sock.send and received as described in sock.recv.

 The communications protocols used to implement a sock.SOCK_STREAM stream insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, then the connection is considered broken and calls will indicate an
error by raising an ex.SocketError exception. The protocols optionally keep sockets ``warm'' by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated if no response can
be elicited on an otherwise idle connection for a extended period (e.g. 5 minutes). An ex.SocketError exception
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the exceptoin, to
exit.

The operation of sockets is controlled by socket level options. sock.setsockopt and sock.getsockopt are used
to set and get options, respectively.

 If the call is successful, the return value (in EAX) is a descriptor referencing the socket.
This function raises an ex.SocketError exception if any error occurs.

sock.setsockopt
(

s :dword;
level :dword;
optname :dword;

var optval :var;
optlen :socklen_t

); @returns("eax");

sock.getsockopt
(

s :dword;
level :dword;
optname :dword;

var optval :var;
optlen :socklen_t

); @returns("eax");

sock.getsockopt and sock.setsockopt manipulate the options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost ``socket'' level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the socket level, level is specified as sock.SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For
example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the protocol
number of TCP.

The parameters optval and optlen are used to access option values for sock.setsockopt. For sock.getsockopt
they identify a buffer in which the value for the requested option(s) are to be returned. For sock.getsockopt,
optlen is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be supplied or returned, optval
may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for
interpretation. The include file sockets.hhf contains definitions for socket level options, described below.
Page 630 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Most socket-level options utilize a dword parameter for optval. For sock.setsockopt, the parameter should
be non-zero to enable a Boolean option, or zero if the option is to be disabled. sock.SO_LINGER uses a record
sock.linger parameter, defined in socket.hhf, which specifies the desired state of the option and the linger interval
(see below). sock.SO_SNDTIMEO and sock.SO_RCVTIMEO use a sock. timeval parameter, defined in
sockets.hhf.

 The following options are recognized at the socket level. Except as noted, each may be examined with
sock.getsockopt and set with sock.setsockopt.

sock.SO_DEBUG enables recording of debugging information
sock.SO_REUSEADDR enables local address reuse
sock.SO_REUSEPORT enables duplicate address and port bindings
sock.SO_KEEPALIVE enables keep connections alive
sock.SO_DONTROUTE enables routing bypass for outgoing messages
sock.SO_LINGER linger on close if data present
sock.SO_BROADCAST enables permission to transmit broadcast messages
sock.SO_OOBINLINE enables reception of out-of-band data in band
sock.SO_SNDBUF set buffer size for output
sock.SO_RCVBUF set buffer size for input
sock.SO_SNDLOWAT set minimum count for output
sock.SO_RCVLOWAT set minimum count for input
sock.SO_SNDTIMEO set timeout value for output
sock.SO_RCVTIMEO set timeout value for input
sock.SO_TYPE get the type of the socket (get only)
sock.SO_ERROR get and clear error on the socket (get only)
sock.SO_NOSIGPIPE do not generate SIGPIPE, instead return EPIPE

 sock.SO_DEBUG enables debugging in the underlying protocol modules. sock.SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a sock.bind call should allow reuse of local
addresses. sock.SO_REUSEPORT allows completely duplicate bindings by multiple processes if they all set
sock.SO_REUSEPORT before binding the port. This option permits multiple instances of a program to each
receive UDP/IP multicast or broadcast datagrams destined for the bound port. sock.SO_KEEPALIVE enables the
periodic transmission of messages on a connected socket. Should the connected party fail to respond to these
messages, the connection is considered broken and processes using the socket are notified via an ex.SocketError
exception when attempting to send data. sock.SO_DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

sock.SO_LINGER controls the action taken when unsent messages are queued on socket and a sock.close is
performed. If the socket promises reliable delivery of data and sock.SO_LINGER is set, the system will block the
process on the close attempt until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the sock.setsockopt call when
sock.SO_LINGER is requested). If sock.SO_LINGER is disabled and a close is issued, the system will process
the close in a manner that allows the process to continue as quickly as possible.

The option sock.SO_BROADCAST requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the socket system. With protocols that support out-of-
band data, the sock.SO_OOBINLINE option requests that out-of-band data be placed in the normal data input
queue as received; it will then be accessible with sock.recv without the sock.MSG_OOB flag. Some protocols
always behave as if this option is set. sock.SO_SNDBUF and sock.SO_RCVBUF are options to adjust the normal
buffer sizes allocated for output and input buffers, respectively. The buffer size may be increased for high-
volume connections, or may be decreased to limit the possible backlog of incoming data. The system places an
absolute limit on these values.

sock.SO_SNDLOWAT is an option to set the minimum count for output operations. Most output operations
process all of the data supplied by the call, delivering data to the protocol for transmission and blocking as
necessary for flow control. Nonblocking output operations will process as much data as permitted subject to
flow control without blocking, but will process no data if flow control does not allow the smaller of the low water
mark value or the entire request to be processed. A sock.select operation testing the ability to write to a socket
will return true only if the low water mark amount could be processed. The default value for
sock.SO_SNDLOWAT is set to a convenient size for network efficiency, often 1024. sock.SO_RCVLOWAT is an
option to set the minimum count for input operations. In general, receive calls will block until any (non-zero)
amount of data is received, then return with the smaller of the amount available or the amount requested. The
default value for sock.SO_RCVLOWAT is 1. If sock.SO_RCVLOWAT is set to a larger value, blocking receive
calls normally wait until they have received the smaller of the low water mark value orthe requested amount.
Receive calls may still return less than the low water mark if an error occurs, a signal is caught, or the type of
datanext in the receive queue is different than that returned.
Released to the Public Domain Page 631

HLA Standard Library
sock.SO_SNDTIMEO is an option to set a timeout value for output operations. It accepts a struct timeval
parameter with the number of seconds and microseconds used to limit waits for output operations to complete. If
a send operation has blocked for this much time, it returns with a partial count or raises an exception if no data
were sent. In the current implementation, this timer is restarted each time additional data are delivered to the
protocol, implying that the limit applies to output portions ranging in size from the low water mark to the high
water mark foroutput. sock.SO_RCVTIMEO is an option to set a timeout value for input operations. It accepts a
record sock.timeval parameter with the number of seconds and microseconds used to limit waits for input
operations to complete. In the current implementation, this timer is restarted each time additional data are
received by the protocol, and thus the limit is in effect an inactivity timer. If a receive operation has been
blocked for this much time without receiving additional data, it returns with a short count or with the error
EWOULDBLOCK if no data were received. The struct

The timeval parameter must represent a positive time interval otherwise sock.setsockopt raises an
ex.SocketError exception.

 Finally, sock.SO_TYPE and sock.SO_ERROR are options used only with sock.getsockopt.
sock.SO_TYPE returns the type of the socket, such as sock.SOCK_STREAM; it is useful for servers that inherit
sockets on startup. sock.SO_ERROR returns any pending error on the socket and clears the error status. It may
be used to check for asynchronous errors on connected datagram sockets or for other asynchronous errors.

This function raises an ex.SocketError exception if any error occurs.

sock.setTimeout(s:dword; timeout: sock.timeval);

sock.setTimeout sets the timeout period for both transmission and reception on the socket specified by the
socket descriptor s. Note: this function is a convenience function that calls sock.setsockopt to set the timeout
periods. There is no equivalent gettimeout function; call sock.getsockopt if you need to retrieve one of the
timeout periods. If you need to set the receive timeout period independently of the send timeout period, you will
need to call sock.setsockopt to achieve this.

This function raises an ex.SocketError exception if any error occurs.

sock.gethostname(s:string);

The sock.gethostname makes a copy of (one of) the host name string(s) and stores this into the string
variable you pass as an argument. Some systems can have more than one host name. In such a case,
sock.gethostname returns one of the names (arbitrary choice).

This function raises an ex.SocketError exception if any socket-based error occurs. This function raises an
ex.StringOverflow error if the hostname string is too long to fit in the storage allocated for the s argument. It can
raise other exceptions if the value of s is bad.

sock.gethostbyname(s:string; var hstent:sock.hostent);

The sock.gethostbyname function fills in a sock.hostent data structure you pass by reference with host
information based on the host name you pass as a string (s) to the function. Here is the current definition of the
sock.hostent data structure (note that this is subject to change over time, so always use the sock.hostent type
rather than manually creating this data structure yourself):

hostent:record

h_name :zstring;
h_aliases :dword;
h_addrtype :sock.sa_family_t;
padding0 :word;
h_length :word;
padding1 :word;
h_addr_list :dword;

endrecord;

The h_aliases field is a pointer to a sequence of dword addresses, terminated by a NULL address, each of
which points at a zstring containing an alternate name for the host. You must not modify this array and you must
not modify the strings its entries point at.

The h_addrtype field contains the type of the address being returned. This is usually sock.AF_INET.
The h_length field contains the length, in bytes, of each address in the address list.
Page 632 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The h_addr_list is a pointer to an array of pointers to network addresses for the host. Note that these
addresses are stored in network byte order (big endian) form. The list is terminated with a NULL pointer.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.gethostbyaddr
(

var addr :var;
len :dword;
_type :dword;

var hstent:hostent
);

The sock.gethostbyaddr function fills in a sock.hostent data structure you pass by reference with host
information based on the host whose address you pass to the function. The addr argument is the address of a
network address data structure whose type is specified by the type argument (usually sock.AFINET) and the
length of which is specified by the len argument. This function copies the host information to the hstent argument
you pass by reference. The h_name field of the sock.hostent data structure will contain the primary name of the
host.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.getpeername
(

s :dword;
var _name :sock.sockaddr;
var namelen :sock.socklen_t

); @returns("eax");

The sock.getpeername function returns the IP address (the "name") of the peer connected to the socket
specified by the s socket descriptor. The namelen parameter should be initialized to indicate the amount of space
pointed to by _name. On return it contains the actual size of the _name returned (in bytes). The name is
truncated if the buffer provided is too small. Note that the term "name" here refers to an IP address, not the name
of the peer machine. This confusion is unfortunate, but that’s the way the BSD sockets system was designed.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.getsockname
(

s :dword;
var _name :sock.sockaddr;
var namelen :sock.socklen_t

); @returns("eax");

The sock.getsockname function returns the IP address (the "name") of the socket machine specified by the s
socket descriptor. The namelen parameter should be initialized to indicate the amount of space pointed to by
_name. On return it contains the actual size of the _name returned (in bytes). The name is truncated if the buffer
provided is too small. Note that the term "name" here refers to an IP address, not the name of the peer machine.
This confusion is unfortunate, but that’s the way the BSD sockets system was designed.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.fd_zero(var fdset:sock.fd_set_t);
sock.fd_set(fd:dword; var fdset:sock.fd_set_t);
sock.fd_clr(fd:dword; var fdset:sock.fd_set_t);
sock.fd_isset(fd:dword; var fdset:sock.fd_set_t);@returns("al");

The sock.fd_* functions manipulate "file descriptor sets" that the sock.select function uses. The
sock.fd_zero function creates the empty set and stores this into the fdset argument that you pass as by reference to
the function. The sock.fd_set function unions the file (socket) descriptor pass in fd into the set fdset that you pass
by reference to the function. The sock.fd_clr function removes (if preset) the file descriptor you pass in the fd
argument from the set fd_set that you pass by reference to the function. The sock.fd_isset function checks for set
membership. That is, it checks to see if the file descriptor specified by fd is present in the set fdset that you pass
Released to the Public Domain Page 633

HLA Standard Library
by reference to the function; this function returns true/false in the AL register to denote presence/absence of the
file descriptor in the set.

Note: always use these functions to manipulate socket descriptor sets. Do not assume that the HLA stdlib
data structures match that of the underlying OS (they don’t). Do not assume that the current implementation will
always be used in future versions of the HLA stdlib. By using these functions, you can avoid future problems.

This function raises an ex.SocketError exception if any error occurs.

26.5 Socket Classes
Warning: Don’t forget that HLA objects modify the values in the ESI and EDI registers whenever you call a

class procedure, method, or iterator. Do not leave any important values in either of these registers when making
calls to the socket object functions. If the use of ESI and EDI is a problem for you, you might consider using the
sock module that does not suffer from this problem.

The HLA Standard Library provides an object-oriented network socket access mechanism implemented via
the baseSocket_t, server_t, client_t, vBaesSocket_t, vServer_t, and vClient_t classes. As is typical for classes
appearing in the HLA Standard Library, you can create customized versions of the generic socket classes,
selecting which class functions are procedures or methods. This lets you choose between efficient static linking
and virtual (overload) method capability on a function by function basis. Unless otherwise specified, this
document will use the terms socket class, server class, and client class to describe the generic socket classes
rather than the specific instance of the these classes (which uses static linking for all functions).

The HLA Standard Library sockets module provide six predefined classes that simplify the use of sockets,
particularly for client/server applications. There are three basic classes with two variants of each class (a static
variant and a virtual variant). In HLA classes, there are three types of functions: (static) procedures, (dynamic)
methods, and dynamic iterators. The only difference between a method and a procedure is how the program
actually calls the function: the program calls procedures directly, it calls methods indirectly through an entry in
the virtual method table (VMT). The system always calls object iterators indirectly through the VMT, so we will
not consider them in this discussion. This section will discuss the impact of class procedures versus class
methods in your programs.

Static procedure calls are very efficient, but you lose the benefits of inheritance and functional
polymorphism when you define a function as a static procedure in a class. Methods, on the other hand, fully
support polymorphic calls, but introduce some (in)efficiency issues. The following paragraphs describe some of
the efficiency issues concerning the use of methods.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods. Because the call is indirect, there really is no way for the assembler and
linker to determine whether you’ve actually called the function, so it must assume that you do call it and links in
the code for each method in the class. This can make your program a little larger because it may be including
several socket class functions that you don’t actually call.

The second efficiency issue concerning method calls is that they use the EDI register to make the indirect
call (static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and
available before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though extremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined baseSocketClass_t and vBaseSocketClass, server_t and vServer_t, and client_t and vClient_t
classes differ in how they define the functions appearing in the class types. The non-virtual types (without the ‘v’
prefix) generally use static procedures for all functions, the virtual types (with the ‘v’ prefix) use methods for all
class functions. Therefore, the non-virtual socket object types will make direct calls to all the functions (and
only link in the procedures you actually call); however, the non-virtual socket objects do not support function
polymorphism in derived classes. The virtual socket types do support polymorphism for all the class methods,
but whenever you use these data types you will link in all the methods (even if you don’t call them all) and calls
to these methods will require the use of the EDI register.

It is important to understand that baseSocketClass_t/vBaseSocketClass_t, server_t/vServer_t, and client_t/
vClient_t pairs are two separate types. Neither is derived from the other. Nor are the two types in each pair
compatible with one another. You should take care not to confuse objects of these two types if you’re using both
types in the same program.

The baseSocketClass_t and vBaseSocketClass_t types are base types intended for creating derived types
(e.g., server_t/vServer_t and client_t/vClient_t); you would not normally use these two types in your programs,
instead, you would use some type derived from these base classes (such as server_t/vServer_t, or client_t/
vClient_t).
Page 634 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
26.6 A Quick Note
The following sections do not include sample code demonstrating the calling sequences for a couple of

reasons:
For high level calls, the syntax depends on the object name and type.
Low-level calling sequences don’t appear here because it doesn’t really make sense to make a low-level

object invocation.
These functions are really intended for use by programmers experienced with HLA’s Object-oriented

assembly facilities.
For the same reasons, there are no stack diagrams for these function calls. If you want more information on

making calls to HLA class methods and procedures, please consult the HLA documentation.
In the following function descriptions, the symbol <object> is used to specify a socket class object or a

pointer to a socket class object. Wherever this document uses the name "socket", you may substitute (as
appropriate) server_t, vServer_t, client_t, vClient_t, or any other socket class you’ve created by subclassing
baseSocketClass_t or vBaseSocketClass_t.

26.7 Client/Server Applications Using the Socket Classes
The HLA sockets module makes creating client/server applications in assembly language almost trivial. The

HLA Stdlib provides four classes for this purpose: server_t, vServer_t, client_t and vClient_t. The classes with
the ‘v’ prefix use virtual methods for all functions, those without the ‘v’ prefix use static procedures. Generally,
you’ll use the static versions of these classes unless you need to create derived classes from them and overload
some methods in these classes. Using the static classes produces more efficient code, but you lose the ability to
overload the class functions (i.e., polymorphism is not possible with static classes). Note that you do not have to
chose both virtual or static classes for your client and server applications. That is, one application can use a
virtual class and the other can use a static class. The server and client applications and independent with respect
to the choice of virtual or static classes. The examples in this document will use static classes because they don’t
require polymorphism, but you can easily substitute a virtual class into these examples, as needed.

26.8 A Simple Server Application
A server application is one that is running waiting for some other application (the client) to communicate

with it. In particular, the server application must be running before the client application attempts to connect to it.
Usually, the client and server applications run on separate computer systems on the network, though it is
perfectly possible (and common for testing purposes) to run both applications on the same computer. The
important thing to understand is that the server must be running before the client application begins because the
client assumes that the server is available to provide services when it attempts to connect to the server.

To create a server application, you begin by declaring a server_t variable, e.g.,

static
myServer :server_t;

The server_t data type inherits all the functions from the baseSocketClass_t (which this document will
describe later) and it adds two methods you can call: start and close. Though the server_t (and
baseSocketClass_t) type has some data fields, you should consider them private to the class and never access or
modify them directly.

The start method has the following prototype:

method start
(

adrs :dword;
port :word;
timeoutCallback :thunk;
connectionCallback :procedure

); @returns("eax");

The first parameter is the IP address that this server will be listening for clients on. This is a 32-bit IP
address in little endian format! This value is not in big endian (network byte order) form.
Released to the Public Domain Page 635

HLA Standard Library
The second parameter is the port (socket) number that the server will listen on for a connection from a client.
This is a 16-bit value in little endian (not network byte order/big endian) format! The combination of IP address
and socket port number is what uniquely identifies a particular server.

The timeoutCallback parameter is a thunk that the start function calls before attempting to listen for a client
and on each timeout period while listening for a client. For those unfamiliar with thunks, they are simply
procedures embedded in other code; when called, the EBP register is initialized to the value of EBP in the
surrounding code when the thunk was initialized. This means that the code in the thunk can access variables that
are local to the code that the thunk is embedded in.

When the start method invokes the timeoutCallback thunk code, the EAX register contains the address of a
sock.timeval object that controls the timeout period. On the first call, the start method has initialized this timeout
to zero (which means infinite timeout period). If your thunk code does not change this value, then the server will
wait indefinitely for a connection and will never again invoke the timeout thunk. If you would like to have your
timeout thunk invoked on a periodic basis while the server is listening for a client connection (perhaps to update
a progress bar or something like that to indicate the program is still operating), you should initialize the
sock.timeval value pointed at by EAX. Before returning, the thunk should load a Boolean value (true or false, 1
or 0) into EAX to tell the start method whether it should quit. False/0 means "don’t quit", true/1 means "quit"
(and return to whomever called the start method).

Here is a typical thunk that sets up a one-second timeout period:

static
timeout :thunk;
calls :dword := 0;

.

.

.
thunk timeout :=
#{

// On entry to thunk, EAX contains the address of the timeout
// variable. Set this as desired for the timeout (1 second,
// in this case).

mov(1, (type sock.timeval [eax]).tv_sec);
mov(0, (type sock.timeval [eax]).tv_usec);

// On successive calls, print a period to the stdout
// to let an observer know that we’re still listening
// for a connection:

cmp(calls, 0);
je dontPrintPeriod;

stdout.putc(‘.’);

dontPrintPeriod:
inc(calls);
mov(0, eax); // Never quit

}#;

After initializing the timeout thunk as shown above, you can pass the timeout thunk variable to the start
method.

The fourth parameter to the start method is the address of a procedure that start will call when it connects
with a client application over the network. This is a standard HLA procedure with no parameters. This procedure
must preserve all registers it modifies. This connectionCallback procedure provides whatever service the client
requires and generally operates in one of two modes:

The connectionCallback procedure directly provides whatever services the client requires and then returns.
At that point, the server and client are disconnected and the server starts listening for a new client. In this mode,
the server can provide services to only one client at a time.

The
connectionCallback procedure spawns a new process to handle the client’s requests and then immediately

returns to the start method. The server then begins listening for a new client connection while the spawned
Page 636 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
process provides appropriate services for the client. This mode allows the server to provide services to multiple
clients simultaneously.

Upon entry into the connectionCallback procedure, the EAX register contains a socket handle and the ESI
register contains the address of a server_t (or vServer_t) object. You should save these values in local (not
static!) variables. At the very least, you will need the object address in order to communicate with the client.

If you choose to spawn a new process to provide services to the client, you must make a copy of the server
object address passed to you in the ESI register. This is because the value passed in ESI is the main object used
by the start procedure and upon returning to start after you spawn the new process, start will write to the data
fields of that object. This would be a disaster for the service process. You can avoid this problem by making a
copy of the server_t (or vServer_t) using code like the following:

procedure connected;
@nodisplay;
@nostackalign;
@noframe;

var
handle :dword;
object :pointer to server_t;
newObject :pointer to server_t;

begin connected;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp);

pushad();
pushfd();

mov(eax, handle);
mov(esi, object);
server_t.create();
mov(esi, newObject);

// Duplicate the server object:

mov(esi, edi);
mov(object, esi);
mov(@size(server_t), ecx);
cld();
rep.movsb();

/***/

// Spawn process here and pass it the address of the new object
// contained in newObject.

//

/***/

// Return to start, so it can handle other client requests

popfd();
popad();
leave();
ret(_parms_);

end connected;
Released to the Public Domain Page 637

HLA Standard Library
Note that the server_t start method will never return unless the timeout thunk returns true in the EAX
register. Therefore, if you elect to specify an indefinite timeout by storing zero into the sock.timeval object
passed to the timeout thunk, the start method will never return to its caller.

Whenever a connectionCallback procedure (or the thread it spawns) finishes providing services for a
connected client, it should call the server object’s close method to disconnect the socket from the client and free
up system resources,. If you’ve allocated a new socket object (e.g., prior to spawning a new process), you should
call the server destroy method and also free the storage associated with the socket object before terminating the
spawned process.

26.9 A Simple Client Application
Setting up a client application is even easier than setting up a server application. You declare an object of

type client_t (or vClient_t), invoke the object’s create procedure, and then call the connect method to connect to
a listening server. Here is the prototype for the connect method:

method connect
(

adrs :dword;
port :word

); @returns("eax");

The adrs parameter is the IP address (in little endian form). The port parameter is the socket port number (a
16-bit value, also in little endian form). When you call this function, it will attempt to connect to the server at
the specified IP address and port number. If a server is not available or it refuses to connect to the client program,
the connect method will raise an ex.SocketError exception. Note that the connect method will not wait for a
server to become available. If it goes to the specify IP address and port number and there isn’t a server
application listing on that port, the connect method will raise an exception.

Once the connect method returns (without raising an exception), you can assume that the client and server
are connected and communication between the two application may commence. When the client is done using
the services of the server, it should call the client_t (or vClient_t) close method to disconnect itself from the
server.

26.10 Client/Server Communication
Once a client establishes a connection to a server, the two applications may exchange data. A socket

supports bidirectional data transfer; that is, the server can send data to the client and receive data from the client,
and the client may send data to and receive data from the server.

The server_t/vServer_t and client_t/vClient_t classes are derived class that inherit all the information from
the baseSocketClass_t/vBaseSocketClass_t classes. The baseSocketClass_t/vBaseSocketClass_t classes define
all the procedures and methods that the server and client objects use to communicate via the socket. Without
question, the most generic I/O functions (and the ones you will probably use most commonly) are the read and
write functions. These methods/procedures use prototypes like the following:

method read(var buf:var; len:dword);
@returns("eax");

method write(var buf:var; len:dword);
@returns("eax");

The first parameter (buf) is the address of some block of memory, the second parameter (len) is the number
of bytes to read or write at the address in memory. This function returns the number of bytes read or the number
of bytes written in the EAX register.

All socket I/O communication is subject to a timeout period. The base socket class defines a (private) data
field that specifies the timeout period in seconds and microseconds. You can use the socket class’ setTimeout and
setTimeout2 functions to specify the timeout period (the default is zero, which means wait indefinitely). Should a
timeout occur during a socket read or write call, the function will immediately return without completing the I/O
operation. The EAX register will contain the actual number of bytes read or written; so you can check the return
result to determine if the I/O operation was complete.

In addition to the generic read and write functions, the base socket classes provide a full set of formatted I/O
functions similar to those provided by the stdout, stdin, stderr, and fileio modules. The following sections will
describe the use of those functions.
Page 638 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
26.11 General Socket Class Operations
The functions in this category let you initialize socket objects, access fields of the socket objects, and

perform other conversion and housekeeping tasks.

<object>.create; @returns("esi");
server_t.create; @returns("esi"); [to create dynamic objects]
client_t.create; @returns("esi"); [to create dynamic objects]

The socket classes provide a <socket>.create constructor which you should always call before making use
of a client or server variable. For socket variables (as opposed to socket pointer variables), you should call this
routine specifying the name of the socket variable. For socket pointer variables, you should call this routine
using the class name and store the pointer returned in EAX into your file variable. For example, to initialize the
following two socket objects, you would use code like the following:

var
MyClientSocket : client_t;
clientPtr : pointer to vClient_t;

.

.

.

MyClientSocket.create();

vclient_t.create();
mov(eax, clientPtr);

Note that the vClient_t.create constructor simply initializes the virtual method table pointer and does other
necessary internal initialization. The constructor does not open a socket or perform other socket-related
activities.

<object>.destroy; @returns("esi");
server_t.destroy; @returns("esi"); [to create dynamic objects]
client_t.destroy; @returns("esi"); [to create dynamic objects]

The socket classes provide a <socket>.destroy destructor which you should always call when you’re done
using a socket. For example, when you are done working with the MyClientSocket and the clientPtr objects
from the previous examples, you should execute the following code:

MyClientSocket.destroy();

clientPtr.destroy();

The socket destructor frees up system resources in use by an active socket. Note: some of these resources
are system wide and may not be automatically reclaimed when your program terminates. Be sure you always call
the destructor to prevent system resource leaks.

<object>.close;
server_t.close;
client_t.close;

This method closes a socket opened via <object>.start or <object>.connect.

MyClientSocket.close();
clientPtr.close();
Released to the Public Domain Page 639

HLA Standard Library
Note that calling the destroy method/procedure does not close the socket. You must always call the close
function before calling destroy. The difference between the two is that the close function tells the OS you’re
done using the socket, the destroy method deallocates resources associated with the HLA Standard Library.

<serverObject>.start
(

adrs :dword;
port :word;
timeoutCallback :thunk;
connectionCallback :procedure

);

This method starts a server that listens on IP address adrs and socket port number port for a connection from
a client.

After setting up the server-side socket (but before checking for a client attempting to connect), this function
calls the thunk specified by the timeoutCallback parameter. It passes the address of a sock.timeval variable to the
thunk in the EAX register. The timeoutCallback thunk should set this sock.timeval variable to an appropriate
timeout value (zero mean indefinite timeout). Generally, the timeout value is non-zero because you want to
check the status of the listening socket on a periodic basis; further, the only way the start function ever returns to
the caller is via a signal from the timeoutCallback thunk; Therefore, if you do not specify a timeout value (that is,
if you specify an indefinite timeout period by writing zeros to the sock.timeval object), then start will have no
way to terminate (other than by manually killing the process).

The timeoutCallback thunk passes true/false (1/0) back to the start function in the EAX register. If EAX
contains true, then the start function returns to the caller and terminates listening for a client connection. If EAX
contains zero upon return, then the start function continues to listen for a socket connection or until the timeout
period expires.

The start function calls the procedure pointed at by the connectionCallback parameter whenever the server
accepts a connection from a client. Upon entry into the connectionCallback procedure, ESI will contain the
address of the server object (<serverObject>) and EAX will contain a copy of the new socket connection handle.
At this point, most programs do one of two things: either the procedure pointed at by connectionCall provides all
the services required by the client (during which the server will not accept any more client connections), or the
procedure can spawn a new thread to provide those services and then immediately return (allowing the start
function to handle additional client requests while the new thread provides any necessary services to the
connected client).

The simplest case is to have the connectionCallback procedure provide all the services without spawning an
new thread. In this case, the connectionCallback procedure would store the value in ESI into a server_t (or
vServer_t) pointer variable and then use that pointer variable with all the I/O functions described in the following
sections. When your code finishes, it simply returns to the start function and the server continues listening for
new connections. Note, however, that while your server code is providing those services, the start function is
suspended and your server will not accept any other client requests. This mode of operation is great for peer-to-
peer type socket communications where only two network nodes communicate at one time.

If you want to allow your server to handle multiple client requests simultaneously, the situation is more
complicated. First of all, you cannot simply store away the pointer held in the ESI register; instead, you have to
make a copy of that object for use by the new thread and pass the address of this copy to the thread. After
creating the copy, you should spawn a new thread (passing the address of the new object to the thread) and then
reference the copy of the object within that thread. The reason for making a copy of the server object is because
the server will modify that object on the next client connection. This would create problems for the current server
thread.

Note that you don’t actually have to create a new server_t or vServer_t object. The data server thread will
only need a baseSocketClass_t (or vBaseSocketClass_t) object, so you can create one of those objects and then
copy the pertinent fields from the server_t/vServer_t object to the baseSocketClass_t/vBaseSocketClass_t object
(use the <object>.assign function to copy data from one baseSocketClass_t/vBaseSocketClass_t object into the
current object).

Of course, don’t forget that multithreaded applications have their own host of synchronization requirements.
Also be aware that many of the stdlib functions are not (as this was being written) thread-safe, so be sure to
protect stdlib calls with a mutex unless you are sure that the call you’re making will function properly in a
multithreaded environment.

MyServerSocket.start($01020304, $1234, myTimeoutThunk, &connection);
Page 640 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<clientObject>.connect(IPadrs:dword; port :word);

This method connects a client to a server.

MyClientSocket.connect($01020304, $1234);

This function attempts to connect a client to a server. The IPadrs is the IP address of the server (in little
endian form); port is the socket port number (also in little endian form). If the server is ready and willing to
accept a socket connection, this function returns; if the server is not running, or is unwilling to connect, then this
function raises an ex.SocketError exception.

<baseSocketClass_t>.assign(var src:baseSocketClass_t);
<vBaseSocketClass_t>.assign(var src:vBaseSocketClass_t);

These functions copy the pertinent data fields from the src operand to the current object. This is useful when
creating a copy of a socket for use by a server thread (see the discussion in start’s description).

MySocket.assign((type baseSocketClass_t [esi]));

<object>.setTimeout(timeout:sock.timeval);
<object>.setTimeout2(tv_sec:dword; tv_usec:dword);
<object>.getTimeout(var timeout:sock.timeval);

These functions get and set the internal timeout values for a socket object. The getTimeout function is an
accessor that returns the value of the socket object’s internal timeout value. The setTimeout and setTimeout2
functions (which differ only insofar as how you pass the timeout argument) store their argument into the internal
data field and they also notify the OS’ socket package of the new timeout value.

mov(1, timeValVar.tv_sec);
mov(500_000, timeValVar.tv_usec);
MyClientSocket.setTimeout(timeValVar);
clientPtr.setTimeout2(2, 0);

.

.

.
clientPtr.getTimeout(timeValVar);

Note: to ensure consistency with the system, the getTimeout function will actually write the internal timeout
value to the system. This way, you’re ensured that the value that getTimeout returns is the timeout value that the
operating system will actually use.

<object>.getAdrs; @returns("eax");

This function returns the IP address associated with the object’s socket. It returns the IP address in the EAX
register in little endian form (not network byte order/big endian form).

MyClientSocket.getAdrs();
mov(eax, ipAdrs1);
clientPtr.getAdrs();
mov(eax, ipAdrs2);

<object>.setAdrs(adrs:dword);

This function stores the IP address passed as a parameter into the internal address field of the socket object.
The adrs parameter contains the IP address in little endian form (not network byte order/big endian form). Note
that this function is really intended for internal use by the socket classes. This function only stores the IP address
Released to the Public Domain Page 641

HLA Standard Library
into the internal field. It does not update the IP address of any open socket and it does not change the IP address.
The client_t.connect and server_t.start functions provide the mechanism for specifying the IP address of an
internet connection. The setAdrs function exists so the start and connect functions can set the IP address in an
object-oriented fashion. For that reason, this document is not providing any sample calls to this function.

<object>.getPort; @returns("ax");

This function returns the socket port number associated with the object’s socket. It returns the port value in
the AX register in little endian form (not network byte order/big endian form).

MyClientSocket.getPort();
mov(ax, port1);
clientPtr.getPort();
mov(ax, port2);

<object>.setPort(port:word);

This function stores the socket port number passed as a parameter into the internal port field of the socket
object. The port parameter contains the port value in little endian form (not network byte order/big endian form).
Note that this function is really intended for internal use by the socket classes. This function only stores the port
number into the object’s internal data field. It does not update the port number of any open socket and it does not
change the port number in use. The client_t.connect and server_t.start functions provide the mechanism for
specifying the port number of an internet connection. The setPort function exists so the start and connect
functions can set the port value in an object-oriented fashion. For that reason, this document is not providing any
sample calls to this function.

<object>.adrsToStr(s:string);
<object>.a_adrsToStr; @returns("eax");

These functions convert the IP address found in the socket’s internal IP address data field to a string of the
form "ddd.ddd.ddd.ddd". The adrsToStr function stores the string data into the string passed as the argument
(raising an exception if that string has insufficient storage); the a_adrsToStr function allocates the storage on the
heap and returns a pointer to that string in the EAX register.

MyClientSocket.adrsToStr(adrsStr);
clientPtr.a_adrsToStr();
mov(eax, adrsStr2);

26.12 Miscellaneous Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.write(var buffer:var; count:dword)

This method writes the number of bytes specified by the count parameter to the sockiet. The bytes starting
at the address of the buffer byte are written to the file. No range checking is done on the buffer, it is your
responsibility to ensure that the buffer contains at least count valid data bytes.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:
Page 642 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.write(buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the socket:

socketPtr.write(val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the socket (an unusual
// operation):

socketPtr.write(bufPtr, 4);

<object>.putbool(b:boolean);

This procedure writes the string "true" or "false" to the <object> output socket depending on the value of the
b parameter.

HLA high-level calling sequence examples:

socketPtr.putbool(boolVar);

// If the boolean is in a register (AL):

socketPtr.putbool(al);

<object>.newln();

This function writes a newline sequence (carriage return/line feed under Windows, linefeed under other
operating systems) to the specified socket (<object>).

HLA high-level calling sequence examples:

socketPtr.newln();

26.13 Character, Character Set, and String Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.putc(c:char)

Writes the character specified by the c parameter to the socket.

HLA high-level calling sequence examples:

socketPtr.putc(charVar);

// If the character is in a register (AL):

socketPtr.putc(al);
Released to the Public Domain Page 643

HLA Standard Library
<object>.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the socket specified by <object> using at least width output positions. If the
absolute value of width is greater than one, then this function writes fill characters as padding characters during
the output. If width is a positive value greater than one, then <object>.putcSize writes c left justfied in a field of
width characters; if width is a negative value less than one, then <object>.putcSize writes c right justified in a
field of width characters.

HLA high-level calling sequence examples:

socketPtr.putcSize(charVar, width, padChar);

<object>.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the specified socket variable.

HLA high-level calling sequence examples:

socketPtr.putcset(csVar);
socketPtr.putcset([ebx]); // EBX points at the cset.

<object>.puts(s:string);

This procedure writes the value of the string parameter to the socket.

HLA high-level calling sequence examples:

socketPtr.puts(strVar);
socketPtr.puts(ebx); // EBX holds a string value.
socketPtr.puts("Hello World");

<object>.putsSize(s:string; width:int32; fill:char)

This function writes the s string to the socket using at least width character positions. If the absolute value of
width is less than or equal to the length of s, then this function behaves exactly like <object>.puts. On the other
hand, if the absolute value of width is greater than the length of s, then <object>.putsSize writes width characters
to the output file. This procedure emits the fill character in the extra print positions. If width is positive, then
<object>.putsSize right justifies the string in the print field. If width is negative, then <object>.putsSize left
justifies the string in the print field. Generally, people expect the string to be left justified, so you should ensure
that this value is negative to achieve this.

HLA high-level calling sequence examples:

socketPtr.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

socketPtr.putsSize(ebx, ecx, al);

socketPtr.putsSize("Hello World", 25, padChar);

<object>.putz(z:zstring);

This procedure writes the value of the zstring parameter to the socket.
Page 644 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.putz(zstrVar);
socketPtr.putz(ebx); // EBX holds a zstring value.
socketPtr.putz("Hello World");

<object>.putzSize(z:zstring; width:int32; fill:char)

This function writes the z zstring to the socket using at least width character positions. If the absolute value
of width is less than or equal to the length of z, then this function behaves exactly like <object>.putz. On the
other hand, if the absolute value of width is greater than the length of z, then <object>.putzSize writes width
characters to the output file. This procedure emits the fill character in the extra print positions. If width is
positive, then <object>.putzSize right justifies the string in the print field. If width is negative, then
<object>.putzSize left justifies the string in the print field. Generally, people expect the string to be left justified,
so you should ensure that this value is negative to achieve this.

HLA high-level calling sequence examples:

socketPtr.putzSize(zstrVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

socketPtr.putzSize(ebx, ecx, al);

socketPtr.putzSize("Hello World", 25, padChar);

26.14 Hexadecimal Numeric Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.putb(b:byte);

This procedure writes the value of b to the socket using exactly two hexadecimal digits (including a leading
zero if necessary).

HLA high-level calling sequence examples:

socketPtr.putb(byteVar);

// If the character is in a register (AL):

socketPtr.putb(al);

<object>.puth8(b:byte);

This procedure writes the value of b to the socket using one or two hexadecimal digits (the minimum
necessary).

HLA high-level calling sequence examples:

socketPtr.puth8(byteVar);
Released to the Public Domain Page 645

HLA Standard Library
// If the character is in a register (AL):

socketPtr.puth8(al);

<object>.puth8Size(b:byte; width:dword; fill:char)

This procedure writes the value of b to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth8Size(byteVar, width, padChar);

<object>.putw(w:word);

This procedure writes the value of w to the socket using exactly four hexadecimal digits (including leading
zeros if necessary).

HLA high-level calling sequence examples:

socketPtr.putw(wordVar);

// If the word is in a register (AX):

socketPtr.putw(ax);

<object>.puth16(w:word);

This procedure writes the value of w to the socket using 1-4 hexadecimal digits (the minimum necessary).

HLA high-level calling sequence examples:

socketPtr.puth16(wordVar);

// If the word is in a register (AX):

socketPtr.puth16(ax);

<object>.puth16Size(w:word; width:dword; fill:char)

This procedure writes the value of w to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth16Size(wordVar, width, padChar);
Page 646 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putd(dw:dword);

This procedure writes the value of d to the socket using exactly eight hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between the fourth and fifth digits.

HLA high-level calling sequence examples:

socketPtr.putd(dwordVar);

// If the dword value is in a register (EAX):

socketPtr.putd(eax);

<object>.puth32(dw:dword);

This procedure writes the value of d to the file using the minimum number of hexadecimal required. If the
stdlib global underscores value (see the conversions module for details) contains true, then this function will also
print an underscore between the fourth and fifth digits (if there are at least five digits in the number).

HLA high-level calling sequence examples:

socketPtr.puth32(dwordVar);

// If the dword is in a register (EAX):

socketPtr.puth32(eax);

<object>.puth32Size(d:dword; width:dword; fill:char)

This procedure writes the value of d to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.puth32Size(eax, width, cl);

<object>.putq(q:qword);

This procedure writes the value of q to the socket using exactly 16 hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

socketPtr.putq(qwordVar);
Released to the Public Domain Page 647

HLA Standard Library
<object>.puth64(q:qword);

This procedure writes the value of q to the socket using 1-16 hexadecimal digits (the minimum necessary).
If the stdlib global underscores value (see the conversions module for details) contains true, then this function
will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

socketPtr.puth64(qwordVar);

<object>.puth64Size(q:qword; width:dword; fill:char)

This procedure writes the value of q to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence example:

socketPtr.puth64Size(qwordVar, width, ‘ ‘);

<object>.puttb(tb:tbyte)

This procedure writes the value of tb to the socket using exactly 20 hexadecimal digits (including leading
zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puttb(tbyteVar);

<object>.puth80(tb:tbyte)

This procedure writes the value of tb to the socket using 1-20 hexadecimal digits (the minimum necessary)
and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puth80(tbyteVar);

<object>.puth80Size(tb:tbyte; width:dword; fill:char)

This procedure writes the value of tb to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth80Size(tbyteVar, width, ‘ ‘);
Page 648 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putl(l:lword)

This procedure writes the value of l to the socket using exactly 32 hexadecimal digits (including leading
zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.putl(lwordVar);

<object>.puth128(l:lword)

This procedure writes the value of l to the socket using 1-32 hexadecimal digits (the minimum necessary)
and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puth128(lwordVar);

<object>.puth128Size(l:lword; width:dword; fill:char)

This procedure writes the value of l to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth128Size(tbyteVar, width, ‘ ‘);

26.15 Signed Integer Numeric Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.
These routines convert signed integer values to string format and write that string to the <object> socket.

The <object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the socket. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Released to the Public Domain Page 649

HLA Standard Library
<object>.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti8(byteVar);

// If the character is in a register (AL):

socketPtr.puti8(al);

<object>.puti8Size (b:byte; width:int32; fill:char);

This function writes the eight-bit signed integer value you pass to the specified output socket using the width
and fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti8Size(byteVar, width, padChar);

<object>.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti16(wordVar);

// If the word is in a register (AX):

socketPtr.puti16(ax);

<object>.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti16Size(wordVar, width, padChar);

<object>.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti32(dwordVar);
Page 650 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the dword is in a register (EAX):

socketPtr.puti32(eax);

<object>.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.puti32Size(eax, width, cl);

<object>.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti64(qwordVar);

<object>.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti64Size(qwordVar, width, ‘ ‘);

<object>.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti128(lwordVar);
Released to the Public Domain Page 651

HLA Standard Library
<object>.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti128Size(lwordVar, width, ‘ ‘);

26.16 Unsigned Integer Numeric Output
These routines convert unsigned integer values to string format and write that string to the socket. The

<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the socket. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.putu8 (b:byte)

This function converts the eight-bit unsigned integer you pass as a parameter to a string and writes this string
to the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu8(byteVar);

// If the character is in a register (AL):

socketPtr.putu8(al);

<object>.putu8size(b:byte; width:int32; fill:char)

This function writes the unsigned eight-bit value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.putu8Size(byteVar, width, padChar);

<object>.putu16(w:word)

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu16(wordVar);

// If the word is in a register (AX):

socketPtr.putu16(ax);
Page 652 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putu16size(w:word; width:int32; fill:char)

This function writes the unsigned 16-bit value you pass to the specified socket using the width and fill values
as specified above.

HLA high-level calling sequence examples:

socketPtr.putu16Size(wordVar, width, padChar);

<object>.putu32(d:dword)

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu32(dwordVar);

// If the dword is in a register (EAX):

socketPtr.putu32(eax);

<object>.putu32Size(d:dword; width:int32; fill:char)

This function writes the unsigned 32-bit value you pass to the specified socket using the width and fill values
as specified above.

HLA high-level calling sequence examples:

socketPtr.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.putu32Size(eax, width, cl);

<object>.putu64(q:qword)

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu64(qwordVar);

<object>.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the specified socket using the width and fill values
as specified above.
Released to the Public Domain Page 653

HLA Standard Library
HLA high-level calling sequence examples:

socketPtr.putu64Size(qwordVar, width, ‘ ‘);

<object>.putu128(l:lword)

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu128(lwordVar);

<object>.putu128Size(l:lword; width:int32; fill:char);

This function writes the unsigned 128-bit value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.putu128Size(lwordVar, width, ‘ ‘);

26.17 Floating-Point Numeric Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the socket that <object> specifies. There are two generic
classes of these routines: those that convert their values to exponential/scientific notation and those that convert
their string to a decimal form.

The <object>.pute80, <object>.pute64, and <object>.pute32 routines convert their values to a string using
scientific notation. These three routines each have two parameters: the value to output and the field width of the
result. These routines produce a string with the following format:

<object>.pute32(r:real32; width:uns32)

This function writes the 32-bit single precision floating point value passed in r to the socket using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a width value
that yields more than seven mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Page 654 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp :real32;
.
.
.

fstp(r32Temp);
socketPtr.pute32(r32Temp, 12);

<object>.pute64(r:real64; width:uns32)

This function writes the 64-bit double precision floating point value passed in r to the socket using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 64-bit double precision floating point values support about 15 significant digits. So a width value that
yields more than 15 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

socketPtr.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
socketPtr.pute64(r64Temp, 12);

<object>.pute80(r:real80; width:uns32)

This function writes the 80-bit extended precision floating point value passed in r to the socket using
scientific/exponential notation. This procedure prints the value using width print positions in the file. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 80-bit extended precision floating point values support about 18 significant digits. So a
width value that yields more than 18 mantissa digits will produce garbage output in the low order digits of the
number.

HLA high-level calling sequence examples:

socketPtr.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp :real80;
.
.
.

fstp(r80Temp);
Released to the Public Domain Page 655

HLA Standard Library
socketPtr.pute80(r80Temp, 12);

26.18 Floating-Point Numeric Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA socket class module also provides a set
of functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions come in two varieties. The first variety requires four parameters: the real value to convert,
the width of the converted value, the number of digit positions to the right of the decimal point, and a padding
character. The second variety only requires the first three parameters and assumes the padding character is a
space. These functions write their values using the following string format:

<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)

This procedure writes a 32-bit single precision floating point value to the socket as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the fill value as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

socketPtr.putr32(r32Var, width, decpts, fill);
socketPtr.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp :real32;
.
.
.

fstp(r32Temp);
socketPtr.putr32(r32Temp, 12, 2, al);

<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)

This procedure writes a 64-bit double precision floating point value to <object> socket as a string. The
string consumes exactly width characters in the output. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Page 656 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.putr64(r64Var, width, decpts, fill);
socketPtr.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp :real64;
.
.
.

fstp(r64Temp);
socketPtr.putr64(r64Temp, 12, 2, al);

<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

This procedure writes an 80-bit extended precision floating point value to the socket as a string. The string
consumes exactly width characters in the output. If the numeric output, using the specified number of positions
to the right of the decimal point, is sufficiently small that the string representation would be less than width
characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

socketPtr.putr80(r80Var, width, decpts, fill);
socketPtr.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp :real80;
.
.
.

fstp(r80Temp);
socketPtr.putr80(r80Temp, 12, 2, al);

26.19 Generic File Output

<object>.put(parameter_list)

<object>.put is a macro that automatically invokes an appropriate <object> output routine based on the
type of the parameter(s) you pass it. This is a very convenient output routine and is probably the socket class
formatted output call you will use most often in your programs. Keep in mind that this macro is not a single
function call; instead, HLA translates this macro into a sequence of calls to procedures like <object>.puti32,
<object>.puts, etc.

<object>.put is a macro that provides a flexible syntax for outputting data to the socket. This macro allows
a variable number of parameters. For each parameter present in the list, <object>.put will call the appropriate
routine to emit that data, according to the type of the parameter. Parameters may be constants, registers, or
memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of an <object>.put :

<object>.put("I=", i, " j=", j, nl);
Released to the Public Domain Page 657

HLA Standard Library
The above is roughly equivalent to

<object>.puts("I=");
<object>.puti32(i);
<object>.puts(" j=");
<object>.puti32(j);
<object>.newln();

This assumes, of course, that i and j are int32 variables.
The <object>.put macro also lets you specify the minimum field width for each parameter you specify. To

print a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

<object>.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

<object>.put("Real value is ", f:10:3, nl);

The <object>.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, tbyte, lword).

If you specify a class variable (object) and that class defines a toString method, the <object>.put macro will
call the associated toString method and output that string to the socket. Note that the toString method must
dynamically allocate storage for the string by calling str.alloc. This is because <object>.put will call str.free on
the string once it outputs the string.

There is a known "design flaw" in the <object>.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and <object>.put cannot determine if you want to print reg32 using varname print positions
versus simply printing the non-local varname object. If you want to display non-local variables you must copy
the non-local object into a register, a static variable, or a local variable prior to using <object>.put to print it. Of
course, there is no problem using the other <object>.putXXXX functions to display non-local VAR objects, so
you can use those as well.

Important(!), don’t forget that method calls (e.g., the routines that <object>.put translates into) modify the
values in the ESI and EDI registers. Therefore, it never makes any sense to attempt to print the values of ESI and
EDI within the parameter list. All you will wind up doing is printing the address of the file variable (ESI) or the
address of its virtual method table (EDI). If you need to write these two values to a file, move them to another
register or a memory location first.

26.20 Generic File Input
The following socket input routines behave just like their standard input and file input counterparts (unless

otherwise noted). Because of the nature of sockets, it is not possible to provide an "end-of-file" function that
tests whether you’re currently at the end of file on an input stream. End of file is determined by a timeout (set by
the setTimeout and setTimeout2 functions). Whenever a timeout occurs while the program is waiting for an input
from a socket, the system translates that timeout into an ex.EndOfFile exception. Therefore, you should really
surround all socket input requests with a try..endtry sequence that handles the ex.EndOfFile exception.

<object>.read(var buffer:var; count:dword)

This will probably be the most commonly-called input function in a typical socket-based application. This
function reads count bytes from the socket and stores them into memory starting with the first byte of the buffer
variable. This routine does not do any range checking. It is your responsibility to ensure that buffer is large
enough to hold the data read.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.
Page 658 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.read(buffer, count);
socketPtr.read([eax], 1024);

<object>.readLn;

This function reads and discards all characters up to and including the newline sequence in the socket
stream.

HLA high-level calling sequence examples:

socketPtr.readLn();

26.21 Character and String Input
The following functions read character data from a socket. Note that HLA’s socket class module does not

provide the ability to read character set data directly from the user. However, you can always read a string and
then convert that string to a character set using the appropriate function in the cset module.

<object>.getc; @returns("al");

This function reads a single character from the socket and returns that character in the AL register.

HLA high-level calling sequence examples:

socketPtr.getc();
mov(al, charVar);

<object>.gets(s:string);

This function reads a sequence of characters from the socket through to the next end of line sequence and
stores these characters (without the end of line sequence) into the string variable you pass as a parameter. Before
calling this routine, you must allocate sufficient storage for the string. If <object>.gets attempts to read a larger
string than the string’s MaxLen value, <object>.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a file class function will read from the socket will be the first character of
the following line.

If the incoming socket data is a newline sequence, then <object>.gets consumes the end of line and stores
the empty string into the s parameter.

HLA high-level calling sequence examples:

socketPtr.gets(inputStr);
socketPtr.gets(eax); // EAX contains string value

 <object>.a_gets; @returns("eax");

Like <object>.gets, this function also reads a string from the socket. However, rather than storing the string
data into a string you supply, this function allocates storage for the string on the heap and returns a pointer to this
string in the EAX register. You code should call str.free to release this storage when you’re done with the string
data.

The <object>.a_gets function imposes a line length limit of 4,096 characters. If this is a problem, you
should modify the source code for this function to raise the limit. This functions raises an exception if you
attempt to read a line longer than this internal limit.

HLA high-level calling sequence examples:
Released to the Public Domain Page 659

HLA Standard Library
socketPtr.a_gets();
mov(eax, inputStr);

26.22 Signed Integer Input
The functions in this group read numeric values from the socket using a signed decimal integer format.

These functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

 <object>.geti8; @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of file (i.e., timeout). This function
allows underscores in the interior of the number. The <object>.geti8 function raises an appropriate exception if
the input violates any of these rules or the value is outside the range -128..+127. This function returns the binary
form of the integer in the AL register.

HLA high-level calling sequence examples:

socketPtr.geti8();
mov(al, i8Var);

<object>.geti16; @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the socket. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character or the end of the file (i.e., timeout). This
function allows underscores in the interior of the number. The <object>.geti16 function raises an appropriate
exception if the input violates any of these rules or the value is outside the range -32768..+32767. This function
returns the binary form of the integer in the AX register.

HLA high-level calling sequence examples:

socketPtr.geti16();
mov(ax, i16Var);

 <object>.geti32; @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the socket.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by an optional minus sign and a
string of one or more decimal digits. The number must end with a valid delimiter character or the end of the file
(i.e., timeout). This function allows underscores in the interior of the number. The <object>.geti32 function
raises an appropriate exception if the input violates any of these rules or the value is outside the range plus or
minus two billion. This function returns the binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

socketPtr.geti32();
Page 660 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(eax, i32Var);

<object>.geti64; @returns("edx:eax");

This function reads a signed 64-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.geti64 function raises an appropriate exception if the input violates any
of these rules or the value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in
the EDX:EAX register pair (it returns the H.O. dword in EDX and the L.O. dword in EAX).

HLA high-level calling sequence examples:

socketPtr.geti64();
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));

<object>.geti128(var l:lword);

This function reads a signed 128-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.geti128 function raises an appropriate exception if the input violates
any of these rules or the value is outside the range of a 128-bit signed integer. This function stores the 128-bit
result into the lword you pass as a reference parameter.

HLA high-level calling sequence examples:

socketPtr.geti128(lwordVar);

26.23 Unsigned Integer Input
The functions in this group read numeric values from the socket using an unsigned decimal integer format.

These functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

<object>.getu8; @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.getu8 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..255. This function returns the binary form of the integer in the AL
register.

HLA high-level calling sequence examples:

socketPtr.getu8();
mov(al, u8Var);
Released to the Public Domain Page 661

HLA Standard Library
<object>.getu16; @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.getu16 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..65535. This function returns the binary form of the integer in the
AX register.

HLA high-level calling sequence examples:

socketPtr.getu16();
mov(ax, u16Var);

<object>.getu32; @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the socket. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.getu32 function raises an appropriate exception if the input violates any
of these rules or the value is outside the range 0..4,294,967,295. This function returns the binary form of the
integer in the EAX register.

HLA high-level calling sequence examples:

socketPtr.getu32();
mov(eax, u32Var);

<object>.getu64; @returns("edx:eax");

This function reads an unsigned 64-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getu64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..264-1. This function returns the binary form of the integer in EDX:EAX register
pair (EDX contains the H.O. dword, EAX holds the L.O. dword).

HLA high-level calling sequence examples:

socketPtr.getu32();
mov(eax, (type dword u64Var));
mov(edx, (type dword u64Var[4]));

<object>.getu128(var l:lword);

This function reads an unsigned 128-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getu64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..2128-1. This function returns the binary form of the integer in the lword
parameter you pass by reference.
Page 662 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.getu128(u128Var);

26.24 Hexadecimal Input
<object>.geth8; @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the socket. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth8 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FF. This function returns the binary form of the value in the AL
register.

HLA high-level calling sequence examples:

socketPtr.geth8();
mov(al, h8Var);

<object>.geth16; @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the socket. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth16 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FFFF. This function returns the binary form of the value in the
AX register.

HLA high-level calling sequence examples:

socketPtr.geth16();
mov(ax, h16Var);

<object>.geth32; @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the
value may not have a leading "$" unless you add this character to the delimiter character set. The number must
end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth32 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value
in the EAX register.

HLA high-level calling sequence examples:

socketPtr.geth32();
mov(eax, h32Var);
Released to the Public Domain Page 663

HLA Standard Library
<object>.geth64; @returns("edx:eax");

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the socket.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character or the end of the file (i.e., timeout). This
function allows underscores in the interior of the number. The <object>.geth64 function raises an appropriate
exception if the input violates any of these rules or the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF.
This function returns the 64-bit result in the EDX:EAX register pair (EDX contains the H.O. dword, EAX
contains the L.O. dword).

HLA high-level calling sequence examples:

socketPtr.geth64();
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

<object>.geth128(var l:lword);

This function reads a 128-bit hexadecimal integer in the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not have a
leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getq function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF . This function stores the
128-bit result into the variable you pass as a reference parameter.

HLA high-level calling sequence examples:

socketPtr.geth128(lwordVar);

26.25 Floating-Point Input
<object>.getf; @returns("st0");

This function reads an 80-bit floating point value in either decimal or scientific from from the socket and
leaves the result sitting on the FPU stack. The number may begin with any number of delimiter characters (see
the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an
optional minus sign and a sequence of characters that represent a floating point value. The number must end with
a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of
the number. This function raises an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

socketPtr.getf();
fstp(fpVar);
Page 664 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
26.26 Generic File Input
 <object>.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The <object>.get macro
reads an input value for each item in the list and stores the resulting value in each corresponding variable. This
macro determines the type of each variable that you pass it and emits a call to the appropriate <object>.getxxx
function to read the actual value. As an example, consider the following call to <object>.get:

socketPtr.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:

push(eax);
socketPtr.geti32(i32);
socketPtr.getc();
mov(al, charVar);
socketPtr.geti16();
mov(ax, u16);
socketPtr.gets(strVar);
pop(eax);

Notice that <object>.get preserves the value in the EAX register even though various <object>.getxxx
functions use this register. Note that <object>.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that <object>.get only supports eight-, sixteen-, and thirty-two bit integer input. If you need to read
64-bit or 128-bit values, you must use the appropriate <object>.getx64 or <object>.getx128 function to achieve
this.
Released to the Public Domain Page 665

HLA Standard Library
Page 666 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
27 The Standard Error Module (stderr.hhf)

This unit contains routines that write data to the standard error device. This is usually the console device,
although the user may redirect the standard error to a file from the command line.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

A Note About Thread Safety: Because the standard error device is a single resource, you will get
inconsistent results if multiple threads attempt to write to the standard error device simultaneously. The HLA
standard library stderr module does not attempt to synchronize thread access to the standard error device. If you
are going to be writing to the standard error from multiple threads, it is your responsibility to ensure that the
threads use properly synchronized access to this resource.

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computung certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

27.1 Conversion Format Control
The standard error functions that convert numeric values to hexadecimal, unsigned decimal, and signed

decimal output provide the ability to inject underscores between groups of three (decimal) or four (hexadecimal)
digits to make it easier to read large numbers. You enable and disable underscore output using the
conv.setUnderscores and conv.getUnderscores functions. Please refer to their documentation in the conv.rtf file
for more details.

When converting numeric values to string form for output, the standard error routines call the conversion
functions found in the conv (conversions) module. For detailed information on the actual conversions, please
consult the conv.rtf document.

27.2 File I/O Routines and the Standard Error Handle
The standard error routines are basically a thin layer over the top of the fileio routines (see the fileio

documention for a complete description of those routines). Indeed, if you obtain the standard error handle, you
can write data to the standard error device by passing this handle to a fileio function. Because the fileio module
provides a slightly richer set of routines, there are a few instances where you might want to do this. You might
also want to write a generic output function that expects a file handle and then pass it the standard error device
file handle so that the function writes its output to the console (or other standard error device) rather than to some
file. In any case, just be aware that it is perfectly reasonable to call fileio functions to write data to the standard
error device.

stderr.handle; @returns(“eax”);

This routine returns the Linux/Windows handle for the Standard Error Device in the EAX register. You
may use this handle with the file I/O routines to write data to the standard error device.

27.3 Standard Error Routines
The output routines in the stderr module are very similar to the file output routines in the stderr module. In

general, these routines require (at least) one parameter: the value to write to the standard error device. Some
functions contain additional parameters that provide formatting information.
Released to the Public Domain Page 667

HLA Standard Library
27.4 Miscellaneous Output Routines
 stderr.write(var buffer:var; count:uns32);

This procedure writes the number of bytes specified by the count variable to the standard error device. The
bytes starting at the address of the buffer variable are written to standard err. No range checking is done on the
buffer, it is your responsibility to ensure that the buffer contains at least count valid data bytes. Because the buffer
parameter is passed by untyped reference, a high-level style call to this function will take the address of whatever
object you supply as the buffer parameter. This includes pointer variables (which is probably not what you want
to do). Use the VAL keyword in a high-level style call if you want to use the value of a pointer variable rather
than the address of that pointer variable (see the examples that follow).

HLA high-level calling sequence examples:

stderr.write(buffer, count);

// If "bufPtr" is dword containing the address of the buffer, then
// use the following code:

stderr.write(val bufPtr, bufferSize);

// If you actually want to write out the four bytes held by
// bufPtr (an unusual thing to do), you would use the
// following code:

stderr.write(bufPtr, 4);

HLA low-level calling sequence examples:

// Assumes buffer is a static object at a fixed
// address in memory:

pushd(&buffer);
push(count);
call stderr.write;

// If a 32-bit register is available and buffer
// isn’t at a fixed, static, address:

lea(eax, buffer);
push(eax);
push(count);
call stderr.write;

// If a 32-bit register is not available and buffer
// isn’t at a fixed, static, address:

sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call stderr.write;
Page 668 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stderr.newln()

This function writes a newline sequence (e.g., carriage return/line feed under Windows or line feed under
Linux) to the standard error output.

HLA high-level calling sequence examples:

stderr.newln();

HLA low-level calling sequence examples:

call stderr.newln;

27.5 Boolean Output
stderr.putbool(b:boolean);

This procedure writes the string "true" or "false" to the standard error depending on the value of the b
parameter.

HLA high-level calling sequence examples:

stderr.putbool(boolVar);

// If the boolean is in a register (AL):

stderr.putbool(al);

HLA low-level calling sequence examples:

// If "boolVar" is not one of the last three
// bytes on a page of memory, you can do this:

stderr.write stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

buffer :pointer

count :uns32
Released to the Public Domain Page 669

HLA Standard Library
push((type dword boolVar));
call stderr.putbool;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(boolVar , eax); // Assume EAX is available
push(eax);
call stderr.putbool;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(boolVar , eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putbool;

// If the boolean value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume boolVar is in AL
call stderr.putbool;

// If the Boolean value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume boolVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.putbool;

27.6 Character, String, and Character Set Output Routines
 stderr.putc(c:char);

Writes the character specified by the c parameter to the standard error device.

HLA high-level calling sequence examples:

stderr.putbool stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :boolean
Page 670 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putc(charVar);

// If the character is in a register (AL):

stderr.putc(al);

HLA low-level calling sequence examples:

// If "charVar" is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword charVar));
call stderr.putc;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(charVar, eax); // Assume EAX is available
push(eax);
call stderr.putc;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(charVar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putc;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume charVar is in AL
call stderr.putc;

// If the character value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume charVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.putc;
Released to the Public Domain Page 671

HLA Standard Library
 stderr.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the standard error using at least width output positions. If the absolute value of
width is greater than one, then this function writes fill characters as padding characters during the output. If width
is a positive value greater than one, then stderr.putcSize writes c left justfied in a field of width characters; if width
is a negative value less than one, then stderr.putcSize writes c right justified in a field of width characters.

HLA high-level calling sequence examples:

stderr.putcSize(charVar, width, padChar);

HLA low-level calling sequence examples:

// If "charVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword charVar));
push(width);
push((type dword padChar));
call stderr.putcSize;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(charVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putcSize;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(charVar, eax);
push(eax);
push(width);

stderr.putc stack diagram

Return Address

Byte

0123

ESP

ESP+4 c :char
Page 672 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(padChar, eax);
push(eax);
call stderr.putcSize;
pop(eax);

// If "charVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume charVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stderr.putcSize;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume charVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stderr.putcSize;

 stderr.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the standard error device.

HLA high-level calling sequence examples:

stderr.putcset(csVar);
stderr.putcset([ebx]); // EBX points at the cset.

HLA low-level calling sequence examples:

push((type dword csVar[12])); // Push H.O. dword first
push((type dword csVar[8]));
push((type dword csVar[4]));

stderr.putcSize stack diagram

Return Address

Byte

0123

ESP

ESP+4 c :char

ESP+8 width :int32

fill :charESP+12
Released to the Public Domain Page 673

HLA Standard Library
push((type dword csVar)); // Push L.O. dword last
call stderr.putcset;

push((type dword [ebx+12])); // Push H.O. dword first
push((type dword [ebx+8]));
push((type dword [ebx+4]));
push((type dword [ebx])); // Push L.O. dword last
call stderr.putcset;

 stderr.puts(s:string);

This procedure writes the value of the string parameter to the standard error. Remember, string values are
actually 4-byte pointers to the string’s character data.

HLA high-level calling sequence examples:

stderr.puts(strVar);
stderr.puts(ebx); // EBX holds a string value.
stderr.puts("Hello World");

HLA low-level calling sequence examples:

// For string variables:

push(strVar);
call stderr.puts;

// For string values held in registers:

push(ebx); // Assume EBX holds the string value
call stderr.puts;

// For string literals, assuming a 32-bit register
// is available:

lea(eax, "Hello World"); // Assume EAX is available.

stderr.putcset stack diagram

Return Address

Byte

0123

ESP

ESP+4

cs:csetESP+8

ESP+12

ESP+16 cs (H.O. dword)

cs (L.O. dword)
Page 674 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax);
call stderr.puts;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

.

.

.
push(literalString);
call stderr.puts;

 stderr.putsSize(s:string; width:int32; fill:char);

This function writes the s string to the standard error using at least width character positions. If the absolute
value of width is less than or equal to the length of s, then this function behaves exactly like stderr.puts. On the
other hand, if the absolute value of width is greater than the length of s, then stderr.putsSize writes width characters
to the standard error. This procedure emits the fill character in the extra print positions. If width is positive, then
stderr.putsSize right justifies the string in the print field. If width is negative, then stderr.putsSize left justifies the
string in the print field. Generally, people expect the string to be left justified, so you should ensure that this
value is negative to achieve this.

HLA high-level calling sequence examples:

stderr.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

stderr.putsSize(ebx, ecx, al);

stderr.putsSize("Hello World", 25, padChar);

HLA low-level calling sequence examples:

// For string variables:

push(strVar);
push(width);

stderr.puts stack diagram

Return Address

Byte

0123

ESP

ESP+4 s :string
Released to the Public Domain Page 675

HLA Standard Library
pushd(‘ ‘);
call stderr.putsSize;

// For string values held in registers:

push(ebx); // Assume EBX holds the string value
push(ecx); // Assume ECX holds the width
push(eax); // Assume AL holds the fill character
call stderr.putsSize;

// For string literals, assuming a 32-bit register
// is available:

lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
pushd(25);
movzx(padChar, eax);
push(eax);
call stderr.putsSize;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

// Note: element zero is the actual pad character.
 // The other elements are just padding.
 padChar :char[4] := [‘.’, #0, #0, #0];

.

.

.
push(literalString);
pushd(25);
push((type dword padChar));
call stderr.putsSize;

27.7 Hexadecimal Output Routines
These routines convert numeric data to hexadecimal string form (using the hexadecimal conversion routines

found in the conv module) and write the resulting string to the standard error device.

stderr.putsSize stack diagram

Return Address

Byte

0123

s :string

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 676 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putb(b:byte)

This procedure writes the value of b to the standard error using exactly two hexadecimal digits (including a
leading zero if necessary).

HLA high-level calling sequence examples:

stderr.putb(byteVar);

// If the character is in a register (AL):

stderr.putb(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stderr.putb;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stderr.putb;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putb;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stderr.putb;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.putb;
Released to the Public Domain Page 677

HLA Standard Library
stderr.puth8(b:byte);

This procedure writes the value of b to the standard error using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

stderr.puth8(byteVar);

// If the character is in a register (AL):

stderr.puth8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stderr.puth8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stderr.puth8;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);

stderr.putb stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Page 678 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pop(eax);
call stderr.puth8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stderr.puth8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.puth8;

stderr.puth8Size(b:byte; size:dword; fill:char)

The stderr.puth8Size function writes an 8-bit hexadecimal value to the standard error allowing you specify a
minimum field width and a fill character.

HLA high-level calling sequence examples:

stderr.puth8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stderr.puth8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

stderr.puth8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Released to the Public Domain Page 679

HLA Standard Library
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stderr.puth8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stderr.puth8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stderr.puth8Size;

stderr.puth8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 680 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putw(w:word)

This procedure writes the value of w to the standard error device using exactly four hexadecimal digits
(including leading zeros if necessary).

HLA high-level calling sequence examples:

stderr.putw(wordVar);

// If the word is in a register (AX):

stderr.putw(ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stderr.putw;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stderr.putw;

// If no register is available, do something
// like the following code:

push(eax):
movzx(wordVar, eax);
push(eax);
call stderr.putw;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stderr.putw;
Released to the Public Domain Page 681

HLA Standard Library
stderr.puth16(w:word)

This procedure writes the value of w to the standard err using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

stderr.puth16(wordVar);

// If the word is in a register (AX):

stderr.puth16(ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stderr.puth16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stderr.puth16;

// If no register is available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stderr.puth16;
pop(eax);

stderr.putw stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Page 682 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stderr.puth16;

stderr.puth16Size(w:word; size:dword; fill:char)

The stderr.puth16Size function writes a 16-bit hexadecimal value to the standard error allowing you specify a
minimum field width and a fill character.

HLA high-level calling sequence examples:

stderr.puth16Size(wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stderr.puth16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth16Size;

// If no registers are available, do something
// like the following code:

stderr.puth16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Released to the Public Domain Page 683

HLA Standard Library
push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stderr.puth16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stderr.puth16Size;

stderr.putd(d:dword)

This procedure writes the value of d to the standard err using exactly eight hexadecimal digits (including
leading zeros if necessary), if underscore output is not enabled. This routine will emit nine characters (eight
digits plus an underscore) if underscore output is enabled.

HLA high-level calling sequence examples:

stderr.putd(dwordVar);

// If the dword value is in a register (EAX):

stderr.putd(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stderr.putd;

stderr.puth16Size stack diagram

Return Address

Byte

0123

w :word

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 684 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax);
call stderr.putd;

stderr.puth32(d:dword);

This procedure writes the value of d to the standard error using the minimum number of hexadecimal digits
necessary. If underscore output is enabled (see conv.setUnderscores and conv.getUnderscores) then this function
will emit an underscore between groups of four hexadecimal digits, starting from the least signficant digit.

HLA high-level calling sequence examples:

stderr.puth32(dwordVar);

// If the dword is in a register (EAX):

stderr.puth32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stderr.puth32;

push(eax);
call stderr.puth32;

stderr.putd stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Released to the Public Domain Page 685

HLA Standard Library
stderr.puth32Size(d:dword; size:dword; fill:char)

 The stderr.puth32Size function outputs d as a hexadecimal string (including underscores, if enabled) and it
allows you specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

stderr.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stderr.puth32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stderr.puth32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.puth32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puth32Size;

// Alternate method of the above

push(eax);
push(width);

stderr.puth32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Page 686 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sub(4, esp);
mov(ch, [esp]);
call stderr.puth32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puth32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puth32Size;

stderr.putq(q:qword);

This procedure writes the value of q to the standard error device using exactly sixteen hexadecimal digits
(including leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.puth32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 687

HLA Standard Library
stderr.putq(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stderr.putq;

stderr.puth64(q:qword);

This procedure writes the value of q to the standard error using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.puth64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stderr.puth64;

stderr.putq stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Page 688 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

stderr.puth64Size(q:qword; size:dword; fill:char);

The stderr.putqSize function lets you specify a minimum field width and a fill character. The stderr.putq
routine uses a minimum size of two and a fill character of ’0’. Note that if underscore output is enabled, this
routine will emit 19 characters (16 digits plus three underscores).

HLA high-level calling sequence examples:

stderr.puth64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.puth64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.puth64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puth64Size;

// Alternate method of the above

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last

stderr.puth64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 689

HLA Standard Library
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.puth64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puth64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puth64Size;

stderr.puth64Size stack diagram

Return Address

Byte

0123

a :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Page 690 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.puttb(tb:tbyte);

This procedure writes the value of tb to the standard err using exactly 20 hexadecimal digits (including
leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.puttb(tbyteVar);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call stderr.puttb;

stderr.puth80(tb:tbyte);

This procedure writes the value of tb to the standard error using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.puth80(tbyteVar);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second

stderr.puttb stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Released to the Public Domain Page 691

HLA Standard Library
push((type dword tbyteVar)); // L.O. dword last
call stderr.puth80;

stderr.puth80Size(tb:tbyte; size:dword; fill:char);

The stderr.puth80Size function lets you specify a minimum field width and a fill character. It writes the tbyte
value tb as a hexadecimal string to the standard error device using the provided minimum size and fill character.

HLA high-level calling sequence examples:

stderr.puth80Size(tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.puth80Size;

// Assume fill char is in CH

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puth80Size;

stderr.puth80 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Page 692 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Alternate method of the above

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.puth80Size;

// If the fill char is a variable and
// a register is available, try this code:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth80Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puth80Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puth80Size;
Released to the Public Domain Page 693

HLA Standard Library
stderr.putl(l:lword);

This procedure writes the value of l to the standard error using exactly 32 hexadecimal digits (including
leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.putl(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stderr.putl;

stderr.puth80Size stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)

size :uns32

fill :charESP+20
Page 694 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.puth128(l:lword);

This procedure writes the value of l to the standard error using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stderr.puth128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stderr.puth128;

stderr.putl stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Released to the Public Domain Page 695

HLA Standard Library
stderr.puth128Size(l:lword; size:dword; fill:char);

The stderr.puth128Size function writes an lword value to the standard error and it lets you specify a minimum
field width and a fill character.

HLA high-level calling sequence examples:

stderr.puth128Size(tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.puth128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puth128Size;

// Alternate method of the above

stderr.puth128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Page 696 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.puth128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puth128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puth128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puth128Size;
Released to the Public Domain Page 697

HLA Standard Library
27.8 Signed Integer Output Routines
These routines convert signed integer values to string format and write that string to the standard error

device. The stderr.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the standard error device. If width is non-negative, then these functions right-
justify the value in the output field; if value is negative, then these functions left-justify the value in the output
field.

These functions print the fill character as the padding value for the extra print positions.
Note that unlike floating point values, these functions do not print a space in front of the value if it is non-

negative.

stderr.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the standard error using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.puti8(byteVar);

stderr.puth128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 698 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If the character is in a register (AL):

stderr.puti8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stderr.puti8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stderr.puti8;

// If no register is available, do something
// like the following code:

push(eax);
movzx(byteVar , eax);
push(eax);
call stderr.puti8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stderr.puti8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.puti8;
Released to the Public Domain Page 699

HLA Standard Library
stderr.puti8Size (b:byte; width:int32; fill:char)

This function writes the eight-bit signed integer value you pass to the standard error using the width and fill
values as specified above.

HLA high-level calling sequence examples:

stderr.puti8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stderr.puti8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puti8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);

stderr.puti8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Page 700 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call stderr.puti8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stderr.puti8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stderr.puti8Size;

stderr.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the standard error device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.puti16(wordVar);

// If the word is in a register (AX):

stderr.puti16(ax);

HLA low-level calling sequence examples:

stderr.puti8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 701

HLA Standard Library
// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stderr.puti16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stderr.puti16;

// If no register is available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stderr.puti16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stderr.puti16;

stderr.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the standard error using the width and fill
values as specified above.

HLA high-level calling sequence examples:

stderr.puti16Size(wordVar, width, padChar);

stderr.puti16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Page 702 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stderr.puti16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puti16Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stderr.puti16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stderr.puti16Size;
Released to the Public Domain Page 703

HLA Standard Library
stderr.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the standard err using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.puti32(dwordVar);

// If the dword is in a register (EAX):

stderr.puti32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stderr.puti32;

push(eax);
call stderr.puti32;

stderr.puti16Size stack diagram

Return Address

Byte

0123

w :word

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

stderr.puti32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword

ESP+8
Page 704 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the standard error device using the width
and fill values as specified above.

HLA high-level calling sequence examples:

stderr.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stderr.putu32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stderr.putu32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.putu32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.putu32Size;

// Alternate method of the above

push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.putu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
Released to the Public Domain Page 705

HLA Standard Library
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.putu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puti32Size;

 stderr.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the standard error using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.puti64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stderr.puti64;

stderr.puth32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 706 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the standard error file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

stderr.puti64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.puti64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.puti64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puti64Size;

// Alternate method of the above

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last

stderr.puti64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 707

HLA Standard Library
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.puti64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puti64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puti64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puti64Size;

stderr.puti64Size stack diagram

Return Address

Byte

0123

q :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Page 708 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stderr.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the standard err using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.puti128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stderr.puti128;

stderr.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the standard error device using the
width and fill values as specified above.

HLA high-level calling sequence examples:

stderr.puti128Size(lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);

stderr.puti128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Released to the Public Domain Page 709

HLA Standard Library
call stderr.puti128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.puti128Size;

// Alternate method of the above

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.puti128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.puti128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.puti128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
Page 710 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.puti128Size;

27.9 Unsigned Integer Output Routines
These routines convert unsigned integer values to string format and write that string to the standard error

device. The stderr.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the standard err. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

stderr.putu8 (b:byte);

This function converts the eight-bit unsigned integer you pass as a parameter to a string and writes this string
to the standard error device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.putu8(byteVar);

stderr.puti128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Released to the Public Domain Page 711

HLA Standard Library
// If the character is in a register (AL):

stderr.putu8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stderr.putu8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stderr.putu8;

// If no register is available, do something
// like the following code:

push(eax);
movzx(byteVar , eax);
push(eax);
call stderr.putu8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stderr.putu8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stderr.putu8;
Page 712 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putu8Size(b:byte; width:int32; fill:char);

This function writes the unsigned eight-bit value you pass to the standard error using the width and fill values
as specified above.

HLA high-level calling sequence examples:

stderr.putu8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stderr.putu8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);

stderr.putu8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Released to the Public Domain Page 713

HLA Standard Library
push(eax);
call stderr.putu8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stderr.putu8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stderr.putu8Size;

stderr.putu16(w:word);

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard error device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.putu16(wordVar);

// If the word is in a register (AX):

stderr.putu16(ax);

HLA low-level calling sequence examples:

stderr.putu8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 714 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stderr.putu16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stderr.putu16;

// If no register is available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stderr.putu16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stderr.putu16;

stderr.putu16Size(w:word; width:int32; fill:char);

This function writes the unsigned 16-bit value you pass to the standard err using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stderr.putu16Size(wordVar, width, padChar);

stderr.putu16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Released to the Public Domain Page 715

HLA Standard Library
HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stderr.putu16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu16Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stderr.putu16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stderr.putu16Size;
Page 716 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putu32(d:dword);

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard error device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.putu32(dwordVar);

// If the dword is in a register (EAX):

stderr.putu32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stderr.putu32;

push(eax);
call stderr.putu32;

stderr.putu16Size stack diagram

Return Address

Byte

0123

w :word

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 717

HLA Standard Library
stderr.putu32Size(d:dword; width:int32; fill:char);

This function writes the unsigned 32-bit value you pass to the standard err using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stderr.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stderr.putu32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stderr.putu32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.putu32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.putu32Size;

// Alternate method of the above

push(eax);
push(width);

stderr.putu32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Page 718 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sub(4, esp);
mov(ch, [esp]);
call stderr.putu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.putu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putu32Size;

stderr.putu64(q:qword);

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard error device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.putu32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 719

HLA Standard Library
stderr.putu64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stderr.putu64;

stderr.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the error output using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stderr.putu64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.putu64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stderr.putu64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);

stderr.putu64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Page 720 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.putu64Size;

// Alternate method of the above

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.putu64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.putu64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putu64Size;
Released to the Public Domain Page 721

HLA Standard Library
stderr.putu128(l:lword);

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the standard err using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stderr.putu128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stderr.putu128;

stderr.putu64Size stack diagram

Return Address

Byte

0123

q :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Page 722 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stderr.putu128Size(l:lword; width:int32; fill:char)

This function writes the unsigned 128-bit value you pass to the standard err using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stderr.putu128Size(lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stderr.putu128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stderr.putu128Size;

// Alternate method of the above

push((type dword lwordVar[12])); // Push H.O. word first

stderr.putu128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Released to the Public Domain Page 723

HLA Standard Library
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stderr.putu128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stderr.putu128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stderr.putu128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stderr.putu128Size;
Page 724 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
27.10 Floating Point Output Routines
The HLA standard error module provides several procedures you can use to write floating point values to the

standard error device. The following subsections describe these routines.

 27.10.1 Real Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the standard error. There are two generic classes of these
routines: those that convert their values to exponential/scientific notation and those that convert their string to a
decimal form.

The stderr.pute80, stderr.pute64, and stderr.pute32 routines convert their values to a string using scientific
notation. These three routines each have two parameters: the value to output and the field width of the result.
These routines produce a string with the following format:

stderr.pute32(r:real32; width:uns32);

This function writes the 32-bit single precision floating point value passed in r to the standard err using
scientific/exponential notation. This procedure prints the value using width print positions in the output. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a
width value that yeilds more than seven mantissa digits will produce garbage output in the low order digits of the
number.

stderr.putu128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 725

HLA Standard Library
HLA high-level calling sequence examples:

stderr.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
stderr.pute32(r32Temp, 12);

HLA low-level calling sequence examples:

push((type dword r32Var));
push(width);
call stderr.pute32;

sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
call stderr.pute32;

 stderr.pute64(r:real64; width:uns32);

This function writes the 64-bit double precision floating point value passed in r to the standard error using
scientific/exponential notation. This procedure prints the value using width print positions in the output. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 64-bit double precision floating point values support about 15 significant digits. So a
width value that yeilds more than 15 mantissa digits will produce garbage output in the low order digits of the
number.

HLA high-level calling sequence examples:

stderr.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

stderr.pute32 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

e32 :real32

width :uns32
Page 726 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
var
r64Temp:real64;
.
.
.

fstp(r64Temp);
stderr.pute64(r64Temp, 12);

HLA low-level calling sequence examples:

push((type dword r64Var[4]));
push((type dword r64Var[0]));
push(width);
call stderr.pute64;

sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
call stderr.pute64;

 stderr.pute80(r:real80; width:uns32);

This function writes the 80-bit extended precision floating point value passed in r to the standard error
device using scientific/exponential notation. This procedure prints the value using width print positions in the
standard err. width should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a
minimum value of six for all other values. Note that 80-bit extended precision floating point values support
about 18 significant digits. So a width value that yeilds more than 18 mantissa digits will produce garbage output
in the low order digits of the number.

HLA high-level calling sequence examples:

stderr.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var

stderr.pute64 stack diagram

Return Address

Byte

0123

e64 :real64

width :uns32

ESP

ESP+4

ESP+8

ESP+12
e64 (H.O. dword)

e64 (L.O. dword)
Released to the Public Domain Page 727

HLA Standard Library
r80Temp:real80;
.
.
.

fstp(r80Temp);
stderr.pute80(r80Temp, 12);

HLA low-level calling sequence examples:

pushw(0); // A word of padding.
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var[0]));
push(width);
call stderr.pute80;

sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
call stderr.pute80;

 27.10.2 Real Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA stderr module also provides a set of
functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions require four parameters: the real value to convert, the width of the converted value, the
number of digit positions to the right of the decimal point, and a padding character. These functions write their
values using the following string format:

stderr.pute80 stack diagram

Return Address

Byte

0123

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)
Page 728 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This procedure writes a 32-bit single precision floating point value to the standard error as a string. The
string consumes exactly width characters in the output. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters. The number is right-justified within the output field (that is, this function prints the padding
characters before the string representation of the number).

HLA high-level calling sequence examples:

stderr.putr32(r32Var, width, decpts, fill);
stderr.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
stderr.putr32(r32Temp, 12, 2, al);

HLA low-level calling sequence examples:

push((type dword r32Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call stderr.putr32;

push((type dword r32Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stderr.putr32;

sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Released to the Public Domain Page 729

HLA Standard Library
call stderr.putr32;

 stderr.putr64(r:real64; width:uns32; decpts:uns32; pad:char);

This procedure writes a 64-bit double precision floating point value to the standard error device as a string.
The string consumes exactly width characters in the output. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

stderr.putr64(r64Var, width, decpts, fill);
stderr.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
stderr.putr64(r64Temp, 12, 2, al);

HLA low-level calling sequence examples:

push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call stderr.putr64;

push((type dword r64Var[4]));
push((type dword r64Var));

stderr.putr32 stack diagram

Return Address

Byte

0123

r32 :real32

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

decpts :uns32
Page 730 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stderr.putr64;

sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call stderr.putr64;

stderr.putr80(r:real80; width:uns32; decpts:uns32; pad:char);

This procedure writes an 80-bit extended precision floating point value to the output as a string. The string
consumes exactly width characters in the output. If the numeric output, using the specified number of positions
to the right of the decimal point, is sufficiently small that the string representation would be less than width
characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

stderr.putr80(r80Var, width, decpts, fill);
stderr.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
stderr.putr80(r80Temp, 12, 2, al);

stderr.putr64 stack diagram

Return Address

Byte

0123

r64 :real64

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

r64 (H.O. dword)

r64 (L.O. dword)

decpts :uns32

ESP+20
Released to the Public Domain Page 731

HLA Standard Library
HLA low-level calling sequence examples:

pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call stderr.putr80;

pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stderr.putr80;

sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call stderr.putr80;

stderr.putr80 stack diagram

Return Address

Byte

0123

width :uns32

pad :char

decpts :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+24
Page 732 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
27.11 Generic Error Output Routine
 stderr.put(list_of_items);

stderr.put is a macro that automatically invokes an appropriate stderr output routine based on the type of the
parameter(s) you pass it. This is a very convenient output routine and is probably the stderr output call you will
use most often in your programs. Keep in mind that this macro is not a single function call; instead, HLA
translates this macro into a sequence of calls to procedures like stderr.putu32, stderr.puts, etc.

stderr.put is a macro that provides a flexible syntax for outputting data to the standard error device. This
macro allows a variable number of parameters. For each parameter present in the list, stderr.put will call the
appropriate routine to emit that data, according to the type of the parameter. Parameters may be constants,
registers, or memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of stderr.put:

stderr.put("I=", i, " j=", j, nl);

The above is roughly equivalent to

stderr.puts("I=");
stderr.putu32(i);
stderr.puts(" j=");
stderr.putu32(j);
stderr.newln();

This assumes, of course, that i and j are int32 variables.
The stderr.put macro also lets you specify the minimum field width for each parameter you specify. To print

a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

stderr.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

stderr.put("Real value is ", f:10:3, nl);

The stderr.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, lword).

There is a known "design flaw" in the stderr.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and stderr.put cannot determine if you want to print reg32 using varname print positions versus
simply printing the non-local varname object. If you want to display non-local variables you must copy the non-
local object into a register, a static variable, or a local variable prior to using stderr.put to print it. Of course, there
is no problem using the other stderr.putXXXX functions to display non-local VAR objects, so you can use those as
well.
Released to the Public Domain Page 733

HLA Standard Library
Page 734 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
28 The Standard Input Module (stdin.hhf)

This unit contains routines that read data from the standard input device.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter. Whenever you request input, by calling one of the following input routines, the Standard
Library routines first check to see if there is any data available in an internal buffer. If so, the routines read the
data from the buffer; if not, the routines fill the buffer by reading a line of text from the Standard Input Device.
Once a line is read, the routine will read its data from the newly acquired buffer. Additional calls to the standard
input routines continue to read their data from this same buffer until the input line is exhausted, at which point
the library routines will read more data from the Standard Input Device.

A Note About Thread Safety: Because the standard input device is a single resource, you will get
inconsistent results if multiple threads attempt to read from the standard input device simultaneously. The HLA
standard library stdin module does not attempt to synchronize thread access to the standard input device. If you
are going to be reading from the standard input from multiple threads, it is your responsibility to ensure that the
threads use properly synchronized access to this resource.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computung certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

28.1 Conversion Format Control
When reading numeric data from the standard input, the stdin functions use an internal delimiters character

set to determine which characters may legally end a sequence of numeric digits. You can change the complexion
of this character set using the conv.getDelimiters and conv.setDelimiters functions. Please refer to their
documentation in the conv.rtf file for more details.

28.2 File I/O Routines and the Standard Output Handle
The standard input routines are basically a thin layer over the top of the fileio routines (see the fileio

documention for a complete description of those routines). Indeed, if you obtain the standard input handle, you
can read data from the standard input device by passing this handle to a fileio function. Because the fileio module
provides a slightly richer set of routines, there are a few instances where you might want to do this. You might
also want to write a generic input function that expects a file handle and then pass it the standard input device file
handle so that the function reads its input from the console (or other standard input device) rather than to some
file. In any case, just be aware that it is perfectly reasonable to call fileio functions to read data from the standard
input device.

 stdin.handle; @returns("eax");

This routine returns the handle of the Standard Input Device in the EAX register.

28.3 Standard Input Routines
The HLA Standard Library provides a complementary set of standard input routines. These routines behave

in a fashion quite similar to the stdin.XXXX routines. See those routines for additional examples of these
procedures.
Released to the Public Domain Page 735

HLA Standard Library
28.4 General Standard Input Routines
 stdin.read(var buffer:byte; count:uns32)

This routine reads a sequence of count bytes from the standard input device, storing the bytes into memory at
the address specified by buffer.

HLA high-level calling sequence examples:

stdin.read(buffer, count);
stdin.read([eax], 1024);

HLA low-level calling sequence examples:

// If buffer is a static variable:

pushd(&buffer);
push(count);
call stdin.read;

// If buffer is not static, 32-bit register available:

lea(eax, buffer);
push(eax);
push(count);
call stdin.read;

// If buffer is not static, no register available:

sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call stdin.read;

stdin.read stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

buffer :ptr

count :uns32
Page 736 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdin.readLn;

This routine flushes the current input buffer and immediately reads a new line of text from the user.

HLA high-level calling sequence examples:

stdin.readLn();

HLA low-level calling sequence examples:

call stdin.readLn;

stdin.eoln; @returns("al");
stdin.eoln2; @returns("al");

These functions return true if the input buffer is at the end of the current line. The stdin.eoln2 function will
first remove any delimiter characters from the input buffer before testing for the end of the current line. These
functions return true (1) or false (0) in the AL/EAX register.

These functions do not force a new line of input on the next stdin.getXX operation. I.e., if you read a string
after stdin.eoln returns true, you will get the empty string as the result. Call stdin.readln to force the input of a new
line.

HLA high-level calling sequence examples:

stdin.eoln();
mov(al, eolnVar);

HLA low-level calling sequence examples:

call stdin.eoln;
mov(al, eolnVar);

stdin.flushInput;

This routine flushes the internal buffer. The next call to a Standard Library input routine will force the
system to read a new line of text from the user. All current data in the internal input buffer is lost.

Please note that this routine does not immediately force the input of a new line of text from the user unless
the internal buffer is already empty. If the internal buffer is empty and you call this routine, it will read a new
line of text from the user and then flush this text from the internal buffer.

HLA high-level calling sequence examples:

stdin.flushInput();

HLA low-level calling sequence examples:

call stdin.flushInput;
Released to the Public Domain Page 737

HLA Standard Library
28.5 Character and String Input Routines
The following functions read character data from an input file specified by filevar. Note that HLA’s stdin

module does not provide the ability to read character set data directly from the user. However, you can always
read a string and then convert that string to a character set using the appropriate function in the cset module.

stdin.peekc; @returns("al");

This routine returns the character character from the standard input device without actually "reading" that
character. That is, after a call to stdin.peekc, the next call to stdin.getc will return the same character as the one
stdin.peekc returns. A call to stdin.peekc does not force the input of a new line of text. If the current input buffer is
empty, calls to stdin.peekc return zero in the AL register. This routine returns the character in the AL register and
it returns zeros in the upper three bytes of EAX.

 stdin.getc(); @returns("al");

This function reads a single character from the standard inpu device and returns that character in the AL
register.

 stdin.gets(s:string);

This function reads a sequence of characters from the standard input through to the next end of line sequence
and stores these characters (without the end of line sequence) into the string variable you pass as a parameter.
Before calling this routine, you must allocate sufficient storage for the string. If stdin.gets attempts to read a
larger string than the string’s MaxStrLen value, stdin.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a stdin function will read from the standard input will be the first character
of the following line.

If the stasndard input is at the end of some line of text, then stdin.gets consumes the end of line and stores the
empty string into the s parameter.

HLA high-level calling sequence examples:

stdin.gets(inputStr);
stdin.gets(eax); // EAX contsins string value

HLA low-level calling sequence examples:

push(inputStr);
call stdin.gets;

push(eax);
call stdin.gets;
Page 738 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stdin.a_gets(); @returns("eax");

Like stdin.gets, this function also reads a string from the standard input. However, rather than storing the
string data into a string you supply, this function allocates storage for the string on the heap and returns a pointer
to this string in the EAX register. You code should call strfree to release this storage when you’re done with the
string data.

The stdin.a_gets function imposes a line length limit of 4,096 characters. If this is a problem, you should
modify the source code for this function to raise the limit. This function raises an exception if you attempt to
read a line longer than this internal limit.

HLA high-level calling sequence examples:

stdin.a_gets();
mov(eax, inputStr);

HLA low-level calling sequence examples:

call stdin.a_gets;
mov(eax, inputStr);

28.6 Hexadecimal Input Routines
The hexadecimal input routines read a numeric value from the standard input in hexadecimal format. Except

for stdin.geth128, they return their results in one (or two) registers (stdin.geth128 returns its value in a pass-by-
reference parameter).

 stdin.geth8(); @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the standard input device. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note
that the value may not have a leading "$" unless you add this character to the delimiter character set. The number
must end with a valid delimiter character. This function allows underscores in the interior of the number. The
stdin.geth function raises an appropriate exception if the input violates any of these rules or the value is outside
the range 0..$FF. This function returns the binary form of the value in the AL register (zero extended into EAX,
so you may use EAX if it is more convenient to so so).

stdin.gets stack diagram

Return Address

Byte

0123

ESP

ESP+4 s :string
Released to the Public Domain Page 739

HLA Standard Library
HLA high-level calling sequence examples:

stdin.geth8();
mov(al, h8Var);

HLA low-level calling sequence examples:

call stdin.geth8;
mov(al, h8Var);

 stdin.geth16(); @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the standard input. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character. This function allows underscores in the interior of the number. The stdin.geth16
function raises an appropriate exception if the input violates any of these rules or the value is outside the range
0..$FFFF. This function returns the binary form of the value in the AX register (zero-extended into EAX).

HLA high-level calling sequence examples:

stdin.geth16();
mov(ax, h16Var);

HLA low-level calling sequence examples:

call stdin.geth16;
mov(ax, h16Var);

 stdin.geth32(); @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the standard input
device. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character. This function allows underscores in the
interior of the number. The stdin.geth32 function raises an appropriate exception if the input violates any of these
rules or the value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value in the
EAX register.

HLA high-level calling sequence examples:

stdin.geth32();
mov(eax, h32Var);

HLA low-level calling sequence examples:

call stdin.geth32;
mov(eax, h32Var);
Page 740 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stdin.geth64();

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the
standard input device. The number may begin with any number of delimiter characters (see the conv.setDelimiter
and conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character. This function allows underscores in the
interior of the number. The stdin.geth64 function raises an appropriate exception if the input violates any of these
rules or the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF. This function returns the 64-bit result in the
EDX:EAX register pair.

HLA high-level calling sequence examples:

stdin.geth64();
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

HLA low-level calling sequence examples:

call stdin.geth64;
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

 stdin.geth128(var dest:lword);

This function reads a 128-bit hexadecimal integer in the range zero through
$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the standard input device. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not
have a leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character. This function allows underscores in the interior of the number. The stdin.geth128 function
raises an appropriate exception if the input violates any of these rules or the value is outside the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF. This function stores the 128-bit result into the
variable you pass as a reference parameter.

HLA high-level calling sequence examples:

stdin.geth128(lwordVar);

HLA low-level calling sequence examples:

// If lwordVar is a static variable:

pushd(&lwordVar);
call stdin.geth128;

// If lwordVar is a not static variable
// and a 32-bit register is available:

lea(eax, lwordVar); // Assume EAX is available
push(eax);
call stdin.geth128;
Released to the Public Domain Page 741

HLA Standard Library
28.7 Signed Integer Input Routines
 stdin.geti8(); @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the standard input. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character. This function allows underscores in the
interior of the number. The stdin.geti8 function raises an appropriate exception if the input violates any of these
rules or the value is outside the range -128..+127. This function returns the binary form of the integer in the AL
register (signed extended into EAX).

HLA high-level calling sequence examples:

stdin.geti8();
mov(al, i8Var);

HLA low-level calling sequence examples:

call stdin.geti8;
mov(al, i8Var);

 stdin.geti16(); @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the standard input
device. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by an optional minus sign and a string
of one or more decimal digits. The number must end with a valid delimiter character. This function allows
underscores in the interior of the number. The stdin.geti16 function raises an appropriate exception if the input
violates any of these rules or the value is outside the range -32768..+32767. This function returns the binary
form of the integer in the AX register (signed extended into EAX).

HLA high-level calling sequence examples:

stdin.geth128 stack diagram

Return Address

Byte

0123

ESP

ESP+4 var l :lword (ptr)
Page 742 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdin.geti16();
mov(ax, i16Var);

HLA low-level calling sequence examples:

call stdin.geti16;
mov(ax, i16Var);

 stdin.geti32(); @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the standard
input device. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by an optional minus sign and a string
of one or more decimal digits. The number must end with a valid delimiter character. This function allows
underscores in the interior of the number. The stdin.geti32 function raises an appropriate exception if the input
violates any of these rules or the value is outside the range plus or minus two billion. This function returns the
binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

stdin.geti32();
mov(eax, i32Var);

HLA low-level calling sequence examples:

call stdin.geti32;
mov(eax, i32Var);

 stdin.geti64(); @returns("edx:eax");

This function reads a signed 64-bit decimal integer from the standard input device. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The
number must end with a valid delimiter character. This function allows underscores in the interior of the
number. The stdin.geti64 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in EDX:EAX.

HLA high-level calling sequence examples:

stdin.geti64();
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));

HLA low-level calling sequence examples:

call stdin.geti64;
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));
Released to the Public Domain Page 743

HLA Standard Library
 stdin.geti128(var dest:lword);

This function reads a signed 128-bit decimal integer from the standard input. The number may begin with
any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The number
must end with a valid delimiter character. This function allows underscores in the interior of the number. The
stdin.geti128 function raises an appropriate exception if the input violates any of these rules or the value is outside
the range of a 128-bit signed integer. This function stores the 128-bit result in the lword you pass as a reference
parameter.

HLA high-level calling sequence examples:

stdin.geti128(lwordVar);

HLA low-level calling sequence examples:

// If lwordVar is a static variable:

pushd(&lwordVar);
call stdin.geti128;

// If lwordVar is a not static variable
// and a 32-bit register is available:

lea(eax, lwordVar); // Assume EAX is available
push(eax);
call stdin.geti128;

28.8 Unsigned Integer Input Routines
 stdin.getu8(); @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the standard input
device. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more decimal
digits. The number must end with a valid delimiter character. This function allows underscores in the interior of
the number. The stdin.getu8 function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..255. This function returns the binary form of the integer in the AL register (zero
extended into EAX).

stdin.geti128 stack diagram

Return Address

Byte

0123

ESP

ESP+4 var l :lword (ptr)
Page 744 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

stdin.getu8();
mov(al, u8Var);

HLA low-level calling sequence examples:

call stdin.getu8;
mov(al, u8Var);

 stdin.getu16(); @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the standard input
device. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more decimal
digits. The number must end with a valid delimiter character. This function allows underscores in the interior of
the number. The stdin.getu16 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..65535. This function returns the binary form of the integer in the AX register
(zero extended into EAX).

HLA high-level calling sequence examples:

stdin.getu16();
mov(ax, u16Var);

HLA low-level calling sequence examples:

call stdin.getu16;
mov(ax, u16Var);

 stdin.getu32(); @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the standard
input. The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more decimal
digits. The number must end with a valid delimiter character. This function allows underscores in the interior of
the number. The stdin.getu32 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..4,294,967,295. This function returns the binary form of the integer in the EAX
register.

HLA high-level calling sequence examples:

stdin.getu32();
mov(eax, u32Var);

HLA low-level calling sequence examples:
Released to the Public Domain Page 745

HLA Standard Library
call stdin.getu32;
mov(eax, u32Var);

 stdin.getu64(); @returns("edx:eax");

This function reads an unsigned 64-bit decimal integer from the standard input. The number may begin with
any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
stdin.getu64 function raises an appropriate exception if the input violates any of these rules or the value is outside
the range 0..264-1. This function returns the binary form of the integer in the the EDX:EAX register pair (EDX
holds the H.O. dword).

HLA high-level calling sequence examples:

stdin.getu64();
mov(edx, (type dword u64Var[4]));
mov(eax, (type dword u64Var[0]));

HLA low-level calling sequence examples:

call stdin.getu64;
mov(edx, (type dword u64Var[4]));
mov(eax, (type dword u64Var[0]));

 stdin.getu128(var dest:lword);

This function reads an unsigned 128-bit decimal integer from the standard input. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character. This function allows underscores in the interior of the number. The stdin.getu128 function
raises an appropriate exception if the input violates any of these rules or the value is outside the range 0..2128-1.
This function returns the binary form of the integer in the lword parameter you pass by reference.

HLA high-level calling sequence examples:

stdin.getu128(lwordVar);

HLA low-level calling sequence examples:

// If lwordVar is a static variable:

pushd(&lwordVar);
call stdin.getu128;

// If lwordVar is a not static variable
// and a 32-bit register is available:

lea(eax, lwordVar); // Assume EAX is available
push(eax);
call stdin.getu128;
Page 746 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
28.9 Floating Point Input
 stdin.getf();

This function reads an 80-bit floating point value in either decimal or scientific from from the standard input
and leaves the result sitting on the FPU stack. The number may begin with any number of delimiter characters
(see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an
optional minus sign and a sequence of characters that represent a floating point value. The number must end with
a valid delimiter character. This function allows underscores in the interior of the number. This function raises
an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

stdin.getf();
fstp(fpVar);

HLA low-level calling sequence examples:

call stdin.getf;
fstp(fpVar);

28.10 Generic File Input
 stdin.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The stdin.get macro reads
an input value for each item in the list and stores the resulting value in each corresponding variable. This macro
determines the type of each variable that you pass it and emits a call to the appropriate stdin.getxxx function to
read the actual value. As an example, consider the following call to filevar.get:

stdin.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:
push(eax);
stdin.geti32(i32);
stdin.getc();
mov(al, charVar);

stdin.getu128 stack diagram

Return Address

Byte

0123

ESP

ESP+4 var l :lword (ptr)
Released to the Public Domain Page 747

HLA Standard Library
stdin.geti16();
mov(ax, u16);
stdin.gets(strVar);
pop(eax);

Notice that stdin.get preserves the value in the EAX and EDX registers even though various stdin.getxxx
functions use these registers. Note that stdin.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that stdin.get supports eight-bit, 16-bit, 32-bit, 64-bit, and 128-bit input values. It automatically selects
the appropriate input routine based on the type of the variable you specify.
Page 748 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
29 The Standard Output Module (stdout.hhf)

This unit contains routines that write data to the standard output device. This is usually the console device,
although the user may redirect the standard output to a file from the command line.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

A Note About Thread Safety: Because the standard output device is a single resource, you will get
inconsistent results if multiple threads attempt to write to the standard output device simultaneously. The HLA
standard library stdout module does not attempt to synchronize thread access to the standard output device. If
you are going to be writing to the standard output from multiple threads, it is your responsibility to ensure that
the threads use properly synchronized access to this resource.

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computung certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

29.1 Conversion Format Control
The standard output functions that convert numeric values to hexadecimal, unsigned decimal, and signed

decimal output provide the ability to inject underscores between groups of three (decimal) or four (hexadecimal)
digits to make it easier to read large numbers. You enable and disable underscore output using the
conv.setUnderscores and conv.getUnderscores functions. Please refer to their documentation in the conv.rtf file
for more details.

When converting numeric values to string form for output, the standard output routines call the conversion
functions found in the conv (conversions) module. For detailed information on the actual conversions, please
consult the conv.rtf document.

29.2 File I/O Routines and the Standard Output Handle
The standard output routines are basically a thin layer over the top of the fileio routines (see the fileio

documention for a complete description of those routines). Indeed, if you obtain the standard output handle, you
can write data to the standard output device by passing this handle to a fileio function. Because the fileio module
provides a slightly richer set of routines, there are a few instances where you might want to do this. You might
also want to write a generic output function that expects a file handle and then pass it the standard output device
file handle so that the function writes its output to the console (or other standard output device) rather than to
some file. In any case, just be aware that it is perfectly reasonable to call fileio functions to write data to the
standard output device.

stdout.handle; @returns("eax");

This routine returns the Linux/Windows handle for the Standard Output Device in the EAX register. You
may use this handle with the file I/O routines to write data to the standard output device.

29.3 Standard Output Routines
The output routines in the stdout module are very similar to the file output routines in the stdout module. In

general, these routines require (at least) one parameter: the value to write to the standard output. Some functions
contain additional parameters that provide formatting information.
Released to the Public Domain Page 749

HLA Standard Library
29.4 Miscellaneous Output Routines
 stdout.write(var buffer:var; count:uns32);

This procedure writes the number of bytes specified by the count variable to the standard output device. The
bytes starting at the address of the buffer variable are written to the standard out. No range checking is done on
the buffer, it is your responsibility to ensure that the buffer contains at least count valid data bytes. Because the
buffer parameter is passed by untyped reference, a high-level style call to this function will take the address of
whatever object you supply as the buffer parameter. This includes pointer variables (which is probably not what
you want to do). Use the VAL keyword in a high-level style call if you want to use the value of a pointer variable
rather than the address of that pointer variable (see the examples that follow).

HLA high-level calling sequence examples:

stdout.write(buffer, count);

// If "bufPtr" is dword containing the address of the buffer, then
// use the following code:

stdout.write(val bufPtr, bufferSize);

// If you actually want to write out the four bytes held by
// bufPtr (an unusual thing to do), you would use the
// following code:

stdout.write(bufPtr, 4);

HLA low-level calling sequence examples:

// Assumes buffer is a static object at a fixed
// address in memory:

pushd(&buffer);
push(count);
call stdout.write;

// If a 32-bit register is available and buffer
// isn’t at a fixed, static, address:

lea(eax, buffer);
push(eax);
push(count);
call stdout.write;

// If a 32-bit register is not available and buffer
// isn’t at a fixed, static, address:

sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call stdout.write;
Page 750 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 stdout.newln()

This function writes a newline sequence (e.g., carriage return/line feed under Windows or line feed under
Linux) to the output.

HLA high-level calling sequence examples:

stdout.newln();

HLA low-level calling sequence examples:

call stdout.newln;

29.5 Boolean Output
stdout.putbool(b:boolean);

This procedure writes the string "true" or "false" to the standard output depending on the value of the b
parameter.

HLA high-level calling sequence examples:

stdout.putbool(boolVar);

// If the boolean is in a register (AL):

stdout.putbool(al);

HLA low-level calling sequence examples:

// If "boolVar" is not one of the last three
// bytes on a page of memory, you can do this:

stdout.write stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

buffer :pointer

count :uns32
Released to the Public Domain Page 751

HLA Standard Library
push((type dword boolVar));
call stdout.putbool;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(boolVar , eax); // Assume EAX is available
push(eax);
call stdout.putbool;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(boolVar , eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putbool;

// If the boolean value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume boolVar is in AL
call stdout.putbool;

// If the Boolean value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume boolVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stdout.putbool;

29.6 Character, String, and Character Set Output Routines
 stdout.putc(c:char);

Writes the character specified by the c parameter to the standard output device.

stdout.putbool stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :boolean
Page 752 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

stdout.putc(charVar);

// If the character is in a register (AL):

stdout.putc(al);

HLA low-level calling sequence examples:

// If "charVar" is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword charVar));
call stdout.putc;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(charVar, eax); // Assume EAX is available
push(eax);
call stdout.putc;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(charVar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putc;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume charVar is in AL
call stdout.putc;

// If the character value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume charVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stdout.putc;
Released to the Public Domain Page 753

HLA Standard Library
 stdout.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the standard output using at least width output positions. If the absolute value of
width is greater than one, then this function writes fill characters as padding characters during the output. If
width is a positive value greater than one, then stdout.putcSize writes c left justfied in a field of width characters;
if width is a negative value less than one, then stdout.putcSize writes c right justified in a field of width
characters.

HLA high-level calling sequence examples:

stdout.putcSize(charVar, width, padChar);

HLA low-level calling sequence examples:

// If "charVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword charVar));
push(width);
push((type dword padChar));
call stdout.putcSize;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(charVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putcSize;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(charVar, eax);
push(eax);
push(width);

stdout.putc stack diagram

Return Address

Byte

0123

ESP

ESP+4 c :char
Page 754 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(padChar, eax);
push(eax);
call stdout.putcSize;
pop(eax);

// If "charVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume charVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stdout.putcSize;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume charVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stdout.putcSize;

 stdout.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the standard output device.

HLA high-level calling sequence examples:

stdout.putcset(csVar);
stdout.putcset([ebx]); // EBX points at the cset.

HLA low-level calling sequence examples:

push((type dword csVar[12])); // Push H.O. dword first
push((type dword csVar[8]));
push((type dword csVar[4]));

stdout.putcSize stack diagram

Return Address

Byte

0123

ESP

ESP+4 c :char

ESP+8 width :int32

fill :charESP+12
Released to the Public Domain Page 755

HLA Standard Library
push((type dword csVar)); // Push L.O. dword last
call stdout.putcset;

push((type dword [ebx+12])); // Push H.O. dword first
push((type dword [ebx+8]));
push((type dword [ebx+4]));
push((type dword [ebx])); // Push L.O. dword last
call stdout.putcset;

 stdout.puts(s:string);

This procedure writes the value of the string parameter to the standard output. Remember, string values are
actually 4-byte pointers to the string’s character data.

HLA high-level calling sequence examples:

stdout.puts(strVar);
stdout.puts(ebx); // EBX holds a string value.
stdout.puts("Hello World");

HLA low-level calling sequence examples:

// For string variables:

push(strVar);
call stdout.puts;

// For string values held in registers:

push(ebx); // Assume EBX holds the string value
call stdout.puts;

// For string literals, assuming a 32-bit register
// is available:

stdout.putcset stack diagram

Return Address

Byte

0123

ESP

ESP+4

cs:csetESP+8

ESP+12

ESP+16 cs (H.O. dword)

cs (L.O. dword)
Page 756 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
call stdout.puts;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

.

.

.
push(literalString);
call stdout.puts;

 stdout.putsSize(s:string; width:int32; fill:char);

This function writes the s string to the standard output using at least width character positions. If the
absolute value of width is less than or equal to the length of s, then this function behaves exactly like stdout.puts.
On the other hand, if the absolute value of width is greater than the length of s, then stdout.putsSize writes width
characters to the standard output. This procedure emits the fill character in the extra print positions. If width is
positive, then stdout.putsSize right justifies the string in the print field. If width is negative, then stdout.putsSize
left justifies the string in the print field. Generally, people expect the string to be left justified, so you should
ensure that this value is negative to achieve this.

HLA high-level calling sequence examples:

stdout.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

stdout.putsSize(ebx, ecx, al);

stdout.putsSize("Hello World", 25, padChar);

HLA low-level calling sequence examples:

// For string variables:

stdout.puts stack diagram

Return Address

Byte

0123

ESP

ESP+4 s :string
Released to the Public Domain Page 757

HLA Standard Library
push(strVar);
push(width);
pushd(‘ ‘);
call stdout.putsSize;

// For string values held in registers:

push(ebx); // Assume EBX holds the string value
push(ecx); // Assume ECX holds the width
push(eax); // Assume AL holds the fill character
call stdout.putsSize;

// For string literals, assuming a 32-bit register
// is available:

lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
pushd(25);
movzx(padChar, eax);
push(eax);
call stdout.putsSize;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

// Note: element zero is the actual pad character.
 // The other elements are just padding.
 padChar :char[4] := [‘.’, #0, #0, #0];

.

.

.
push(literalString);
pushd(25);
push((type dword padChar));
call stdout.putsSize;

stdout.putsSize stack diagram

Return Address

Byte

0123

s :string

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 758 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
29.7 Hexadecimal Output Routines
These routines convert numeric data to hexadecimal string form (using the hexadecimal conversion routines

found in the conv module) and write the resulting string to the standard output device.

stdout.putb(b:byte)

This procedure writes the value of b to the standard output using exactly two hexadecimal digits (including a
leading zero if necessary).

HLA high-level calling sequence examples:

stdout.putb(byteVar);

// If the character is in a register (AL):

stdout.putb(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stdout.putb;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stdout.putb;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putb;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stdout.putb;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
Released to the Public Domain Page 759

HLA Standard Library
call stdout.putb;

stdout.puth8(b:byte);

This procedure writes the value of b to the standard output using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

stdout.puth8(byteVar);

// If the character is in a register (AL):

stdout.puth8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stdout.puth8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stdout.puth8;

// If no register is available, do something
// like the following code:

sub(4, esp);
push(eax);

stdout.putb stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Page 760 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puth8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stdout.puth8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stdout.puth8;

stdout.puth8Size(b:byte; size:dword; fill:char)

The stdout.puth8Size function writes an 8-bit hexadecimal value to the standard output allowing you specify
a minimum field width and a fill character.

HLA high-level calling sequence examples:

stdout.puth8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stdout.puth8Size;

// If you can’t guarantee that the previous code

stdout.puth8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Released to the Public Domain Page 761

HLA Standard Library
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stdout.puth8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stdout.puth8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stdout.puth8Size;
Page 762 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putw(w:word)

This procedure writes the value of w to the standard output device using exactly four hexadecimal digits
(including leading zeros if necessary).

HLA high-level calling sequence examples:

stdout.putw(wordVar);

// If the word is in a register (AX):

stdout.putw(ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stdout.putw;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stdout.putw;

// If no register is available, do something
// like the following code:

push(eax):
movzx(wordVar, eax);
push(eax);
call stdout.putw;
pop(eax);

stdout.puth8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 763

HLA Standard Library
// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stdout.putw;

stdout.puth16(w:word)

This procedure writes the value of w to the standard out using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

stdout.puth16(wordVar);

// If the word is in a register (AX):

stdout.puth16(ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stdout.puth16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stdout.puth16;

// If no register is available, do something

stdout.putw stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Page 764 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stdout.puth16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stdout.puth16;

stdout.puth16Size(w:word; size:dword; fill:char)

The stdout.puth16Size function writes a 16-bit hexadecimal value to the standard output allowing you
specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

stdout.puth16Size(wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stdout.puth16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);

stdout.puth16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Released to the Public Domain Page 765

HLA Standard Library
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth16Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stdout.puth16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stdout.puth16Size;

stdout.putd(d:dword)

This procedure writes the value of d to the standard out using exactly eight hexadecimal digits (including
leading zeros if necessary), if underscore output is not enabled. This routine will emit nine characters (eight
digits plus an underscore) if underscore output is enabled.

HLA high-level calling sequence examples:

stdout.putd(dwordVar);

// If the dword value is in a register (EAX):

stdout.puth16Size stack diagram

Return Address

Byte

0123

w :word

Handle :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16
Page 766 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putd(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stdout.putd;

push(eax);
call stdout.putd;

stdout.puth32(d:dword);

This procedure writes the value of d to the standard output using the minimum number of hexadecimal digits
necessary. If underscore output is enabled (see conv.setUnderscores and conv.getUnderscores) then this function
will emit an underscore between groups of four hexadecimal digits, starting from the least signficant digit.

HLA high-level calling sequence examples:

stdout.puth32(dwordVar);

// If the dword is in a register (EAX):

stdout.puth32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stdout.puth32;

push(eax);
call stdout.puth32;

stdout.putd stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Released to the Public Domain Page 767

HLA Standard Library
stdout.puth32Size(d:dword; size:dword; fill:char)

 The stdout.puth32Size function outputs d as a hexadecimal string (including underscores, if enabled) and it
allows you specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

stdout.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stdout.puth32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stdout.puth32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.puth32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puth32Size;

// Alternate method of the above

push(eax);
push(width);

stdout.puth32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Page 768 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sub(4, esp);
mov(ch, [esp]);
call stdout.puth32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puth32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puth32Size;

stdout.putq(q:qword);

This procedure writes the value of q to the standard output device using exactly sixteen hexadecimal digits
(including leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.puth32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 769

HLA Standard Library
stdout.putq(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stdout.putq;

stdout.puth64(q:qword);

This procedure writes the value of q to the standard output using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.puth64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stdout.puth64;

stdout.putq stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Page 770 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

stdout.puth64Size(q:qword; size:dword; fill:char);

The stdout.putqSize function lets you specify a minimum field width and a fill character. The stdout.putq
routine uses a minimum size of two and a fill character of ’0’. Note that if underscore output is enabled, this
routine will emit 19 characters (16 digits plus three underscores).

HLA high-level calling sequence examples:

stdout.puth64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stdout.puth64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.puth64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puth64Size;

// Alternate method of the above

stdout.puth64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 771

HLA Standard Library
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.puth64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puth64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puth64Size;
Page 772 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.puttb(tb:tbyte);

This procedure writes the value of tb to the standard out using exactly 20 hexadecimal digits (including
leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.puttb(tbyteVar);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call stdout.puttb;

stdout.puth64Size stack diagram

Return Address

Byte

0123

a :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Released to the Public Domain Page 773

HLA Standard Library
stdout.puth80(tb:tbyte);

This procedure writes the value of tb to the standard output using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.puth80(tbyteVar);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call stdout.puth80;

stdout.puttb stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Page 774 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.puth80Size(tb:tbyte; size:dword; fill:char);

The stdout.puth80Size function lets you specify a minimum field width and a fill character. It writes the
tbyte value tb as a hexadecimal string to the standard output device using the provided minimum size and fill
character.

HLA high-level calling sequence examples:

stdout.puth80Size(tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stdout.puth80Size;

// Assume fill char is in CH

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puth80Size;

stdout.puth80 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12 tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)
Released to the Public Domain Page 775

HLA Standard Library
// Alternate method of the above

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.puth80Size;

// If the fill char is a variable and
// a register is available, try this code:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth80Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puth80Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puth80Size;
Page 776 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putl(l:lword);

This procedure writes the value of l to the standard output using exactly 32 hexadecimal digits (including
leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.putl(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stdout.putl;

stdout.puth80Size stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

ESP+12

ESP+16
tb (H.O. word)

tb (L.O. dword)

tb :tbyte

01(padding)

size :uns32

fill :charESP+20
Released to the Public Domain Page 777

HLA Standard Library
stdout.puth128(l:lword);

This procedure writes the value of l to the standard output using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

stdout.puth128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stdout.puth128;

stdout.putl stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Page 778 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.puth128Size(l:lword; size:dword; fill:char);

The stdout.puth128Size function writes an lword value to the standard output and it lets you specify a
minimum field width and a fill character.

HLA high-level calling sequence examples:

stdout.puth128Size(tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stdout.puth128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puth128Size;

stdout.puth128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Released to the Public Domain Page 779

HLA Standard Library
// Alternate method of the above

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.puth128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puth128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puth128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puth128Size;
Page 780 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
29.8 Signed Integer Output Routines
These routines convert signed integer values to string format and write that string to the standard output

device. The stdout.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the standard output device. If width is non-negative, then these functions
right-justify the value in the output field; if value is negative, then these functions left-justify the value in the
output field.

These functions print the fill character as the padding value for the extra print positions.
Note that unlike floating point values, these functions do not print a space in front of the value if it is non-

negative.

stdout.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the standard output using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti8(byteVar);

// If the character is in a register (AL):

stdout.puth128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Released to the Public Domain Page 781

HLA Standard Library
stdout.puti8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stdout.puti8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stdout.puti8;

// If no register is available, do something
// like the following code:

push(eax);
movzx(byteVar , eax);
push(eax);
call stdout.puti8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stdout.puti8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stdout.puti8;
Page 782 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.puti8Size (b:byte; width:int32; fill:char)

This function writes the eight-bit signed integer value you pass to the standard output using the width and fill
values as specified above.

HLA high-level calling sequence examples:

stdout.puti8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stdout.puti8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puti8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);

stdout.puti8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Released to the Public Domain Page 783

HLA Standard Library
call stdout.puti8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stdout.puti8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stdout.puti8Size;

stdout.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the standard output device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti16(wordVar);

// If the word is in a register (AX):

stdout.puti16(ax);

HLA low-level calling sequence examples:

stdout.puti8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 784 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stdout.puti16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stdout.puti16;

// If no register is available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stdout.puti16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stdout.puti16;

stdout.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the standard output using the width and fill
values as specified above.

HLA high-level calling sequence examples:

stdout.puti16Size(wordVar, width, padChar);

stdout.puti16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Released to the Public Domain Page 785

HLA Standard Library
HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stdout.puti16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puti16Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stdout.puti16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stdout.puti16Size;
Page 786 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the standard out using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti32(dwordVar);

// If the dword is in a register (EAX):

stdout.puti32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stdout.puti32;

push(eax);
call stdout.puti32;

stdout.puti16Size stack diagram

Return Address

Byte

0123

w :word

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

stdout.puti32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword

ESP+8
Released to the Public Domain Page 787

HLA Standard Library
stdout.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the standard output device using the
width and fill values as specified above.

HLA high-level calling sequence examples:

stdout.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stdout.putu32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stdout.putu32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.putu32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.putu32Size;

// Alternate method of the above

push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.putu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
Page 788 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.putu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puti32Size;

 stdout.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the standard output using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stdout.puti64;

stdout.puth32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 789

HLA Standard Library
stdout.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the standard output using the width and
fill values as specified above.

HLA high-level calling sequence examples:

stdout.puti64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stdout.puti64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.puti64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puti64Size;

// Alternate method of the above

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last

stdout.puti64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Page 790 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.puti64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puti64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puti64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puti64Size;

stdout.puti64Size stack diagram

Return Address

Byte

0123

q :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Released to the Public Domain Page 791

HLA Standard Library
 stdout.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the standard out using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stdout.puti128;

stdout.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the standard output device using the
width and fill values as specified above.

HLA high-level calling sequence examples:

stdout.puti128Size(lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last

stdout.puti128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Page 792 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(width);
pushd(‘ ‘);
call stdout.puti128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.puti128Size;

// Alternate method of the above

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.puti128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.puti128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.puti128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
Released to the Public Domain Page 793

HLA Standard Library
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.puti128Size;

29.9 Unsigned Integer Output Routines
These routines convert unsigned integer values to string format and write that string to the standard output

device. The stdout.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the standard out. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

stdout.putu8 (b:byte);

This function converts the eight-bit unsigned integer you pass as a parameter to a string and writes this string
to the standard output device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.puti128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 794 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putu8(byteVar);

// If the character is in a register (AL):

stdout.putu8(al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
call stdout.putu8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar , eax); // Assume EAX is available
push(eax);
call stdout.putu8;

// If no register is available, do something
// like the following code:

push(eax);
movzx(byteVar , eax);
push(eax);
call stdout.putu8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(eax); // Assume byteVar is in AL
call stdout.putu8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call stdout.putu8;
Released to the Public Domain Page 795

HLA Standard Library
stdout.putu8Size(b:byte; width:int32; fill:char);

This function writes the unsigned eight-bit value you pass to the standard output using the width and fill
values as specified above.

HLA high-level calling sequence examples:

stdout.putu8Size(byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword byteVar));
push(width);
push((type dword padChar));
call stdout.putu8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu8Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);

stdout.putu8 stack diagram

Return Address

Byte

0123

ESP

ESP+4 b :byte
Page 796 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
call stdout.putu8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call stdout.putu8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call stdout.putu8Size;

stdout.putu16(w:word);

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard output device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.putu16(wordVar);

// If the word is in a register (AX):

stdout.putu16(ax);

HLA low-level calling sequence examples:

stdout.putu8Size stack diagram

Return Address

Byte

0123

b :byte

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Released to the Public Domain Page 797

HLA Standard Library
// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
call stdout.putu16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
call stdout.putu16;

// If no register is available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
call stdout.putu16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(eax); // Assume wordVar is in AX
call stdout.putu16;

stdout.putu16Size(w:word; width:int32; fill:char);

This function writes the unsigned 16-bit value you pass to the standard out using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stdout.putu16Size(wordVar, width, padChar);

stdout.putu16 stack diagram

Return Address

Byte

0123

w :word

ESP

ESP+4
Page 798 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push((type dword wordVar));
push(width);
push((type dword padChar));
call stdout.putu16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu16Size;

// If no registers are available, do something
// like the following code:

push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call stdout.putu16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call stdout.putu16Size;
Released to the Public Domain Page 799

HLA Standard Library
stdout.putu32(d:dword);

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard out using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.putu32(dwordVar);

// If the dword is in a register (EAX):

stdout.putu32(eax);

HLA low-level calling sequence examples:

push(dwordVar);
call stdout.putu32;

push(eax);
call stdout.putu32;

stdout.putu16Size stack diagram

Return Address

Byte

0123

w :word

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12

stdout.putu32 stack diagram

Return Address

Byte

0123

ESP

ESP+4 d :dword
Page 800 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putu32Size(d:dword; width:int32; fill:char);

This function writes the unsigned 32-bit value you pass to the standard out using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stdout.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

stdout.putu32Size(eax, width, cl);

HLA low-level calling sequence examples:

push(dwordVar);
push(width);
pushd(‘ ‘);
call stdout.putu32Size;

push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.putu32Size;

// Assume fill char is in CH

push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.putu32Size;

// Alternate method of the above

push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.putu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(eax);
Released to the Public Domain Page 801

HLA Standard Library
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.putu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putu32Size;

stdout.putu64(q:qword);

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the standard output device using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.putu64(qwordVar);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call stdout.putu64;

stdout.putu32Size stack diagram

Return Address

Byte

0123

d :dword

width :int32

fill :char

ESP

ESP+4

ESP+8

ESP+12
Page 802 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the output using the width and fill values as
specified above.

HLA high-level calling sequence examples:

stdout.putu64Size(qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call stdout.putu64Size;

push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call stdout.putu64Size;

// Assume fill char is in CH

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.putu64Size;

// Alternate method of the above

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last

stdout.putu64 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8
qw :qword

qw (H.O. dword)

qw (L.O. dword)
Released to the Public Domain Page 803

HLA Standard Library
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.putu64Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.putu64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putu64Size;

stdout.putu64Size stack diagram

Return Address

Byte

0123

q :qword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

q (H.O. dword)

q (L.O. dword)

fill :char
Page 804 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
stdout.putu128(l:lword);

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the standard out using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

stdout.putu128(lwordVar);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call stdout.putu128;

stdout.putu128Size(l:lword; width:int32; fill:char)

This function writes the unsigned 128-bit value you pass to the standard out using the width and fill values
as specified above.

HLA high-level calling sequence examples:

stdout.putu128Size(lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last

stdout.putu128 stack diagram

Return Address

Byte

0123

l :lword

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

l (L.O. dword)
Released to the Public Domain Page 805

HLA Standard Library
push(width);
pushd(‘ ‘);
call stdout.putu128Size;

// Assume fill char is in CH

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call stdout.putu128Size;

// Alternate method of the above

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call stdout.putu128Size;

// If the fill char is a variable and
// a register is available, try this code:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call stdout.putu128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call stdout.putu128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
Page 806 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call stdout.putu128Size;

29.10 Floating Point Output Routines
The HLA standard output module provides several procedures you can use to write floating point values to

the standard output device. The following subsections describe these routines.

 29.10.1 Real Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the standard output. There are two generic classes of these
routines: those that convert their values to exponential/scientific notation and those that convert their string to a
decimal form.

The stdout.pute80, stdout.pute64, and stdout.pute32 routines convert their values to a string using scientific
notation. These three routines each have two parameters: the value to output and the field width of the result.
These routines produce a string with the following format:

stdout.putu128Size stack diagram

Return Address

Byte

0123

l :lword

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16 l (H.O. dword)

fill :char

l (L.O. dword)

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 807

HLA Standard Library
stdout.pute32(r:real32; width:uns32);

This function writes the 32-bit single precision floating point value passed in r to the standard out using
scientific/exponential notation. This procedure prints the value using width print positions in the output. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a
width value that yeilds more than seven mantissa digits will produce garbage output in the low order digits of the
number.

HLA high-level calling sequence examples:

stdout.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
stdout.pute32(r32Temp, 12);

HLA low-level calling sequence examples:

push((type dword r32Var));
push(width);
call stdout.pute32;

sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
call stdout.pute32;

 stdout.pute64(r:real64; width:uns32);

This function writes the 64-bit double precision floating point value passed in r to the standard output using
scientific/exponential notation. This procedure prints the value using width print positions in the output. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 64-bit double precision floating point values support about 15 significant digits. So a

stdout.pute32 stack diagram

Return Address

Byte

0123

ESP

ESP+4

ESP+8

e32 :real32

width :uns32
Page 808 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
width value that yeilds more than 15 mantissa digits will produce garbage output in the low order digits of the
number.

HLA high-level calling sequence examples:

stdout.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
stdout.pute64(r64Temp, 12);

HLA low-level calling sequence examples:

push((type dword r64Var[4]));
push((type dword r64Var[0]));
push(width);
call stdout.pute64;

sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
call stdout.pute64;

 stdout.pute80(r:real80; width:uns32);

This function writes the 80-bit extended precision floating point value passed in r to the standard output
device using scientific/exponential notation. This procedure prints the value using width print positions in the
standard out. width should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a
minimum value of six for all other values. Note that 80-bit extended precision floating point values support

stdout.pute64 stack diagram

Return Address

Byte

0123

e64 :real64

width :uns32

ESP

ESP+4

ESP+8

ESP+12
e64 (H.O. dword)

e64 (L.O. dword)
Released to the Public Domain Page 809

HLA Standard Library
about 18 significant digits. So a width value that yeilds more than 18 mantissa digits will produce garbage output
in the low order digits of the number.

HLA high-level calling sequence examples:

stdout.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
stdout.pute80(r80Temp, 12);

HLA low-level calling sequence examples:

pushw(0); // A word of padding.
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var[0]));
push(width);
call stdout.pute80;

sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
call stdout.pute80;

 29.10.2 Real Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA stdout module also provides a set of

stdout.pute80 stack diagram

Return Address

Byte

0123

width :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16
r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)
Page 810 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions require four parameters: the real value to convert, the width of the converted value, the
number of digit positions to the right of the decimal point, and a padding character. These functions write their
values using the following string format:

stdout.putr32(r:real32; width:uns32; decpts:uns32; pad:char);

This procedure writes a 32-bit single precision floating point value to the standard output as a string. The
string consumes exactly width characters in the standard output. If the numeric output, using the specified
number of positions to the right of the decimal point, is sufficiently small that the string representation would be
less than width characters, then this procedure uses the value of pad as the padding character to fill the output
with width characters. The number is right-justified within the output field (that is, this function prints the
padding characters before the string representation of the number).

HLA high-level calling sequence examples:

stdout.putr32(r32Var, width, decpts, fill);
stdout.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp :real32;
.
.
.

fstp(r32Temp);
stdout.putr32(r32Temp, 12, 2, al);

HLA low-level calling sequence examples:

push((type dword r32Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call stdout.putr32;

push((type dword r32Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stdout.putr32;

sub(4, esp);
fstp((type real32 [esp]));
pushd(12);

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Released to the Public Domain Page 811

HLA Standard Library
sub(4, esp);
push(eax);
movzx(fill, eax): // If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call stdout.putr32;

 stdout.putr64(r:real64; width:uns32; decpts:uns32; pad:char);

This procedure writes a 64-bit double precision floating point value to the standard output device as a string.
The string consumes exactly width characters in the output. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

stdout.putr64(r64Var, width, decpts, fill);
stdout.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
stdout.putr64(r64Temp, 12, 2, al);

HLA low-level calling sequence examples:

push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);

stdout.putr32 stack diagram

Return Address

Byte

0123

r32 :real32

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

decpts :uns32
Page 812 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(fill, eax);
push(eax);
call stdout.putr64;

push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stdout.putr64;

sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call stdout.putr64;

stdout.putr80(r:real80; width:uns32; decpts:uns32; pad:char);

This procedure writes an 80-bit extended precision floating point value to the output as a string. The string
consumes exactly width characters in the output. If the numeric output, using the specified number of positions
to the right of the decimal point, is sufficiently small that the string representation would be less than width
characters, then this procedure uses the value of pad as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

stdout.putr80(r80Var, width, decpts, fill);
stdout.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;

stdout.putr64 stack diagram

Return Address

Byte

0123

r64 :real64

width :uns32

pad :char

ESP

ESP+4

ESP+8

ESP+12

ESP+16

r64 (H.O. dword)

r64 (L.O. dword)

decpts :uns32

ESP+20
Released to the Public Domain Page 813

HLA Standard Library
.

.

.
fstp(r80Temp);
stdout.putr80(r80Temp, 12, 2, al);

HLA low-level calling sequence examples:

pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call stdout.putr80;

pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call stdout.putr80;

sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call stdout.putr80;

stdout.putr80 stack diagram

Return Address

Byte

0123

width :uns32

pad :char

decpts :uns32

ESP

ESP+4

ESP+8

ESP+12

ESP+16

ESP+20

r80 (H.O. word)

r80 (L.O. dword)

r80 :real80

01(padding)

ESP+24
Page 814 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
29.11 Generic Standard Output Routine
 stdout.put(list_of_items);

stdout.put is a macro that automatically invokes an appropriate stdout output routine based on the type of the
parameter(s) you pass it. This is a very convenient output routine and is probably the stdout output call you will
use most often in your programs. Keep in mind that this macro is not a single function call; instead, HLA
translates this macro into a sequence of calls to procedures like stdout.putu32, stdout.puts, etc.

stdout.put is a macro that provides a flexible syntax for outputting data to the standard output device. This
macro allows a variable number of parameters. For each parameter present in the list, stdout.put will call the
appropriate routine to emit that data, according to the type of the parameter. Parameters may be constants,
registers, or memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of stdout.put:

stdout.put("I=", i, " j=", j, nl);

The above is roughly equivalent to

stdout.puts("I=");
stdout.putu32(i);
stdout.puts(" j=");
stdout.putu32(j);
stdout.newln();

This assumes, of course, that i and j are int32 variables.
The stdout.put macro also lets you specify the minimum field width for each parameter you specify. To

print a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

stdout.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

stdout.put("Real value is ", f:10:3, nl);

The stdout.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, lword).

There is a known "design flaw" in the stdout.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and stdout.put cannot determine if you want to print reg32 using varname print positions versus
simply printing the non-local varname object. If you want to display non-local variables you must copy the non-
local object into a register, a static variable, or a local variable prior to using stdout.put to print it. Of course,
there is no problem using the other stdout.putXXXX functions to display non-local VAR objects, so you can use
those as well.
Released to the Public Domain Page 815

HLA Standard Library
Page 816 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
30 The HLA Standard Template Library

The following sections provide a basic description of some of the routines in the HLA Standard Template
Library. Keep in mind that the HLA Standard Template Library is a work in progress and the following sections
may not be totally up to date. The HLA Standard Template Library header file and source code is the final
arbitor if there is a question how the routines operate.

Unless otherwise noted, you can assume that the Standard Library routines preserve all the general purpose
registers. They generally do not preserve the flags.

30.1 Introduction to the HLA STL
The HLA Standard Template Library (STL) was designed to be similar to the C++ STL. The idea is not only

to provide similar functionality to the C++ STL, but also to help make the transition from C++ to assembly
language an easier process. Though the HLA STL is by no means an exact replicate of the C++ STL, the
concepts are sufficiently close to allow someone to use the HLA STL in the same way they’d use the C++ STL
without having to learn a new programming paradigm.

Though the HLA STL is especially easy to learrn by those who are familiar with templates in C++, it’s also
a relatively straight-forward package to learn by those who are not C++ programmers. The HLA STL package
provides convenient code for declaring dynamic arrays, queues, lists, lookup tables, and other advanced data
structures. By using HLA STL code, you’ll find it much easier to write advanced assembly language code taking
advantage of these sophisticated data structures.

"Template" is a special C++ term that is effectively a synonym for macro1. Therefore, one big difference
you’ll find between the HLA STL and the HLA Standard Library is that there are not object files you link in with
code that uses the HLA STL. The STL is simply a set of macros that you incorporate into your program by
including the "stl.hhf" header file and then invoking the templates (macros) that interest you. Therefore, to use
the HLA STL package, the first thing you must do is include the following statement in your HLA program:

#include("stl.hhf")
Note that HLA "stdlib.hhf" header file does not automatically include the STL header file. The STL and the

HLA Standard Library are two separate packages and you must explicitly include "stl.hhf" to use the HLA STL
facilities.

The HLA STL is a set of macros (templates) that create user-defined class objects when you invoke them.
To a programmer, these macros look somewhat like user-defined types that you use in a type declaration section.
For example, consider the following vector type declaration:

type
int32Vector :stl.vector(int32);

The principle difference between an STL type declaration and a standard type declaration is the fact that STL
declarations are parameterized. STL types are abstract data types that usually contain some other type. A vector
type, for example, is a dynamic array type, with each element of the vector being some base type (int32 in the
vector example above). It is possible to have vectors of 32-bit integers (int32), characters, strings, or any other
built-in or user-defined data type. The parameter associated with an STL declaration specifies the underlying
data type on which the new type is built. Consider the following two vector declarations:

type
int32Vector :stl.vector(int32);
stringVector :stl.vector(string);

These two declarations create two new class types, an int32 vector and a string vector, that one can use to
declare integer and string vectors. It’s inportant to realize that the vector template creates different types, not
variables. It’s also important to realize that vector types are different. That is, int32Vector and stringVector,
although both vectors, are not compatible types.

1. Technically, this is not true, but we’ll ignore the distinction in this document.
Released to the Public Domain Page 817

HLA Standard Library
30.2 Type Declarations Created by a Template
Templates only create types, not variables. In order to create actual variable objects, you must declare such

objects in an HLA var, static, or storage section (because all template types are classes, you cannot create
initialized class objects in a readonly [or static] section).

Template expansions may only occur in an HLA type section at the global level of a program or unit. This is
because the template expansion, in addition to creating the data type, emits the code for all the class methods and
the VMT for the class. After a template expansion, the template will leave the program in the type declaration
section, but keep in mind that internally, the template expands to code and data in addition to type declarations.

In addition to the user-specified type name, an STL declaration typically creates two or three other types
during expansion. Most templates will also create the following types:

type
p_name :pointer to name;
name_cursor: pointer to XXXX;

where name is the user-specified type name (e.g., int32Vector and stringVector from the previous examples,
yielding int32Vector_cursor and p_int32Vector). XXXX represents an unimportant type name for our purposes;
Cursor types are opaque insofar as an HLA application will use a cursor type to pass data amongst template class
methods without needing to know what the type actually references.

Some template types (e.g., list and table) also create a node type, declared as follows:

type
name_node: record

data:parameter_type;
<<other_fields>>

endrecord;

where parameter_type is the type passed to the STL template as a parameter (e.g., int32 and string in the current
examples) and other_fields represent some opaque fields that the class’ methods reference and should be treated
as private data by all other code.

Once you invoke a template in a type declaration section, you can create actual objects using the template’s
resulting type. For example, to create int32Vector and stringVector objects, you could use declarations like the
following:

type
myInt32v :int32Vector;
myStringv :stringVector;

Note that you do not use an STL template when you define an actual variable. You use templates to create types
and then you use those types you’ve created to declare variables.

30.3 Template Objects are Classes
Though it is not particularly apparent from the invocation of a template, you should realize that HLA STL

templates create class types. When you declare a variable of some template type you’ve defined, you’re creating
a class object. Therefore, it helds if you’re familiar with the HLA object-oriented programming paradigm (and,
in particular, HLA classes, methods, class procedures, and class iterators).

Note that when you define a new type using an HLA template, that type definition also creates a set of
methods, procedures, and iterators specific to that class. That is, a type declaration like the following:

type
csetVector :stl.vector(cset);

does a lot more than simply define a type – it also expands to a lot of code to your source file. A typical template
class may have 2-4 dozen methods, class procedures, and class iterators associated with the class. Each time you
create a new class by expanding an STL template, you get a new copy of all those routines. Consider the
following pair of type declarations:

type
Page 818 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
int32Vector :stl.vector(int32);
i32Vector :stl.vector(int32);

Internally, these classes are exactly the same. Externally, however, they are different types. Therefore, the HLA
STL will create a separate set of methods that are absolutely identical in everything but name for these two types.
This is a waste of space. In general, you should only create one instance of a particular STL class, so that you
only expand one set of methods, procedures, and iterators (and a virtual method table [VMT]) for that one class.
If you really two different "vector of int32" types, you should consider a declaration like the following:

type
i32v :stl.vector(int32);
int32Vector :i32v;
i32Vector :i32v;

HLA only generates one set of methods/procedures/iterators and VMTs for the i32v class; the int32Vector and
i32Vector classes share this code and VMT (which is reasonable, as the operations on int32Vector and i32Vector
types will always be the same).

Note that the HLA STL macros emit different methods, procedures, and iterators for class objects with
differing underlying types. For example, the int32Vector and stringVector types both need their own set of
specific methods/procedures/iterators because those routines operate on completely different data types.

So keep in mind that everytime you expand an HLA STL template, you get a new set of routines associated
with the corresponding class you’ve defined. Of course, you only have one set of routines for each class you
create, regardless of how many instances (class variables) of that class you define. That is, declaring multiple
variables does not cause the emission of multiple sets of methods; only defining types will do this.

30.4 Class Traits
A template trait is a compile-time or run-time value that provides some information about the type of the

underlying class. The HLA STL defines several common trait objects that are testable within any STL type.
Advanced programmers may use conditional assembly to test compile-time traits or actual machine instructions
to test run-time traits. By utilizing traits, your code can behave differently, depending on the underlying
(template) data type.

Though most programmers can use STL class types without ever worrying about traits, the availability of
traits makes it possible to do some very sophisticated things with the HLA STL. Where traits might come in
handy is when you’re writing your own macros to which you pass different STL objects and you might need to
generate different code (or emit an error message) depending on the traits the object supports. Also, you soon
find out that it’s possible to create an object with fewer traits than the default object supports. For example, if
you’re using some simple int32 vector types and you don’t require any of the cursor capabilities, you can tell the
HLA STL to construct an int32 vector type without cursor support (thus reducing the amount of code the
template generates). However, if you pass one of these vector objects to a generic macro that works with vectors,
the lack of cursor support could create a problem. Fortunately, traits solve this problem by letting that macro (or
even some run-time code) test to see whether cursor support is present, generating an error (or otherwise
handling the situation) if cursors are not available.

 30.4.1 isSTL_c Trait
The most fundamental trait assocated with all template classes is the isSTL_c trait. This is a compile-time

constant (const class declaration) that is defined and set to TRUE for all STL types. You can use the HLA
compile-time @defined function to test whether or not the isSTL_c field is defined for a given class type. If this
symbol is defined, then you can generally assume that the underlying class is an HLA STL class and you can test
for any of the other STL traits2. Here’s how you’d typically use this trait:

#if(@defined(someType.isSTL_c))
<< code to compile, knowing that this is an STL type >>

#endif

2. Of course, there is nothing stopping someone from defining this constant in some arbitrary non-STL class, but you can
generally assume that someone won’t hijack your program’s logic by doing this.
Released to the Public Domain Page 819

HLA Standard Library
 30.4.2 Compile-Time Traits
If the isSTL_c field is defined, then the class will also define three dword constants: hierarchy_c,

capabilities_c, and performance_c. These constants are bit maps with each (defined) bit posititon corresponding
to some capability, or lack thereof, of the current class object. If the bit position contains one, then the class
possesses the corresponding capability; if the bit position contains zero, then the class lacks that capability.

The hierarchical traits specify which subclasses are associated with a given type. The capability traits
specify which general methods are available to a given class. The performance traits provide an indication of the
performance of the methods available to a given class.

The STL defines the following constants (which are all values with a single bit set):

Hierarchical traits (testable in hierarchy_c):

• stl.isContainer_c
• stl.isRandomAccess_c
• stl.IsArray_c
• stl.isVector_c
• stl.isDeque_c
• stl.isList_c
• stl.isTable_c

Capability traits (testable in capabilities_c):

• stl.supportsOutput_c
• stl.supportsCompare_c
• stl.supportsInsert_c
• stl.supportsRemove_c
• stl.supportsAppend_c
• stl.supportsPrepend_c
• stl.supportsSwap_c
• stl.supportsForEach_c
• stl.supportsrForEach_c
• stl.supportsCursor_c
• stl.supportsSearch_c
• stl.supportsElementSwap_c
• stl.supportsObjSwap_c
• stl.elementsAreObjects_c

Performance traits (testable in performance_c):

• stl.fastInsert_c
• stl.fastRemove_c
• stl.fastAppend_c
• stl.fastPrepend_c
• stl.fastSwap_c
• stl.fastSearch_c
• stl.fastElementSwap_c

As their category suggests, you use these constants to test particular bits in the hierarchy_c, capability_c,
and performance_c compile-time variables, respectively. For example, if you have an STL class and you want to
determine if it is a vector class, you could use code like the following:

#if((mySTLObject.hierarchy_c & stl.isVector_c) <> 0)

<< you can assume mySTLObject is a vector object here >>

#endif

 30.4.3 Run-Time Traits
If the isSTL_c field is defined, then the class object provides three run-time dword variables containing

various set bits that determine the characteristics of that class. These run-time traits are the same as the compile-
time traits except, of course, you can test their values at run-time using machine instructions. These variables are
Page 820 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
hierarchy, capabilities, and performance. They are run-time analogs to the compile-time constants mentioned in
the previous section and are associated with the same set of trait constant, i.e.,

Hierarchical traits (testable in hierarchy_c):

• stl.isContainer_c
• stl.isRandomAccess_c
• stl.IsArray_c
• stl.isVector_c
• stl.isDeque_c
• stl.isList_c
• stl.isTable_c

Capability traits (testable in capabilities_c):

• stl.supportsOutput_c
• stl.supportsCompare_c
• stl.supportsInsert_c
• stl.supportsRemove_c
• stl.supportsAppend_c
• stl.supportsPrepend_c
• stl.supportsSwap_c
• stl.supportsForEach_c
• stl.supportsrForEach_c
• stl.supportsCursor_c
• stl.supportsSearch_c
• stl.supportsElementSwap_c
• stl.supportsObjSwap_c
• stl.elementsAreObjects_c

Performance traits (testable in performance_c):

• stl.fastInsert_c
• stl.fastRemove_c
• stl.fastAppend_c
• stl.fastPrepend_c
• stl.fastSwap_c
• stl.fastSearch_c
• stl.fastElementSwap_c

Because these are run-time values, you must you 80x86 machine instructions to test for these trait value,
e.g.,

test(stl.supportsCursor, mySTLObj.capabilities);
if(@nz) then

<< execute code that uses the cursor methods in the object >>

endif;

 30.4.4 Trait Constants
The following subsections define the meaning of each of the traits. Note that the term "true" means that the

trait value is non-zero (and will have a single set bit, the bit position determined by the particular triat) while
"false" means that the trait’s value is zero.

 30.4.4.1 stl.isContainer_c Trait
This bit is set in heirarchy_c or hierarchy if the STL object is (known to be) a container object. Currently,

almost all STL objects are containers so this trait will be true. (The only STL object that is not a container is the
base object, and you’ll generally not declare any STL objects using the base type).

A container is a type that holds elements of some other type. All common STL types are container types as
they are all composite data types (e.g., arrays, lists, tables, and so on).
Released to the Public Domain Page 821

HLA Standard Library
 30.4.4.2 stl.isRandomAccess_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying STL object provides efficient (O(1) time)

random access to the underlying type’s elements. Vectors and deques are examples of objects that support
random access as it takes the same amount of time to access any arbitrary element of these types.

 30.4.4.3 stl.isArray_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is an array object. Currently, this value is

true for vector and deque types.

 30.4.4.4 stl.isVector_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a vector class type.

 30.4.4.5 stl.isDeque_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a deque class type.

 30.4.4.6 stl.isList_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a list class type.

 30.4.4.7 stl.isTable_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a table class type.

 30.4.4.8 stl.supportsOutput_c Trait
This bit is set in capabilities_c or capabilities if the underlying class supports a toString method that the

HLA Standard Library can employ in macro invocations such as stdout.put or fileio.put to write the class’ data to
some output stream. By default, this value is false. If you provide a toString method for a given data type you
define, then you’ll set this constant to true.

 30.4.4.9 stl.supportsCompare_c Trait
This bit is set in capabilities_c or capabilities if the underlying class supports the isEqual, isLess, and

isLessEqual methods. Some classes may only support an isEqual method, in which case the supportsCompare_c
trait will be false; you may test for isEqual by using the @defined compile-time function.

 30.4.4.10 stl.supportsInsert_c Trait
This bit is set in capabilities_c or capabilities if the class supports data insertion into an object. Generally,

this implies that you have at least an insertVal and an insertRef method available. Other insertion methods may
also be available, use @defined to test for their presence if you need to determine whether they exist for a
particular class object. Not all class types accept the same parameter lists for their insert methods, thus limiting
the generic usefulness of these methods (e.g., table insertions are based on strings rather than an integer index).
You can test the is****_c traits (e.g., isTable_c) to handle such cases.

 30.4.4.11 stl.supportsRemove_c Trait
This bit is set in capabilities_c or capabilitiese if it is possible to remove objects from an STL object at run-

time. Some STL data types (e.g., tables) do not allow the removal of an object once it’s been inserted into the
object; such types will (obviously) set supportsRemove_c to false.

 30.4.4.12 stl.supportsAppend_c Trait
This bit is set in capabilities_c or capabilities if it iis possible to append a data element to the end of some

STL object in memory. Some STL data types (e.g., tables) do not support the notion of a data sequence and,
therefore, do not define an append operation. You can test this compile-time constant to check whether
appending is a valid object before attempting it.

 30.4.4.13 stl.supportsPrepend_c Trait
This bit is set in capabilities_c or capabilities if it iis possible to insert a data element at the front of some

STL object in memory. Some STL data types (e.g., tables) do not support the notion of a data sequence and,
Page 822 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
therefore, do not define a prepend operation. You can test this compile-time constant to check whether
appending is a valid object before attempting it.

 30.4.4.14 stl.supportsForEach_c and supportsrForeach_c Traits
These two compile-time constants (testable in capabilities_c and capabilities) tell you whether the template

type supports a forward iterator (ForEachElement) or a reverse iterator (rForEach). Most STL types, by default,
provide both types of iterators, even when the underlying data type is not a sequence (e.g., tables). For those data
types that do not enforce an underlying sequence, the iterators will sequence through each of the object’s
elements, but the order of the sequence is undefined.

 30.4.4.15 stl.supportsCursor_c Trait
Cursors are special opaque pointer objects that STL methods use to provide access to the underlying objects

of some STL type. If an STL type supports cursors and operations on the type via those cursors, then this trait
will be true for that type. This bit is set in capabilities_c or capabilities if the class supports cursors.

 30.4.4.16 stl.supportsSearch_c Trait
(to be defined; unused as this is being written.)

 30.4.4.17 stl.supportsElementSwap_c Trait
This bit is set in capabilities_c or capabilities if there is a swapElements method for the underlying class

type. This method physically swaps the data between two elements of the STL type. This operation is not
permitted for certain data types (e.g., tables), in which case the method will not exist and this trait will contain
false.

 30.4.4.18 stl.supportsObjSwap_c Trait
This bit is set in capabilities_c or capabilities if the swapObj method is present. swapObj will completely

swap the values of two STL variables (whole objects, not elements of those objects).

 30.4.4.19 stl.elementsAreObjects_c Trait
This bit is set in capabilities_c or capabilities if the elements of a given STL type are themselves class

objects. This trait is set to false if the underlying data type is something other than a class. You may test this
constant, for example, to determine if you should call constructors or destructors for each object created for an
STL container class.

 30.4.4.20 stl.fastInsert_c Trait
This bit is set in performance_c or performance if the class supports insertion and insertion can be

(typically) done in O(1) time. It will be set to false if the class does not support insertion or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.21 stl.fastRemove_c Trait
This bit is set in performance_c or performance if the class supports element removal and removal can be

(typically) done in O(1) time. It will be set to false if the class does not support removal or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.22 stl.fastAppend_c Trait
This bit is set in performance_c or performance if the class supports element append and append can be

(typically) done in O(1) time. It will be set to false if the class does not support append or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.23 stl.fastPrepend_c Trait
This bit is set in performance_c or performance if the class supports element prepend and prepend can be

(typically) done in O(1) time. It will be set to false if the class does not support prepend or it executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").
Released to the Public Domain Page 823

HLA Standard Library
 30.4.4.24 stl.fastSwap_c Trait
This bit is set in performance_c or performance if the class supports whole object swap and swapping can be

(typically) done in O(1) time. It will be set to false if the class does not support object swap or it executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.25 stl.fastSearch_c Trait
(as this was being written, this trait was undefined.)

 30.4.4.26 stl.fastElementSwap_c Trait
This bit is set in performance_c or performance if the class supports element swap and swapping can be

(typically) done in O(1) time. It will be set to false if the class does not support element swap or it executes
slowly (generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.5 Other Run-Time Traits
All objects possess two run-time fields: typeName and isAlloc. The typeName field is a string that provides

the actual name of the object. For example, given a declaration like the following:

type
int32Vector :stl.vector(int32);

then the typeName field will be initialized with the string "int32Vector". The typeName variable should be
treated as a read-only object; you should not modify the pointer or the string data associated with it (actually, the
string data is in a read-only section, so you cannot modify it, but you should modify the string pointer, either).

The isAlloc field will contain true if the object has been allocated on the heap, it will contain false if this
object was not allocated on the heap. The destructor method (destroy) uses this field to determine whether it
needs to deallocate storage when the object is deleted. You may read the value of this field, but you must not
change it.

Container objects (which is all STL objects at this point) have two additional fields: numElements and
containerName. The numElements field is a un32 variable that specifies the number of objects contained within
the container (e.g., the number of vector elements or list nodes). You must not modify this field; treat it as a read-
only object; indeed, there is a getSize method that you can use to retrieve the value of this field. You should use
the getSize method and avoid accessing this field directly.

The containerName field is a string that specifies the container type. This will typically be a string like
"vector", "deque", "list", or "table". You should treat this as a read-only field.

The arrayContainer, vector, deque, list, and table classes all contain their own private data fields. You
should treat all these fields as opaque – that is, private to the class – and you should not modify or even read their
values. Where necessary, these classes will provide accessor functions that return the values of these data fields.

30.5 The Vector Template
(to be written)

30.6 The Deque Template
(to be written)

30.7 The List Template
(to be written)

30.8 The Table Template
Page 824 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
31 The Strings Module (strings.hhf)

HLA provides a sophisticated string handling package. The string data type has been carefully designed for
high performance operations and there are lots of routines that perform almost every imaginable standard
operation on the string data.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computing certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplish the same tasks (and doesn’t disturb the FPU).

31.1 The HLA String Data Type
The first place to start is with the discussion of the string data type itself. A string variable is nothing more

than a four-byte pointer that points at the actual string data. So anytime you pass a string by value to a procedure
or method, you’re actually passing a pointer value. Note that taking the address of a string variable (with the
LEA instruction) takes the address of the pointer, not the address of the actual character data. Therefore, if you
are calling a routine that expects the address of some character data in a register, you would normally move the
contents of a string variable into that register, not load the address of that string variable. For example, the atoi
routine (see the chapter on conversions) expects a pointer to a string variable in the ESI register. If you wish to
pass the address of the first character of a string in ESI, you would use the "mov(s,esi);" instruction, not
"lea(esi,s);".

The HLA Standard Library makes a couple of important assumptions about where string variables are
pointing. First, and most important, string variables must always point at a buffer that is an even multiple of four
bytes long. Many string operations move double words, rather than bytes, around to improve performance. If
the buffer is not an even multiple of four bytes long, some data transfers may inadvertently wipe out data
adjacent to the string buffer or, worse still, cause a general protection fault.

The second assumption the HLA Standard Library makes is that the string data is prefaced by two dword
objects. The first (at offset -8 from the beginning of the character data) contains the maximum number of
characters that can be stored into this string (not counting a zero terminating byte). This value is fixed when
storage is allocated for the string. The HLA string routines use this value to detect a string overflow condition.

The second dword object before the character data (at offset -4) is the current dynamic length of the string
(that is, the actual number of characters currently in the string). Since the maximum and dynamic length fields
are four bytes long, HLA supports (in theory) strings whose lengths are up to four gigabytes in length. In
practice, of course, strings generally don’t grow very large.

HLA strings always contain a zero terminating byte. Strictly speaking, this zero terminating byte is not
absolutely necessary because the HLA string type includes a dynamic length field. As such, most of the HLA
Standard Library routines (but not all) tend to ignore the zero terminating byte other than for use as a delimiter in
the conversion routines. However, having this zero terminating byte allows you to pass HLA strings as
parameters to Windows, FreeBSD, and Linux API functions and other functions that expect C/C++ style zero
terminated strings.

Although not necessary for correct operation, HLA always aligns strings on a double word boundary. This
allows certain string operations to run nearly twice as fast as they would if they were not aligned on a double
word boundary.

To simplify access to the fields of a string, the string.hhf header file contain a record template you may use
to access those fields in a structured fashion. This structure has the following definition:

type
 strRec: record := -8;

 maxlen: int32;
 length: int32;
 strData: char[12];

 endrecord;
Released to the Public Domain Page 825

HLA Standard Library
(The index value after the char type is arbitrary.)
For example, suppose you have a string variable s and you wish to know the current length of this string.

You could obtain the length as follows:

mov(s, esi);
mov((type str.strRec [esi]).length, eax);

(Note that the str.strRec type definition appears within the str namespace, hence the "str." prefix).
As a general rule, you should always use str.alloc (or some routine that winds up calling str.alloc) to allocate

storage for string variables. If you must allocate the storage yourself, be sure the storage allocation follows all
the rules specified earlier.

Consider what HLA does when you declare an initialized string object as follows:

static
s :string := "SomeString";

One might be tempted to think that HLA allocates the string data as part of the s variable. In fact, this is not the
case. HLA places the actual string data (including the length values, terminating byte, and any necessary
padding bytes) somewhere else and then initializes the s object with the address of data data (appearing
elsewhere). There is no direct way by only referencing s at compile-time, to treat the address of this string object
as a constant. This feature would be useful, for example, for initializing string fields of a record constant with the
address of the actual string data.

The HLA Standard Library strings.hhf header file provides a macro that lets you declare string constants and
attach a label to the first character of that string (which is the address you generally want to assign to a string
variable or field). You use this macro almost like the string data type, except you also supply a literal string
constant argument, e.g.,

static
s :str.constant("SomeString");

This creates a string object in memory with s’s address corresponding to the first character of the string object.
Note that s is not an HLA string; remember, an HLA string is a pointer to a string object. The address of s is
what would normally appear in a string variable. Now consider the following code:

type
r:record

s:string;
b:byte;

endrecord;

static
somestr :str.constant("SomeString");
a :r := r:[&somestr, 0];

This initializes the s field of a with a pointer to the string containing the characters "SomeString". This is the
proper way to initialize a string field of a record. Note that HLA will accept the following without complaint, but
it is not correct:

static
somestr :string := "SomeString";
a :r := r:[&somestr, 0];

This example initializes the s field of a with the address of somestr. But this is not string data, rather, it’s the
address of some string data. Therefore, this code initializes field s with a pointer to the pointer of some character
data, rather than the pointer to the character data (which is what you probably want).

Here’s the implementation of the str.constant macro, just in case you’re wondering how it works:

 // str.constant(literal_constant)
Page 826 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 //
 // This macro creates a string constant object whose address
 // you may assign to a string variable. This is useful, for
 // example, when initializing fields of a record with string data.

 #macro constant(__strconst):__strname,__padding;
 forward(__strname);
 align(4);
 dword @length(__strconst), @length(__strconst);
 __strname:char; @nostorage;
 byte __strconst, 0;
 ?__padding := ((4-((@length(__strconst)+1)mod 4))mod 4);
 #while(__padding > 0)

 byte 0;
 ?__padding -= 1;

 #endwhile

 #endmacro;

31.2 String Allocation Macros and Functions
The functions and macros in this group deal with allocating storage for HLA strings.

#macro str.strvar(size)

str.strvar is a macro that will statically allocate storage for a string in the STATIC variable declaration
section (you cannot use str.strvar in any of the other variable declaration sections, including the other static
sections: READONLY, and STORAGE; you can only use it in the STATIC section). This macro emits the
appropriate code to initialize a string pointer variable with the address of appropriate string storage that has
sufficient room to hold a string of at least size characters (size is the parameter passed to this macro).

Example:

static
StaticString: str.strvar(32);

Since the storage is statically allocated for StaticString, there is no need to call str.alloc or any other string/
memory allocation procedure to allocate storage for this variable.

procedure str.init(var b:var; numBytes:dword); @returns("eax");

This function initializes a block of memory for use as a string object. It takes the address of the buffer
variable b and aligns this address on a dword boundary. Then it initializes the maxlen, length, and zero
terminating byte fields at the resulting address. Finally, it returns a pointer to the newly created string object in
EAX. The numBytes field specifies the size of the entire buffer area, not the desired maximum length of the
string. The numBytes field must be 16 or greater, else this routine will raise an ex.ValueOutOfRange exception.
Note that string initialization may consume as many as 15 bytes (up to three bytes to align the address on a dword
boundary, four bytes for the maxlen field, four bytes for the length field, and the string data area must be a
multiple of four bytes long (including the zero terminating byte). This is why the numBytes field must be 16 or
greater. Note that this function initializes the resulting string to the empty string. The maxlen field will contain
the maxium number of charactera that you can store into the resulting string after subtracting the zero
terminating byte, the sizes of the length fields, and any alignment bytes that were necessary.

HLA high-level calling sequence examples:

var
strPtr:string;
buffer:char [128];
Released to the Public Domain Page 827

HLA Standard Library
.

.

.
str.init(buffer, 128);
mov(eax, strPtr);

HLA low-level calling sequence examples:

lea(eax, buffer);// Must push address of buffer object.
push(eax);
pushd(128);
call str.init;

31.3 String Length Calculations
As noted earlier, HLA format strings keep the current dynamic length in the four bytes immediately before

the first byte of character data in the string object. In general, it’s bad programming practice to assume anything
about the internal data structure of a data type such as a string. However, the location of the HLA string field is
well-known and just about everybody (even those who know better) directly access the string length field of the
string data structure, so there is no way that this can ever change at this point. Therefore, you can feel fairly safe
computing the length of a string using the length field of the str.strRec record data type. The typical way this is
done is to load the string pointer value into a register and obtain the length as follows:

mov(someStr, ebx);
mov((type str.strRec [ebx]).length, eax);

It remains a bad idea to access the length field at the fixed numeric offset -4 from the start of the string.
Always use the str.strRec data type if you want to access the string length field.

For those who want a bonafide function that does the job, the HLA standard library does provide a string
function (str.length) that you can call to fetch the length of a string object. The advantage of an actual string
function is that you can take its address and do other things with it that can only be done with an actual
procedure.

procedure str.length(src:string); @returns("eax");

This function returns the current dynamic length of the string you pass as an argument.

HLA high-level calling sequence examples:

str.length(someStr);
mov(eax, lengthOfString);

HLA low-level calling sequence examples:

push(someStr);
call str.length;
mov(eax, lengthOfString);

31.4 String Assignment
The HLA standard library contains several functions you can use to copy string data from one location to

another. These functions copy data from HLA strings to other HLA strings, from zero-terminated strings to HLA
strings, and from other data objects to HLA strings. Some of them copy data to existing (preallocated) string
objects and some of them allocate new storage for strings on the heap.
Page 828 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.a_cpy(src:string); @returns("(type string eax)");

This function copies the string data from src to a new string object it allocates on the heap and returns a
pointer to the new string object in EAX. This function will raise an exception if src is NULL, src is an invalid
pointer, or it cannot allocate sufficient storage.

HLA high-level calling sequence examples:

str.a_cpy(someStr);
mov(eax, newStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_cpy;
mov(eax, newString);

procedure str.cpy(src:string; dest:string);

This function copies the string data from src to dest. The dest argument must point at an allocated string
object in writeable storage that is large enough to hold a copy of the src string data. This function will raise an
exception if src or dest is NULL or is an invalid pointer. It will also raise an exception if the string object pointed
at by dest is too small to hold a copy of src’s data.

HLA high-level calling sequence examples:

str.cpy(someStr, destStr);

HLA low-level calling sequence examples:

push(someStr);
push(destStr);
call str.cpy;

procedure str.a_cpyz(zstr:zstring); @returns("(type string eax)");

This function copies (and converts) the zero-terminated string data from zstr to a new HLA string object it
allocates on the heap and returns a pointer to the new string object in EAX. This function will raise an exception
if zstr is NULL, zstr is an invalid pointer, or it cannot allocate sufficient storage.

HLA high-level calling sequence examples:

str.a_cpyz(someZStr);
mov(eax, newHLAStr);

HLA low-level calling sequence examples:

push(someZStr);
call str.a_cpy;
mov(eax, newHLAString);
Released to the Public Domain Page 829

HLA Standard Library
procedure str.cpyz(zstr:zstring; dest:string);

This function copies (and converts) the zero-terminated string data from zstr to the HLA string dest. The
dest argument must point at an allocated string object in writeable storage that is large enough to hold a copy of
the zstr string data. This function will raise an exception if zstr or dest is NULL or is an invalid pointer. It will
also raise an exception if the string object pointed at by dest is too small to hold a copy of zstr’s data.

HLA high-level calling sequence examples:

str.cpyz(someZStr, destHLStr);

HLA low-level calling sequence examples:

push(someZStr);
push(destHLAStr);
call str.cpyZ;

31.5 Substring Functions
The HLA Standard Library provides four families of functions that extract a portion of some sring (that is, a

substring): the substr, first, last, and truncate families of functions. These functions dffer in how they compute
the starting index of the substring to extract and, in the case of the truncate functions versus the other functions,
how they determine the length of the substring to extract.

All of the substring extraction functions return a true/false status in the carry flag. These functions return
with the carry flag set if the extracted substring is the length the caller specifed (or, in the case of the truncate
functions, the function truncated the specified number of characters). These functions return with the carry flag
clear if the resulting substring is shorter than the length specified (or the number of characters truncated is fewer
than specified) because the source string was too short. All of these functions return "@c" as their ‘returns’
value, so you can use these functions in a HLL-like control structure’s boolean expression (e.g., in an ‘if’
statement) to test for success or failure.

procedure str.a_substr(src:string; index:dword; len:dword);
@returns("@c");

This function extracts a substring of length len starting at character position index with the source string src.
This function allocates storage for the substring data on the heap and returns a pointer to the new substring in the
EAX register (note, however, that the function ‘returns’ value is "@c" and not "EAX"). It is the caller’s
responsibility to free the storage when it is done using the string data.

If the sum of index+len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If index+len is less than or equal to the length
of the source string, then this function returns with the carry flag set to one. Note that this function does not raise
an exception if the index of the source string is less than the length of src but the desired length would take more
characters than are left in the source string. The function simply truncates the result and returns with the carry
flag clear in this situation.

This function raises an ex.StringIndex exception if the value of index is greater than the length of the src
string. It raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an ex.MemoryAllocation
exception if there is an error allocating sufficent storage to hold the substring. It raises an ex.AccessViolation if
src contains an invalid address.

HLA high-level calling sequence examples:

str.a_substr(someStr, index, length);
mov(eax, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(index);
Page 830 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(length);
call str.a_substr;
mov(eax, subString);

procedure str.substr(src:string; index:dword; len:dword; dest:string);
@returns("@c");

This function extracts a substring of length len starting at character position index with the source string src.
This function stores the resulting substring into the destination string object pointed at by the dest argument.

If the sum of index+len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If index+len is less than or equal to the length
of the source string, then this function returns with the carry flag set to one. Note that this function does not raise
an exception if the index of the source string is less than the length of src but the desired length would take more
characters than are left in the source string. The function simply truncates the result and returns with the carry
flag clear in this situation.

This function raises an ex.StringIndex exception if the value of index is greater than the length of the src
string. It raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

Legacy Note: in v1.x of the HLA stdlib, the dest parameter was the second parameter rather than the fourth.
Be aware of this issue when working with older source code.

HLA high-level calling sequence examples:

str.substr(someStr, index, length, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(index);
push(length);
push(subStr);
call str.substr;

procedure str.a_first(src:string; len:dword);
@returns("@c");

This function extracts a substring of length len starting at the beginning of the source string src. This
function allocates storage for the substring data on the heap and returns a pointer to the new substring in the EAX
register (note, however, that the function ‘returns’ value is "@c" and not "EAX"). It is the caller’s responsibility
to free the storage when it is done using the string data. This function is roughly equivalent to calling str.a_substr
with an index value of zero.

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If len is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the len argument is greater than than the length of src. The function simply returns a copy of src as
the result and returns with the carry flag clear in this situation.

This function an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the substring. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_first(someStr, length);
mov(eax, subStr);
Released to the Public Domain Page 831

HLA Standard Library
HLA low-level calling sequence examples:

push(someStr);
push(length);
call str.a_first;
mov(eax, subString);

#macro str.first(string, dword);
#macro str.first(string, dword, dword);

This macro provides a "function overload" declaration for the str.first2 and str.first3 functions. If you pass
this macro two arguments, it creates a call to the str.first2 function; if you pass this macro three arguments, it
calls the str.first3 function.

procedure str.first2(src:string; len:dword);
@returns("@c");

This function extracts a substring of length len starting at the beginning the source string src. This function
stores the resulting substring back into the string object pointed at by the src argument (that is, this function
modifies the src argument in-place).

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If len is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the len argument is greater than than the length of src. The function simply returns a copy of src as
the result and returns with the carry flag clear in this situation.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.first2(someStr, length);

HLA low-level calling sequence examples:

push(someStr);
push(length);
call str.first2;

procedure str.first3(src:string; len:dword; dest:string);
@returns("@c");

This function extracts a substring of length len starting at the beginning the source string src. This function
stores the resulting substring into the destination string object pointed at by the dest argument.

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If len is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the len argument is greater than than the length of src. The function simply returns a copy of src as
the result and returns with the carry flag clear in this situation.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.first3(someStr, length, subStr);
Page 832 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(someStr);
push(length);
push(subStr);
call str.first3;

procedure str.a_last(src:string; len:dword);
@returns("@c");

This function extracts a substring of length len composed of the last len characters of the source string src.
This function allocates storage for the substring data on the heap and returns a pointer to the new substring in the
EAX register (note, however, that the function ‘returns’ value is "@c" and not "EAX"). It is the caller’s
responsibility to free the storage when it is done using the string data. This function is roughly equivalent to
calling str.a_substr with an index value of zero.

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was shorter than expected. If len is less than or equal to the
length of the source string, then this function returns with the carry flag set to one. Note that this function does
not raise an exception if the len argument is greater than than the length of src. The function simply returns a
copy of src as the result and returns with the carry flag clear in this situation.

This function an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the substring. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_last(someStr, length);
mov(eax, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(length);
call str.a_last;
mov(eax, subString);

#macro str.last(string, dword);
#macro str.last(string, dword, dword);

This macro provides a "function overload" declaration for the str.last2 and str.last3 functions. If you pass
this macro two arguments, it creates a call to the str.last2 function; if you pass this macro three arguments, it calls
the str.last3 function.

procedure str.last2(src:string; len:dword);
@returns("@c");

This function extracts a substring of length len composed of the len characters at the end of the source string
src. This function stores the resulting substring back into the string object pointed at by the src argument (that is,
this function modifies the src argument in-place).

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If len is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the len argument is greater than than the length of src. The function simply returns a copy of src as
the result and returns with the carry flag clear in this situation.
Released to the Public Domain Page 833

HLA Standard Library
This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.last2(someStr, length);

HLA low-level calling sequence examples:

push(someStr);
push(length);
call str.last2;

procedure str.last3(src:string; len:dword; dest:string);
@returns("@c");

This function extracts a substring of length len composed of the len characters at the end of the source string
src. This function stores the resulting substring into the destination string object pointed at by the dest argument.

If the value of len is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If len is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the len argument is greater than than the length of src. The function simply returns a copy of src as
the result and returns with the carry flag clear in this situation.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.last3(someStr, length, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(length);
push(subStr);
call str.last3;

procedure str.a_truncate(src:string; cnt:dword);
@returns("@c");

This function is similar to str.a_first insofar as it creates a substring by extracting the characters at the
beginning of the src string. The difference is that the cnt argument specifies the number of characters to delete
from the end of the string rather than the length of the resulting substring. It extracts a substring of length
length(src)-cnt starting at the beginning of the source string src. This function allocates storage for the substring
data on the heap and returns a pointer to the new substring in the EAX register (note, however, that the function
‘returns’ value is "@c" and not "EAX"). It is the caller’s responsibility to free the storage when it is done using
the string data. This function is roughly equivalent to calling str.a_substr with an index value of zero.

If the value of cnt is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) and returns an empty string. If cnt is less than or equal to the length of the source string,
then this function returns with the carry flag set to one. Note that this function does not raise an exception if the
cnt argument is greater than than the length of src. The function simply returns the empty string as the result and
returns with the carry flag clear in this situation.

This function an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the substring. It raises an
ex.AccessViolation if src contains an invalid address.
Page 834 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

str.a_truncate(someStr, charsToDelete);
mov(eax, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(charsToDelete);
call str.a_truncate;
mov(eax, subString);

#macro str.truncate(string, dword);
#macro str.truncate(string, dword, dword);

This macro provides a "function overload" declaration for the str.truncate2 and str.truncate3 functions. If
you pass this macro two arguments, it creates a call to the str.truncate2 function; if you pass this macro three
arguments, it calls the str.truncate3 function.

procedure str.truncate2(src:string; cnt:dword);
@returns("@c");

This function extracts a substring of length length(src)-cnt starting at the beginning the source string src.
This function stores the resulting substring back into the string object pointed at by the src argument (that is, this
function modifies the src argument in-place).

If the value of cnt is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If cnt is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the cnt argument is greater than than the length of src. The function simply returns an empty string
as the result and returns with the carry flag clear in this situation.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.truncate2(someStr, chars2Delete);

HLA low-level calling sequence examples:

push(someStr);
push(chars2Delete);
call str.truncate2;

procedure str.truncate3(src:string; len:dword; dest:string);
@returns("@c");

This function extracts a substring of length length(src)-cnt starting at the beginning the source string src.
This function stores the resulting substring into the string object pointed at by the dest argument.

If the value of cnt is greater than the length of the source string, this function returns with the carry flag
cleared (equal to zero) to indicate that the substring was truncated. If cnt is less than or equal to the length of the
source string, then this function returns with the carry flag set to one. Note that this function does not raise an
exception if the cnt argument is greater than than the length of src. The function simply returns an empty string
as the result and returns with the carry flag clear in this situation.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:
Released to the Public Domain Page 835

HLA Standard Library
str.truncate3(someStr, cnt, subStr);

HLA low-level calling sequence examples:

push(someStr);
push(cnt);
push(subStr);
call str.truncate3;

31.6 String Insertion and Deletion Functions
The HLA Standard Library provides routines that insert characters (and strings) into other strings, or delete

portions of a string.

procedure str.a_insert(ins:string; start:dword; src:string);
@returns("(type string eax)");

This function creates a new string on the heap (returning a pointer to the new string in EAX) consisting of
the characters in src with the ins string inserted at position start. That is, the resultant string consists of the first
start characters of src followed by the characters in ins, followed by the remaining characters in src (after index
start). Note that if start is equal to the length of src, then this function appends the ins string to the end of the
character data from the src string. It is the caller’s responsibility to free up the storage on the heap after the caller
is done with the string data.

If the value of start is greater than the length of the src string, this function raises an ex.StringIndex
exception. This function an ex.AttemptToDerefNULL exception if src or ins contain NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the new string. It raises an
ex.AccessViolation if src or ins contain an invalid address.

HLA high-level calling sequence examples:

str.a_insert(str2insert, index, someStr);
mov(eax, newStr);

HLA low-level calling sequence examples:

push(str2insert);
push(index);
push(someStr);
call str.a_insert;
mov(eax, newStr);

#macro str.insert(string, dword, string);
#macro str.insert(string, dword, string, string);

This macro provides a "function overload" declaration for the str.insert3 and str.insert4 functions. If you
pass this macro three arguments, it creates a call to the str.insert3 function; if you pass this macro four
arguments, it calls the str.insert4 function.

procedure str.insert3(ins:string; start:dword; dest:string);

This function inserts a copy of the ins string at index start in the dest string. If start is equal to the length of
dest, then this function concatenates the character data in ins to the end of the dest string.

If the value of start is greater than the length of dest, this function raises an ex.StringIndex exception.
Page 836 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.insert3(str2Insert, insPosition, destStr);

HLA low-level calling sequence examples:

push(str2Insert);
push(insPosition);
push(destStr);
call str.insert3;

procedure str.insert4
(

str2Insert :string;
start :dword;
insertInto :string;
dest :string

);

This function creates a new string, which it copies into the string object pointed at by the dest argument, by
inserting the str2Insert string into the insertInto string at position start. That is, this function copies the first start
characters from insertInto to dest, followed by the character data pointed at by str2Insert, followed by the
remaining characters from insertInto.

If the value of start is greater than the length of the insertInto string, this function raises an ex.StringIndex
exception. This function raises an ex.AttemptToDerefNULL exception if str2Insert, insertInto, or dest contain
NULL. It raises an ex.AccessViolation if insertInto, str2Insert, or dest contain an invalid address. It raises an
ex.StringOverflow exception if the string object pointed at by dest isn’t large enough to hold the result.

HLA high-level calling sequence examples:

str.insert4(insStr, position, subst, destStr);

HLA low-level calling sequence examples:

push(insStr);
push(position);
push(subst);
push(destStr);
call str.insert4;

procedure str.a_delete(src:string; start:dword; len:dword);
@returns("@c");

This function creates a new string on the heap (and returns a pointer to it in EAX) containing the characters
from src after deleting len characters beginning at position start. It is the caller’s responsibility to free the storage
(e.g., via str.free) when it is done using the string data. This function returns with the carry flag set to denote that
it created a string by deleting the specified number of characters; it returns with the carry flag clear if the string is
creates was unable to delete len characters because the sum of start+len was greater than the length of the src
string (in which case the resulting string consists of the characters in src from index zero through start-1).

This function raises an ex.StringIndex exception if the value of start is greater than the length of the src
string. It raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an ex.MemoryAllocation
exception if there is an error allocating sufficent storage to hold the deleteing. It raises an ex.AccessViolation if
src contains an invalid address.
Released to the Public Domain Page 837

HLA Standard Library
HLA high-level calling sequence examples:

str.a_delete(someStr, index, length);
mov(eax, delete);

HLA low-level calling sequence examples:

push(someStr);
push(index);
push(length);
call str.a_delete;
mov(eax, deleteing);

#macro str.delete(string, dword, dword);
#macro str.delete(string, dword, dword, string);

This macro provides a "function overload" declaration for the str.delete3 and str.delete4 functions. If you
pass this macro three arguments, it creates a call to the str.delete3 function; if you pass this macro four
arguments, it calls the str.delete4 function.

procedure str.delete3(dest:string; index:dword; len:dword);
@returns("@c");

This function deletes len characters from dest starting at character position index. This function modifies the
dest argument in place. This function returns with the carry flag set to denote that it created a string by deleting
the specified number of characters; it returns with the carry flag clear if the string is creates was unable to delete
len characters because the sum of start+len was greater than the length of the dest string (in which case the
resulting string consists of the characters in src from index zero through start-1).

This function raises an ex.StringIndex exception if the value of index is greater than the length of the src
string. It raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.delete3(someStr, index, length);

HLA low-level calling sequence examples:

push(someStr);
push(index);
push(length);
call str.delete3;

procedure str.delete4(src:string; index:dword; len:dword; dest:string);
@returns("@c");

This function creates a new string by deleting len characters in src starting at character position index. This
function stores the resulting string into the destination string object pointed at by the dest argument. This
function returns with the carry flag set to denote that it created a string by deleting the specified number of
characters; it returns with the carry flag clear if the string is creates was unable to delete len characters because
the sum of start+len was greater than the length of the src string (in which case the resulting string consists of the
characters in src from index zero through start-1).
Page 838 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This function raises an ex.StringIndex exception if the value of index is greater than the length of the src
string. It raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is not large enough to receive the new string.

HLA high-level calling sequence examples:

str.delete4(someStr, index, length, delete);

HLA low-level calling sequence examples:

push(someStr);
push(index);
push(length);
push(delete);
call str.delete4;

procedure str.a_delLeadingSpaces(src:string);
@returns("(type string eax)");

This function creates a new string on the heap (and returns a pointer to it in EAX) containing the characters
from src after deleting any leading space characters from the string. It is the caller’s responsibility to free the
storage allocated by this function when the storage is no longer needed (e.g., by calling str.free).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the resulting string. It
raises an ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_delLeadingSpaces(someStr);
mov(eax, newStr);

.

.

.
str.free(newStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_delLeadingSpaces;
mov(eax, newStr);

.

.

.
str.free(newStr);

#macro str.delLeadingSpaces(string, dword, dword);
#macro str.delLeadingSpaces(string, dword, dword, string);

This macro provides a "function overload" declaration for the str.delLeadingSpaces1 and
str.delLeadingSpaces2 functions. If you pass this macro three arguments, it creates a call to the
str.delLeadingSpaces1 function; if you pass this macro four arguments, it calls the str.delLeadingSpaces2
function.
Released to the Public Domain Page 839

HLA Standard Library
procedure str.delLeadingSpaces1(dest:string);

This function deletes all the leading space characters from the beginning of the dest string. This function
modifies the dest argument in place.

This function raises an ex.AttemptToDerefNULL exception if dest contains NULL. It raises an
ex.AccessViolation if dest contains an invalid address.

HLA high-level calling sequence examples:

str.delLeadingSpaces1(someStr);

HLA low-level calling sequence examples:

push(someStr);
call str.delLeadingSpaces1;

procedure str.delLeadingSpaces2(src:string; dest:string);

This function creates a new string by copying all the characters from src to dest except for any leading space
characters.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.delLeadingSpaces2(someStr, trimmedStr);

HLA low-level calling sequence examples:

push(someStr);
push(trimmedStr);
call str.delLeadingSpaces2;

procedure str.a_delTrailingSpaces(src:string);
@returns("(type string eax)");

This function creates a new string on the heap (and returns a pointer to it in EAX) containing the characters
from src after deleting any trailing space characters from the end of the string. It is the caller’s responsibility to
free the storage allocated by this function when the storage is no longer needed (e.g., by calling str.free).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the result. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_delTrailingSpaces(someStr);
mov(eax, newStr);

.

.

.
str.free(newStr);

HLA low-level calling sequence examples:
Page 840 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(someStr);
call str.a_delTrailingSpaces;
mov(eax, newStr);

.

.

.
str.free(newStr);

#macro str.delTrailingSpaces(string);
#macro str.delTrailingSpaces(string, string);

This macro provides a "function overload" declaration for the str.delTrailingSpaces1 and
str.delTrailingSpaces2 functions. If you pass this macro one argument, it creates a call to the
str.delTrailingSpaces1 function; if you pass this macro two arguments, it calls the str.delTrailingSpaces2
function.

procedure str.delTrailingSpaces1(dest:string);

This function deletes all the trailing space characters from the end of the dest string. This function modifies
the dest argument in place.

This function raises an ex.AttemptToDerefNULL exception if dest contains NULL. It raises an
ex.AccessViolation if dest contains an invalid address.

HLA high-level calling sequence examples:

str.delTrailingSpaces1(someStr);

HLA low-level calling sequence examples:

push(someStr);
call str.delTrailingSpaces1;

procedure str.delTrailingSpaces2(src:string; dest:string);

This function creates a new string by copying all the characters from src to dest except for any trailing space
characters found at the end of the src string.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.delTrailingSpaces2(someStr, trimmedStr);

HLA low-level calling sequence examples:

push(someStr);
push(trimmedStr);
call str.delTrailingSpaces2;
Released to the Public Domain Page 841

HLA Standard Library
procedure str.a_trim(src:string);
@returns("(type string eax)");

This function creates a new string on the heap (and returns a pointer to it in EAX) containing the characters
from src after deleting any leading and trailing space characters from the src string. It is the caller’s
responsibility to free the storage allocated by this function when the storage is no longer needed (e.g., by calling
str.free).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the resulting string. It
raises an ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_trim(someStr);
mov(eax, newStr);

.

.

.
str.free(newStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_trim;
mov(eax, newStr);

.

.

.
str.free(newStr);

#macro str.trim(string);
#macro str.trim(string, string);

This macro provides a "function overload" declaration for the str.trim1 and str.trim2 functions. If you pass
this macro one argument, it creates a call to the str.trim1 function; if you pass this macro two arguments, it calls
the str.trim2 function.

procedure str.trim1(dest:string);

This function deletes all the leading and trailing space characters from the dest string. This function modifies
the dest argument in place.

This function raises an ex.AttemptToDerefNULL exception if dest contains NULL. It raises an
ex.AccessViolation if dest contains an invalid address.

HLA high-level calling sequence examples:

str.trim1(someStr);

HLA low-level calling sequence examples:

push(someStr);
call str.trim1;

procedure str.trim2(src:string; dest:string);

This function creates a new string by copying all the characters from src to dest except for any leading and
trailing space characters found at the beginning and end of the src string.
Page 842 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.trim2(someStr, trimmedStr);

HLA low-level calling sequence examples:

push(someStr);
push(trimmedStr);
call str.trim2;

procedure str.a_rmvTrailingSpaces(src:string);
@returns("(type string eax)");

Functionally identical to str.a_delTrailingSpaces except this function deletes spaces and tab characters from
the end of the source string.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.MemoryAllocation exception if there is an error allocating sufficent storage to hold the result. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.a_rmvTrailingSpaces(someStr);
mov(eax, newStr);

.

.

.
str.free(newStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_rmvTrailingSpaces;
mov(eax, newStr);

.

.

.
str.free(newStr);

procedure str.rmvTrailingSpaces1(dest:string);

Functionally identical to str.delTrailingSpace1s except this function deletes spaces and tab characters from
the end of the dest string.

This function raises an ex.AttemptToDerefNULL exception if dest contains NULL. It raises an
ex.AccessViolation if dest contains an invalid address.

HLA high-level calling sequence examples:

str.rmvTrailingSpaces1(someStr);
Released to the Public Domain Page 843

HLA Standard Library
HLA low-level calling sequence examples:

push(someStr);
call str.rmvTrailingSpaces1;

procedure str.rmvTrailingSpaces2(src:string; dest:string);

Functionally identical to str.delTrailingSpaces2 except this function deletes spaces and tab characters from
the end of the string.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address.

HLA high-level calling sequence examples:

str.rmvTrailingSpaces2(someStr, trimmedStr);

HLA low-level calling sequence examples:

push(someStr);
push(trimmedStr);
call str.rmvTrailingSpaces2;

31.7 String Comparison Functions
The HLA Standard Library provides routines that compare two strings and return the result of the

comparison. There are two sets of comparison functions – case sensitive comparisons and case insensitive
comparisons.

Legacy Note: These functions return true/false in the carry flag (set/clear). They preserve all the other
registers. The original functions in v1.x of the HLA stdlib returned the comparison result in the EAX/AL
register. If you have old code that requires the result in EAX, you can easily compute the result in EAX by
placing a "mov(0, eax);" and "adc(0, eax);" instruction pair after the call. For example:

str.eq(str1, str2);
mov(0, eax);
adc(0, eax);

procedure str.eq(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if they are
equal (carry flag is clear if they are not equal).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.eq(hw, "Hello World")) then

// do something if hw is equal to "Hello World"

endif;
Page 844 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.eq;
jnc hw_NE_HelloWorld

// do something if hw is equal to "Hello World"

hw_NE_HelloWorld:

procedure str.ne(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if they are
not equal (carry flag is clear if they are equal).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ne(hw, "Hello World")) then

// do something if hw is not equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ne;
jnc hw_EQ_HelloWorld

// do something if hw is not equal to "Hello World"

hw_EQ_HelloWorld:

procedure str.lt(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if src1 <
src2 (carry flag is clear if src1 >= src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.lt(hw, "Hello World")) then

// do something if hw is less than "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
Released to the Public Domain Page 845

HLA Standard Library
pushd(hwLiteralString);
call str.lt;
jnc hw_NLT_HelloWorld

// do something if hw is less than "Hello World"

hw_NLT_HelloWorld:

procedure str.le(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if src1 <=
src2 (carry flag is clear if src1 > src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.le(hw, "Hello World")) then

// do something if hw is less than or equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.le;
jnc hw_NLE_HelloWorld

// do something if hw is less than or equal to "Hello World"

hw_NLE_HelloWorld:

procedure str.gt(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if src1 >
src2 (carry flag is clear if src1 <= src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.gt(hw, "Hello World")) then

// do something if hw is greater than "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.gt;
jnc hw_NGT_HelloWorld
Page 846 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// do something if hw is greater than "Hello World"

hw_NGT_HelloWorld:

procedure str.ge(src1:string; src2:string); @returns("@c");

This function does a case-sensitive comparison of src1 to src2 and returns with the carry flag set if src1 >=
src2 (carry flag is clear if src1 < src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ge(hw, "Hello World")) then

// do something if hw is greater than or equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ge;
jnc hw_NGE_HelloWorld

// do something if hw is greter than or equal to "Hello World"

hw_NGE_HelloWorld:

procedure str.ieq(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if they are
equal (carry flag is clear if they are not equal).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ieq(hw, "Hello World")) then

// do something if hw is equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ieq;
jnc hw_NE_HelloWorld

// do something if hw is equal to "Hello World"

hw_NE_HelloWorld:
Released to the Public Domain Page 847

HLA Standard Library
procedure str.ine(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if they are
not equal (carry flag is clear if they are equal).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ine(hw, "Hello World")) then

// do something if hw is not equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ine;
jnc hw_EQ_HelloWorld

// do something if hw is not equal to "Hello World"

hw_EQ_HelloWorld:

procedure str.ilt(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if src1 <
src2 (carry flag is clear if src1 >= src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ilt(hw, "Hello World")) then

// do something if hw is less than "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ilt;
jnc hw_NLT_HelloWorld

// do something if hw is less than "Hello World"

hw_NLT_HelloWorld:
Page 848 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.ile(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if src1 <=
src2 (carry flag is clear if src1 > src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ile(hw, "Hello World")) then

// do something if hw is less than or equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ile;
jnc hw_NLE_HelloWorld

// do something if hw is less than or equal to "Hello World"

hw_NLE_HelloWorld:

procedure str.igt(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if src1 >
src2 (carry flag is clear if src1 <= src2).

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.igt(hw, "Hello World")) then

// do something if hw is greater than "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.igt;
jnc hw_NGT_HelloWorld

// do something if hw is greater than "Hello World"

hw_NGT_HelloWorld:

procedure str.ige(src1:string; src2:string); @returns("@c");

This function does a case-insensitive comparison of src1 to src2 and returns with the carry flag set if src1 >=
src2 (carry flag is clear if src1 < src2).
Released to the Public Domain Page 849

HLA Standard Library
This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address.

HLA high-level calling sequence examples:

if(str.ige(hw, "Hello World")) then

// do something if hw is greater than or equal to "Hello World"

endif;

HLA low-level calling sequence examples:

push(hw);
pushd(hwLiteralString);
call str.ige;
jnc hw_NGE_HelloWorld

// do something if hw is greater than or equal to "Hello World"

hw_NGE_HelloWorld:

31.8 String Searching Functions
The HLA Standard Library provides several routines that search for strings or character patterns within other

strings. These functions all return their status (true=found, false=not found) in the carry flag (set=true, clear-
false). Their "returns" string is "@c" so you can call these functions in an boolean expression (e.g., in an IF
statement) to test the return result.

Legacy Node: many HLA stdlib v1.x versions of these routines returned the true/false status in the EAX
register. If your code requires this, then you can move the carry flag into EAX immediately after a call to one of
these functions using code like the following:

mov(0, eax);
adc(0, eax);

#macro str.prefix(string, string);
#macro str.prefix(string, dword, string);

This macro provides a "function overload" declaration for the str.prefix2 and str.prefix3 functions. If you
pass this macro two arguments, it creates a call to the str.prefix2 function; if you pass this macro three arguments,
it calls the str.prefix3 function.

procedure str.prefix2(baseStr:string; subst:string); @returns("@c");

This function checks to see if subst is a prefix of baseStr – that is, it compares the first characters of baseStr
against subst and returns true in the carry flag if all of the characters in subst match the characters at the
beginning of the baseStr string. Note that this function can still return true if baseStr is longer than subst, as long
as the prefix characters of baseStr match all the characters of subst this function will return true in the carry flag.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.prefix2(hw, "Hello World")) then

// do something if hw begins with the string "Hello World"
Page 850 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
push(hwLiteralString);
call str.prefix2;
jnc hwNotPrefix;

// do something if hw begins with the string "Hello World"

hwNotPrefix:

procedure str.prefix3(baseStr:string; offset:dword; substr:string);
@returns("@c");

This function checks to see if subst is a prefix of baseStr beginning at character position offset in baseStr–
that is, it compares the characters of baseStr atarting at position offset against subst and returns true in the carry
flag if all of the characters in subst match the corresponding characters at the beginning of the baseStr string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.prefix3(hw, 10, "Hello World")) then

// do something if the 10th character into hw
// starts the substring "Hello World"

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
pushd(10);
push(hwLiteralString);
call str.prefix3;
jnc hwNotPrefix;

// do something if the 10th character into hw
// starts the substring "Hello World"

hwNotPrefix:
Released to the Public Domain Page 851

HLA Standard Library

#macro str.index(string, string);
#macro str.index(string, dword, string);

This macro provides a "function overload" declaration for the str.index2 and str.index3 functions. If you
pass this macro two arguments, it creates a call to the str.index2 function; if you pass this macro three arguments,
it calls the str.index3 function.

procedure str.index2(baseStr:string; subst:string); @returns("@c");

This function checks to see if subst is found within baseStr. This function returns with the carry flag set if
the substring pointed at by subst is present within the string pointed at by baseStr; it returns with the carry flag
clear if subst’s string is not found within baseStr. This function also returns the index of subst within baseStr in
the EAX register. If subst’s string is a substring of baseStr, then this function returns the index into baseStr in the
EAX register; it returns -1 in EAX if subst’s string is not a substring of baseStr. If there are multiple occurrences
of subst within baseStr, this function locates the first one it finds by searching from the beginning of the string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.index2(hw, "Hello World")) then

// do something if hw contains the string "Hello World"

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
push(hwLiteralString);
call str.index2;
jnc hwNotInStr;

// do something if hw contains the string "Hello World"

hwNotInStr:

procedure str.index3(baseStr:string; offset:dword; subst:string);
@returns("@c");

This function checks to see if subst is found within baseStr starting at character position offset within
baseStr. This function returns with the carry flag set if the substring pointed at by subst is present within the
string pointed at by baseStr+offset; it returns with the carry flag clear if subst’s string is not found within
baseStr+offset. If subst’s string is a substring of baseStr+offset, then this function returns the index into baseStr
in the EAX register; it returns -1 in EAX if subst’s string is found in the substring beginning at baseStr+offset. If
there are multiple occurrences of subst within baseStr, this function locates the first one it finds by searching for
subst starting at character position offset within baseStr.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.
Page 852 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

if(str.index3(hw, 10, "Hello World")) then

// do something if the "Hello World" is found in hw

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
pushd(10);
push(hwLiteralString);
call str.index3;
jnc hwNotInStr;

// do something if the "Hello World" is found in hw

// somewhere beyond the 10th character position.

hwNotInStr:

#macro str.iindex(string, string);
#macro str.iindex(string, dword, string);

This macro provides a "function overload" declaration for the str.iindex2 and str.iindex3 functions. If you
pass this macro two arguments, it creates a call to the str.iindex2 function; if you pass this macro three
arguments, it calls the str.iindex3 function.

procedure str.iindex2(baseStr:string; subst:string); @returns("@c");

Similar in function to str.index2 except this function does a case-insenstive search for subst within baseStr.
If there are multiple occurrences of subst within baseStr, this function locates the first one it finds by searching
from the beginning of the string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.iindex2(hw, "Hello World")) then

// do something if hw contains the string "Hello World"
// (or any permutation involving upper or lower case chars)

endif;

HLA low-level calling sequence examples:

static
Released to the Public Domain Page 853

HLA Standard Library
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
push(hwLiteralString);
call str.iindex2;
jnc hwNotInStr;

// do something if hw contains the string "Hello World"
// (or any permutation involving upper or lower case chars)

hwNotInStr:

procedure str.iindex3(baseStr:string; offset:dword; subst:string);
@returns("@c");

This function is similar to str.index3 except it does a case-insensitive search for subst within baseStr. If there
are multiple occurrences of subst within baseStr, this function locates the first one it finds by searching for subst
starting at character position offset within baseStr.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.iindex3(hw, 10, "Hello World")) then

// do something if the "Hello World" (or any permutation
// involving upper and lower case) is found in hw

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
pushd(10);
push(hwLiteralString);
call str.iindex3;
jnc hwNotInStr;

// do something if the "Hello World" (or any permutation
// involving upper and lower case) is found in hw

// somewhere beyond the 10th character position.

hwNotInStr:
Page 854 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
#macro str.rindex(string, string);
#macro str.rindex(string, dword, string);

This macro provides a "function overload" declaration for the str.rindex2 and str.rindex3 functions. If you
pass this macro two arguments, it creates a call to the str.rindex2 function; if you pass this macro three
arguments, it calls the str.rindex3 function.

procedure str.rindex2(baseStr:string; substr:string); @returns("@c");

This function checks to see if subst is found within baseStr. This function returns with the carry flag set if
the substring pointed at by subst is present within the string pointed at by baseStr; it returns with the carry flag
clear if subst’s string is not found within baseStr. This function also returns the index of subst within baseStr in
the EAX register. If subst’s string is a substring of baseStr, then this function returns the index into baseStr in the
EAX register; it returns -1 in EAX if subst’s string is not a substring of baseStr. If there are multiple occurrences
of subst within baseStr, this function locates the last one it finds by searching backwards from the end of baseStr.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.rindex2(hw, "Hello World")) then

// do something if hw contains the string "Hello World"

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
push(hwLiteralString);
call str.rindex2;
jnc hwNotInStr;

// do something if hw contains the string "Hello World"

hwNotInStr:

procedure str.rindex3(baseStr:string; offset:dword; subst:string);
@returns("@c");

This function checks to see if subst is found within baseStr starting at character position offset within
baseStr. This function returns with the carry flag set if the substring pointed at by subst is present within the
string pointed at by baseStr+offset; it returns with the carry flag clear if subst’s string is not found within
baseStr+offset. If subst’s string is a substring of baseStr+offset, then this function returns the index into baseStr
in the EAX register; it returns -1 in EAX if subst’s string is found in the substring beginning at baseStr+offset. If
there are multiple occurrences of subst within baseStr, this function locates the first one it finds by searching for
subst starting at the last character position within baseStr up to character position offset.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.rindex3(hw, 10, "Hello World")) then
Released to the Public Domain Page 855

HLA Standard Library
// do something if the "Hello World" is found in hw

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
pushd(10);
push(hwLiteralString);
call str.rindex3;
jnc hwNotInStr;

// do something if the "Hello World" is found in hw

// somewhere beyond the 10th character position.

hwNotInStr:

#macro str.irindex(string, string);
#macro str.irindex(string, dword, string);

This macro provides a "function overload" declaration for the str.irindex2 and str.irindex3 functions. If you
pass this macro two arguments, it creates a call to the str.irindex2 function; if you pass this macro three
arguments, it calls the str.irindex3 function.

procedure str.irindex2(baseStr:string; subst:string); @returns("@c");

Similar in function to str.rindex2 except this function does a case-insenstive search for subst within baseStr.
If there are multiple occurrences of subst within baseStr, this function locates the last one in baseStr finds by
searching backwards from the end of the string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.irindex2(hw, "Hello World")) then

// do something if hw contains the string "Hello World"
// (or any permutation involving upper or lower case chars)

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

Page 856 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(hw);
push(hwLiteralString);
call str.irindex2;
jnc hwNotInStr;

// do something if hw contains the string "Hello World"
// (or any permutation involving upper or lower case chars)

hwNotInStr:

procedure str.irindex3(baseStr:string; offset:dword; subst:string);
@returns("@c");

This function is similar to str.rindex3 except it does a case-insensitive search for subst within baseStr. If
there are multiple occurrences of subst within baseStr, this function locates the last one in baseStr by searching
backwards for subst starting at the end of baseStr down to character position offset.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.irindex3(hw, 10, "Hello World")) then

// do something if the "Hello World" (or any permutation
// involving upper and lower case) is found in hw

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(hw);
pushd(10);
push(hwLiteralString);
call str.irindex3;
jnc hwNotInStr;

// do something if the "Hello World" (or any permutation
// involving upper and lower case) is found in hw

// somewhere beyond the 10th character position.

hwNotInStr:
Released to the Public Domain Page 857

HLA Standard Library
#macro str.chpos(string, string);
#macro str.chpos(string, dword, string);

This macro provides a "function overload" declaration for the str.chpos2 and str.chpos3 functions. If you
pass this macro two arguments, it creates a call to the str.chpos2 function; if you pass this macro three arguments,
it calls the str.chpos3 function.

procedure str.chpos2(baseStr:string; src:char); @returns("@c");

This function checks to see if src is found within baseStr. This function returns with the carry flag set if the
character src is present within the string pointed at by baseStr; it returns with the carry flag clear if src is not
found within baseStr. This function also returns the index of src within baseStr in the EAX register. If src is
present in baseStr, then this function returns the index into baseStr in the EAX register; it returns -1 in EAX if
src is not present in baseStr. If there are multiple occurrences of src within baseStr, this function locates the first
one it finds by searching from the beginning of the string.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.chpos2(someStr, ‘a’)) then

// do something if hw contains the character ‘a’

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(‘a’);
call str.chpos2;
jnc aNotInStr;

// do something if hw contains the character ‘a’.

aNotInStr:

procedure str.chpos3(baseStr:string; offset:dword; src:char);
@returns("@c");

This function checks to see if src is found within baseStr starting at character position offset within baseStr.
This function returns with the carry flag set if src is present within the string pointed at by baseStr+offset; it
returns with the carry flag clear if src is not found within baseStr+offset. If src is found in baseStr+offset, then
this function returns the index into baseStr in the EAX register; it returns -1 in EAX if src is found in the
substring beginning at baseStr+offset. If there are multiple occurrences of src within baseStr, this function
locates the first one it finds by searching for src starting at character position offset within baseStr.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.chpos3(hw, 10, ‘a’)) then

// do something if the ‘a’ is found in hw

// somewhere beyond the 10th character position.

endif;
Page 858 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(hw);
pushd(10);
pushd(‘a’);
call str.chpos3;
jnc hwNotInStr;

// do something if the ‘a’ is found in hw

// somewhere beyond the 10th character position.

hwNotInStr:

#macro str.ichpos(string, string);
#macro str.ichpos(string, dword, string);

This macro provides a "function overload" declaration for the str.ichpos2 and str.ichpos3 functions. If you
pass this macro two arguments, it creates a call to the str.ichpos2 function; if you pass this macro three
arguments, it calls the str.ichpos3 function.

procedure str.ichpos2(baseStr:string; src:char); @returns("@c");

Similar in function to str.chpos2 except this function does a case-insenstive search for src within baseStr. If
there are multiple occurrences of src within baseStr, this function locates the first one it finds by searching from
the beginning of the string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.ichpos2(someStr, ‘b’)) then

// do something if someStr contains the character ‘b’ or ‘B’

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(‘b’);
call str.ichpos2;
jnc hwNotInStr;

// do something if someStr contains the character ‘b’ or ‘B’

hwNotInStr:

procedure str.ichpos3(baseStr:string; offset:dword; src:char);
@returns("@c");

This function is similar to str.chpos3 except it does a case-insensitive search for src within baseStr. If there
are multiple occurrences of src within baseStr, this function locates the first one it finds by searching for src
starting at character position offset within baseStr.
Released to the Public Domain Page 859

HLA Standard Library
This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.ichpos3(someStr, 10, ‘c’)) then

// do something if ‘c’ or ‘C’ is found in someStr

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
pushd(‘c’);
call str.ichpos3;
jnc hwNotInStr;

// do something if ‘c’ or ‘C’ is found in someStr

// somewhere beyond the 10th character position.

hwNotInStr:

#macro str.rchpos(string, string);
#macro str.rchpos(string, dword, string);

This macro provides a "function overload" declaration for the str.rchpos2 and str.rchpos3 functions. If you
pass this macro two arguments, it creates a call to the str.rchpos2 function; if you pass this macro three
arguments, it calls the str.rchpos3 function.

procedure str.rchpos2(baseStr:string; src:char); @returns("@c");

This function checks to see if src is found within baseStr. This function returns with the carry flag set if src
is present within the string pointed at by baseStr; it returns with the carry flag clear if src is not found within
baseStr. This function also returns the index of src within baseStr in the EAX register. If src is in baseStr, then
this function returns the index into baseStr in the EAX register; it returns -1 in EAX if src is not present in
baseStr. If there are multiple occurrences of src within baseStr, this function locates the last one it finds by
searching backwards from the end of baseStr.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.rchpos2(someStr, ‘d’)) then

// do something if someStr contains ‘d’

endif;

HLA low-level calling sequence examples:

static
Page 860 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(someStr);
pushd(‘d’);
call str.rchpos2;
jnc hwNotInStr;

// do something if someStr contains ‘d’

hwNotInStr:

procedure str.rchpos3(baseStr:string; offset:dword; src:char);
@returns("@c");

This function checks to see if src is found within baseStr starting at character position offset within baseStr.
This function returns with the carry flag set if src is present within the string pointed at by baseStr+offset; it
returns with the carry flag clear if src is not found within baseStr+offset. If src is present in baseStr+offset, then
this function returns the index into baseStr in the EAX register; it returns -1 in EAX if src is not found in the
substring beginning at baseStr+offset. If there are multiple occurrences of src within baseStr, this function
locates the first one it finds by searching backwards for src starting at the last character position within baseStr
(down to character position offset).

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.rchpos3(someStr, 10, ‘e’)) then

// do something if ‘e’ is found in someStr

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

static
hwLiteralString :string := "Hello World";
.
.
.

push(someStr);
pushd(10);
pushd(‘e’);
call str.rchpos3;
jnc hwNotInStr;

// do something if ‘e’ is found in someStr

// somewhere beyond the 10th character position.

hwNotInStr:

#macro str.irchpos(string, string);
#macro str.irchpos(string, dword, string);

This macro provides a "function overload" declaration for the str.irchpos2 and str.irchpos3 functions. If you
pass this macro two arguments, it creates a call to the str.irchpos2 function; if you pass this macro three
arguments, it calls the str.irchpos3 function.
Released to the Public Domain Page 861

HLA Standard Library
procedure str.irchpos2(baseStr:string; src:char); @returns("@c");

Similar in function to str.rchpos2 except this function does a case-insenstive search for src within baseStr. If
there are multiple occurrences of src within baseStr, this function locates the last one in baseStr finds by
searching backwards from the end of the string.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.irchpos2(someStr, ‘f’)) then

// do something if someStr contains ‘f’ or ‘F’

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(‘f’);
call str.irchpos2;
jnc hwNotInStr;

// do something if someStr contains ‘f’ or ‘F’

hwNotInStr:

procedure str.irchpos3(baseStr:string; offset:dword; src:char);
@returns("@c");

This function is similar to str.rchpos3 except it does a case-insensitive search for src within baseStr. If there
are multiple occurrences of src within baseStr, this function locates the last one in baseStr by searching
backwards for src starting at the end of baseStr down to character position offset.

This function raises an ex.AttemptToDerefNULL exception if subst or baseStr contain NULL. It raises an
ex.AccessViolation if subst or baseStr contain an invalid address. It raises an ex.StringIndexError exception if
offset is greater than the length of baseStr.

HLA high-level calling sequence examples:

if(str.irchpos3(someStr, 10, ‘g’)) then

// do something if ‘g’ or ‘G’ is found in someStr

// somewhere beyond the 10th character position.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
pushd(‘g’);
call str.irchpos3;
jnc hwNotInStr;

// do something if ‘g’ or ‘G’ is found in someStr
Page 862 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// somewhere beyond the 10th character position.

hwNotInStr:

31.9 Character Set Searching Functions
The HLA Standard Library provides several routines that test characters in strings to see if they are members

of some character set. . These functions all return their status (true=found, false=not found) in the carry flag
(set=true, clear-false). Their "returns" string is "@c" so you can call these functions in an boolean expression
(e.g., in an IF statement) to test the return result.

#macro str.span(string, cset);
#macro str.span(string, dword, cset);

The str.span macro overloads the str.span2 and str.span3procedures. The str.span macro is deprecated. New
code should use the str.skipInCset macro instead.

procedure str.span2(baseStr:string; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.skipInCset2. See that function’s description for details.

procedure str.span3(baseStr:string; offset:dword; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.skipInCset3. See that function’s description for details.

#macro str.rspan(string, cset);
#macro str.rspan(string, dword, cset);

The str.rspan macro overloads the str.span2 and str.span3 procedures. The str.span macro is deprecated.
New code should use the str.skipInCset macro instead.

procedure str.rspan2(baseStr:string; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.rskipInCset2. See that function’s description for details.

procedure str.rspan3(baseStr:string; offset:dword; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.rskipInCset3. See that function’s description for details.

#macro str.brk(string, cset);
#macro str.brk(string, dword, cset);

The str.brk macro overloads the str.brk2 and str.brk3 procedures. The str.brk macro is deprecated. New code
should use the str.findInCset macro instead.

procedure str.brk2(baseStr:string; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.findInCset2. See that function’s description for details.
Released to the Public Domain Page 863

HLA Standard Library
procedure str.brk3(baseStr:string; offset:dword; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.findInCset3. See that function’s description for details.

#macro str.rbrk(string, cset);
#macro str.rbrk(string, dword, cset);

The str.rbrk macro overloads the str.brk2 and str.brk3 procedures. The str.brk macro is deprecated. New
code should use the str.findInCset macro instead.

procedure str.rbrk2(baseStr:string; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.rfindInCset2. See that function’s description for details.

procedure str.rbrk3(baseStr:string; offset:dword; src:cset);
@returns("eax");

This is a deprecated, legacy, function from the HLA stdlib v1.x package. This function has been renamed
str.rfindInCset3. See that function’s description for details.

#macro str.skipInCset(string, cset);
#macro str.skipInCset(string, dword, cset);

This macro provides a "function overload" declaration for the str.skipInCset2 and str.skipInCset3 functions.
If you pass this macro two arguments, it creates a call to the str.skipInCset2 function; if you pass this macro three
arguments, it calls the str.skipInCset3 function.

procedure str.skipInCset2(baseStr:string; src:cset); @returns("@c");

This function scans over characters in baseStr that are members of the src character set. It returns with the
carry flag set if there is at least one character at the beginning of src that is a member of the src cset; it returns
with the carry flag clear if the first character of baseStr is not a member of src. This function also returns the
index of the first character in baseStr that is not a member of src in the EAX register; it returns -1 in EAX if the
first character of baseStr is not a member of src.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.skipInCset2(someStr, chars.AlphaChars)) then

// EAX contains the index of the first non-alphabetic
// character in someStr at this point.

endif;

HLA low-level calling sequence examples:

push(someStr);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.skipInCset2;
jnc ssNotInSet;
Page 864 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// EAX contains the index of the first non-alphabetic
// character in someStr at this point.

ssNotInSet:

procedure str.skipInCset3(baseStr:string; offset:dword; src:cset);
@returns("@c");

This function scans over characters in baseStr, starting at character position offset, that are members of the
src character set. It returns with the carry flag set if there is at least one character that is a member of the src cset;
it returns with the carry flag clear if the first character matched is not a member of src. This function also returns
the index of the first character in baseStr that is not a member of src in the EAX register; it returns -1 in EAX if
the first character it tests is not a member of src. Note that the value returned is the index from the beginning of
the string, not from the offset position in the string.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.skipInCset3(someStr, 10, chars.AlphaChars)) then

// EAX contains the index of the first non-alphabetic
// character starting at position 10 in someStr.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.skipInCset3;
jnc ssNotInSet;

// EAX contains the index of the first non-alphabetic
// character starting at position 10 in someStr.

ssNotInSet:

#macro str.rskipInCset(string, cset);
#macro str.rskipInCset(string, dword, cset);

This macro provides a "function overload" declaration for the str.rskipInCset2 and str.rskipInCset3
functions. If you pass this macro two arguments, it creates a call to the str.rskipInCset2 function; if you pass this
macro three arguments, it calls the str.rskipInCset3 function.

procedure str.rskipInCset2(baseStr:string; src:cset); @returns("@c");

This function scans over characters in baseStr that are members of the src character set. It returns with the
carry flag set if there is at least one character in src, scanning from the end of src, that is a member of the src cset;
it returns with the carry flag clear if the last character of baseStr is not a member of src. This function also
returns the index of the last character in baseStr that is not a member of src (scanning from the end of src) in the
EAX register; it returns -1 in EAX if the first character of baseStr is not a member of src.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.
Released to the Public Domain Page 865

HLA Standard Library
HLA high-level calling sequence examples:

if(str.rskipInCset2(someStr, chars.AlphaChars)) then

// EAX contains the index of the last non-alphabetic
// character in someStr at this point.

endif;

HLA low-level calling sequence examples:

push(someStr);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.rskipInCset2;
jnc ssNotInSet;

// EAX contains the index of the last non-alphabetic
// character in someStr at this point.

ssNotInSet:

procedure str.rskipInCset3(baseStr:string; offset:dword; src:cset);
@returns("@c");

This function scans over characters in baseStr, starting at the end of src and working down to character
position offset, that are members of the src character set. It returns with the carry flag set if there is at least one
character that is a member of the src cset; it returns with the carry flag clear if the last character in src is not a
member of src. This function also returns the index of the last character in baseStr that is not a member of src in
the EAX register; it returns -1 in EAX if the first character it tests is not a member of src. Note that the value
returned is the index from the beginning of the string, not from the offset position in the string.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.rskipInCset3(someStr, 10, chars.AlphaChars)) then

// EAX contains the index of the last non-alphabetic
// character down to position 10 in someStr.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.rskipInCset3;
jnc ssNotInSet;

// EAX contains the index of the last non-alphabetic
// character down to position 10 in someStr.
Page 866 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
ssNotInSet:

#macro str.findInCset(string, cset);
#macro str.findInCset(string, dword, cset);

This macro provides a "function overload" declaration for the str.findInCset2 and str.findInCset3 functions.
If you pass this macro two arguments, it creates a call to the str.findInCset2 function; if you pass this macro three
arguments, it calls the str.findInCset3 function.

procedure str.findInCset2(baseStr:string; src:cset); @returns("@c");

This function scans over characters in baseStr that are not members of the src character set. It returns with
the carry flag set if there is at least one character in src that is a member of the src cset; it returns with the carry
flag clear if all the characters of baseStr are not members of src. This function also returns the index of the first
character in baseStr that is a member of src in the EAX register; it returns -1 in EAX if all the characters of
baseStr are not members of src.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.findInCset2(someStr, chars.AlphaChars)) then

// EAX contains the index of the first alphabetic
// character in someStr at this point.

endif;

HLA low-level calling sequence examples:

push(someStr);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.findInCset2;
jnc ssNotInSet;

// EAX contains the index of the first alphabetic
// character in someStr at this point.

ssNotInSet:

procedure str.findInCset3(baseStr:string; offset:dword; src:cset);
@returns("@c");

This function scans over characters in baseStr, starting at character position offset, that are not members of
the src character set. It returns with the carry flag set if there is at least one character that is a member of the src
cset; it returns with the carry flag clear if all the characters are not members of src. This function also returns the
index of the first character in baseStr that is a member of src in the EAX register; it returns -1 in EAX if all the
characters it tests are not members of src. Note that the value returned is the index from the beginning of the
string, not from the offset position in the string.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.findInCset3(someStr, 10, chars.AlphaChars)) then
Released to the Public Domain Page 867

HLA Standard Library
// EAX contains the index of the first alphabetic
// character starting at position 10 in someStr.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.findInCset3;
jnc ssNotInSet;

// EAX contains the index of the first alphabetic
// character starting at position 10 in someStr.

ssNotInSet:

#macro str.rfindInCset(string, cset);
#macro str.rfindInCset(string, dword, cset);

This macro provides a "function overload" declaration for the str.rfindInCset2 and str.rfindInCset3
functions. If you pass this macro two arguments, it creates a call to the str.rfindInCset2 function; if you pass this
macro three arguments, it calls the str.rfindInCset3 function.

procedure str.rfindInCset2(baseStr:string; src:cset); @returns("@c");

This function scans over characters in baseStr that are not members of the src character set. It returns with
the carry flag set if there is at least one character in src, scanning from the end of src, that is a member of the src
cset; it returns with the carry flag clear if none of the characters of baseStr are members of src. This function
also returns the index of the last character in baseStr that is a member of src (scanning from the end of src) in the
EAX register; it returns -1 in EAX if none of the characters of baseStr are members of src.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.rfindInCset2(someStr, chars.AlphaChars)) then

// EAX contains the index of the last alphabetic
// character in someStr at this point.

endif;

HLA low-level calling sequence examples:

push(someStr);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.rfindInCset2;
jnc ssNotInSet;
Page 868 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// EAX contains the index of the last alphabetic
// character in someStr at this point.

ssNotInSet:

procedure str.rfindInCset3(baseStr:string; offset:dword; src:cset);
@returns("@c");

This function scans over characters in baseStr, starting at the end of src and working down to character
position offset, that are not members of the src character set. It returns with the carry flag set if there is at least
one character that is a member of the src cset; it returns with the carry flag clear if none of the characters in src
are members of src. This function also returns the index of the last character in baseStr that is a member of src in
the EAX register; it returns -1 in EAX if none of the characters it tests are members of src. Note that the value
returned is the index from the beginning of the string, not from the offset position in the string.

This function raises an ex.AttemptToDerefNULL exception if baseStr contains NULL. It raises an
ex.AccessViolation if baseStr contains an invalid address.

HLA high-level calling sequence examples:

if(str.rfindInCset3(someStr, 10, chars.AlphaChars)) then

// EAX contains the index of the last alphabetic
// character down to position 10 in someStr.

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
push((type dword chars.AlphaChars[12]));
push((type dword chars.AlphaChars[8]));
push((type dword chars.AlphaChars[4]));
push((type dword chars.AlphaChars[0]));
call str.rfindInCset3;
jnc ssNotInSet;

// EAX contains the index of the last alphabetic
// character down to position 10 in someStr.

ssNotInSet:

31.10 String Parsing Functions
The HLA Standard Library provides several routines allow you to deconstruct and reconstruct string objects.

These functions separate strings into an array of words (tokens) or otherwise break up the string in pieces by
extracting portions of the string.

procedure str.tokenCnt1(src:string); @returns("eax");

This function counts the number of tokens, or words, present in the src string. A token is considered to be
any text separated by members from the str.CmdLnDelimiters character set ({ #0, ' ', #9, ',', '<', '>', '|', '\', '/', '-' })
or the beginning or end of the string.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.
Released to the Public Domain Page 869

HLA Standard Library
HLA high-level calling sequence examples:

str.tokenCnt1(someStr);
mov(eax, numTokens);

HLA low-level calling sequence examples:

push(someStr);
call str.tokenCnt1;

mov(eax, numTokens);

procedure str.tokenCnt2(src:string; delimiters:cset); @returns("eax");

This function counts the number of tokens, or words, present in the src string. A token is considered to be
any text separated by members from the delimiters character set or the beginning or end of the string.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

str.tokenCnt2(someStr, chars.WhiteSpaceCset);
mov(eax, numTokens);

HLA low-level calling sequence examples:

push(someStr);
push((type dword chars.WhiteSpaceCset[12]));
push((type dword chars.WhiteSpaceCset[8]));
push((type dword chars.WhiteSpaceCset[4]));
push((type dword chars.WhiteSpaceCset[0]));
call str.tokenCnt2;

mov(eax, numTokens);

procedure str.tokenize(src:string; delimiters:cset); @returns("eax");

This function is an alias for str.tokenize3 maintained for legacy purposes. New code should use the
str.tokenize3 name.

procedure str.tokenize3(src:string; var dest:var; maxStrs:dword);
@returns("eax");

This function lexically scans the src string and breaks it up into an array of strings with each element of the
array containing one "token" string. This function uses the str.CmdLnDelimiters character set ({ #0, ' ', #9, ',', '<',
'>', '|', '\', '/', '-' }) to delimit the lexemes it produces. This character set roughly corresponds to the delimiters used
by the Windows Command Window interpreter or typical Linux shells. If you do not wish to use this particular
set of delimiter characters, you may call str.tokenize4 and specify the characters you’re interested in.

The str.tokenize3 routine begins by skipping over all delimiter characters at the beginning of the string.
Once it locates a non-delimiter character, it skips forward until it finds the end of the string or the next delimiter
character. It then allocates storage for a new string on the heap and copies the delimited text to this new string.
A pointer to the new string is stored into the dest array passed as the second parameter. This process is repeated
for each lexeme found in the src string.

As this function is intended for processing command lines, any quoted string (a sequence of characters
surrounded by quotes or apostrophies) is treated as a single token/string by these functions. If this behavior is a
problem for you, it’s real easy to modify the str.tokenize3 source file to handle this issue.
Page 870 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Warning: the dest parameter must be an array of string pointers. This array must be large enough to hold
pointers to each lexeme found in the string. In theory, there could be as many as str.length(src)/2 lexemes in the
source string. The maxStrs parameter specifies the maximum number of strings this function can store into the
array pointed at by dest.

On return from these functions, the EAX register will contain the number of lexemes found and processed in
the src string (i.e., EAX will contain the number of valid elements in the dest array).

When you are done with the strings allocated on the heap, you should free them by calling str.free. Note that
you need to call str.free for each active pointer stored in the dest array.

Here is an example of a call to the str.tokenize3 routine:

program tokenizeDemo;
#include("stdlib.hhf");

static
 strings: string[16];
 ParseMe: string := "This string contains five words";

begin tokenizeDemo;

 str.tokenize3(ParseMe, strings, 16);
 mov(0, ebx);
 while(ebx < eax) do

 str.cat
 (
 "string[",
 (type uns32 ebx),
 "]=""",
 strings[ebx*4],
 """",
 nl
);
 strfree(strings[ebx*4]);
 inc(ebx);

 endwhile;

end tokenizeDemo;

This program produces the following output:

string[0]="This"
string[1]="string"
string[2]="contains"
string[3]="five"
string[4]="words"

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. This function raises an ex.ArrayBounds exception if
it attempts to produce more than maxStrs lexemes while tokenizing the src string.

HLA high-level calling sequence examples:

static
destArray:string[128];

.

.

.
str.tokenize3(someStr, destArray, 128);
Released to the Public Domain Page 871

HLA Standard Library
mov(eax, numTokens);
.
.
.

for(mov(0, ecx); ecx < numTokens; inc(ecx)) do

str.free(destArray[ecx*4]);

endfor;

HLA low-level calling sequence examples:

static
destArray:string[128];

.

.

.
push(someStr);
pushd(&destArray);
pushd(128);

call str.tokenize3;
mov(eax, numTokens);

procedure str.tokenize4
(

src :string;
delimiters :cset;

var dest :var;
maxStrs :dword

); @returns("eax");

This procedure is functionally identical to str.tokenize3 except you get to specify the delimiters character set
(rather than using the built-in str.CmdLnDelimiters character set) that the function uses to separate lexems in the
src string. See the discussion of str.tokenize3 for more details.

HLA high-level calling sequence examples:

static
destArray:string[128];

.

.

.
str.tokenize4(someStr, chars.WhiteSpaceCset, destArray, 128);
mov(eax, numTokens);

.

.

.
for(mov(0, ecx); ecx < numTokens; inc(ecx)) do

str.free(destArray[ecx*4]);

endfor;

HLA low-level calling sequence examples:
Page 872 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
static
destArray:string[128];

.

.

.
push(someStr);
push((type dword chars.WhiteSpaceCset[12]));
push((type dword chars.WhiteSpaceCset[8]));
push((type dword chars.WhiteSpaceCset[4]));
push((type dword chars.WhiteSpaceCset[0]));
pushd(&destArray);
pushd(128);

call str.tokenize4;
mov(eax, numTokens);

iterator str.tokenInStr(src:string);

This iterator lexically scans the src string returns a pointer to a newly allocated lexeme on the heap (in EAX)
on each foreach loop iteration. It is the caller’s responsibility to free this storage when it is no longer needed.
Like str.tokenize3, this iterator separates tokens in the input src string using the str.CmdLnDelimiters character
set.

Warning: this function does not make a local copy of the src string to use during the execution of the
invoking foreach loop. This iterator produces undefined results if the src string changes during the execution of
the invoking foreach loop.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

foreach str.tokenInStr("This String Has 5 Words") do

mov(eax, tokenStr);

// Do something with the string pointed at by EAX/tokenStr
.
.
.

str.free(tokenStr);

endfor;

HLA low-level calling sequence examples:
(see the HLA reference manual for instructions on making

low-level calls to iterators.)

iterator str.tokenInStr2(src:string; delimiters:cset);

This iterator lexically scans the src string returns a pointer to a newly allocated lexeme on the heap (in EAX)
on each foreach loop iteration. It is the caller’s responsibility to free this storage when it is no longer needed.
Like str.tokenize4, this iterator separates tokens in the input src string using the delimiters character set passed as
an argument.

Warning: this function does not make a local copy of the src string to use during the execution of the
invoking foreach loop. This iterator produces undefined results if the src string changes during the execution of
the invoking foreach loop.
Released to the Public Domain Page 873

HLA Standard Library
This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

foreach
str.tokenInStr2
(

"This String Has 5 Words",
chars.WhiteSpaceCset

)
do

mov(eax, tokenStr);

// Do something with the string pointed at by EAX/tokenStr
.
.
.

str.free(tokenStr);

endfor;

HLA low-level calling sequence examples:
(see the HLA reference manual for instructions on making

low-level calls to iterators.)

iterator str.charInStr(src:string);

This iterator scans the src string returns each successive character in the string in the AL register on each
foreach loop iteration.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

foreach str.charInStr("abcdefghijklmnopqrstuvwxyz") do

mov(al, currentChar);

// Do something with the character in AL

endfor;

HLA low-level calling sequence examples:
(see the HLA reference manual for instructions on making

low-level calls to iterators.)

iterator str.wordInStr(src:string);

This iterator lexically scans the src string returns a pointer to a locally (to the iterator) allocated word (in
EAX) on each foreach loop iteration. The iterator will free this storage on the next iteration of the loop. If the
caller needs to maintain the string value after the execution of the current loop iteration, the caller must allocate
Page 874 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
storage for the string and make a copy of it. This iterator is similar to str.tokenInStr with two main differences: it
separates tokens in the input src string using whitespace characters and this iterator makes a local copy of src
before iterating to guarantee consistent results should src change during the execution of the invoking foreach
loop.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

foreach str.wordInStr("This String Has 5 Words") do

mov(eax, wordStr);

// Do something with the string pointed at by EAX/wordStr
.
.
.

str.free(wordStr);

endfor;

HLA low-level calling sequence examples:
(see the HLA reference manual for instructions on making

low-level calls to iterators.)

procedure str.a_getField2(src:string; field:dword); @returns("@c");

This function extracts a lexeme from the src string and returns a pointer to that lexeme (allocated on the
heap) in EAX. The field parameter specifies which lexeme to extract from src. This function uses the
str.CmdLnDelimiters ({ #0, ' ', #9, ',', '<', '>', '|', '\', '/', '-' }) to specify the lexeme delimiter characters. This
function returns with the carry flag set if it can locate and extract lexeme number field; it returns with the carry
clear if there aren’t field lexemes present in src (EAX’s value is undefined in this case). It is the caller’s
responsibility to free up the storage allocated on the heap when the caller is done using the string data this
function returns.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_getField2(someStr, 5)) then

mov(eax, lexeme);

// Do something with the string pointed at by EAX/lexeme
.
.
.

str.free(lexeme);

endif;

HLA low-level calling sequence examples:

push(someStr);
Released to the Public Domain Page 875

HLA Standard Library
pushd(5);
call str.a_getField2;
jnc noLexeme;

mov(eax, lexeme);

// Do something with the string pointed at by EAX/lexeme
.
.
.

str.free(lexeme);

noLexeme:

procedure str.a_getField3(src:string; field:dword; delimiters:cset);
@returns("@c");

This function works just like str.a_getField2 with the additional capability of being able to specify the
lexeme delimiter character set (in the delimiters parameter).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_getField3(someStr, 5, chars.WhiteSpaceCset)) then

mov(eax, lexeme);

// Do something with the string pointed at by EAX/lexeme
.
.
.

str.free(lexeme);

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(5);
push((type dword chars.WhiteSpaceCset[12]));
push((type dword chars.WhiteSpaceCset[8]));
push((type dword chars.WhiteSpaceCset[4]));
push((type dword chars.WhiteSpaceCset[0]));
call str.a_getField3;
jnc noLexeme;

mov(eax, lexeme);

// Do something with the string pointed at by EAX/lexeme
.
.
.

str.free(lexeme);

noLexeme:
Page 876 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.getField3(src:string; field:dword; dest:string);
@returns("@c");

This function extracts a lexeme from the src string and stores that string in the object pointed at by dest. The
field parameter specifies which lexeme to extract from src. This function uses the str.CmdLnDelimiters ({ #0, ' ',
#9, ',', '<', '>', '|', '\', '/', '-' }) to specify the lexeme delimiter characters. This function returns with the carry flag set
if it can locate and extract lexeme number field; it returns with the carry clear if there aren’t field lexemes present
in src.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest isn’t large enough to hold the extracted lexeme.

HLA high-level calling sequence examples:

if(str.getField3(someStr, 5, lexeme)) then

// Do something with the string pointed at by lexeme

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(5);
push(lexeme);
call str.getField3;
jnc noLexeme;

// Do something with the string pointed at by lexeme

noLexeme:

procedure str.getField4
(

src :string;
field :dword;
delimiters :cset;
dest :string

); @returns("@c");

This function extracts a lexeme from the src string and stores that string in the object pointed at by dest. The
field parameter specifies which lexeme to extract from src. This function uses the delimiters character set to
specify the lexeme delimiter characters. This function returns with the carry flag set if it can locate and extract
lexeme number field; it returns with the carry clear if there aren’t field lexemes present in src.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest isn’t large enough to hold the extracted lexeme.

HLA high-level calling sequence examples:

if(str.getField4(someStr, 5, chars.WhiteSpaceCset, lexeme)) then
Released to the Public Domain Page 877

HLA Standard Library
// Do something with the string pointed at by lexeme

endif;

HLA low-level calling sequence examples:

push(someStr);
pushd(5);
push((type dword chars.WhiteSpaceCset[12]));
push((type dword chars.WhiteSpaceCset[8]));
push((type dword chars.WhiteSpaceCset[4]));
push((type dword chars.WhiteSpaceCset[0]));
push(lexeme);
call str.getField4;
jnc noLexeme;

// Do something with the string pointed at by lexeme

noLexeme:

procedure str.rmv1stChar1(s:string);@returns("al");

This function deletes the first character (in-place) from the s string and returns that character in AL. Note
that on return this first character is no longer present in the s string. On entry, if s is the empty string, this
function returns zero in AL and does not otherwise affect the s string.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

if(str.rmv1stChar1(someStr) <> #0) then

// Do something with the char in AL

endif;

HLA low-level calling sequence examples:

push(someStr);
call str.rmv1stChar1;
cmp(al, 0);
je noChar;

// Do something with the char in AL

noChar:
Page 878 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.rmv1stChar2(src:string; remainder:string);@returns("al");

This function returns the first character (if any) of src in the AL register and copies any remaining characters
in src to the remainder string object. Note that if src is the empty string, this function returns zero in AL and does
not otherwise affect the remainder string.

This function raises an ex.AttemptToDerefNULL exception if src or remainder contain NULL. It raises an
ex.AccessViolation if src or remainder contain an invalid address. It raises an ex.StringOverflow exception if the
string object pointed at by remainder isn’t large enough to hold the result.

HLA high-level calling sequence examples:

if(str.rmv1stChar2(someStr, dest) <> #0) then

// Do something with the char in AL and the
// string in dest.

endif;

HLA low-level calling sequence examples:

push(someStr);
push(dest);
call str.rmv1stChar2;
cmp(al, 0);
je noChar;

// Do something with the char in AL

noChar:

procedure str.rmvLastChar1(s:string);@returns("al");

This function deletes the last character (in-place) from the s string and returns that character in AL. Note that
on return this last character is no longer present in the s string. On entry, if s is the empty string, this function
returns zero in AL and does not otherwise affect the s string.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address.

HLA high-level calling sequence examples:

if(str.rmvLastChar1(someStr) <> #0) then

// Do something with the char in AL

endif;

HLA low-level calling sequence examples:

push(someStr);
call str.rmvLastChar1;
cmp(al, 0);
je noChar;

// Do something with the char in AL
Released to the Public Domain Page 879

HLA Standard Library
noChar:

procedure str.rmvLastChar2(src:string; remainder:string);@returns("al");

This function returns the last character (if any) of src in the AL register and copies any previous characters
in src to the remainder string object. Note that if src is the empty string, this function returns zero in AL and does
not otherwise affect the remainder string.

This function raises an ex.AttemptToDerefNULL exception if src or remainder contain NULL. It raises an
ex.AccessViolation if src or remainder contain an invalid address. It raises an ex.StringOverflow exception if the
string object pointed at by remainder isn’t large enough to hold the result.

HLA high-level calling sequence examples:

if(str.rmvLastChar2(someStr, dest) <> #0) then

// Do something with the char in AL and the
// string in dest.

endif;

HLA low-level calling sequence examples:

push(someStr);
push(dest);
call str.rmvLastChar2;
cmp(al, 0);
je noChar;

// Do something with the char in AL and the
// string in dest.

noChar:

procedure str.a_rmv1stWord1(s:string);@returns("@c");

This function deletes the first word (in-place) from the s string, copies that word to the string object
allocated on the heap (pointer returned in EAX), and returns with the carry flag set. It is the caller’s responsibility
to free the storage when it is no longer needed. Note that on return this first word is no longer present in the s
string. On entry, if s is the empty string, this function returns with the carry clear and does not otherwise affect
the s string (EAX is undefined in this case).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_rmv1stWord1(someStr)) then

// Do something with the string pointed at by EAX.

endif;
Page 880 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(someStr);
call str.a_rmv1stWord1;
jnc noWord;

// Do something with the string pointed at by EAX.

noWord:

procedure str.a_rmv1stWord2(src:string; remainder:string);
@returns("@c");

This function copies the first word (if any) of src to storage it allocates on the heap (pointer returned in
EAX), copies any remaining characters in src to the remainder string object, and sets the carry flag. Note that if
src is the empty string, this function returns with the carry flag clear, EAX undefined, and does not affect
remainder string.

This function raises an ex.AttemptToDerefNULL exception if src, or remainder contain NULL. It raises an
ex.AccessViolation if src, or remainder contain an invalid address. It raises an ex.StringOverflow exception if
the string object pointed at by remainder isn’t large enough to hold the result. It raises an ex.MemoryAllocation
exception if there is a problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_rmv1stWord2(someStr, remainder)) then

mov(eax, wordStr);

// Do something with the strings in EAX and remainder.
.
.
.

str.free(wordStr);

endif;

HLA low-level calling sequence examples:

push(someStr);
push(remainder);
call str.a_rmv1stWord2;
jnc noWord;

mov(eax, wordStr);

// Do something with the strings in EAX and remainder.
.
.
.

str.free(wordStr);

noWord:
Released to the Public Domain Page 881

HLA Standard Library
procedure str.a_rmvLastWord1(s:string);@returns("@c");

This function deletes the last word (in-place) from the s string, copies that word to the string object allocated
on the heap (pointer returned in EAX), and returns with the carry flag set. It is the caller’s responsibility to free
the storage when it is no longer needed. Note that on return this first word is no longer present in the s string. On
entry, if s is the empty string, this function returns with the carry clear and does not otherwise affect the s string
(EAX is undefined in this case).

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_rmvLastWord1(someStr, wordResult) <> #0) then

mov(eax, wordStr);

// Do something with the string pointed at by EAX.
.
.
.

str.free(wordStr);

endif;

HLA low-level calling sequence examples:

push(someStr);
call str.a_rmvLastWord1;
jnc noWord;

mov(eax, wordStr);

// Do something with the string in EAX.
.
.
.

str.free(wordStr);

noWord:

procedure str.a_rmvLastWord2(src:string; remainder:string);
@returns("@c");

This function returns the last word (if any) of src in storage allocated on the heap (pointer returned in EAX),
copies any remaining characters in src to the remainder string object, and sets the carry flag. Note that if src is
the empty string, this function returns with the carry flag clear, EAX undefined, and does not affect the
remainder string.

This function raises an ex.AttemptToDerefNULL exception if src or remainder contain NULL. It raises an
ex.AccessViolation if src or remainder contain an invalid address. It raises an ex.StringOverflow exception if the
string object pointed at by remainder isn’t large enough to hold the result. It raises an ex.MemoryAllocation
exception if there is a problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_rmvLastWord2(someStr, dest)) then
Page 882 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(eax, wordStr);

// Do something with the strings in EAX and dest.
.
.
.

str.free(wordStr);

endif;

HLA low-level calling sequence examples:

push(someStr);
push(dest);
call str.a_rmvLastWord2;
jnc noWord;

mov(eax, wordStr);

// Do something with the strings in EAX and dest.
.
.
.

str.free(wordStr);

noWord:

procedure str.rmv1stWord2(s:string; wordStr:string);@returns("@c");

This function deletes the first word (in-place) from the s string, copies that word to the string object pointed
at by wordStr, and returns with the carry flag set. Note that on return this first word is no longer present in the s
string. On entry, if s is the empty string, this function returns with the carry clear and does not otherwise affect
the s string (wordStr is not modified in this case).

This function raises an ex.AttemptToDerefNULL exception if src or wordStr contain NULL. It raises an
ex.AccessViolation if src or wordStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.rmv1stWord2(someStr, wordResult)) then

// Do something with the wordResult string

endif;

HLA low-level calling sequence examples:

push(someStr);
push(wordResult);
call str.rmv1stWord2;
jnc noWord;

// Do something with the wordResult string
Released to the Public Domain Page 883

HLA Standard Library
noWord:

procedure str.rmv1stWord3(src:string; wordStr:string; remainder:string);
@returns("@c");

This function returns the first word (if any) of src in wordStr, copies any remaining characters in src to the
remainder string object, and sets the carry flag. Note that if src is the empty string, this function returns with the
carry flag clear and does not affect the wordStr or remainder strings.

This function raises an ex.AttemptToDerefNULL exception if src, wordStr, or remainder contain NULL. It
raises an ex.AccessViolation if src, wordStr, or remainder contain an invalid address. It raises an
ex.StringOverflow exception if the string objects pointed at by wordStr or remainder aren’t large enough to hold
their respective results.

HLA high-level calling sequence examples:

if(str.rmv1stWord3(someStr, dest, remainder) <> #0) then

// Do something with the strings in dest and remainder.

endif;

HLA low-level calling sequence examples:

push(someStr);
push(dest);
push(remainder);
call str.rmv1stWord3;
cmp(al, 0);
je noWord;

// Do something with the strings in dest and remainder.

noWord:

procedure str.rmvLastWord2(s:string; wordStr:string);@returns("@c");

This function deletes the last word (in-place) from the s string, copies that word to the string object pointed
at by wordStr, and returns with the carry flag set. Note that on return this first word is no longer present in the s
string. On entry, if s is the empty string, this function returns with the carry clear and does not otherwise affect
the s string (wordStr is not modified in this case).

This function raises an ex.AttemptToDerefNULL exception if src or wordStr contain NULL. It raises an
ex.AccessViolation if src or wordStr contain an invalid address.

HLA high-level calling sequence examples:

if(str.rmvLastWord2(someStr, wordResult) <> #0) then

// Do something with the strings in someStr and wordResult.

endif;

HLA low-level calling sequence examples:
Page 884 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(someStr);
push(wordResult);
call str.rmvLastWord2;
cmp(al, 0);
je noWord;

// Do something with the strings in someStr and wordResult.

noWord:

procedure str.rmvLastWord3(src:string; wordStr:string; remainder:string);
@returns("@c");

This function returns the last word (if any) of src in wordStr, copies any remaining characters in src to the
remainder string object, and sets the carry flag. Note that if src is the empty string, this function returns with the
carry flag clear and does not affect the wordStr or remainder strings.

This function raises an ex.AttemptToDerefNULL exception if src, wordStr, or remainder contain NULL. It
raises an ex.AccessViolation if src, wordStr, or remainder contain an invalid address. It raises an
ex.StringOverflow exception if the string objects pointed at by wordStr or remainder aren’t large enough to hold
their respective results.

HLA high-level calling sequence examples:

if(str.rmvLastWord3(someStr, wordResult, dest)) then

// Do something with the strings in dest and wordResult.

endif;

HLA low-level calling sequence examples:

push(someStr);
push(wordResult);
push(dest);
call str.rmvLastWord3;
cmp(al, 0);
je noWord;

// Do something with the strings in dest and wordResult.

noWord:

31.11 String Formatting Functions
The HLA Standard Library provides a couple of routines that can be used to format the data appearing in a

string.
Released to the Public Domain Page 885

HLA Standard Library
procedure str.a_columnize2(var s:var; numStrs:dword);
@returns("eax");

This function scans an array of numStrs string pointed at by s and computes the maximum length of all the
strings. This function then creates a single string on the heap that consists of the concatenation of all the strings in
s with their lengths extended to the maximum string length in s plus one. The extra character positions at the end
of each string are padded with spaces.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage for the resulting string.

HLA high-level calling sequence examples:

str.a_columnize2(stringArray, 10);
mov(eax, columnsStr);

// Do something with the string pointed at by EAX
.
.
.

str.free(columnsStr);

HLA low-level calling sequence examples:

push(stringArray);
pushd(10);
call str.a_columnize2;

mov(eax, columnsStr);

// Do something with the string pointed at by EAX
.
.
.

str.free(columnsStr);

procedure str.a_columnize3(var s:var; numStrs:dword; tabCols:dword);
@returns("eax");

This function scans an array of numStrs string pointed at by s and creates a single string on the heap that
consists of the concatenation of all the strings in s with their lengths extended to tabCols. The extra character
positions at the end of each string are padded with spaces.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage for the resulting string.

HLA high-level calling sequence examples:

str.a_columnize3(stringArray, 10, 40);
mov(eax, columnsStr);

// Do something with the string pointed at by EAX
.
.
.

str.free(columnsStr);
Page 886 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(stringArray);
pushd(10);
pushd(40);
call str.a_columnize3;

mov(eax, columnsStr);

// Do something with the string pointed at by EAX
.
.
.

str.free(columnsStr);

procedure str.columnize3(var s:var; numStrs:dword; dest:string);

This function scans an array of numStrs string pointed at by s and computes the maximum length of all the
strings. This function then creates a single string that it stores in the string object pointed at by dest which
consists of the concatenation of all the strings in s with their lengths extended to the maximum string length in s
plus one. The extra character positions at the end of each string are padded with spaces.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

str.columnize3(stringArray, 10, columnsStr);

// Do something with the string pointed at by columnsStr

HLA low-level calling sequence examples:

push(stringArray);
pushd(10);
push(columnsStr);
call str.a_columnize3;

// Do something with the string pointed at by columnsStr

procedure str.columnize4
(

var s :var;
numStrs :dword;
tabCols :dword;
dest :string

);

This function scans an array of numStrs string pointed at by s and creates a single string it stores in dest that
consists of the concatenation of all the strings in s with their lengths extended to tabCols. The extra character
positions at the end of each string are padded with spaces.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage for the resulting string.
Released to the Public Domain Page 887

HLA Standard Library
HLA high-level calling sequence examples:

str.columnize4(stringArray, 10, 40, columnsStr);

// Do something with the string pointed at by columnsStr

HLA low-level calling sequence examples:

push(stringArray);
pushd(10);
pushd(40);
push(columnsStr);
call str.columnize4;

// Do something with the string pointed at by columnsStr

procedure str.a_spread2(src:string; toWidth:dword);
@returns("@c");

This creates a new string on the heap (returning the pointer in EAX) that is an expansion of the src string to
the length specified by the toWidth parameter. If the length of src is greater than or equal to toWidth, then this
function clears the carry flag and returns with EAX containing NULL; otherwise, this function fills in the extra
character positions using space characters and returns with the carry flag set. If the length of src is greater than
75% of toWidth, then this function pads the end of the result string with spaces to fill in the extra length. If the
length of src is 75% or less of toWidth, then this function spreads the space characters throughout the string (next
to other spaces appearing in the src string) to widen the resulting string. It is the caller’s responsibility to free the
storage allocated on the heap if this function returns with the carry flag set.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

if(str.a_spread2(someStr, newLength)) then

mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

endif;

HLA low-level calling sequence examples:

push(someStr);
push(newLength);
call str.a_spread2;
jnc noNewStr;

mov(eax, newStr);

// Do something with newStr
.

Page 888 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
.

.
str.free(newStr);

noNewStr:

procedure str.spread2(s:string; toWidth:dword);
@returns("@c");

This expands the s string to the length specified by the toWidth parameter. If the length of s is greater than or
equal to toWidth, then this function clears the carry flag and does not modify s; otherwise, this function fills in
the extra character positions using space characters and returns with the carry flag set. If the length of s is greater
than 75% of toWidth, then this function pads the end of s with spaces to fill in the extra length. If the length of s
is 75% or less of toWidth, then this function spreads the space characters throughout the string (next to other
spaces appearing in the s string) to widen the resulting string.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

if(str.spread2(someStr, newLength)) then

// Do something with expanded someStr

endif;

HLA low-level calling sequence examples:

push(someStr);
push(newLength);
call str.spread2;
jnc noExpandedStr;

// Do something with expanded someStr

noExpandedStr:

procedure str.spread3(src:string; toWidth:dword; dest:string);
@returns("@c");

This expands the src string to the length specified by the toWidth parameter and stores the result in the string
object pointed at by dest. If the length of src is greater than or equal to toWidth, then this function clears the carry
flag and does not modify dest; otherwise, this function fills in the extra character positions using space characters
and returns with the carry flag set. If the length of src is greater than 75% of toWidth, then this function pads the
end of dest with spaces to fill in the extra length. If the length of src is 75% or less of toWidth, then this function
spreads the space characters throughout the dest string (next to other spaces appearing in the string) to widen the
resulting string.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is not large enough to receive the result.

HLA high-level calling sequence examples:

if(str.spread3(someStr, length, expandedStr)) then

// do something with expandedStr
Released to the Public Domain Page 889

HLA Standard Library
endif;

HLA low-level calling sequence examples:

push(someStr);
push(length);
push(expandedStr);
call str.spread3;
jnc noExpandedStr;

// do something with expandedStr

noExpandedStr:

procedure str.a_deTab2(src:string; tabCols:dword);
@returns("(type string eax)");

This function creates a new string on the heap (returning the pointer in EAX) that is an expansion of the src
string by converting all tab characters to the corresponding number of spaces. The tabCols argument specifies
the number of character positions for each tab stop (all tab stops are equal in length). It is the caller’s
responsibility to free the storage allocated on the heap.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

str.a_deTab2(someStr, 4);
mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

HLA low-level calling sequence examples:

push(someStr);
pushd(4);
call str.a_deTab2;

mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);
Page 890 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.a_deTab3(src:string; var tabCols:var; numTabs:dword);
@returns("(type string eax)");

This function creates a new string on the heap (returning the pointer in EAX) that is an expansion of the src
string by converting all tab characters to the corresponding number of spaces. The tabCols argument is an array
of tabstop column values to use. The numTabs parameter specifies the total number of tabstops present in the
tabCols array. It is the caller’s responsibility to free the storage allocated on the heap.

This function raises an ex.AttemptToDerefNULL exception if src or tabCols contain NULL. It raises an
ex.AccessViolation if src or tabCols contain an invalid address. It raises an ex.MemoryAllocation exception if
there is a problem allocating memory for the result string.

HLA high-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
str.a_deTab3(someStr, tabStops, 4);
mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
call str.a_deTab3;

mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

procedure str.deTab2(s:string; tabCols:dword);

This function expands the s string by converting all tab characters to the corresponding number of spaces.
The tabCols argument specifies the number of character positions for each tab stop (all tab stops are equal in
length).

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address. It raises an ex.StringOverflow exception the string object
pointed at by s is not large enough to hold the result.

HLA high-level calling sequence examples:
Released to the Public Domain Page 891

HLA Standard Library
str.deTab2(someStr, 4);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
pushd(4);
call str.deTab2;

// Do something with someStr

procedure str.deTab3a(src:string; tabCols:dword; dest:string);

This function expands the src string by converting all tab characters to the corresponding number of spaces,
it stores the result into the string object pointed at by dest. The tabCols argument specifies the number of
character positions for each tab stop (all tab stops are equal in length).

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is not large enough to hold the expanded result.

HLA high-level calling sequence examples:

str.deTab3a(someStr, 8, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(someStr);
pushd(8);
push(destStr);
call str.deTab3a;

// Do something with destStr

procedure str.deTab3b(s:string; var tabCols:var; numTabs:dword);

This function expands the s string by converting all tab characters to the corresponding number of spaces.
The tabCols argument is an array of tabstop column values to use. The numTabs parameter specifies the total
number of tabstops present in the tabCols array.

This function raises an ex.AttemptToDerefNULL exception if s or tabCols contain NULL. It raises an
ex.AccessViolation if s or tabCols contain an invalid address. It raises an ex.StringOverflow exception if the
string object pointed at by s is not large enough to hold the expanded result.

HLA high-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
str.deTab3b(someStr, tabStops, 4);
Page 892 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Do something with someStr

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
call str.deTab3b;

// Do something with someStr

procedure str.deTab4
(

src :string;
var tabCols :var;

numTabs :dword;
dest :string

);

This function expands the src string by converting all tab characters to the corresponding number of spaces,
it stores the result into the string object pointed at by dest. The tabCols argument is an array of tabstop column
values to use. The numTabs parameter specifies the total number of tabstops present in the tabCols array.

This function raises an ex.AttemptToDerefNULL exception if src, dest, or tabCols contain NULL. It raises
an ex.AccessViolation if src, dest, or tabCols contain an invalid address. It raises an ex.StringOverflow exception
if the string object pointed at by dest is not large enough to hold the expanded result.

HLA high-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
str.deTab4(someStr, tabStops, 4, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
Released to the Public Domain Page 893

HLA Standard Library
push(destStr);
call str.deTab4;

// Do something with destStr

procedure str.a_enTab2(src:string; tabCols:dword);
@returns("(type string eax)");

This function creates a new string on the heap (returning the pointer in EAX) that is an expansion of the src
string by converting all space characters to the corresponding number of tabs. The tabCols argument specifies
the number of character positions for each tab stop (all tab stops are equal in length). It is the caller’s
responsibility to free the storage allocated on the heap.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is a
problem allocating memory for the result string.

HLA high-level calling sequence examples:

str.a_enTab2(someStr, 4);
mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

HLA low-level calling sequence examples:

push(someStr);
pushd(4);
call str.a_enTab2;

mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

procedure str.a_enTab3(src:string; var tabCols:var; numTabs:dword);
@returns("(type string eax)");

This function creates a new string on the heap (returning the pointer in EAX) that is an expansion of the src
string by converting all space characters to the corresponding number of tabs. The tabCols argument is an array
of tabstop column values to use. The numTabs parameter specifies the total number of tabstops present in the
tabCols array. It is the caller’s responsibility to free the storage allocated on the heap.

This function raises an ex.AttemptToDerefNULL exception if src or tabCols contain NULL. It raises an
ex.AccessViolation if src or tabCols contain an invalid address. It raises an ex.MemoryAllocation exception if
there is a problem allocating memory for the result string.

HLA high-level calling sequence examples:

static
Page 894 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
tabStops:dword[4] := [4, 12, 16, 32];
.
.
.

str.a_enTab3(someStr, tabStops, 4);
mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
call str.a_enTab3;

mov(eax, newStr);

// Do something with newStr
.
.
.

str.free(newStr);

procedure str.enTab2(s:string; tabCols:dword);

This function expands the s string by converting all space characters to the corresponding number of tabs.
The tabCols argument specifies the number of character positions for each tab stop (all tab stops are equal in
length).

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

str.enTab2(someStr, 4);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
pushd(4);
call str.enTab2;

// Do something with someStr
Released to the Public Domain Page 895

HLA Standard Library
procedure str.enTab3a(src:string; tabCols:dword; dest:string);

This function expands the src string by converting all space characters to the corresponding number of tabs,
it stores the result into the string object pointed at by dest. The tabCols argument specifies the number of
character positions for each tab stop (all tab stops are equal in length).

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is not large enough to hold the expanded result.

HLA high-level calling sequence examples:

str.enTab3a(someStr, 8, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(someStr);
pushd(8);
push(destStr);
call str.enTab3a;

// Do something with destStr

procedure str.enTab3b(s:string; var tabCols:var; numTabs:dword);

This function expands the s string by converting all space characters to the corresponding number of tabs.
The tabCols argument is an array of tabstop column values to use. The numTabs parameter specifies the total
number of tabstops present in the tabCols array.

This function raises an ex.AttemptToDerefNULL exception if s or tabCols contain NULL. It raises an
ex.AccessViolation if s or tabCols contain an invalid address.

HLA high-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
str.enTab3b(someStr, tabStops, 4);

// Do something with someStr

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
call str.enTab3b;
Page 896 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Do something with someStr

procedure str.enTab4
(

src :string;
var tabCols :var;

numTabs :dword;
dest :string

);

This function expands the src string by converting all space characters to the corresponding number of tabs,
it stores the result into the string object pointed at by dest. The tabCols argument is an array of tabstop column
values to use. The numTabs parameter specifies the total number of tabstops present in the tabCols array.

This function raises an ex.AttemptToDerefNULL exception if src, dest, or tabCols contain NULL. It raises
an ex.AccessViolation if src, dest, or tabCols contain an invalid address. It raises an ex.StringOverflow exception
if the string object pointed at by dest is not large enough to hold the expanded result.

HLA high-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
str.enTab4(someStr, tabStops, 4, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

static
tabStops:dword[4] := [4, 12, 16, 32];

.

.

.
push(someStr);
pushd(&tabStops);
pushd(4);
push(destStr);
call str.enTab4;

// Do something with destStr

31.12 String Conversion Functions
The functions in this category transform string data from one form to another (e.g., upper case conversion).
Released to the Public Domain Page 897

HLA Standard Library
procedure str.a_upper(src:string; dest:string);

This function scans the src string and converts all lower-case alphabetic characters to their uppercase
equivalent. It stores the result into a new string it allocates on the heap (and returns a pointer to this string in
EAX). It is the caller’s responsibility to free this storage when it is no longer needed.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_upper(someStr);
mov(eax, upperStr);

// Do something with upperStr
.
.
.

str.free(upperStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_upper;
mov(eax, upperStr);

// Do something with upperStr
.
.
.

str.free(upperStr);

#macro upper(string);
#macro upper(string, string);

This macro provides a "function overload" declaration for the str.upper1 and str.upper2 functions. If you
pass this macro one argument, it creates a call to the str.upper1 function; if you pass this macro two arguments, it
calls the str.upper2 function.

procedure str.upper1(s:string);

This function scans the s string and converts, in-place, all lower-case alphabetic characters to their uppercase
equivalent.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

str.upper1(someStr);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
call str.upper1;

// Do something with someStr
Page 898 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.upper2(src:string; dest:string);

This function scans the src string and converts all lower-case alphabetic characters to their uppercase
equivalent. It stores the result into the string object pointed at by dest.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is too small to hold the result.

HLA high-level calling sequence examples:

str.upper2(someStr, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(someStr);
push(destStr);
call str.upper2;

// Do something with destStr

procedure str.a_lower(src:string; dest:string);

This function scans the src string and converts all upper-case alphabetic characters to their lowercase
equivalent. It stores the result into a new string it allocates on the heap (and returns a pointer to this string in
EAX). It is the caller’s responsibility to free this storage when it is no longer needed.

This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_lower(someStr);
mov(eax, lowerStr);

// Do something with lowerStr
.
.
.

str.free(lowerStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_lower;
mov(eax, lowerStr);

// Do something with lowerStr
.
.
.

str.free(lowerStr);
Released to the Public Domain Page 899

HLA Standard Library
#macro lower(string);
#macro lower(string, string);

This macro provides a "function overload" declaration for the str.lower1 and str.lower2 functions. If you
pass this macro one argument, it creates a call to the str.lower1 function; if you pass this macro two arguments, it
calls the str.lower2 function.

procedure str.lower1(s:string);

This function scans the s string and converts, in-place, all upper-case alphabetic characters to their lowercase
equivalent.

This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an
ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

str.lower1(someStr);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
call str.lower1;

// Do something with someStr

procedure str.lower2(src:string; dest:string);

This function scans the src string and converts all upper-case alphabetic characters to their lowercase
equivalent. It stores the result into the string object pointed at by dest.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is too small to hold the result.

HLA high-level calling sequence examples:

str.lower2(someStr, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(someStr);
push(destStr);
call str.lower2;

// Do something with destStr

procedure str.a_reverse(src:string);

This function takes the characters in source and creates a new string with the character positions reversed
(that is, the first character becomes the last character, the last character becomes the first character, etc.). It stores
the result into a new string it allocates on the heap (and returns a pointer to this string in EAX). It is the caller’s
responsibility to free this storage when it is no longer needed.
Page 900 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This function raises an ex.AttemptToDerefNULL exception if src contains NULL. It raises an
ex.AccessViolation if src contains an invalid address. It raises an ex.MemoryAllocation exception if there is an
error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_reverse(someStr);
mov(eax, reversedStr);

// Do something with reversedStr
.
.
.

str.free(reversedStr);

HLA low-level calling sequence examples:

push(someStr);
call str.a_reverse;
mov(eax, reversedStr);

// Do something with reversedStr
.
.
.

str.free(reversedStr);

#macro reverse(string);
#macro reverse(string, string);

This macro provides a "function overload" declaration for the str.reverse1 and str.reverse2 functions. If you
pass this macro one argument, it creates a call to the str.reverse1 function; if you pass this macro two arguments,
it calls the str.reverse2 function.

procedure str.reverse1(s:string);

This function scans the s string and reverse, in-place, all the characters in the string.
This function raises an ex.AttemptToDerefNULL exception if s contains NULL. It raises an

ex.AccessViolation if s contains an invalid address.

HLA high-level calling sequence examples:

str.reverse1(someStr);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
call str.reverse1;

// Do something with someStr

procedure str.reverse2(src:string; dest:string);

This function scans the src string, reverses their position in the string, storing the result into the dest string.
Released to the Public Domain Page 901

HLA Standard Library
This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if the string
object pointed at by dest is too small to hold the result.

HLA high-level calling sequence examples:

str.reverse2(someStr, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(someStr);
push(destStr);
call str.reverse2;

// Do something with destStr

procedure str.a_translate(src:string; from:string; toStr:string);

This function produces a new string on the heap (and returns a pointer in EAX) by translating all the
characters in src using the from and toStr arguments as lookup and translation tables. For each character in src,
this function scans the from string to see if that character is present; if it is not present, the character is copied,
untranslated, to the destination string; if the character is present, then the function uses the index of the character
in from as an index into the toStr and fetches that character and outputs it to the destination string. If the index
into the from string is greater than or equal to the length of the toStr, then this function does not copy anything to
the destination string (that is, the source character is effectively deleted). It is the caller’s responsibility to free up
the storage associated with the newly created string when it is no longer needed.

This function raises an ex.AttemptToDerefNULL exception if src, from, or toStr contain NULL. It raises an
ex.AccessViolation if src, from, or toStr contain an invalid address. It raises an ex.MemoryAllocation exception
if there is an error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_translate(someStr, lookupStr, conversionStr);
mov(eax, xlatStr);

// Do something with xlatStr
.
.
.

str.free(xlatStr);

HLA low-level calling sequence examples:

push(someStr);
push(lookupStr);
push(conversionStr);
call str.a_translate;
mov(eax, xlatStr);

// Do something with xlatStr
.
.
.

str.free(xlatStr);
Page 902 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
#macro translate(string, string, string);
#macro translate(string, string, string, string);

This macro provides a "function overload" declaration for the str.translate3 and str.translate4 functions. If
you pass this macro three arguments, it creates a call to the str.translate3 function; if you pass this macro four
arguments, it calls the str.translate4 function.

procedure str.translate3(s:string; from:string; toStr:string);

This function modifies the s string in-place by translating all the characters in s using the from and toStr
arguments as lookup and translation tables. For each character in s, this function scans the from string to see if
that character is present; if it is not present, the character is ignored; if the character is present, then the function
uses the index of the character in from as an index into the toStr and fetches that character and overwrites the
original character. If the index into the from string is greater than or equal to the length of the toStr, then this
function deletes that character from the s string.

This function raises an ex.AttemptToDerefNULL exception if s, from, or toStr contain NULL. It raises an
ex.AccessViolation if s, from, or toStr contain an invalid address.

HLA high-level calling sequence examples:

str.translate3(someStr, fromStr, toStr);

// Do something with someStr

HLA low-level calling sequence examples:

push(someStr);
push(fromStr);
push(toStr);
call str.translate3;

// Do something with someStr

procedure str.translate4
(

src :string;
from :string;
toStr :string;
dest :string

);

This function modifies the s by translating all the characters in s using the from and toStr arguments as
lookup and translation tables; it stores the modified result into the string object pointed at by dest. For each
character in s, this function scans the from string to see if that character is present; if it is not present, the
character is simply copied to the destination string; if the character is present in from, then the function uses the
index of the character in from as an index into the toStr and fetches that character and copies that to the
destination string. If the index into the from string is greater than or equal to the length of the toStr, then this
function does not copy the character to the destination string, effectively deleting it.

This function raises an ex.AttemptToDerefNULL exception if s, dest, from, or toStr contain NULL. It raises
an ex.AccessViolation if s, dest, from, or toStr contain an invalid address. It raise an ex.StringOverflow exception
if the string object pointed at by dest is too small to hold the result.

HLA high-level calling sequence examples:

str.translate4(someStr, fromStr, toStr, dest);
Released to the Public Domain Page 903

HLA Standard Library
// Do something with dest

HLA low-level calling sequence examples:

push(someStr);
push(fromStr);
push(toStr);
push(dest);
call str.translate4;

// Do something with dest

31.13 String Concatentation Functions
The functions in this category combine two strings to produce a juxtaposed result.

procedure str.a_cat(src1:string; src2:string);
@returns("(type string eax)");

This function produces a new string by concatenating the characters in src1 to the end of the character string
specified by src2. It stores the result into a new string it allocates on the heap (and returns a pointer to this string
in EAX). It is the caller’s responsibility to free this storage when it is no longer needed.

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address. It raises an ex.MemoryAllocation exception if there
is an error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_cat("world", "Hello ");
mov(eax, hwStr);

// Do something with "Hello world"
.
.
.

str.free(hwStr);

HLA low-level calling sequence examples:

static
helloStr:string := "Hello ";
worldStr:string := "world";

.

.

.
push(worldStr);
push(helloStr);
call str.a_cat;
mov(eax, hwStr);

// Do something with hwStr
.
.
.

Page 904 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
str.free(hwStr);

#macro cat(string, string);
#macro cat(string, string, string);

This macro provides a "function overload" declaration for the str.cat2 and str.cat3 functions. If you pass this
macro two arguments, it creates a call to the str.cat2 function; if you pass this macro three arguments, it calls the
str.cat3 function.

procedure str.cat2(src:string; dest:string);

This function produces a new string by concatenating the characters in src to the end of dest.
This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an

ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if there is
insufficient space in the string object pointed at by dest to hold the result.

HLA high-level calling sequence examples:

str.cat2(someStr, resultStr);

// Do something with resultStr

HLA low-level calling sequence examples:

push(someStr);
push(resultStr);
call str.cat2;

// Do something with resultStr

procedure str.cat3(src1:string; src2:string; dest:string);

This function produces a new string by concatenating the characters in src1 to the end of the characters in
src2 and storing the result into dest.

This function raises an ex.AttemptToDerefNULL exception if src1, src2, or dest contain NULL. It raises an
ex.AccessViolation if src1, src2, or dest contain an invalid address. It raises an ex.StringOverflow exception if
there is insufficient space in the string object pointed at by dest to hold the result.

HLA high-level calling sequence examples:

str.cat3(strB, strA, strAB);

// Do something with strAB

HLA low-level calling sequence examples:

push(strB);
push(strA);
push(strAB);
call str.cat3;

// Do something with strAB
Released to the Public Domain Page 905

HLA Standard Library
procedure str.a_catz(src1:zstring; src2:string);
@returns("(type string eax)");

This function produces a new HLA string by concatenating the characters in the zero-terminated (zstring)
src1 string to the end of the HLA string specified by src2. It stores the result into a new string it allocates on the
heap (and returns a pointer to this string in EAX). It is the caller’s responsibility to free this storage when it is no
longer needed.

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address. It raises an ex.MemoryAllocation exception if there
is an error allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_catz(zStr, hStr);
mov(eax, h2Str);

// Do something with h2Str
.
.
.

str.free(h2Str);

HLA low-level calling sequence examples:

static
helloStr:string := "Hello ";
worldStr:zstring := "world";

.

.

.
push(worldStr);
push(helloStr);
call str.a_catz;
mov(eax, hwStr);

// Do something with hwStr
.
.
.

str.free(hwStr);

procedure str.catz(src:zstring; dest:string);

This function produces a new string by concatenating the characters in the zero-terminated zstring src to the
end of the HLA string dest.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringOverflow exception if there is
insufficient space in the string object pointed at by dest to hold the result.

HLA high-level calling sequence examples:

str.catz(someStr, resultStr);

// Do something with resultStr

HLA low-level calling sequence examples:

push(someStr);
Page 906 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(resultStr);
call str.catz;

// Do something with resultStr

procedure str.a_catsub(src1:string; index:dword; len:dword; src2:string);
@returns("(type string eax)");

This function produces a new string by concatenating a substring of src1 (specified by the index and len
arguments) to the end of the character string specified by src2. It stores the result into a new string it allocates on
the heap (and returns a pointer to this string in EAX). It is the caller’s responsibility to free this storage when it is
no longer needed. If index is less than or equal to the length of src1 but the sum of index+len is greater than the
length of src1, then the substring extracted is truncated at the end of the src1 string.

This function raises an ex.AttemptToDerefNULL exception if src1 or src2 contain NULL. It raises an
ex.AccessViolation if src1 or src2 contain an invalid address. It raises an ex.StringIndexError if index is greater
than the length of src1. It raises an ex.MemoryAllocation exception if there is an error allocating storage to hold
the result.

HLA high-level calling sequence examples:

str.a_cat("world", "Hello ");
mov(eax, hwStr);

// Do something with "Hello world"
.
.
.

str.free(hwStr);

HLA low-level calling sequence examples:

static
helloStr:string := "Hello ";
worldStr:string := "world";

.

.

.
push(worldStr);
push(helloStr);
call str.a_cat;
mov(eax, hwStr);

// Do something with hwStr
.
.
.

str.free(hwStr);

#macro catsub(string, dword, dword, string);
#macro catsub(string, dword, dword, string, string);

This macro provides a "function overload" declaration for the str.cat2 and str.cat3 functions. If you pass this
macro two arguments, it creates a call to the str.cat2 function; if you pass this macro three arguments, it calls the
str.cat3 function.
Released to the Public Domain Page 907

HLA Standard Library
procedure str.catsub4(src:string; index:dword; len:dword; dest:string);

This function produces a new string by concatenating the substr(src, index, len) to the end of dest. If
index is less than or equal to the length of src1 but the sum of index+len is greater than the length of src1, then
the substring extracted is truncated at the end of the src1 string.

This function raises an ex.AttemptToDerefNULL exception if src or dest contain NULL. It raises an
ex.AccessViolation if src or dest contain an invalid address. It raises an ex.StringIndexError exception if index is
greater than the length of src. It raises an ex.StringOverflow exception if there is insufficient space in the string
object pointed at by dest to hold the result.

HLA high-level calling sequence examples:

str.catsub4(someStr, 10, 7, resultStr);

// Do something with resultStr

HLA low-level calling sequence examples:

push(someStr);
pushd(10);
pushd(7);
push(resultStr);
call str.catsub4;

// Do something with resultStr

procedure str.catsub5
(

src1 :string;
index :dword;
len :dword;
src2 :string;
dest :string

);

This function produces a new string by concatenating the characters from substr(src1, index, len) to the end
of the characters in src2 and storing the result into dest. If index is less than or equal to the length of src1 but the
sum of index+len is greater than the length of src1, then the substring extracted is truncated at the end of the src1
string.

This function raises an ex.AttemptToDerefNULL exception if src1, src2, or dest contain NULL. It raises an
ex.AccessViolation if src1, src2, or dest contain an invalid address. It raises an ex.StringIndexError exception if
index is greater than the length of src1. It raises an ex.StringOverflow exception if there is insufficient space in
the string object pointed at by dest to hold the result.

HLA high-level calling sequence examples:

str.catsub5(rightStr, 10, 7, leftStr, resultStr);

// Do something with resultStr

HLA low-level calling sequence examples:

push(rightStr);
pushd(10);
pushd(7);
push(leftStr);
push(resultStr);
call str.catsub5;
Page 908 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Do something with resultStr

procedure str.a_catbuf(startBuf:dword; endBuf:dword; src2:string);
@returns("(type string eax)");

This function prototype is just an alias for str.a_catbuf3.

procedure str.a_catbuf2(buf:buf_t; src2:string);
@returns("(type string eax)");

This function prototype is just an alias for str.a_catbuf3. As it turns out, the buf data structure maps exactly
to the two dword arguments of str.a_catbuf3.

procedure str.a_catbuf3(startBuf:dword; endBuf:dword; src2:string);
@returns("(type string eax)");

This function creates a new string on the heap by concatenating the string data from src2 with the characters
found at the address range startBuf..endBuf in memory. This function returns a pointer to the new string in the
EAX register.

This function raises an ex.AttemptToDerefNULL exception if startBuf, endBuf or src2 contain NULL. It
raises an ex.AccessViolation if startBuf, endBuf or src2 contain an invalid address. It raises an ex.StringOverflow
exception if startBuf is greater than endBuf. It raises an ex.MemoryAllocation exception if there is an error
allocating storage to hold the result.

HLA high-level calling sequence examples:

str.a_catbuf(startPtr, endPtr, "Hello: ");
mov(eax, hwStr);

// Do something with hwStr
.
.
.

str.free(hwStr);

HLA low-level calling sequence examples:

static
helloStr:string := "Hello: ";

.

.

.
push(startPtr);
push(endPtr);
push(helloStr);
call str.a_catbuf3;
mov(eax, hwStr);

// Do something with hwStr
.
.
.

str.free(hwStr);
Released to the Public Domain Page 909

HLA Standard Library
procedure str.catbuf(startBuf:dword; endBuf:dword; src2:string);

This function prototype is just an alias for str.catbuf3a.

procedure str.catbuf2(buf:buf_t; src2:string);

This function prototype is just an alias for str.a_catbuf3. As it turns out, the buf data structure maps exactly
to the two dword arguments of str.a_catbuf3.

procedure str.catbuf3a(startBuf:dword; endBuf:dword; dest:string);

This function concatenates the characters in the memory range startBuf..endBuf to the end of dest.
This function raises an ex.AttemptToDerefNULL exception if startBuf, endBuf or dest contain NULL. It

raises an ex.AccessViolation if startBuf, endBuf or dest contain an invalid address. It raises an ex.StringOverflow
exception if startBuf is greater than endBuf or if the resulting string is too large to fit in the string object pointed
at by dest.

HLA high-level calling sequence examples:

str.catbuf3a(startPtr, endPtr, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(startPtr);
push(endPtr);
push(destStr);
call str.catbuf3;

// Do something with destStr

procedure str.catbuf3b(buf:buf_t; src:string; dest:string);

This function prototype is just an alias for str.a_catbuf4. As it turns out, the buf data structure maps exactly
to the two dword arguments of str.a_catbuf4.

procedure str.catbuf4
(

startBuf :dword;
endBuf :dword;
src :string;
dest :string

);

This function copies the characters in src to dest, then it concatenates the character in memory (address
range startBuf..endBuf) to the end of the string in dest.

This function raises an ex.AttemptToDerefNULL exception if startBuf, endBuf, src, or dest contain NULL. It
raises an ex.AccessViolation if startBuf, endBuf, src, or dest contain an invalid address. It raises an
ex.StringOverflow exception if startBuf is greater than endBuf or if the resulting string is too large to fit in the
string object pointed at by dest.

HLA high-level calling sequence examples:
Page 910 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
str.catbuf4(startPtr, endPtr, srcStr, destStr);

// Do something with destStr

HLA low-level calling sequence examples:

push(startPtr);
push(endPtr);
push(srcStr);
push(destStr);
call str.catbuf3;

// Do something with destStr

31.14 String Value Concatentation Functions
The functions in this category generally exist to support the str.put macro, though they are certainly useful

functions in their own right. They convert some data type into string form and concatenate that string to a
destination operand.

Note: all of these functions will raise the ex.StringOverflow exception if the resulting string does not fit in
the destination operation.

Also Note: Functions that do integer/hexadecimal/unsigned numeric conversion may insert underscores
between digits, depending on the value of the stdlib underscores flag. See the discussion of conv.setUnderscores
for more details on this feature.

 31.14.1 Boolean Output

procedure str.catbool(dest:string; b:boolean);

This procedure concatenates the string "true" or "false" to the destination string depending on the value of
the b parameter.

HLA high-level calling sequence examples:

str.catbool(dest, boolVar);

// If the boolean is in a register (AL):

str.catbool(dest, al);

HLA low-level calling sequence examples:

// If "boolVar" is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword boolVar));
call str.catbool;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:
Released to the Public Domain Page 911

HLA Standard Library
push(dest);
movzx(boolVar , eax); // Assume EAX is available
push(eax);
call str.catbool;

// If no register is available, do something
// like the following code:

push(dest);
sub(4, esp);
push(eax);
movzx(boolVar , eax);
mov(eax, [esp+4]);
pop(eax);
call str.catbool;

// If the boolean value is in al, bl, cl, or dl
// then you can use code like the following:

push(dest);
push(eax); // Assume boolVar is in AL
call str.catbool;

// If the Boolean value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume boolVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.catbool;

 31.14.2 Character, String, and Character Set Concatenation Routines

 procedure str.catc(dest:string; c:char);

Appends the character specified by the c parameter to the dest string.

HLA high-level calling sequence examples:

str.catc(dest, charVar);

// If the character is in a register (AL):

str.catc(dest, al);

HLA low-level calling sequence examples:

// If "charVar" is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword charVar));
call str.catc;
Page 912 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(charVar, eax); // Assume EAX is available
push(eax);
call str.catc;

// If no register is available, do something
// like the following code:

push(dest);
sub(4, esp);
push(eax);
movzx(charVar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.catc;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(dest);
push(eax); // Assume charVar is in AL
call str.catc;

// If the character value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume charVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.catc;

procedure str.catcSize(dest:string; c:char; width:int32; fill:char)

Appends the character c to the end of dest using at least width output positions. If the absolute value of
width is greater than one, then this function emits fill characters as padding characters during the concatenation.
If width is a positive value greater than one, then str.catcSize appends c left justfied in a field of width characters;
if width is a negative value less than one, then str.catcSize appends c right justified in a field of width characters.

HLA high-level calling sequence examples:

str.catcSize(dest, charVar, width, padChar);

HLA low-level calling sequence examples:

// If "charVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword charVar));
push(width);
push((type dword padChar));
call str.catcSize;
Released to the Public Domain Page 913

HLA Standard Library
// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(charVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.catcSize;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(charVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.catcSize;
pop(eax);

// If "charVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume charVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call str.catcSize;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(dest);
xchg(al, ah); // Assume charVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call str.catcSize;

procedure str.catcset(dest:string; cst:cset);

This function appends a string containing all the members of the cst character set parameter to the end of the
dest string.

HLA high-level calling sequence examples:

str.catcset(dest, csVar);
str.catcset(dest, [ebx]); // EBX points at the cset.
Page 914 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(dest);
push((type dword csVar[12])); // Push H.O. dword first
push((type dword csVar[8]));
push((type dword csVar[4]));
push((type dword csVar)); // Push L.O. dword last
call str.catcset;

push(dest);
push((type dword [ebx+12])); // Push H.O. dword first
push((type dword [ebx+8]));
push((type dword [ebx+4]));
push((type dword [ebx])); // Push L.O. dword last
call str.catcset;

procedure str.cats(dest:string; s:string);

This procedure appends the value of the string parameter to the end of the dest string. Remember, string
values are actually 4-byte pointers to the string’s character data. This function is equilvalent to the str.cat
function except that the parameters are reversed to support the str.put macro’s requirements.

HLA high-level calling sequence examples:

str.cats(dest, strVar);
str.cats(dest, ebx); // EBX holds a string value.
str.cats(dest, "Hello World");

HLA low-level calling sequence examples:

// For string variables:

push(dest);
push(strVar);
call str.cats;

// For string values held in registers:

push(dest);
push(ebx); // Assume EBX holds the string value
call str.cats;

// For string literals, assuming a 32-bit register
// is available:

push(dest);
lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
call str.cats;

// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

.

Released to the Public Domain Page 915

HLA Standard Library
.

.
push(dest);
push(literalString);
call str.cats;

procedure str.catsSize(dest:string; s:string; width:int32; fill:char);

This function concatenates the s string to the dest string using at least width character positions. If the
absolute value of width is less than or equal to the length of s, then this function behaves exactly like str.cats. On
the other hand, if the absolute value of width is greater than the length of s, then str.catsSize appends width
characters to the dest string. This procedure emits the fill character in the extra character positions. If width is
positive, then str.catsSize right justifies the string in the output field. If width is negative, then str.catsSize left
justifies the string in the output field. Generally, people expect the string to be left justified, so you should ensure
that this value is negative to achieve this.

HLA high-level calling sequence examples:

str.catsSize(dest, strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

str.catsSize(dest, ebx, ecx, al);

str.catsSize(dest, "Hello World", 25, padChar);

HLA low-level calling sequence examples:

// For string variables:

push(dest);
push(strVar);
push(width);
pushd(‘ ‘);
call str.catsSize;

// For string values held in registers:

push(dest);
push(ebx); // Assume EBX holds the string value
push(ecx); // Assume ECX holds the width
push(eax); // Assume AL holds the fill character
call str.catsSize;

// For string literals, assuming a 32-bit register
// is available:

push(dest);
lea(eax, "Hello World"); // Assume EAX is available.
push(eax);
pushd(25);
movzx(padChar, eax);
push(eax);
call str.catsSize;
Page 916 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If a 32-bit register is not available:

readonly
literalString :string := "Hello World";

// Note: element zero is the actual pad character.
 // The other elements are just padding.
 padChar :char[4] := [‘.’, #0, #0, #0];

.

.

.
push(dest);
push(literalString);
pushd(25);
push((type dword padChar));
call str.catsSize;

 31.14.3 Hexadecimal Concatenation Routines
These routines convert numeric data to hexadecimal string form (using the hexadecimal conversion routines

found in the conv module) and append the result to the destination string.

procedure str.catb(dest:string; b:byte)

This procedure appends the value of b to the dest string using exactly two hexadecimal digits (including a
leading zero if necessary).

HLA high-level calling sequence examples:

str.catb(dest, byteVar);

// If the character is in a register (AL):

str.catb(dest, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
call str.catb;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call str.catb;
Released to the Public Domain Page 917

HLA Standard Library
// If no register is available, do something
// like the following code:

push(dest);
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call str.catb;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(dest);
push(eax); // Assume byteVar is in AL
call str.catb;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.catb;

procedure str.cath8(dest:string; b:byte);

This procedure appends the value of b to the dest string using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

str.cath8(dest, byteVar);

// If the character is in a register (AL):

str.cath8(dest, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
call str.cath8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:
Page 918 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(dest);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call str.cath8;

// If no register is available, do something
// like the following code:

push(dest);
sub(4, esp);
push(eax);
movzx(byteVar , eax);
mov(eax, [esp+4]);
pop(eax);
call str.cath8;

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(dest);
push(eax); // Assume byteVar is in AL
call str.cath8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.cath8;

procedure str.cath8Size(dest:string; b:byte; size:dword; fill:char)

The str.cath8Size function concatenates an 8-bit hexadecimal string value to the dest string allowing you
specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

str.cath8Size(dest, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
push(width);
push((type dword padChar));
call str.cath8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
Released to the Public Domain Page 919

HLA Standard Library
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.cath8Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.cath8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call str.cath8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call str.cath8Size;

procedure str.catw(dest:string; w:word)

This procedure appends the string value of w to the dest string using exactly four hexadecimal digits
(including leading zeros if necessary).

HLA high-level calling sequence examples:

str.catw(dest, wordVar);

// If the word is in a register (AX):

str.catw(dest, ax);
Page 920 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
call str.catw;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call str.catw;

// If no register is available, do something
// like the following code:

push(dest);
push(eax):
movzx(wordVar, eax);
push(eax);
call str.catw;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(dest);
push(eax); // Assume wordVar is in AX
call str.catw;

procedure str.cath16(dest:string; w:word)

This procedure appends the string value of w to the dest string using the minimum necessary number of
hexadecimal digits.

HLA high-level calling sequence examples:

str.cath16(dest, wordVar);

// If the word is in a register (AX):

str.cath16(dest, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
Released to the Public Domain Page 921

HLA Standard Library
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
call str.cath16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call str.cath16;

// If no register is available, do something
// like the following code:

push(dest);
push(eax);
movzx(wordVar, eax);
push(eax);
call str.cath16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(dest);
push(eax); // Assume wordVar is in AX
call str.cath16;

procedure str.cath16Size(dest:string; w:word; size:dword; fill:char)

The str.cath16Size function appends a 16-bit hexadecimal string value to the dest string allowing you
specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

str.cath16Size(dest, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
push(width);
push((type dword padChar));
call str.cath16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
Page 922 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.cath16Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.cath16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call str.cath16Size;

procedure str.catd(dest:string; d:dword)

This procedure appends the string value of d to the dest string using exactly eight hexadecimal digits
(including leading zeros if necessary), if underscore output is not enabled. This routine will emit nine characters
(eight digits plus an underscore) if underscore output is enabled.

HLA high-level calling sequence examples:

str.catd(dest, dwordVar);

// If the dword value is in a register (EAX):

str.catd(dest, eax);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
call str.catd;

push(dest);
push(eax);
call str.catd;
Released to the Public Domain Page 923

HLA Standard Library
procedure str.cath32(dest:string; d:dword);

This procedure appends the string value of d to the dest string using the minimum number of hexadecimal
digits necessary. If underscore output is enabled (see conv.setUnderscores and conv.getUnderscores) then this
function will emit an underscore between groups of four hexadecimal digits, starting from the least signficant
digit.

HLA high-level calling sequence examples:

str.cath32(dest, dwordVar);

// If the dword is in a register (EAX):

str.cath32(dest, eax);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
call str.cath32;

push(dest);
push(eax);
call str.cath32;

procedure str.cath32Size(dest:string; d:dword; size:dword; fill:char)

 The str.cath32Size function outputs d as a hexadecimal string to the end of the dest string (including
underscores, if enabled) and it allows you specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

str.cath32Size(dest, dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

str.cath32Size(dest, eax, width, cl);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
push(width);
pushd(‘ ‘);
call str.cath32Size;

push(dest);
push(eax);
push(width);
push(ecx); // fill char is in CL
call str.cath32Size;

// Assume fill char is in CH
Page 924 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(dest);
push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cath32Size;

// Alternate method of the above

push(dest);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cath32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cath32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cath32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cath32Size;

procedure str.catq(dest:string; q:qword);

This procedure appends the value of q to the dest string using exactly sixteen hexadecimal digits (including
leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:
Released to the Public Domain Page 925

HLA Standard Library
str.catq(dest, qwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call str.catq;

procedure str.cath64(dest:string; q:qword);

This procedure appends the value of q to the dest string using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

str.cath64(dest, qwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call str.cath64;

procedure str.cath64Size(dest:string; q:qword; size:dword; fill:char);

The str.cath64Size function lets you specify a minimum field width and a fill character when appending the
string form of the q parameter to the end of the dest string. Note that if underscore output is enabled, this routine
will emit up to 19 characters (16 digits plus three underscores).

HLA high-level calling sequence examples:

str.cath64Size(dest, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.cath64Size;

push(dest);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call str.cath64Size;
Page 926 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Assume fill char is in CH

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cath64Size;

// Alternate method of the above

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cath64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cath64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cath64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cath64Size;
Released to the Public Domain Page 927

HLA Standard Library
procedure str.cattb(dest:string; tb:tbyte);

This procedure appends the string value of tb to the dest string using exactly 20 hexadecimal digits
(including leading zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

str.cattb(dest, tbyteVar);

HLA low-level calling sequence examples:

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call str.cattb;

procedure str.cath80(dest:string; tb:tbyte);

This procedure appends the value of tb to the dest string using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

str.cath80(dest, tbyteVar);

HLA low-level calling sequence examples:

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
call str.cath80;

procedure str.cath80Size(dest:string; tb:tbyte; width:dword; fill:char);

e str.cath80Size function appends the hexadecimal form of the 80-bit tb parameter to the end of the dest
string. It lets you specify a minimum field width and a fill character.

HLA high-level calling sequence examples:

str.cath80Size(dest, tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
Page 928 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.cath80Size;

// Assume fill char is in CH

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cath80Size;

// Alternate method of the above

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cath80Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cath80Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cath80Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:
Released to the Public Domain Page 929

HLA Standard Library
push(dest);
pushw(0); // Push push a 0 pad word
push((type word tbyteVar[8])); // Push H.O. word first
push((type dword tbyteVar[4])); // M.O. dword second
push((type dword tbyteVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cath80Size;

procedure str.catl(dest:string; l:lword);

This procedure appends the string value of l to the dest string using exactly 32 hexadecimal digits (including
leading zeros if necessary and intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

str.catl(dest, lwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call str.catl;

procedure str.cath128(dest:string; l:lword);

This procedure appends the string value of l to the dest string using the minimum necessary number of
hexadecimal digits (including intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

str.cath128(dest, lwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call str.cath128;

Page 930 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.cath128Size(dest:string; l:lword; width:dword; fill:char);

The str.cath128Size function appends the string value of l to the dest string and it lets you specify a
minimum field width and a fill character.

HLA high-level calling sequence examples:

str.cath128Size(dest, tbyteVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.cath128Size;

// Assume fill char is in CH

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cath128Size;

// Alternate method of the above

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cath128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cath128Size;
Released to the Public Domain Page 931

HLA Standard Library
// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cath128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cath128Size;

 31.14.4 Signed Integer Concatenation Routines
These routines convert signed integer values to string format and append that string to a destination string.

The str.catxxxSize functions contain width and fill parameters that let you specify the minimum field width when
outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the string. If width is non-negative, then these functions right-justify the
value in the output field; if width is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra output positions.
Note that unlike floating point values, these functions do not print a space in front of the value if it is non-

negative.

procedure str.cati8 (dest:string; b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and appends this string
to dest using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 932 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
str.cati8(dest, byteVar);

// If the character is in a register (AL):

str.cati8(dest, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
call str.cati8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call str.cati8;

// If no register is available, do something
// like the following code:

push(dest);
push(eax);
movzx(byteVar , eax);
push(eax);
call str.cati8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

push(dest);
push(eax); // Assume byteVar is in AL
call str.cati8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.cati8;
Released to the Public Domain Page 933

HLA Standard Library
procedure str.cati8Size (dest:string; b:byte; width:int32; fill:char)

This function appends the eight-bit signed integer value you pass to the dest string using the width and fill
values as specified above.

HLA high-level calling sequence examples:

str.cati8Size(dest, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
push(width);
push((type dword padChar));
call str.cati8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.cati8Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.cati8Size;
pop(eax);

// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call str.cati8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(dest);
Page 934 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call str.cati8Size;

procedure str.cati16(dest:string; w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and append this string to
dest using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.cati16(dest, wordVar);

// If the word is in a register (AX):

str.cati16(dest, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
call str.cati16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
call str.cati16;

// If no register is available, do something
// like the following code:

push(dest);
push(eax);
movzx(wordVar, eax);
push(eax);
call str.cati16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(dest);
Released to the Public Domain Page 935

HLA Standard Library
push(eax); // Assume wordVar is in AX
call str.cati16;

procedure str.cati16Size(dest:string; w:word; width:int32; fill:char);

This function appends the 16-bit signed integer value you pass to the dest string using the width and fill
values as specified above.

HLA high-level calling sequence examples:

str.cati16Size(dest, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
push(width);
push((type dword padChar));
call str.cati16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.cati16Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.cati16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
Page 936 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call str.cati16Size;

procedure str.cati32(dest:string; d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and appends it to dest
using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.cati32(dest, dwordVar);

// If the dword is in a register (EAX):

str.cati32(dest, eax);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
call str.cati32;

push(dest);
push(eax);
call str.cati32;

procedure str.cati32Size(dest:string; d:dword; width:int32; fill:char);

This function appends the 32-bit value you pass as a signed integer to the dest string using the width and fill
values as specified above.

HLA high-level calling sequence examples:

str.catu32Size(dest, dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

str.catu32Size(dest, eax, width, cl);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
push(width);
pushd(‘ ‘);
call str.catu32Size;

push(dest);
push(eax);
push(width);
Released to the Public Domain Page 937

HLA Standard Library
push(ecx); // fill char is in CL
call str.catu32Size;

// Assume fill char is in CH

push(dest);
push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.catu32Size;

// Alternate method of the above

push(dest);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.catu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.catu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.catu32Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cati32Size;
Page 938 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.cati64(dest:string; q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and appends this string to
dest using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.cati64(dest, qwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call str.cati64;

procedure str.cati64Size(dest:string; q:qword; width:int32; fill:char);

This function appends the 64-bit value you pass as a signed integer to the dest string using the width and fill
values as specified earlier.

HLA high-level calling sequence examples:

str.cati64Size(dest, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.cati64Size;

push(dest);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call str.cati64Size;

// Assume fill char is in CH

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cati64Size;

// Alternate method of the above
Released to the Public Domain Page 939

HLA Standard Library
push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cati64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cati64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cati64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cati64Size;

procedure str.cati128(dest:string; l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and appends this string
to dest using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.cati128(dest, lwordVar);

HLA low-level calling sequence examples:
Page 940 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(dest);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call str.cati128;

procedure str.cati128Size(dest:string; l:lword; width:int32; fill:char);

This function appends the 128-bit value you pass as a signed integer to the dest string using the width and fill
values as specified above.

HLA high-level calling sequence examples:

str.cati128Size(dest, lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.cati128Size;

// Assume fill char is in CH

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.cati128Size;

// Alternate method of the above

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.cati128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
Released to the Public Domain Page 941

HLA Standard Library
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.cati128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.cati128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.cati128Size;

 31.14.5 Unsigned Integer Concatenation Routines
These routines convert unsigned integer values to string format and append that string to the destination

string passed as an argument. The str.catxxxSize functions contain width and fill parameters that let you specify
the minimum field width when outputting a value.

If the absolute value of width is greater than the number of character positions the value requires, then these
functions append width characters to the destination string. If width is non-negative, then these functions right-
justify the value in the output field; if width is negative, then these functions left-justify the value in the output
field.

These functions emit the fill character as the padding value for the extra print positions.
Page 942 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.catu8 (dest:string; b:byte);

This function converts the eight-bit unsigned integer you pass as a parameter to a string and appends this
string to dest using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.catu8(dest, byteVar);

// If the character is in a register (AL):

str.catu8(dest, al);

HLA low-level calling sequence examples:

// If "byteVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
call str.catu8;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(byteVar , eax); // Assume EAX is available
push(eax);
call str.catu8;

// If no register is available, do something
// like the following code:

push(dest);
push(eax);
movzx(byteVar , eax);
push(eax);
call str.catu8;
pop(eax);

// If the character value is in al, bl, cl, or dl
// then you can use code like the following:

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Released to the Public Domain Page 943

HLA Standard Library
push(dest);
push(eax); // Assume byteVar is in AL
call str.catu8;

// If the byte value is in ah, bh, ch, or dh
// you’ll have to use code like the following:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
push(eax); // It’s now in AL
xchg(al, ah); // Restore al/ah
call str.catu8;

procedure str.catu8Size(dest:string; b:byte; width:int32; fill:char);

This function appends the unsigned eight-bit value you pass to the dest string using the width and fill values
as specified above.

HLA high-level calling sequence examples:

str.catu8Size(dest, byteVar, width, padChar);

HLA low-level calling sequence examples:

// If "byteVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword byteVar));
push(width);
push((type dword padChar));
call str.catu8Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(byteVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.catu8Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
movzx(byteVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.catu8Size;
pop(eax);
Page 944 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// If "byteVar" or "padChar" are in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume byteVar is in AL
push(width);
push(ebx); // Assume padChar is in BL
call str.catu8Size;

// Do the following if the characters are
// in AH, BH, CH, or DH:

push(dest);
xchg(al, ah); // Assume byteVar is in AH
xchg(bl, bh); // Assume padChar is in BH
push(eax);
push(width);
push(ebx);
xchg(al, ah);
xchg(bl, bh);
call str.catu8Size;

procedure str.catu16(dest:string; w:word);

This function converts the 16-bit unsigned integer you pass as a parameter to a string and appends this to the
dest string using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

str.catu16(dest, wordVar);

// If the word is in a register (AX):

str.catu16(dest, ax);

HLA low-level calling sequence examples:

// If "wordVar " is not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
call str.catu16;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
Released to the Public Domain Page 945

HLA Standard Library
push(eax);
call str.catu16;

// If no register is available, do something
// like the following code:

push(dest);
push(eax);
movzx(wordVar, eax);
push(eax);
call str.catu16;
pop(eax);

// If the word value is in a 16-bit register
// then you can use code like the following:

push(dest);
push(eax); // Assume wordVar is in AX
call str.catu16;

procedure str.catu16Size(dest:string; w:word; width:int32; fill:char);

This function appends the unsigned 16-bit value you pass to the dest string using the width and fill values as
specified above.

HLA high-level calling sequence examples:

str.catu16Size(dest, wordVar, width, padChar);

HLA low-level calling sequence examples:

// If "wordVar" and "padChar" are not one of the last three
// bytes on a page of memory, you can do this:

push(dest);
push((type dword wordVar));
push(width);
push((type dword padChar));
call str.catu16Size;

// If you can’t guarantee that the previous code
// won’t generate an illegal memory access, and a
// 32-bit register is available, use code like
// the following:

push(dest);
movzx(wordVar, eax); // Assume EAX is available
push(eax);
push(width);
movzx(padChar, ebx); // Assume EBX is available
push(ebx);
call str.catu16Size;

// If no registers are available, do something
// like the following code:

push(dest);
push(eax);
Page 946 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
movzx(wordVar, eax);
push(eax);
push(width);
movzx(padChar, eax);
push(eax);
call str.catu16Size;
pop(eax);

// If "wordVar" is in a 16-bit register
// and "padChar" is in an
// 8-bit register, then you can push
// the corresponding 32-bit register if
// the register is AL, BL, CL, or DL:

push(dest);
push(eax); // Assume wordVar is in AX
push(width);
push(ebx); // Assume padChar is in BL
call str.catu16Size;

procedure str.catu32(dest:string; d:dword);

This function converts the 32-bit unsigned integer you pass as a parameter to a string and appends this to the
dest string using the minimum number of character positions the number requires.

HLA high-level calling sequence examples:

str.catu32(dest, dwordVar);

// If the dword is in a register (EAX):

str.catu32(dest, eax);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
call str.catu32;

push(dest);
push(eax);
call str.catu32;

procedure str.catu32Size(dest:string; d:dword; width:int32; fill:char);

This function appends the unsigned 32-bit value you pass to the dest string using the width and fill values as
specified above.

HLA high-level calling sequence examples:

str.catu32Size(dest, dwordVar, width, ‘ ‘);
Released to the Public Domain Page 947

HLA Standard Library
// If the dword is in a register (EAX):

str.catu32Size(dest, eax, width, cl);

HLA low-level calling sequence examples:

push(dest);
push(dwordVar);
push(width);
pushd(‘ ‘);
call str.catu32Size;

push(dest);
push(eax);
push(width);
push(ecx); // fill char is in CL
call str.catu32Size;

// Assume fill char is in CH

push(dest);
push(eax);
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.catu32Size;

// Alternate method of the above

push(dest);
push(eax);
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.catu32Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push(eax);
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.catu32Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push(eax);
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.catu32Size;

// In the very rare case that the above would
Page 948 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// cause an illegal memory access, use this:

push(dest);
push(eax);
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.catu32Size;

procedure str.catu64(dest:string; q:qword);

This function converts the 64-bit unsigned integer you pass as a parameter to a string and appends this string
to dest using the minimum number of character positions the integer requires.

HLA high-level calling sequence examples:

str.catu64(dest, qwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
call str.catu64;

procedure str.catu64Size(dest:string; q:qword; width:int32; fill:char);

This function appends the unsigned 64-bit value you pass to the dest string using the width and fill values as
specified above.

HLA high-level calling sequence examples:

str.catu64Size(dest, qwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.catu64Size;

push(dest);
push(edx); // Assume 64-bit value in edx:eax
push(eax);
push(width);
push(ecx); // fill char is in CL
call str.catu64Size;

// Assume fill char is in CH
Released to the Public Domain Page 949

HLA Standard Library
push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.catu64Size;

// Alternate method of the above

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.catu64Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.catu64Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.catu64Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword qwordVar[4])); // H.O. dword first
push((type dword qwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.catu64Size;
Page 950 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure str.catu128(dest:string; l:lword);

This function converts the 128-bit unsigned integer you pass as a parameter to a string and appends this
string to dest using the minimum number of character positions the number requires.

HLA high-level calling sequence examples:

str.catu128(dest, lwordVar);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // H.O. dword first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
call str.catu128;

procedure str.catu128Size(dest:string; l:lword; width:int32; fill:char)

This function appends the unsigned 128-bit value you pass to the dest string using the width and fill values as
specified above.

HLA high-level calling sequence examples:

str.catu128Size(dest, lwordVar, width, ‘ ‘);

HLA low-level calling sequence examples:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
pushd(‘ ‘);
call str.catu128Size;

// Assume fill char is in CH

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
xchg(cl, ch); // fill char is in CH
push(ecx);
xchg(cl, ch);
call str.catu128Size;

// Alternate method of the above
Released to the Public Domain Page 951

HLA Standard Library
push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
mov(ch, [esp]);
call str.catu128Size;

// If the fill char is a variable and
// a register is available, try this code:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
movzx(fillChar, ebx); // Assume EBX is available
push(ebx);
call str.catu128Size;

// If the fill char is a variable and
// no register is available, here’s one
// possibility:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
push((type dword fillChar)); // Chance of page crossing!
call str.catu128Size;

// In the very rare case that the above would
// cause an illegal memory access, use this:

push(dest);
push((type dword lwordVar[12])); // Push H.O. word first
push((type dword lwordVar[8]));
push((type dword lwordVar[4]));
push((type dword lwordVar)); // L.O. dword last
push(width);
sub(4, esp);
push(eax);
movzx(fillChar, eax);
mov(eax, [esp+4]);
pop(eax);
call str.catu128Size;

31.15 Floating-Point Concatenation Routines
The HLA string module provides several procedures you can use to append the string representation of

floating point values to some string. The following subsections describe these routines.
Page 952 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 31.15.1 Real to String Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then concatenate this string to some destination string. There are two generic classes of
these routines: those that convert their values to exponential/scientific notation and those that convert their string
to a decimal form.

The str.cate80, str.cate64, and str.cate32 routines convert their values to a string using scientific notation.
These three routines each have two parameters: the value to output and the field width of the result. These
routines produce a string with the following format:

procedure str.cate32(dest:string; r:real32; width:uns32);

This function appends string conversion of the 32-bit single precision floating point value passed in r to the
dest string using scientific/exponential notation. This procedure prints the value using width print positions in
the output. width should have a minimum value of of six. Note that 32-bit extended precision floating point
values support about 6-7 significant digits. So a width value that yields more than seven mantissa digits will
produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

str.cate32(dest, r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
str.cate32(dest, r32Temp, 12);

HLA low-level calling sequence examples:

push(dest);
push((type dword r32Var));
push(width);
call str.cate32;

push(dest);
sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
call str.cate32;

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 953

HLA Standard Library
procedure str.cate64(dest:string; r:real64; width:uns32);

This function appends the string conversion of the 64-bit double precision floating point value passed in r to
the dest string using scientific/exponential notation. This procedure appends the value using width character
positions in the output. width should have a minimum value of six. Note that 64-bit double precision floating
point values support about 15 significant digits. So a width value that yeilds more than 15 mantissa digits will
produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

str.cate64(dest, r64Var, width);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
str.cate64(dest, r64Temp, 12);

HLA low-level calling sequence examples:

push(dest);
push((type dword r64Var[4]));
push((type dword r64Var[0]));
push(width);
call str.cate64;

push(dest);
sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
call str.cate64;

procedure str.cate80(dest:string; r:real80; width:uns32);

This function appends the string conversion of the 80-bit extended precision floating point value passed in r
to the dest string using scientific/exponential notation. This procedure emits the value using width character
positions in dest. width should have a minimum value of six. Note that 80-bit extended precision floating point
values support about 18 significant digits. So a width value that yeilds more than 18 mantissa digits will produce
garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

str.cate80(dest, r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.

Page 954 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
.
fstp(r80Temp);
str.cate80(dest, r80Temp, 12);

HLA low-level calling sequence examples:

push(dest);
pushw(0); // A word of padding.
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var[0]));
push(width);
call str.cate80;

push(dest);
sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
call str.cate80;

 31.15.2 Real To String Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA str module also provides a set of
functions that convert real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions require four parameters: the real value to convert, the width of the converted value, the
number of digit positions to the right of the decimal point, and a padding character. These functions convert
their values using the following string format:

procedure str.catr32
(

dest :string;
r :real32;
width :uns32;
decpts :uns32;
pad :char

);

This procedure appends a 32-bit single precision floating point value to the dest string. The string consumes
exactly width characters in dest. If the numeric output, using the specified number of positions to the right of the
decimal point, is sufficiently small that the string representation would be less than width characters, then this
procedure uses the value of pad as the padding character to fill the output with width characters. The number is
right-justified within the output field (that is, this function prints the padding characters before the string
representation of the number).

HLA high-level calling sequence examples:

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Released to the Public Domain Page 955

HLA Standard Library
str.catr32(dest, r32Var, width, decpts, fill);
str.catr32(dest, r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
str.catr32(dest, r32Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(dest);
push((type dword r32Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call str.catr32;

push(dest);
push((type dword r32Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call str.catr32;

push(dest);
sub(4, esp);
fstp((type real32 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call str.catr32;

procedure str.catr64
(

dest :string;
r :real64;
width :uns32;
decpts :uns32;
pad :char

);

This procedure appends a string representation of a 64-bit double precision floating point value to the dest
string. The string consumes exactly width characters in the output. If the numeric output, using the specified
number of positions to the right of the decimal point, is sufficiently small that the string representation would be
less than width characters, then this procedure uses the value of pad as the padding character to fill the output
with width characters.
Page 956 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

str.catr64(dest, r64Var, width, decpts, fill);
str.catr64(dest, r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
str.catr64(dest, r64Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(dest);
push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call str.catr64;

push(dest);
push((type dword r64Var[4]));
push((type dword r64Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call str.catr64;

push(dest);
sub(8, esp);
fstp((type real64 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call str.catr64;

procedure str.catr80
(

dest :string;
r :real80;
width :uns32;
decpts :uns32;
Released to the Public Domain Page 957

HLA Standard Library
pad :char
);

This procedure appends the string form of an 80-bit extended precision floating point value to the dest
string. The string consumes exactly width characters in the output. If the numeric output, using the specified
number of positions to the right of the decimal point, is sufficiently small that the string representation would be
less than width characters, then this procedure uses the value of pad as the padding character to fill the output
with width characters.

HLA high-level calling sequence examples:

str.catr80(dest, r80Var, width, decpts, fill);
str.catr80(dest, r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
str.catr80(dest, r80Temp, 12, 2, al);

HLA low-level calling sequence examples:

push(dest);
pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
movzx(fill, eax);
push(eax);
call str.catr80;

push(dest);
pushw(0);
push((type word r80Var[8]));
push((type dword r80Var[4]));
push((type dword r80Var));
push(width);
push(decpts);
pushd((type dword fill)); // If no memory fault possible
call str.catr80;

push(dest);
sub(12, esp);
fstp((type real80 [esp]));
pushd(12);
sub(4, esp);
push(eax);
movzx(fill, eax):// If memory fault were possible
mov(eax, [esp+4]); // in above code.
pop(eax);
call str.catr80;
Page 958 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
31.16 Generic String Format Output Routine
#macro str.put(list_of_items);

str.put is a macro that automatically invokes an appropriate str.catXXX output routine based on the type of
the parameter(s) you pass it. This is a very convenient output routine and is probably the str.catXXX output call
you will use most often in your programs. Keep in mind that this macro is not a single function call; instead,
HLA translates this macro into a sequence of calls to procedures like str.catu32, str.cats, etc.

str.put is a macro that provides a flexible syntax for outputting data to a string. This macro allows a variable
number of parameters. For each parameter present in the list, str.put will call the appropriate routine to emit that
data, according to the type of the parameter. Parameters may be constants, registers, or memory locations. You
must separate each macro parameter with a comma.

Here is an example of a typical invocation of str.put:

str.put(dest, "I=", i, " j=", j, nl);

The above is roughly equivalent to

str.cpy("", dest);
str.cats(dest, "I=");
str.catu32(dest, i);
str.cats(dest, " j=");
str.catu32(dest, j);
str.cats(dest, nl);

This assumes, of course, that i and j are int32 variables.
The str.put macro also lets you specify the minimum field width for each parameter you specify. To print a

value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

str.put(dest, "I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

str.put("Real value is ", f:10:3, nl);

The str.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64, 128),
signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word, dword,
qword, lword).

There is a known "design flaw" in the str.put macro. You cannot use it to print HLA intermediate variables
(i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and str.put cannot determine if you want to print reg32 using varname print positions versus
simply printing the non-local varname object. If you want to display non-local variables you must copy the non-
local object into a register, a static variable, or a local variable prior to using str.put to operate on it. Of course,
there is no problem using the other str.catXXXX functions to display non-local VAR objects, so you can use
those as well.
Released to the Public Domain Page 959

HLA Standard Library
Page 960 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
32 High-Level Language Module (hll.hhf)

The hll.hhf library module adds a switch/case/default/endswitch statement that is similiar to the Pascal case
statement and the C/C++ switch statement.

32.1 The HLL Module
To use the high-level language functions in your application, you will need to include one of the following

statements at the beginning of your HLA application:
#include("hll.hhf")
or
#include("stdlib.hhf")

32.2 The switch/case/default/endswitch Macro
#macro switch(reg32);
#keyword case(const_list);
#keyword default
#terminator endswitch

A commonly used high level language statement missing from HLA’s basic set is the the C/C++ switch
statement (the case statement in most other languages). The SWITCH/CASE/DEFAULT/ENDSWITCH macro
set in the hll.hhf header file provides this missing HLL statement.

The HLL module’s switch statement actually provides two different user-selectable syntaxes. The first is a
Pascal-like syntax. It takes the following form:

switch(reg32)

case(constant_list)
<<body>>

<< additional, optional cases >>

default // This section is optional too!
<< body >>

endswitch;

As you might expect, the reg32 parameter has to be an 80x86 32-bit general purpose register. The
constant_list operand has to be a sequence of one or more positive ordinal constants. There must be at least one
case present in the statement (default does not count as a case) and there may be a maximum of 1,024 cases in the
switch statement. Furthermore, the range between the largest and smallest values for all the cases must be less
than or equal to 1,024. Note that, unlike C/C++, you do not end each case with a break statement; nor does
control fall through from one case to the next. Here is a simple example of a Pascal-like switch statement:

switch(ebx)

case(1)
stdout.put("case 1 encountered" nl);

case(3)
stdout.put("case 3 encountered" nl);

case(10)
stdout.put("case 10 encountered" nl);
Released to the Public Domain Page 961

HLA Standard Library
case(15, 20, 25)
stdout.put("case 15, 20, or 25 encountered" nl);

default
stdout.put("Some other case was encountered" nl);

endswitch;

Although C/C++ semantics for a switch statement are stylistically inferior to Pascal, some people might
prefer a C/C++ version of the switch statement. The HLL switch statement uses a special predefined boolean
VAL constant, hll.cswitch, that lets you choose C/C++ semantics. By default, the hll.cswitch constant is set to
false. By placing the statement "?hll.cswitch:=true;" before a switch statement, you can instruct the switch macro
to use C/C++ semantics rather than Pascal semantics. The difference between the two is that for C/C++
semantics you must end each case with an explicit break statement. The Pascal version is preferable since it is
slightly more efficient and a bit more readable.

By default, the switch macro uses a quicksort algorithm built into HLA’s @sort compile-time function to sort
the cases when building the jump table that the switch statement compiles into. For the vast majority of switch
statements you’ll write, this is a good choice. However, if you create a really large switch statement and the cases
you supply are already sorted in ascending order (or mostly sorted), a bubble sort will actually outperform the
quick sort algorithm. In this (very) special case, you an improve the compilation (not run-time) performance of
the switch macro by adding the following statement immediately after the switch statement:

switch(eax)
?hll.usebubblesort := true;

<lots of pre-sorted cases>

endswitch;

Note that this trick speeds up compilation only if the cases are already sorted in ascending order. If they are not
sorted in ascending order, then the bubblesort algorithm is much slower than the quicksort algorithm and you
shouldn’t use it.
Page 962 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
33 Tables Module (tables.hhf)

The HLA Tables module provides support for associative lookup tables. You can view a table as an array of
objects that uses a string index rather than an integer index. The HLA table routines use a hash table to rapidly
look up the specified string in the table and return a pointer to the specified element in the table.

Note: Because of their high-level nature, this document only provides high-level calling sequences for the
table management procedures. Low-level calls are possible, but are generally so painful that they aren’t worth
making. If you are dead set on making low-level calls to table class methods and procedures, please consult the
HLA documentation for directions on how this is done.

 A Note About Thread Safety: The HLA standard library table module does not attempt to synchronize
thread access to the table data structures. If you are going to be manipulating tables from multiple threads, it is
your responsibility to ensure that the threads use properly synchronized access to this resource. This issue may be
addressed in a future version of the standard library, for now it is your responsibility to ensure correct operation
in a multi-threaded environment.

33.1 The Tables Module
To use the table class and methods in your application, you will need to include one of the following

statements at the beginning of your HLA application:
#include("tables.hhf")
or
#include("stdlib.hhf")

33.2 The Table Class
The HLA stdlib tables module consists of two classes: the table class and the node class. To create a table

object, you first create a new node type by overloading the node class and then you can use the table class’
methods to manipulate a table of these nodes.

To begin with, each element (called a node) in an HLA table uses the following structure:

tableNode_t:
record

link: pointer to tableNode_t;
Value: dword;
id: string;

endrecord;

The link field is for internal use by the table management routines; you should never modify its value.
The id field points at the string that indexes the current node in the table. You may use the value of this

string, but you must never modify the characters in the string. The hashing function utilitized by the table
management code will not be able to locate this string if you change the characters in the string after entering the
string into the table.

The Value field is reserved for your own purposes. Other than initializing this field to zero when they create
a table entry, the table management routines ignore this field. If you wish to associate data with an entry in the
table you can either store the data directly in this field (if the data is four bytes or less), or you can allocate
storage for the data outside the table entry and store a pointer to the data in this field (remember, pointers are
four-byte objects).

The table_t data type is a class that provides the following methods and procedures:

procedure table_t.create(HashSize:uns32);
method table_t.destroy(FreeValue:procedure);
method table_t.getNode(id:string);
method table_t.lookup(id:string);
iterator table_t.item();
Released to the Public Domain Page 963

HLA Standard Library
Like most HLA classes, the table_t class provides a constructor named table_t.create and a destructor
named table_t.destroy. The class also provides two additional methods and an iterator, table_t.getNode,
table_t.lookup, and table_t.item. Although there doesn’t appear to be much to this class, these few routines
provide considerable power.

procedure table_t.create(HashSize:uns32);

The create procedure, being a static procedure constructor, is typically called in one of two fashions:
When dynamically allocating a table_t object on the heap and storing the pointer away into a variable whose

type is "pointer to table_t":

table_t.create(some_constant);
mov(esi, PtrToTableVar);

When you’ve got a var or static variable object (named table_var_name in this example), you can use code
like the following to construct the table_t object:

table_var_name.create(some_constant);

The table_t constructor requires a single uns32 parameter. This value should be approximately the number
of entries (elements) you expect to insert into the table. This value does not have to be exact. Anytime you want
to add a new element to the table, you may do so; there are no limitations (other than available memory) on the
number of elements in a table. However, this parameter value is a hint to the table management routines so it can
allocate a hash table of an appropriate size so that (1) access to the table elements is fast, and (2) the hash table
doesn’t waste an inordinate amount of space. If the hint value you supply is too small, the table lookup routines
will still function properly, but they will run a little slower. If the hint value you supply is too large, the table
management routines will waste some memory.

HLA high-level calling sequence example:

table_t.create(128);
mov(esi, someTableVarName);

SomeStaticTableVarName.create(256);

method table_t.destroy(FreeValue:procedure);

The table_t.destroy method frees up the data in the table. This routine deallocates the storage associated
with the hash table, it deallocates the storage associated with each node in the table, and it deallocates the storage
associated with each string (the id field in record tableNode_t above) in the table. Unfortunately, the
table_t.destroy method doesn’t know anything at all about the Value field of each node. If this is just some
simple data, then the destructor probably doesn’t need to do anything with the Value field. On the other hand, if
Value is a pointer to some other data that was dynamically allocated, destroy should probably deallocate the
storage associated with the Value field. Unfortunately, destroy has no apriori knowledge about the Value field,
so it cannot determine if (or how) it should deallocate storage associated with Value.

To resolve the problem above, table_t.destroy calls a user-defined function that is responsible for cleaning
up the data associated with Value. You will notice that table_t.destroy has a single parameter: FreeValue. This
parameter must be the address of a procedure whose job is to handle the destruction of the Value field. If no
clean up is necessary, you must still provide the address of some routine. That routine should simply return
without further activity.

Upon entry into the FreeValue procedure, the EBX register contains a pointer to the current tableNode_t
record being deallocated. At this point, none of the other fields have been modified; in particular, the id field is
still pointing at the string associated with the node. The FreeValue procedure may access the id field, but it must
not deallocate the storage associated with this string. The table_t.destroy method takes care of that after
FreeValue returns.

The "tabledemo.hla" file accompanying the HLA release gives another example of how you could use the
FreeValue procedure. This code doesn’t deallocate any storage in this procedure (named PrintIt in this file),
instead, it uses this call to dump the data associated with the node to the display when the table is freed.
Page 964 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence example:

// Dummy free routine, nothing to do:

procedure myFree; @noframe;
begin myFree;

ret();
end myFree;

.

.

.

table_t.create(128);
mov(esi, myTable);

.

.

.
myTable.destroy(&myFree);

method table_t.lookup(id:string); @returns("eax");

The table_t.lookup method locates a node in the table. The string parameter specifies which node to find in
the table. On return, EAX contains the address of the corresponding tableNode_t record in the table, if the
specified node is present (that is, the node’s id field matches the string passed to table_t.lookup). If the node is
not present in the table, then the table_t.lookup method returns NULL (zero) in the EAX register.

HLA high-level calling sequence example:

table_t.create(16);
mov(eax, tableVar);

.

.

.
tableVar.lookup("someString");
if(eax <> NULL) then

stdout.put("Found ‘someString’ in the table" nl);

else

stdout.put("Did not find ‘someString’ in the table" nl);

endif;

method table_t.getNode(id:string); @returns("eax");

The table_t.getNode method serves two purposes. First of all, it looks up the specified string value in the
table. If it finds a node in the table corresponding to the string parameter, it returns a pointer to that
(table_t.tableNode_t) node in the EAX register. If it does not find the string in the table, then it creates a new
node and inserts the string into that new node; it also initializes the Value field to zero in this case. Note that
table_t.getNode makes a copy (using str.a_cpy) of the string, it does not store the string pointer you pass directly
into the id field. Upon return, EAX will point at the new node. Note that whether or not an existing node is
present in the table, table_t.getNode will always return a pointer to the node associated with the specified string.
It either returns a pointer to a pre-existing node or it returns the pointer to the new node.
Released to the Public Domain Page 965

HLA Standard Library
If you want to insert a new node into the table and fail if the node already exists, you will need to first call
table_t.lookup to see if the node previously exists (and fail if it does). You may then call table_t.getNode to
insert a new node into the table. While it would be easy to add this functionality to the table_t class, it would be
rarely used and probably isn’t needed.

HLA high-level calling sequence example:

table_t.create(16);
mov(eax, tableVar);
tableVar.getNode("someString");// Insert "someString"

.

.

.
tableVar.getNode("someString");// Retrieve ptr to "someString"

method table_t.getNode(id:string); @returns("eax");

The table_t.item iterator yields each node in the table during the execution of the corresponding foreach
loop. Note that table_t.item does not yield the nodes in any particular (discernable) order. However, it will yield
each item in the list exactly once. The iterator returns with EAX pointing at a table_t.tableNode_t object.

HLA high-level calling sequence example:

table_t.create(16);
mov(eax, tableVar);

.

.

.
foreach tableVar.item() do

// Process node pointed at by EAX.

endfor;
Page 966 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
34 Threads Module (threads.hhf)

The HLA Threads module provides a set of routines that let you create, control, and synchronize multiple
threads in an application.

A Note About Thread Safety: While the routines in the thread library are (mostly) thread safe, keep in
mind that you must be linking in a thread-safe version of the HLA Standard Library if you expect calls to other
functions to operate in a thread-safe manner.

34.1 Threads Module
To use the thread functions in your application, you will need to include the following statement at the

beginning of your HLA application:
#include("threads.hhf")
Note that the "stdlib.hhf" header file does not automatically include the threads.hhf header file. This is

because simply including the "threads.hhf" header file may force the inclusion of considerable code, even if you
do not call any functions in the thread library. Therefore, you must explicitly include the threads.hhf header file
if you want to call thread functions in the HLA Standard Library.

If you are using thread functions in your application, you must use the "-thread" command-line parameter to
force HLA to link in the thread-safe version of the HLA Standard Library. Failure to do so will probably cause
the linker to fail; even if you manage to get the program to link properly, you’ll link in non-thread-safe versions
of the HLA Standard Library functions and this will probably cause your program to fail or otherwise misbehave.

The functions in the threads module are broken down into six types: thread creation, thread identification,
thread local storage, events, critical section maintenance, and semaphore maintenance. The following sections
will describe each of these categories.

34.2 Thread Creation

procedure thread.create(func:threadFunc_t; parm:dword; stackSize:dword);
@returns("eax");

This function creates a new thread. The func parameter is the address of an HLA procedure where the thread
will begin execution. This function has the following prototype:

type
threadFunc_t:procedure(parm:dword);

That is, the thread function must have a single double word parameter.
The parm argument (to thread.create) is passed along to the thread function specified by the func argument.

This can be any 32-bit value you want. Often, this argument is a pointer to some global data you’re supplying to
the thread. Keep in mind, however, that the thread may not begin executing before thread.create returns to its
caller. You must ensure that any data whose address you pass in the parm argument remains valid as long as the
new thread requires that data. In particular, do no pass the address of some local variables allocated on the stack
that might go away when the procedure that calls thread.create returns to its caller.

The stackSize parameter specifies the number of bytes of storage that will be allocated for the stack when the
thread is created by the operating system. This value should be a multiple of 4,096 bytes. If you specify zero, the
system will assign a default value (the default value is OS dependent). Unless your thread requires very little
thread storage, you should always supply a value for the stackSize parameter. Note that the HLA Standard
Library will allocate storage for its own thread local variables on the stack created for the thread. Therefore, you
should allocate an additional 4,096 bytes above and beyond your own needs to provide sufficient storage for the
stdlib thread local objects.

The thread creation function returns a thread identifier in the EAX register. This information is useful when
you have multiple threads executing the same code (that is, the same thread function) and you need to pass
information to a specific thread. The individual threads can determine their own thread ID and use that to
determine whether a packet of information is intended for them (see the discussion of the
thread.getCurrentThreadHandle function for details).
Released to the Public Domain Page 967

HLA Standard Library
A thread terminates execution by returning from the thread function. If you want to prematurely terminate a
thread, then that thread must jump to the end of the procedure and return from it (or clean up the stack and
execute a RET instruction). Note that the HLA Standard Library does not allow one thread of execution to
terminate another thread (including the parent thread that started the thread in the first place). If you want to
terminate one thread under the control of another thread, then you must pass some message to that thread and tell
it to terminate itself.

Each thread of execution has its own exception handling system. Exceptions that the system or program
raises in one thread must be handled by that thread. There is no way to pass exceptions on to a different thread
(including the parent thread). If an exception occurs in a thread and you do not provide an exception handler (via
a try..endtry statement), then the system will abort execution of the whole application.

The following examples assume the presence of the following thread function:

procedure myThreadFunc(theParm:dword);
var

myThreadID:dword;
begin myThreadFunc;

try

thread.getCurrentThreadHandle();
mov(eax, myThreadID);

// Code that does something for this thread

anyexception

stdout.put
(

"Thread $",
myThreadID,
" terminated with exception $",
eax,
nl

);

endtry;

end myThreadFunc;

HLA high-level calling sequence examples:

thread.create(&myThreadFunc, 0, 0); // Default stack size
mov(eax, childThreadID);

HLA low-level calling sequence examples:

pushd(&myThreadFunc);
pushd(0); // parm value = 0
pushd(0); // Default stack size
call thread.create;
mov(eax, childThreadID);

34.3 Thread Identification
Page 968 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure thread.getCurrentThreadHandle; @returns("eax");

This function returns a unique thread identifier value in the EAX register for the current thread. This value
matches the value that thread.create returns (for the child thread, assuming that the child thread is the one calling
thread.getCurrentThreadHandle). You should not assume that the value that this function returns is the same as
the thread ID used by the underlying OS.

HLA high-level calling sequence examples:

thread.getCurrentThreadHandle();
mov(eax, myThreadID);

HLA low-level calling sequence examples:

call thread.getCurrentThreadHandle;
mov(eax, myThreadID);

34.4 Thread Local Storage
Sometimes various procedures in a thread need to communicate data amongst themselves using static

storage. Unfortunately, you must be very careful about using static objects in a threaded application. In general,
using static objects renders the application thread unsafe (that is, causes the program to fail when two or more
threads attempt to use the same static object).

A good example of this problem occurs in the HLA Standard Library. Consider the underscores variable
that determines if a hexadecimal numeric conversion routine should emit underscores between groups of four
hexadecimal digits. This is a global value that all of the hexadecimal conversion routines in the Standard Library
reference. Now suppose you have two threads that call these conversion routines. If one thread turns underscore
output on and the other thread turns it off in the middle of a conversion in the other thread, the conversion will be
incorrect. The solution is to give each thread its own copy of the underscores variable. When one thread turns
this feature one, it does not affect the conversions in any of the other threads. Unfortunately, giving each thread
its own copy of the underscores variable is a lot more difficult that it sounds. You cannot use static objects for
this purpose – the different threads will all access the same static objects. You cannot allocate the underscores
variable on the stack in your thread, the various procedures won’t be able to access that object without knowing
its exact address in memory.

The solution is thread local storage. With thread-local storage (TLS) you request (once) a TLS context
handle from the operating system. With this handle you can store a 32-bit thread-local value and retrieve that 32-
bit thread-local value. Normally, you don’t store the actual thread-local data via this handle, instead you store a
pointer to a data structure containing all the thread-local data. This structure can be allocated on the heap or you
can allocate it in the VAR section of your main thread. Because you can retrieve the address of this data structure
via TLS calls, various functions can figure out the address of the global objects they’re interested in via some
offset from the address of the structure.

Note that you only need to obtain a single TLS context handle – you do not obtain a separate handle for each
thread in your application. Your main thread should obtain this context handle before spawning any other child
threads. You should store the value of this context handle in a global, static, object that all threads can access.
You will never modify this object directly; instead, you will pass the address of the object to the
thread.createTLS function and then your threads will only read this value from that point forward (which is a
safe use of a global, static, object in a threaded application).

procedure thread.createTLS(var context:dword);

This function asks the operating system to create a thread-local storage context handle. You pass the address
of the context variable to this function as the single parameter and the thread.createTLS function will
automatically (and atomically) update that variable. Note that you should create (initialize) the context handle
before creating any threads that might use it. Otherwise you might create a race condition where the main thread
stops, a child thread runs, and the child thread attempts to use the context handle before the main thread
initializes it.

HLA high-level calling sequence examples:

thread.createTLS(contextHandle);
Released to the Public Domain Page 969

HLA Standard Library
HLA low-level calling sequence examples:

lea(eax, contextHandle);
push(eax);
call thread.createTLS;

procedure thread.setTLS(context:dword; valueToSet:dword);

The thread.setTLS function stores the value found in the valueToSet parameter into a thread-local double
word value specified by the context parameter. Generally, you will pass the address of some block of memory
(some data structure) as the valueToSet parameter. If you allocate that block of memory on the heap (e.g., via
mem.alloc) or on your local stack, any function in the current thread can access that data structure later by calling
the thread.getTLS function.

Although you can use thread.setTLS to set a single variable value (rather than setting the address of some
data structure allocated for the current thread), you can only access 32 bits of data this way. As a result, most
programmers store an address to some data structure via thread.setTLS rather than directly storing data.

If you use thread.setTLS in the normal manner, by allocating some storage and storing an address away, you
should allocate the storage at the very beginning of your thread’s main function. If this is a fixed-size data
structure, you can allocate it as part of your local variables (in the VAR section) and simply take the address of
the structure (e.g., with the LEA instruction) and pass that as the valueToSet argument. If the data structure is
variable in size, then mem.alloc is probably a good choice for allocating the data structure.

HLA high-level calling sequence examples:

lea(eax, myLocalData);
thread.setTLS(contextHandle, eax);

HLA low-level calling sequence examples:

push(contextHandle);
lea(eax, myLocalData);
push(eax);
call thread.setTLS;

procedure thread.getTLS(context:dword); @returns("eax");

The thread.getTLS function returns the value associated with the thread context handle passed as the single
argument. This value is set via an earlier call to the thread.setTLS function. See the discussion of thread.setTLS
for more details.

HLA high-level calling sequence examples (assuming the thread local storage value
has been set to point at an object of type "someDataType" by a previous call to
thread.setTLS):

thread.getTLS(contextHandle);
mov((type someDataType [eax]).someField, ecx);// Retrieve data

HLA low-level calling sequence examples:

push(contextHandle);
call thread.getTLS;
mov((type someDataType [eax]).someField, ecx);// Retrieve data
Page 970 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
34.5 Events
The HLA Standard Library threads module provides a thread synchronization system known as events. An

event is something that a thread can wait upon until a different thread signals (or sets) the event. An HLA stdlib
event is an object that various threads can use to coordinate events in the program.

To use events, a program must first create an event object via a call to thread.createEvent. This initializes
the event and puts it in the non-signaled/non-set state. The thread.createEvent returns an OS event handle that
you will save to allow various threads to work with that event object. When you are done using a thread, you can
tell the OS to reclaim the resources used by the event object.

When you create an event, it is initialized in an unsignaled state. Whenever some thread waits on an event
(by calling thread.waitForEvent), that thread will block (suspend) until some other thread signals the event by
calling thread.setEvent. If two or more threads are waiting for an event, only one thread will be placed in the
executable state when an event is signaled. Additional calls to thread.setEvent will be necessary to resume any
other threads waiting for the event.

Whenever a thread waiting on an event resumes execution after that event has been signaled, the system
automatically sets the event to the unsignaled state. There is no explicit call you can make to "unsignal" or unset
an event.

procedure thread.createEvent; @returns("eax");

The thread.createEvent function creates an event object and returns a handle to that object in the EAX
register. All events you use must be initialized via a call to thread.createEvent. Note that event initialization
consumes resources internal to the OS’ thread library. You should call thread.deleteEvent to reclaim those
resources when you are done using the event object you’ve created via thread.createEvent.

HLA high-level calling sequence examples:

thread.createEvent();
mov(eax, eventHandle);

HLA low-level calling sequence examples:

call thread.createEvent;
mov(eax, eventHandle);

procedure thread.deleteEvent(event:dword);

The thread.deleteEvent function reclaims all OS/library resources in use by an event object. You should call
this function after you are done using an event object. You must not call this function on an event handle if any
threads are waiting on the event. Of course, you must not continue to use the event handle after deleting the
event.

HLA high-level calling sequence examples:

thread.deleteEvent(eventHandle);

HLA low-level calling sequence examples:

push(eventHandle);
call thread.deleteEvent;

procedure thread.setEvent(event:dword);

The thread.setEvent function signals the occurrence of an event. If some thread is waiting for this event to
occur, this call will resume the execution of that thread. If more than one thread is waiting on the event, then
only one thread will be unblocked and allowed to execute. In order to release all threads waiting on an event, you
must call thread.setEvent once for each blocked thread. It is the application’s responsibility to count the number
Released to the Public Domain Page 971

HLA Standard Library
of threads waiting on an event and call thread.setEvent an appropriate number of times. Calling thread.setEvent
multiple times without having any threads waiting on the event between signaling the event is undefined. Some
OS thread APIs might count the number of calls and release that many threads that (ultimately) wait for the
event. Other OS thread packages might ignore multiple requests and release only one thread that waits on the
event. Still other OSes may completely ignore the call to thread.setEvent if there are no threads waiting on that
particular event.

HLA high-level calling sequence example:

thread.setEvent(eventHandle);

HLA low-level calling sequence examples:

push(eventHandle);
call thread.setEvent;

procedure thread.waitForEvent(event:dword);

The thread.waitForEvent function blocks (suspends the execution of) the current thread until some other
thread signals (sets) the event with a call to thread.setEvent. Note that the results are undefined if a call is made
to thread.setEvent prior to some other thread waiting on that event. The system may choose to ignore the earlier
call to thread.setEvent or it may immediately resume the thread and return from a call to thread.setEvent. The
exact semantics are OS-dependent.

HLA high-level calling sequence example:

thread.waitForEvent(contextHandle);

HLA low-level calling sequence examples:

push(contextHandle);
call thread.waitForEvent;

34.6 Critical Sections
Critical sections are synchronization objects that ensure that only one thread at a time executes a protected

section of code (or accesses some data structure). A thread enters and leaves a critical section. While one thread
is holding a critical section lock, an attempt by some other thread to enter that same critical section causes the
second thread to block until the first thread leaves the critical section.

As for all synchronization objects the HLA stdlib supports, an application must first create a critical section
object to obtain a handle to be used when entering and leaving critical sections. Because the creation of a critical
section allocates some system resources, the application should delete the critical section object when it is done
using it. The thread.createCriticalSection and thread.deleteCriticalSection functions handle these chores.

Once you’ve created a critical section object via thread.createCriticalSection, you can synchronize threads
using the thread.enterCriticalSection and thread.leaveCriticalSection functions. To protect a sequence of
instructions (that, perhaps, operate on a protected data structure) you would call the thread.enterCriticalSection
(passing it the handle of a critical section object you’ve created) to lock the use of that particular critical section
object. When you are done executing the protected code, you call the thread.leaveCriticalSection function to
release the lock. If any other thread attempts to enter the same critical section (by calling
thread.enterCriticalSection and passing in the same critical section handle), then that second thread will block
until the first thread calls thread.leaveCriticalSection and releases the lock.

If one thread is holding a critical section lock and two or more additional threads attempt to enter the same
critical section, all those new threads will block. When the thread holding the lock calls
thread.leaveCriticalSection, only one of the waiting threads will be activated to resume execution. Note that the
Page 972 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
order of thread activation is not defined and you should not assume that the first blocked thread will be the first to
be released. The only guarantee is that exactly one thread will be released.

procedure thread.createCriticalSection; @returns("eax");

The thread.createCriticalSection function creates a critical section object and returns a handle to that object
in the EAX register. All critical sections you use must be initialized via a call to thread.createCriticalSection.
Note that critical section initialization consumes resources internal to the OS’ thread library. You should call
thread.deleteCriticalSection to reclaim those resources when you are done using the critical section object
you’ve created via thread.createCriticalSection.

HLA high-level calling sequence examples:

thread.createCriticalSection();
mov(eax, csHandle);

HLA low-level calling sequence examples:

call thread.createCriticalSection;
mov(eax, eventHandle);

procedure thread.deleteCriticalSection(csHandle:dword);

The thread.deleteCriticalSection function reclaims all OS/library resources in use by a critical sectionobject.
You should call this function after you are done using a critical section object. You must not call this function on
a critical section handle if any threads are executing in the critical section. Of course, you must not continue to
use the critical section handle after deleting the critical section.

HLA high-level calling sequence examples:

thread.deleteCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.deleteCriticalSection;

procedure thread.enterCriticalSection(csHandle:dword);

The thread.enterCriticalSection function first checks to see if some other thread has already entered the
critical section specified by the csHandle parameter. If this is the case, then the current thread (that is calling
thread.enterCriticalSection) blocks until the first thread releases the critical section handle (that is, it leaves the
critical section) by calling thread.leaveCriticalSection. If no other thread currently holds the critical section
lock, or if the current thread resumes execution because some other thread releases the lock (by calling
thread.leaveCriticalSection), then the current thread obtains the lock and execution resumes with the first
instruction after the call to thread.enterCriticalSection.

HLA high-level calling sequence examples:

thread.enterCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.enterCriticalSection;
Released to the Public Domain Page 973

HLA Standard Library
procedure thread.leaveCriticalSection(csHandle:dword);

The thread.leaveCriticalSection function releases the critical section lock specified by the csHandle
parameter. This allows any other thread that is waiting on the critical section to resume execution (and obtain the
critical section lock).

HLA high-level calling sequence examples:

thread.leaveCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.leaveCriticalSection;

34.7 Semaphores
Semaphores are the generic process/thread synchronization mechanism. Semaphores provide two main

extensions over other sychronization objects provide by the HLA stdlib:
• HLA stdlib semaphores allow synchronization of processes (e.g., different applications) as

well as threads.
• HLA stdlib semaphores are counting semaphores, allowing
• n processes access to some protected resource (where n is some value you specify when

creating the semaphore).
Like the other HLA stdlib synchronization objects, you must create a semaphore object before using it and

you must delete a semaphore object when you are done using it. The thread.createSemaphore and
thread.deleteSemaphore functions handle these chores. When creating the semaphore, you specify the number
of resources the semaphore will protect (that is, the number of threads that can concurrently hold the semaphore
and run without blocking). You also specify a (system-wide) semaphore name when creating the semaphore; the
operating system uses this name to connect semaphore objects in different processes to the same system-wide
semaphore object (that is, if two processes specify the same name for the semaphore object, then those two
processes will access the exact same semaphore).

To obtain a resource held be a semaphore, you will call the thread.waitSemaphore function. This function
blocks if there are no resources available, it will decrement the resource count and return if resources are
available. To release a semaphore resource that a thread is holding, the thread executes the
thread.releaseSemaphore function.

procedure thread.createSemaphore(maxCnt:dword; semName:string);
@returns("eax");

The thread.createSemaphore function creates a semaphore object and returns a handle to that object in the
EAX register. All future access to that semaphore will be via the handle value that thread.createSemaphore
returns in the EAX register.

The maxCnt parameter specifies the number of threads (or processes) that may concurrently hold the
semaphore before the operating system blocks any further semaphore requests. If maxCnt is one, then the
semaphore behaves in a manner similar to a critical section insofar as it only allows access to the lock by one
thread (or process) at a time. This is known as a binary semaphore.

The semName string parameter provides a system-wide name for the semaphore. This string should
correspond to an existing filename in the system for best results (create an empty file that has the semaphore’s
name if you want to create a semaphore using a name other than that of some existing file). If two different calls
to the thread.createCriticalSection function specify the same semaphore name, then the handle value that this
function returns will refer to the same semaphore object.

If multiple calls to thread.createCriticalSection specify the same string for semName but specify different
values for maxCnt, then the result is undefined. The system may use the last value specified, the first value
specified, or any other value it pleases.

All semaphore objects you use must be initialized via a call to thread.createSemaphore. Note that
semaphore initialization consumes resources internal to the OS’ thread library. You must call
thread.deleteSemaphore to reclaim those resources when you are done using the critical section object you’ve
created via thread.createSemaphore.
Page 974 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Warning: because of a known issue in the UNIX SYSV semaphore interface (that the HLA stdlib used
under Linux, Mac OSX, and FreeBSD), there is a brief time period during semaphore creation between the
creation of a semaphore object and the setting of the resource count where the system could be interrupted. If
another process executes between these two points and specifies a different semaphore count, the results could be
unexpected. This is yet another reason why you want to specify the same count value when requesting multiple
semaphore handles using the same semaphore name. For this same reason, you should try to allocate all
semaphore handles in your main program, before spawning any additional threads (though this won’t help much
if multiple processes or applications are creating the same semaphore).

HLA high-level calling sequence examples:

thread.createCriticalSection();
mov(eax, csHandle);

HLA low-level calling sequence examples:

call thread.createCriticalSection;
mov(eax, eventHandle);

procedure thread.deleteSemaphore(semHandle:dword);

The thread.deleteSemaphore function will (possibly) delete system resources in use by a semaphore. The
exact operation of this command is system dependent. Under Windows, it will decrement a reference counter and
if the current process is the last process using the semaphore, this call will free up all system resources used by
the semaphore.

As this document was being written, this function is a no-operation under *NIX operating systems. For those
operating systems you will need to manually delete the semaphore object using the ipcrm command (use ipcs to
list the semaphores currently in use by the system). Even if you are using a *NIX operating system, you should
call thread.deleteSemaphore because the semantics of this function might change in future versions of the HLA
stdlib.

HLA high-level calling sequence examples:

thread.deleteSemaphore(semHandle:dword);

HLA low-level calling sequence examples:

push(semHandle);
call thread.deleteSemaphore;

procedure thread.waitSemaphore(semHandle:dword);

The thread.waitSemaphore function decrements the semaphore resource count (initialized to the value of the
maxCnt parameter by the thread.createSemaphore function). If the result is less than or equal to zero, then this
function returns and execution continues. If the result it negative, then this function blocks the current thread
until some process releases the semaphore. When the process is done using the resource protected by the
semaphore, it should release that resource via a call to the thread.releaseSemaphore function.

If a thread wishes to grab multiple resources protected by a semaphore, it can make multiple calls to
thread.waitSemaphore. It must make the corresponding number of calls to thread.releaseSemaphore to release it
of those locks it allocates. Obviously, a thread should not call thread.waitSemaphore more than maxCnt times
(maxCnt being the parameter value passed to thread.createSemaphore) otherwise deadlock will occur.

HLA high-level calling sequence examples:

thread.waitSemaphore(semHandle:dword);

HLA low-level calling sequence examples:
Released to the Public Domain Page 975

HLA Standard Library
push(semHandle);
call thread.waitSemaphore;

procedure thread.releaseSemaphore(semHandle:dword);

The thread.releaseSemaphore function increments the internal resource count associated with the
semaphore specified by semHandle. If there are any threads or processes blocked and waiting on that semaphore,
then exactly one of those threads will be placed in an active (runnable) state and allowed to continue execution.
Each process/thread should have a corresponding thread.releaseSemaphore call for each thread.waitSemaphore
call it makes.

HLA high-level calling sequence examples:

thread.releaseSemaphore(semHandle:dword);

HLA low-level calling sequence examples:

push(semHandle);
call thread.releaseSemaphore;
Page 976 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
35 Time Functions (datetime.hhf)

HLA contains a set of procedures and functions that simplify correct time calculations. The time module
contains functions and other objects that manipulate time in terms of hours, minutes, and seconds. This includes
functions that read the current time, perform time arithmetic, do time conversions, and output time values.

There are two sets of time functions available in the standard library: the standard time functions and a set of
time classes. This document will describe both sets of time functions.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About Thread Safety: The date and time routines maintain a couple of static global variables that
track the output format and output separate characters for dates. Currently, these values apply to all threads in a
process. You should take care when changing these values in threads. When the process module is added to the
standard library, these values will be placed in a per-thread data structure. Until then, you should set the format/
separator character before starting any other threads and avoid changing their values once other threads (that
might use the date/time library module) begin execution.

Note about function overloading: the functions in the date/time module use function overloading in order
to allow you to specify the parameter lists in different ways. The macro that handles the overloading generally
coerces the possible parameter types into a single object that it passes to the underlying function. The
documentation for the specific functions will tell you whether a symbol is a macro or a function. For the most
part, this should matter to you unless you are taking the address of a function (which you cannot do with a
macro). See the HLA documentation for more details on function overloading via macros.

35.1 Time Module
#include("datetime.hhf")
or
#include("stdlib.hhf")

35.2 Time Data Types
The principal time data structure is the time.timerec record:

time.timerec

This data structure has the following definition:

type
timerec:

daterec:
record

day :uns8;
month :uns8;
year :uns16;

endrecord;

The time field allows you to treat the entire object as a single 32-bit value. This is great for comparisons or
for passing the timerec value around in an opaque fashion.

The standard library uses the time.timerec data type to hold valid times in the range 00:00:00 to 23:59:59.
Values outside this range are invalid and the standard library will raise an exception if you try to use such values
in a time.timerec object. Sometimes, however, it is convenient to measure time as a duration rather than as a time
of day. The standard library provides the time.duration data type for this purpose. The time.duration data type is
structurally identical to the time.timerec data type. However, the standard library routines allow any 16-bit
signed value for the hours fields. Note that the mins and secs fields are still limited to the range 0..59 (and are
considered invalid if they are outside this range).

 duration:
record;
Released to the Public Domain Page 977

HLA Standard Library
secs:int8;
mins:int8;
hours:int16;

endrecord;

The time.OutputFormat data type controls how the string conversion functions format time values when
converting them to strings. This is an enumerated data type with the following values:

 OutputFormat: enum
 {
 hhmmssAMPM,
 hhmmssAP,
 hhmmss12,
 hhmmss24,

 hhmmAMPM,
 hhmmAP,
 hhmm12,
 hhmm24,

 badTimeFormat
 };

The Standard Library maintains an internal static variable that keeps track of the current output format
(which you can change via the time.setFormat function). The various settings affect the output format as follows:

hhmmssAMPM: Date is output using a 12-hour clock in the range 01:00:00 to 12:59:59 with an "AM" or "PM"
suffix on the time.

hhmmssAP: Date conversion uses a 12-hour clock in the range 01:00:00 to 12:59:59 with an "A" or "P" suffix
on the time.

hhmmss12: Date conversion uses a 12-hour clock in the range 01:00:00 to 12:59:59 with no suffix to denote
morning or evening times.

hhmmss24: Date conversion uses a 24-hour clock in the range 00:00:00 to 23:59:59.

hhmmAMPM: Date is output using a 12-hour clock in the range 01:00 to 12:59 with an "AM" or "PM" suffix on
the time.

hhmmAP: Date conversion uses a 12-hour clock in the range 01:00 to 12:59 with an "A" or "P" suffix on the
time.

hhmm12: Date conversion uses a 12-hour clock in the range 01:00 to 12:59 with no suffix to denote morning or
evening times.

hhmm24: Date conversion uses a 24-hour clock in the range 00:00 to 23:59.

35.3 Time Predicates
The functions in this category test times for validity and do other checks on times.

time.validate(h:word; m:byte; s:byte);
time.validate(hms:time.timerec);
time._validate(tm:timerec);

HLA high-level calling sequence examples:
Page 978 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
try

time.validate(someTimeVar);

 anyexception

// Do something if the time is invalid

endtry;

try

time.validate(someHour, someMinute, someSecond);

 anyexception

// Do something if the time is invalid

endtry;

try

time._validate(someTimeVar);

 anyexception

// Do something if the time is invalid

endtry;

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time._validate;

The functions in this category test times for validity and do other checks on times.

time.isValid(h:word; m:byte; s:byte);
time.isValid(hms:time.timerec);
time._isValid(tm:timerec);

HLA high-level calling sequence examples:

time.isValid(someTimeVar);
mov(al, timeIsValidVar1);
time.isValid(someHour, someMinute, someSecond);
mov(al, timeIsValid2);
time._validate(someTimeVar);
mov(al, timeIsValid3);

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time._isValid;
mov(al, timeIsValid3);
Released to the Public Domain Page 979

HLA Standard Library
35.4 Time Conversions
The functions in this category convert time between hours/minutes/second format and an integer specifying

some number of seconds, and the functions in this category also perform basic time arithmetic functions such as
the addtion and subtraction of time.

#macro unpack(tm, h, m, s)

This macro takes a time.timerec object as its first argument and extracts the hours, mins, and secs fields
(zero-extending them to 32 bits) and stores the extract values in the dword h, m, and s arguments (respectively).

HLA macro invocation examples:

time.unpack(sometimeVar, hoursVar32, MinutesVar32, SecondsVar32);

#macro pack(h, m, s, _tm_)

This macro takes the hours (h), minutes (m), and seconds (s) arguments and packs them into a time.timerec
object. This macro is very similar to the date.pack macro, see the description of that macro for more details about
the operation of this macro. Note that if h, m, or s are constant values, this macro will check them to see if they
are valid (that is, values in the range 00:00:00 to 23:59:59).

HLA macro invocation examples:

time.unpack(hoursVar32, MinutesVar32, SecondsVar32, someTimeVar);

time.durationToSecs(hours:word; mins:byte; secs:byte); @returns("eax");

This function converts a time span in HHMMSS format to some number of seconds (if HHMMSS is the
time of day, then these functions return the time in seconds since midnight). Note that HHMMSS does not have
to be a 12-hour or 24-hour clock value. You may specify any number of hours between 0 and 65535, and any
number of seconds or minutes between 0 and 255 for this function.

time.secsToDuration
(
 seconds :uns32;
 var hours :word;
 var mins :byte;
 var secs :byte
);

This function converts some number of seconds to a duration (the number of hours, minutes, and seconds)
and stores that duration in the hours, mins, and seconds parameters passed by reference. If the number of seconds
exceeds 65535 hours, 59 minutes, and 59 seeconds, then this function raises an ex.TimeOverflow exception.

HLA high-level calling sequence examples:

time.secsToDuration(seconds, hoursVar32, MinsVar32, SecsVar32);

HLA low-level calling sequence examples:

push(seconds);
pushd(&hoursVar32);// Assumes hoursVar32 is STATIC
lea(eax, MinsVar32);// MinsVar32 need not be static
push(eax);
lea(eax, SecsVar32);// SecsVar32 need not be static
push(eax);
call time.secsToDuration;
Page 980 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
#macro time.toSecs(theTime: time.timerec); @returns("eax");
#macro time.toSecs(h:uns16; m:byte; s:byte); @returns("eax");
time._toSecs(HMS:timerec); @returns("eax");

These functions convert a time span in HHMMSS format to some number of seconds (if HHMMSS is the
time of day, then these functions return the time in seconds since midnight). Technically, these functions and
macros don’t care if their parameters are valid times (that is, within the range 00:00:00 to 23:59:59), however
you should use time.durationToSecs when convertion durations (versus valid time of day values) to seconds.

HLA high-level calling sequence examples:

time.toSecs(someTimeVar);
mov(eax, numSeconds1);
time.toSecs(hours, minutes, seconds);
mov(eax, numSeconds2);
time._toSecs(someTimeVar);
mov(eax, numSeconds3);

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time.toSecs;
mov(eax, numSeconds3);

time.fromSecs(seconds:uns32; var HMS:time.timerec);

This function converts the seconds parameter to an HMS time value. The first parameter must be less than
235,929,600 since this is the maximum time representable by 65535 hours. If the seconds parameter exceeds this
value, then time.secsToHMS will raise an ex.TimeOverflow exception.

HLA high-level calling sequence example:

time.fromSecs(seconds, someTimeVar);

HLA low-level calling sequence examples:

push(seconds);
lea(eax, someTimeVar);// If someTimeVar is non-static
call time.fromSecs;

push(seconds);
pushd(&someTimeVar);// If someTimeVar is static

time.toUnixTime(DMY:date.daterec; HMS:timerec);
@returns("edx:eax");

This function converts a Standard Library date and time value to a UNIX/C stdlib date/time value. UNIX/C
stdlib time values are specified as the number of seconds since midnight, Jan 1, 1970. This function raises an
ex.InvalidDate exception if the DMY parameter specifies a date prior to Jan 1, 1970.

This function returns a 64-bit value. Most UNIX systems and C standard library packages currently specify
a "time_t" object as a 32-bit signed integer. This data type will fail to properly maintain dates sometime during
the year 2038. Newer system define time_t as an unsigned 32-bit integer, thereby doubling the effective range of
the date. Nevertheless, the date.daterec data type can represent dates outside the range of even a 32-bit unsigned
integer, so this function returns a 64-bit value in EDX:EAX. If you need to work with a 32-bit value, simply
ignore the value returned in EDX.

HLA high-level calling sequence example:
Released to the Public Domain Page 981

HLA Standard Library
time.toUnixTime(someDate, someTime);
mov(eax, (type dword unixTimeVar));
mov(edx, (type dword unixTimeVar[4]));// Assuming it’s 64 bits.

HLA low-level calling sequence examples:

push(someDate.date);
push(someTime.time);
call time.toUnixTime;
mov(eax, (type dword unixTimeVar));
mov(edx, (type dword unixTimeVar[4]));// Assuming it’s 64 bits.

time.fromUnixTime
(
 unixTime :qword;
 var HMS :timerec;
 var DMY :date.daterec
);

This function converts the UNIX/C standard library time_t object passed in unixTime to HLA Standard
Library date.daterec (DMY) and time.timerec (HMS) objects. Note that the time_t type on most Unix systems
(and in the C standard library) is a 32-bit value whereas this function expects a 64-bit value. If working with
actual 32-bit time_t values, simply zero extend them to 64 bits before calling this function.

HLA high-level calling sequence example:

time.fromUnixTime(unixDateTime, someDate, someTime);

HLA low-level calling sequence examples:

// If the unix date/time on your system is 32 bits:

pushd(0);
push((type dword unixTimeVar));

pushd(&someDate.date);// Assumes someDate.date and
pushd(&someTime.time);// someTime.time are STATIC
call time.fromUnixTime;

// If the unix date/time on your system is 64 bits:

push((type dword unixTimeVar[4]));
push((type dword unixTimeVar));

lea(eax, someDate.date);// Assumes someDate.date and
push(eax); // someTime.time are not STATIC
lea(eax, someTime.time);
push(eax);
call time.fromUnixTime;

time.toWinFileTime(DMY:date.daterec; HMS:timerec);
@returns("edx:eax");

Windows file times are 64-bit values that represent the number of 100 nanosecond periods since midnight,
Jan 1, 1601. This function converts a Standard Library date and time value (passed in the DMY and HMS
parameters) to a Windows file time and returns that value in the EDX:EAX register pair. Because HLA time
values only maintain seconds precision, the resulting value will have a granularity of one second. If you actually
need to create a value with finer granularity, add the number of 0.1 microseconds to the result that
time.toWinFileTime returns. This function raises an ex.InvalidDate exception if the Standard library date is less
than Jan 1, 1601.
Page 982 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence example:

time.toWinFileTime(someDate, someTime);
mov(eax, (type dword win32TimeVar));
mov(edx, (type dword win32TimeVar[4]));

HLA low-level calling sequence examples:

push(someDate.date);
push(someTime.time);
call time.toWinFileTime;
mov(eax, (type dword win32TimeVar));
mov(edx, (type dword win32TimeVar[4]));

time.fromWinFileTime
(
 winTime :qword;
 var HMS :timerec;
 var DMY :date.daterec
);

This function converts a Windows file time to a Standard Library date and time. This function stores the
resulting date in the DMY parameter and the time to the HMS parameter (both passed by reference). Because
Windows file times provide 100ns precision whereas the Standard Library functions only work with 1 sec
precision, this function rounds the Windows time to the nearest second during the conversion (specfically, if
there are 0.5 or more fractional seconds, this function bumps up the seconds value by one).

HLA high-level calling sequence example:

time.fromWinFileTime(win32DateTime, someDate, someTime);

HLA low-level calling sequence example:

push((type dword win32DateTime[4]));
push((type dword win32DateTime));

lea(eax, someDate.date);// Assumes someDate.date and
push(eax); // someTime.time are not STATIC
lea(eax, someTime.time);
push(eax);
call time.fromWinFileTime;

35.5 Time Arithmetic
time.secsBetweenTimes(time1:timerec; time2:timerec); @returns("eax");

This function computes the number of seconds between the two times passed as parameters. It returns the
value in the EAX register. Note that this is the absolute value of their difference, so the relative sizes of the two
operands is immaterial. Both times must be valid Standard Library timerec values in the range
00:00:00..23:59:59 or this function will raise an ex.InvalidTime exception.

HLA high-level calling sequence example:

time.secsBetweenTimes(someTime1, someTime2);
mov(eax, secondsBetween);

HLA low-level calling sequence example:
Released to the Public Domain Page 983

HLA Standard Library
push(someTime1.time);
push(someTime2.time);

call time.secsBetweenTimes;
mov(secondsBetween);

time.subHours(hours:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of hours from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subHours(hours, someTime);

HLA low-level calling sequence examples:

push(hours);
pushd(&someTime);// Assuming someTime is STATIC

call time.subHours;

push(hours);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subHours;

time.subMins(minutes:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of minutes from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subMins(minutes, someTime);

HLA low-level calling sequence examples:

push(minutes);
pushd(&someTime);// Assuming someTime is STATIC

call time.subMins;

push(minutes);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subMins;

time.subSecs(seconds:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of seconds from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subSecs(seconds, someTime);
Page 984 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(seconds);
pushd(&someTime);// Assuming someTime is STATIC

call time.subSecs;

push(seconds);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subSecs;

time.addHours(hours:uns32; var HMS:timerec); @returns("eax");

This function adds the number of hours to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).

HLA high-level calling sequence example:

time.addHours(hours, someTime);

HLA low-level calling sequence examples:

push(hours);
pushd(&someTime);// Assuming someTime is STATIC

call time.addHours;

push(hours);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addHours;

time.addMins(minutes:uns32; var HMS:timerec); @returns("eax");

This function adds the number of minutes to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).

HLA high-level calling sequence example:

time.addMins(minutes, someTime);

HLA low-level calling sequence examples:

push(minutes);
pushd(&someTime);// Assuming someTime is STATIC

call time.addMins;

push(minutes);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addMins;

time.addSecs(seconds:uns32; var HMS:timerec); @returns("eax");

This function adds the number of seconds to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).
Released to the Public Domain Page 985

HLA Standard Library

HLA high-level calling sequence example:

time.addSecs(seconds, someTime);

HLA low-level calling sequence examples:

push(seconds);
pushd(&someTime);// Assuming someTime is STATIC

call time.addSecs;

push(seconds);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addSecs;

35.6 Reading the Current System Time
time.curTime(var theTime: time.timerec);

This returns the local time (provided by the system clock) in the specified time variable.

HLA high-level calling sequence example:

time.curTime(someTime);

HLA low-level calling sequence examples:

pushd(&someTime);// Assuming someTime is STATIC
call time.curTime;

lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.curTime;

time.utcTime(var theTime: time.timerec);

This returns the UTC time (the current GMT time provided by the system clock) in the specified time
variable.

HLA high-level calling sequence example:

time.utcTime(someTime);

HLA low-level calling sequence examples:

pushd(&someTime);// Assuming someTime is STATIC
call time.utcTime;

lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.utcTime;
Page 986 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
35.7 Time String Conversions and Output
time.setFormat(f:OutputFormat);

This function sets the global system time conversion value. The parameter must be one of the following
time.OutputFormat enumerated values:

hhmmssAMPM
hhmmssAP
hhmmss12
hhmmss24
hhmmAMPM
hhmmAP
hhmm12
hhmm24

The first four constants tell the time/string conversion routines to emit hours, minutes, and seconds in a
"00:00:00" format, the last four output only the hours and minutes in a "00:00" format. The hhmmssAMPM and
hhmmAMPM constants emit a 12-hour time format with either "am" or "pm" appended to the string to denote
midnight to noon or noon to midnight. The hhmmssAP and hhmmAP formats do the same, except that they only
display an "a" or a "p" after the time. The hhmmss12 and hhmm12 formats display a 12-hour time with no
indication of which half of the day the time represents. The hhmmss24 and hhmm24 formats specify a 24-hour
time.

The time.toString and time.a_toString functions use the value of the global time format to determine how
they convert a Standard Library timerec value to a string.

time.toString(HMS:timerec; dest:string);

This function converts the HMS parameter to a string using the format specified by the global OutputFormat
variable (set by the time.setFormat function). The destination string must have sufficient storage associated with
it or this function will raise an exception. This function will also raise an ex.InvalidTime exception if HMS
contains an invalid time.

HLA high-level calling sequence example:

time.toString(someTime, destStr);

HLA low-level calling sequence example:

push(someTime.time);
push(destStr);

call time.toString;

time.a_toString(HMS:timerec); @returns("eax");

This function is similar to time.toString except you don’t supply a destination string. Instead, this function
allocates storage for the string on the heap. Note that it is the caller’s responsibility to free this storage when the
caller is done with the string (i.e., by calling str.free).

HLA high-level calling sequence example:

time.a_toString(someTime);
mov(eax, destStr);

HLA low-level calling sequence example:

push(someTime.time);
call time.a_toString;
mov(eax, destStr);
Released to the Public Domain Page 987

HLA Standard Library
35.8 Time Class Types
#include("dtClass.hhf")

Note: the stdlib.hhf header file does not include dtClass.hhf. If you want to use the time class data types you
will need to explicitly include the dtClass.hhf header file.

For those who prefer an object-oriented programming approach, the Standard Library provides the ability to
create time class data types. The Standard Library provides two predefined time class types: timeClass_t and
virtualTimeClass_t. The difference between these two types is that the timeClass_t type uses static procedures
for all the time functions whereas virtualTimeClass_t uses virtual methods. In certain cases, using the
timeClass_t data type is more efficient than using virtualTimeClass_t because you only link in the class functions
you actually call. However, you lose the ability to make polymorphic method calls when using the timeClass_t.
For more details on the differences between these two class types, please see the discussion of the
dtClass.make_timeClass macro appearing later in this section. This section will use the phrase "time class" to
mean any class created by the make_timeClass macro, including the timeClass_t and virtualTimeClass_t data
types.

The time class types provide two data fields:

 var
 theTime :time.timerec;
 timeFmt :time.OutputFormat;

The first field, theTime, holds the time value associated with the time object. This is the standard
time.timerec date type described earlier in this document. Note that you can pass this field to any of the standard
date and time functions that expect a time.timerec value.

The second field, timeFmt, specifies the output format when using the time class string conversion routines.
Note that only the time class string conversion routines respect the value of this field; if you pass theTime
directly to a time function that takes a time.timerec argument, that function will use the system-wide global time
format rather than the object’s timeFmt value.

Thread Safety Issue: Although each time object has its own timeFmt field, this does not make the use of
time class objects thread safe. When converting theTime to a string, the time class functions save the global
format value, copy timeFmt to the global variable, call the time functions to do the string conversion, and then
restore the original global value. If a thread is suspended during this activity then any time/string conversions
during this suspension may use an incorrect format value. This issue will be corrected in a later version of the
Standard Library. For now, you must manually protect all time/string conversions if you perform such
conversions in multiple threads in your application.

Of course, you may create a derived class from either timeClass_t or virtualTimeClass_t (or create a brand
new time class using the dtClass.make_timeClass macro) and add any other fields you like to that new time class.
One suggestion for such a class is to pad the data fields to a multiple of four bytes. Currently, the timeClass_t and
virtualTimeClass_t objects consumes nine bytes of storage (five bytes for the three fields above plus four bytes
for the VMT pointer). For performance reasons, you might want to extend the size of the data storage to 12 or
even 16 bytes. Another suggestion might be to add a Separator field that specifies the hours/minutes/seconds
separator character when converting a time to a string; of course, you’ll need to override the toString and
a_toString methods to achieve this.

35.9 Time Class Methods/Procedures
In most HLA classes, there are two types of functions: (static) procedures and (dynamic) methods (there are

also iterators, but the time classes do not use iterators so we will ignore that here). The only difference between
a method and a procedure is how the program actually calls the function: the program calls procedures directly, it
calls methods indirectly through an entry in the virtual method table (VMT). Static procedure calls are very
efficient, but you lose the object-oriented benefits of polymorphism when you define a function as a static
procedure in a class. Methods, on the other hand, fully support polymorphic calls, but introduce some efficiency
issues. Let’s consider those issues here.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and the linker links in the code for each method in the class. This can make your program a little larger
because it may be including several time class functions that you don’t actually call. For large applications, the
amount of extra storage required by linking in all the time functions is inconsequential, but if you don’t like
linking in code that the program will never call, specifying virtual methods for all the time functions may annoy
you.
Page 988 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The second effiency issue concerning method calls is that they use the EDI register to make the indirect call
(static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and available
before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though exteremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined timeClass_t and virtualTimeClass_t functions differ in how they define the functions
appearing in the class types. The timeClass_t type uses static procedures for all functions, the virtualTimeClass_t
type uses methods for all class functions (except the constructor, create, because constructors are always static
procedures). Therefore, timeClass_t data types will make direct calls to all the functions (and only link in the
procedures you actually call); however, timeClass_t objects do not support function polymorphism in derived
classes. The virtualTimeClass_t type does support polymorphism for all the class methods, but whenever you use
this data type you will link in all the methods (even if you don’t call them all) and calls to these methods will
require the use of the EDI register.

It is important to understand that timeClass_t and virtualTimeClass_t are two separate types. Neither is
derived from the other. Nor are the two types compatible with one another. You should take care not to confuse
objects of these two types if you’re using both types in the same program.

35.10 Creating New Time Class Types
As it turns out, the only difference between a method and a procedure (in HLA) is how that method/

procedure is called. The actual function code is identical regardless of the declaration (the reason HLA supports
method and procedure declarations is so that it can determine how to populate the VMT and to determine how to
call the function). By pulling some tricks, it’s quite possible to call a procedure using the method invocation
scheme or call a method using a direct call (like a static procedure). The Standard Library time class module
takes advantage of this trick to make it possible to create new time classes with a user-selectable set of
procedures and methods. This allows you to create a custom time type that uses methods for those functions you
want to override (as methods) and use procedures for those functions you don’t call or will never override (as
virtual methods). Indeed, the timeClass_t and virtualTimeClass_t time types were created using this technique.
The timeClass_t data type was created specifying all functions as procedures, the virtualTimeClass_t data type
was created specifying all functions, except create, as methods. By using the dtClass.make_timeClass macro,
you can create new time data types that have any combination of procedures and methods.

dtClass.make_timeClass(className, "<list of methods>")

dtClass.make_timeClass is a macro that generates a new data type. As such, you should only invoke this
macro in an HLA type declaration section. This macro requires two arguments: a class name and a string
containing the list of methods to use in the new data type. The method list string must contain a sequence of
method names from the following list:

create
curTime
utcTime
addSecs
addMins
addHours
subSecs
subMins
subHours
fromSecs
toSecs
isValid
validate
difference
secsBetweenTimes
toString
a_toString

Here is dtClass.make_timeClass macro invocation that creates the virtualTimeClass_t type; note that the
create function is always a static procedure and its name must not appear in the list of method names:

Released to the Public Domain Page 989

HLA Standard Library
type
 dtClass.make_timeClass

 (
 virtualTimeClass_t,
 "curTime "
 "utcTime "
 "addSecs "
 "addMins "
 "addHours "
 "subSecs "
 "subMins "
 "subHours "
 "fromSecs "
 "toSecs "
 "isValid "
 "validate "
 "difference "
 "secsBetweenTimes "
 "toString "
 "a_toString "

);

(For those unfamiliar with the syntax, HLA automatically concatenates string literals that are separated by
nothing but whitespace; therefore, this macro contains exactly two arguments, the virtualTimeClass_t name and
a single string containing the concatenation of all the strings above.)

From this macro invocation, HLA creates a new data type using methods for each of the names appearing in
the string argument. If a particular time function’s name is not present in the dtClass.make_timeClass macro
invocation, then HLA creates a static procedure for that function. As a second example, consider the declaration
of the timeClass_t data type (which uses static procedures for all the time functions):
type

 dtClass.make_timeClass(timeClass_t, " ");

Because the function string does not contain any of the time function names, the dtClass.make_timeClass macro
generates static procedures for all the time functions.

The timeClass_t type is great if you don’t need to create a derived time class that allows you to
polymorphically override any of the time functions. If you do need to create methods for certain functions and
you don’t mind the overhead of a virtual method call, the virtualTimeClass_t makes all the functions. Probably
99% of the time you won’t be calling the time functions very often, so the overhead of using method invocations
for all time functions is irrelevant. In those rare cases where you do need to support polymorphism for a few time
functions but don’t want to link in the entire set of time functions, or you don’t want to pay the overhead for
indirect calls to functions that are never polymorphic, you can create a new time class type that specifies exactly
which functions require polymorphism.

For example, if you want to create a time class that overrides the definition of the fromSecs and toSecs
functions, you could declare that new type thusly:

type
 dtClass.make_timeClass

 (
 myTimeClass,
 "fromSecs"
 "toSecs"
);

This new class type (myTimeClass) has two methods, fromSecs and toSecs, and all the other time functions
are static procedures. This allows you to create a derived class that overloads the fromSecs and toSecs methods
and access those methods when using a generic myTimeClass pointer, e.g.,
Page 990 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
type
 derivedMyTimeClass :

class inherits(myTimeClass);

override method fromSecs;
override method toSecs;

endclass;

It is important for you to understand that types created by dtClass.make_timeClass are base types. They are
not derived from any other class (e.g., virtualTimeClass_t is not derived from timeClass_t or vice-versa). The
types created by the dtClass.make_timeClass macro are independent and incompatible types. For this reason,
you should avoid using different base time class types in your program. Pick (or create) a base time class and use
that one exclusively in an application. You’ll avoid confusion by following this rule.

For the sake of completeness, here are the macros that the Standard Library uses to create time data types:
namespace dtClass;

 // The following macro allows us to turn a class function
 // into either a method or a procedure based on the
 // presence of "funcName" within a list of method names
 // passed to the class generating macro.

 #macro function(funcName);

 #if(@index(methods, 0, @string:funcName) = -1)

 procedure funcName

 #else

 method funcName

 #endif

 #endmacro

 // make_timeClass -
 //
 // This macro is used to create a base time class.
 // The first parameter is the name of the class to create.
 // The second parameter is a string listing the 'function'
 // names that you want converted to a class method (if not
 // present, it will be a class procedure).

 #macro make_timeClass(className, methods);

 className:
 class

 var
 theTime :time.timerec;
 timeFmt :time.OutputFormat;

 procedure create;
 @external("TIMECLASS_CREATE");

 dtClass.function(curTime);
 @external("TIMECLASS_CURTIME");
Released to the Public Domain Page 991

HLA Standard Library

 dtClass.function(utcTime);
 @external("TIMECLASS_UTCTIME");

 dtClass.function(addSecs)(seconds:uns32);
 @external("TIMECLASS_ADDSECS");

 dtClass.function(addMins)(minutes:uns32);
 @external("TIMECLASS_ADDMINS");

 dtClass.function(addHours)(hours:uns32);
 @external("TIMECLASS_ADDHOURS");

 dtClass.function(subSecs)(seconds:uns32);
 @external("TIMECLASS_SUBSECS");

 dtClass.function(subMins)(minutes:uns32);
 @external("TIMECLASS_SUBMINS");

 dtClass.function(subHours)(hours:uns32);
 @external("TIMECLASS_SUBHOURS");

 dtClass.function(fromSecs)(seconds:uns32);
 @external("TIMECLASS_FROMSECS");

 dtClass.function(toSecs);
 @returns("eax");
 @external("TIMECLASS_TOSECS");

 dtClass.function(isValid);
 @returns("al");
 @external("TIMECLASS_ISVALID");

 dtClass.function(validate);
 @external("TIMECLASS_VALIDATE");

 dtClass.function(difference)(var time2:className);
 @returns("eax");
 @external("TIMECLASS_DIFFERENCE");

 dtClass.function(secsBetweenTimes)(time2:time.timerec);
 @returns("eax");
 @external("TIMECLASS_SECSBETWEENTIMES");

 dtClass.function(toString)(dest:string);
 @external("TIMECLASS_TOSTRING");

 dtClass.function(a_toString);
 @external("TIMECLASS_A_TOSTRING");

 endclass;

 #endmacro

end dtClass;
Page 992 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
If you look closely at the make_timeClass macro, you’ll notice that it maps all the functions, be they
methods or procedures, to the timeClass_t names (which are all procedures, if you look at the source code for
these functions). As noted earlier, the function code for methods and procedures is exactly the same, only the
call to a given function is different based on whether it is a method or a procedure. Therefore, the
dtClass.make_timeClass macro maps all functions to the same set of procedures. Therefore, if you do create and
use multiple date classes in the same application, the linker will only link in one set of routines (unless, of course,
you overload some methods, in which case the linker will link in your new functions as well as the original
timeClass_t set).

35.11 Time Class Functions
The time class type supports most of the functions associated with the time type. The main difference is that

the time class functions operate directly on the time object rather than on a time value you pass as a parameter.
For this reason, there aren’t any macros that overload the time function parameter lists.

In the following function descriptions, the symbol <object> is used to specify a time class object or a
pointer to a time class object. Note that class invocations of static procedures (e.g., timeClass_t.isValid) are
illegal with the single exception of the constructor (the create procedure). If you call a time class procedure
directly, the system will raise an exception (as ESI, which should be pointing at the object’s data, will contain
NULL).

Note: because the syntax varies from declaration to declaration, the following sections do not provide
examples of calling these functions, please see the HLA documentation under object-oriented programming or
The Art of Assembly Language Programming for more details.

<object>.create();

The <name>.create procedure is the object constructor. This is the only function that you may call using a
class name rather than an object name. For example, timeClass_t.create(); is a perfectly legitimate constructor
call. As is the convention for HLA class constructors, if you call a class constructor directly (using the class
name rather than an object name), the time class constructor will allocate storage for a new time class object on
the heap and return a pointer to the new object in ESI. Once the storage is allocated (or if you specify the name of
a previously-allocated object rather than the class name), the time class constructor will initialize all the fields of
the object to reasonable values (in particular, the constructor initializes the VMT pointer, initializes theTime to a
valid time (00:00:00), and sets up the theFmt field with a default value).

If you create a derived time class and add new data fields to the data type, you should override the create
procedure and initialize those new fields in the overridden procedure. See the HLA documentation or The Art of
Assembly Language for more details on derived classes and overriding constructors.

<object>.validate();

The <object>.validate function checks the validity of an object’s theTime field. It raises an ex.InvalidTime
exception if the object’s theTime field contains an invalid value (hours outside the range 0..23 or minutes/
seconds outside the range 0..59). See time.validate for more details.

<object>.isValid(); @returns("al");

The <object>.isValid function checks the validity of an object’s theTime field. It returns true (in AL, zero-
extended into EAX) if theTime field contains a valid time value, it returns false otherwise. See time.isValid for
more details.

<object>.toSecs(); @returns("eax");

This function converts the object’s theTime field (in HH:MM:SS format) to the number of seconds since
midnight. This function returns the result in the EAX register. See the time.toSecs function description for more
details.

<object>.fromSecs(seconds:uns32);

This function converts the parameter value (seconds, the number of seconds since midnight) into a standard
library compatible HH:MM:SS time format and stores the result in the object’s theTime field. This function
returns the number of overflow days (that is, the number of 24-hour periods) in the EAX register, the value this
Released to the Public Domain Page 993

HLA Standard Library
function stores into theTime is always a valid time between 00:00:00 and 23:59:59. See the time.toSecs function
description for more details.

<object>.secsBetweenTimes(otherTime:timerec); @returns("eax");

This function computes the number of seconds between the object’s theTime value and a time.timerec value
you pass as a parameter. It returns the difference, in seconds, in the EAX register. See the
time.secsBetweenTimes function for more information.

<object>.difference(var otherTime:<object’s class>); @returns("eax");

This function computes the number of seconds between the object’s theTime value and same field in the
object you pass as a parameter. It returns the difference, in seconds, in the EAX register. The type of the
parameter object must be the same type as <object> (i.e., timeClass_t, virtualTimeClass_t, or whatever other
time class you’ve created and defined <object> to be). See the time.secsBetweenTimes function for more
information.

<object>.subHours(hours:uns32);

This function subtracts the number of hours specified by the parameter from the object’s theTime field. See
the time.subHours function for more information.

<object>.subMins(hours:uns32);

This function subtracts the number of minutes specified by the parameter from the object’s theTime field.
See the time.subMins function for more information.

<object>.subSecs(hours:uns32);

This function subtracts the number of seconds specified by the parameter from the object’s theTime field.
See the time.subSecs function for more information.

<object>.addHours(hours:uns32);

This function adds the number of hours specified by the parameter to the object’s theTime field. See the
time.addHours function for more information.

<object>.addMins(minutes:uns32);

This function adds the number of minutes specified by the parameter to the object’s theTime field. See the
time.addMins function for more information.

<object>.addSecs(seconds:uns32);

This function adds the number of seconds specified by the parameter to the object’s theTime field. See the
time.addSecs function for more information.

<object>.curTime();

This stores the local time (provided by the system clock) in the object’s theTime field. See the time.curTime
function for additional details.

<object>.utcTime();

This stores the UTC time (the current GMT time provided by the system clock) in the objects theTime field.
See the time.utcTime function for additional details.
Page 994 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.toString(dest:string);

This function converts the object’s theTime field to a string using the object’s OutFmt field to guide the
conversion. This function stores the character data in the string object pointed at by the dest parameter (there
must be sufficient space allocated for the string or the function will raise an exception). See the time.toString
function for more information.

<object>.a_toString(HMS:timerec); @returns("eax");

This function converts the object’s theTime field to a string using the object’s OutFmt field to guide the
conversion. This function allocates storage for the resultant string and returns a pointer to this new string in
EAX. It is the caller’s responsibility to deallocate the storage associated with this string when the caller is done
with it. See the time.a_toString function for more information.

Because the time class includes an "a_toString" function, you may print time object values using stdout.put
and similar *.put Standard Library functions. Note that those functionsl automatically deallocate the storage
associated with the string created by <object>.a_toString.
Released to the Public Domain Page 995

HLA Standard Library
Page 996 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
36 Timer Class and Module (timer.hhf)

The HLA Timer module provides a set of routines that let you time events with millisecond precision.
Note: Like documentation for most standard library modules that are based on an HLA class, this document

does not provide examples of low-level calls to the timer functions. If you’re interested in making low-level
machine instruction calls to the methods in the timer class, please consult the HLA documentation concerning
classes and objects.

A Note About Thread Safety: The timer module maintains various values within each object. If you
attempt to manipulate the same object from different threads in a multi-threaded application, you may get
inconsistent results. Therefore, you should only call the procedures and methods for a particular timer object
from one thread or you must explicitly control access to those methods to prevent concurrent execution of the
same object’s methods from different threads. Note that you may call the methods for different timer objects
from different threads.

36.1 Timer Module
To use the timer functions in your application, you will need to include one of the following statements at

the beginning of your HLA application:
#include("timer.hhf")
or
#include("stdlib.hhf")

36.2 Timer Class/Data Structure
The Timer module is actually a class with the following definition:

timer_t: class

 var
 Accumulated: qword;

 DateStarted: date.daterec;
 TimeStarted: time.timerec;
 msStarted: uns32;

 DateStopped: date.daterec;
 TimeStopped: time.timerec;
 msStopped: uns32;

 Running: boolean;
 Valid: boolean;

 procedure create; external;

 method start; external;
 method restart; external;
 method stop; @returns("edx:eax"); external;
 method checkPoint; @returns("edx:eax"); external;

 endclass;

Don’t forget that the timer_t class, like all class objects, will modify the values of the ESI and EDI registers
whenever you call a class procedure or method. So don’t expect values in ESI or EDI to be preserved across the
calls in this module.
Released to the Public Domain Page 997

HLA Standard Library
36.3 Timer Operation
The timer_t class maintains an accumulation of time. When you create a class object, or when you call the

timer_t.start method, the system initializes this 64-bit unsigned integer value to zero. When you call the
timer_t.start method, the system notes the point at which you called the method so it can compute the amount of
accumulated time when you call timer_t.stop or timer_t.checkPoint at some point in the future. It is important
that you realize that the class’ timer_t.Accumulated field does not contain a real-time representation of the
elapsed time. When you call timer_t.stop, the object will compute the amount of elapsed time since the call to
timer_t.start and will update timer_t.Accumulated with this value. So to time a simple sequence of events, you
would first call timer_t.start, do whatever it is that you want to time, and then call timer_t.stop when you’re
finished with the events you want to time. On return from timer_t.stop, the EDX:EAX register pair will contain
the 64-bit elapsed time value, or you can retrieve the value from the object’s timer_t.Accumulated field.

If you would like to compute the current elapsed time during some timing sequence, but you do not want to
stop the timing operation, you can call the timer_t.checkPoint method. This method will update the
timer_t.Accumulated field with the elapsed time up to that point without stopping the timer operation. The
timer_t.checkPoint function call will also return the total accumulated time in the EDX:EAX register pair. The
timer will continue running until you call the timer_t.stop method at some point in the future. Note that you may
call timer_t.checkPoint as many times as you like between the timer_t.start and timer_t.stop method calls. Note,
however, that you may only call timer_t.checkPoint while the timer is actually running.

For more complex timing applications, it is possible to start, stop, and restart the timer without resetting the
accumulated value to zero. Restarting the timer after calling timer_t.stop is possible by calling the timer_t.restart
method. The timer_t.restart method is functionally equivalent to timer_t.start except that it doesn’t zero out the
timer_t.Accumulated field. When you call timer_t.stop after a timer_t.restart method invocation, the
timer_t.accumulated field is updated with the sum of its previous value plus the measured time between the
timer_t.restart and timer_t.stop calls. Of course, you can make multiple calls to the timer_t.restart/timer_t.stop
methods to accumulate time over longer periods.

36.4 Timer Class Fields

timer_t.Accumulated

This field contains the computed time in milliseconds. This field is only valid if the timer_t.Valid field
contains true. If timer_t.Running contains true, then the timer is still running and the timer_t.Accumulated field
contains the number of milliseconds at the last timer_t.checkPoint or timer_t.restart operation.

timer_t.DateStarted
timer_t.TimeStarted
timer_t.msStarted
timer_t.DateStopped
timer_t.TimeStopped
timer_t.msStopped

These are internal variables to the class. You should not modify their values nor should you read their
values and use them for anything.

timer_t.Running

This boolean variable indicates that the timer object is currently timing some event. You may read this
variable but you should not modify its value.

36.5 Timer Procedures and Methods
procedure timer_t.create; @returns("esi");

This is the constructor for the class. If you call it via "someObjectName.create();" then this static class
procedure will initialize the fields of the specified object. If you call it via "timer_t.create();" then timer_t.create
will dynamically allocate storage for a timer_t object and initialize that storage. This call will return a pointer to
the new object in the ESI register.
Page 998 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

timer_t.create();
mov(esi, timerPtrVar);

timerClassVar.create();

method timer_t.start;

This method will initialize the timer so it can begin timing some sequence. Note that this call will set the
timer_t.Running field to true and the timer_t.Valid field to false. Use the timer_t.stop method call to stop the
timing operation. This call will also initialize the timer_t.Accumulated field to zero. Calling this method on a
timer that is already running will reset the accumulated time to zero. See timer_t.restart if you want to start the
timer running without clearing the timer_t.Accumulated field.

HLA high-level calling sequence examples:

timer_t.create();
mov(esi, timerPtrVar);

.

.

.
timerPtrVar.start();

.

.

.
timerPtrVar.stop();
mov(edx:eax, qwordTimerValue);// Accumulated time

method timer_t.stop; @returns("edx:eax");

This method will stop the timer accumulation and returns the accumulated time in EDX:EAX. This call sets
timer_t.Valid to true and timer_t.Running to false.

method timer_t.restart;

This method restarts the timer after you’ve stopped the timing via timer_t.stop. Note that the result
accumulated will be the sum of the previous accumulation plus the new time.

method timer_t.checkPoint;

This computes the current time in timer_t.Accumulated without stopping the timer.
That is, timer_t.Valid will be set to true and timer_t.Running will remain true.
Released to the Public Domain Page 999

HLA Standard Library
Page 1000 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
37 Zero-terminated String Functions (zstring.hhf)

Although HLA’s string format is more efficient (with respect to speed) than the zero-terminated string
format that languages like C, C++, and Java use, HLA programs must often interact with code that expects zero-
terminated strings. Examples include HLA (assembly) code you like with C/C++/Java programs and calls you
make to operating systems like Windows and Linux (that expect zero terminated strings). Therefore, the HLA
Standard Library provides a limited amount of support for zero-terminated strings so it can efficiently interact
with external code that requires such strings.

When passing read-only string data to some code that expects a zero-terminated string, HLA’s string format
is upwards compatible with zero-terminated strings. No conversion is necessary. An HLA string variable holds
the address of a sequence of characters that end with a zero byte (the zero-terminated format). So as long as the
code you’re calling doesn’t attempt to write any data to the string object, you can pass HLA string objects to
functions and procedures that expect zero-terminated strings.

If the procedure or function you’re calling stores data into a destination string variable, then you generally
should not pass an HLA string to that function. There are two problems with this: first, the function does not
check the HLA string’s maximum length field to ensure that string overflow does not occur; second, the external
function does not properly set the HLA string’s length field before returning. Furthermore, the external code
may create it’s own string data in some buffer and does not even allocate space for HLA’s maximum length and
dynamic length fields. To workaround these limitations, HLA provides various procedures in the Standard
Library that manipulate zero-terminated strings so your programs can effectively communicate with external
code that operates on such strings.

Before describing the support functions that HLA provides for zero-terminated strings, it’s probably
worthwhile to first discuss how one writes code that comfortably co-exists with such strings. As noted above,
there are three major problems one must deal with when external code processes zero-terminated strings. We’ll
deal with these issues one at a time.

The first problem is that the external code does not check the maximum string length field before writing
character data to a string object. Therefore, the external code cannot determine if a buffer overflow will occur
when that function extends the string’s length. Algorithms that depend upon the string function raising an
exception when a buffer overflow occurs will not work properly when calling external code that manipulates
zero-terminated strings. The solution to this problem is the same as the solution in C and C++: the programmer
must take the responsibility of ensuring that there is sufficient buffer space available to hold the string the
external function produces. Exactly how much space you must allocate as a maximum varies on a call by call
basis, but usually you can pick a sufficiently large value that is safe and preallocate storage for an HLA string
whose maximum length satisifies the program’s requirements. Note that most operating system API functions
that return variable length strings will let you specify a maximum length parameter so the OS will not overflow
your string buffer; well-written library routines and other code that create variable length zero-terminated strings
and generally provide this same functionality.

The second problem, the fact that the external code that manipulates the string’s data does not update HLA’s
string length field, is solvable by computing the length of the zero-terminated string upon return from the
external code and updating the length field yourself. A convenient way to handle this operation is to write a
wrapper function that you call from your code. The wrapper function calls the external code and then computes
and updates the HLA string length field before returning to the original caller. This saves having to compute the
length on each and every invocation of the external code. The HLA Standard Library provides a string length
function that efficiently computes the length of a zero-terminated string. You can call this function upon return
from the external code and then store the return result into the HLA dynamic length field.

Some external functions may create their own zero-terminated strings rather than store their string data in a
buffer you supply. Such functions will probably not allocate storage for the dynamic and maximum length fields
that the HLA string format requires. Therefore, you cannot directly use such string data as an HLA string in your
assembly code. There are two ways to handle such string data: (1) copy the zero-terminated string to an HLA
string and then manipulate the HLA string, or, (2) process the zero-terminated string using functions that directly
manipulate such strings. The HLA strings module provides a set of zero-terminated string functions that let you
choose either mechanism. The choice of method (1) or (2) depends entirely upon how you intend to use the
string data upon return to your HLA code. If you’re going to do considerable string manipulation on that string
data within your HLA code (and you want to use the full set of HLA string and pattern matching functions on the
string data), it makes a lot of sense to first convert the string to the HLA format. On the other hand, if you’re
going to do very little manipulation, or if the external function expects your code to update the string data in
place (so it can refer to a modified version of the original string data at the original address the external code
allocates), then it’s probably best to manipulate the string data in-place using a set of zero-terminated string
functions. If you need to do considerable string manipulation on some data, but the external code expects you to
leave the manipulated string in the original buffer it allocates, you can convert the string to an HLA string, do the
modification, and then copy the resulting string back into the original buffer; however, all this copying can be
expensive, so you should be careful about using this approach.
Released to the Public Domain Page 1001

HLA Standard Library
The HLA Standard Library provides a small handful of important zero-terminated string functions. This set
certainly isn’t as extensive as the set of functions available for HLA strings, nor is it as extensive as the set of
functions available, for example, in the C Standard Library. However, this small set of functions will probably
cover 90-95% of the requirements you’ll have for processing zero-terminated strings in HLA code. Generally, if
you need other functionality, you can obtain it by calling C Standard Library functions from your HLA code or
by first converting the string to an HLA string (and then copying the data back to the original buffer, if
necessary). The following subsections describe the functions that the HLA Standard Library provides to support
zero-terminated strings.

37.1 ZStrings Module
To use the zero-terminated string functions in your application, you will need to include one of the following

statements at the beginning of your HLA application:

#include("zstrings.hhf")
or
#include("stdlib.hhf")

37.2 Zstring Functions
procedure zstr.len(zstr:zstring); @returns("eax");

The single parameter is the address of a zero-terminated string. This function returns the length of that
string in the EAX register.

Note that the zstr.len function has a single untyped reference parameter. Generally, you’d pass the name of
a buffer variable as the parameter to this function. If the address of the zero-terminated string appears in a
register, you’ll need to use one of the following three invocations to call this function:

// Manual invocation- assumes the string pointer is in EBX:

push(ebx);
call zstr.len;
<< length is in EAX >>

.

.

.
zstr.len([ebx]); // zlen expects a memory operand

.

.

.
zstr.len(val ebx); // Tell HLA to use value of ebx.

The zstr.len function is especially useful for updating the length field of an HLA string you’ve passed to
some external code that generates a zero-terminated string. Consider the following code that updates the length
upon return from an external function:

// Allocate sufficient storage to hold the string result the external
// code will produce. 1024 was chosen at random for this example, you’ll
// have to pick an appropriate value based on the size of the string
// the external procedure in your code produces.

str.alloc(1024);
mov(eax, strVar);

.

.

.
externalFunction(strVal); // externalFunction overwrites strVal data.
zstr.len(strVal); // Compute the result string’s length
Page 1002 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(strVar, ebx); // Get pointer to string data.
if(eax > (type str.strRec [ebx]).MaxStrLen)) then

// If there was a string overflow, the overflow may
// have wiped out some important data somewhere, so
// it may be too late to raise this exception. However,
// better late than not notifying the caller at all.
// Because the buffer overflow may have corrupted the application’s
// data, the application should attempt to terminate as
// gracefully as possible at this point.

raise(ex.StringOverflow);

endif;

// Okay, the string didn’t overflow the buffer, update the
// HLA string dynamic length field:

mov(eax, (type str.strRec [ebx]).length);

HLA high-level calling sequence examples:

zstr.len(zstrValue);
mov(eax, zlen);

HLA low-level calling sequence examples:

pushd(&zstrValue);
call zstr.len;
mov(eax, zlen);

.

.

.
lea(eax, zStrVar);
push(eax);
call zstr.len;
mov(eax, zlen2);

procedure zstr.zcmp(zsrc1:zstring; zsrc2:zstring); @returns("eax");

The zstr.zcmp function compares two zero-terminated strings and returns the comparison results in the EAX
register and in the x86 flags. This comparison function sets the condition code bits so you can use the standard
unsigned condition instructions (jump and set instructions) immediately upon return to test for less than, less than
or equal, equal, not equal, greater than, or greater than or equal. This function also returns -1 ($FFFF_FFFF),
zero, or one in EAX to indicate less than, equal, or greater than (respectively). Note that this function compares
zsrc1 to zsrc2. Therefore, this function returns -1 if zsrc1 < zrc2, zero if zsrc1 = zsrc2, and one if zsrc1 > zsrc2.

This function is especiially useful for comparing two zero-terminated strings that some external code returns
to your HLA program if you don’t need to do any further manipulation of the string data. This function is also
useful for comparing an HLA string against a zero-terminated string (since HLA strings are zero terminated).
Technically, you could use this function to compare two HLA strings (since they are zero-terminated), but the
standard HLA string comparison functions are probably more efficient for this purpose.

HLA high-level calling sequence examples:
Released to the Public Domain Page 1003

HLA Standard Library
zstr.zcmp(zstr1, zstr2);
if(@ae) then // zstr1 >= zstr2

.

.

.
endif;
zstr.zcmp(someZStr, "Hello World");
mov(eax, cmpResult);

HLA low-level calling sequence examples:

lea(eax, SomeCharBuffer);
push(eax);
push(zStrVar);// Note: zstring vars are pointer vars
call zstr.zcmp;
jnae notAE;

.

.

.
notAE:

push(someZStr);
push(HelloWorldStr);
call zstr.zcmp;
mov(eax, cmpResult);

procedure zstr.cpy(src:zstring; dest:zstring);

The zstr.cpy function copies one zero-terminated string to another. The destination buffer must be large
enough to hold the source string and it is the caller’s responsbility to ensure this. The zstr.cpy routine has no way
to determine the maximum size of the destination buffer, so it cannot check for buffer overflow (this is typical for
zero-terminated string functions).

Since HLA strings are zero-terminated, you can use this function to copy an HLA string to a zero-terminated
string:

// Assumptions: hlaString is the name of an HLA String variable and
// destZStr is the name of an array of characters or byte array.

zstr.cpy(hlaString, destZStr);

Of course, you can also use the zstr.cpy function to copy one zero-terminated string to another. You’d
typically use zstr.cpy in this capacity to copy a string returned by one external function to a buffer for use by
another external function that expects a zero-terminated string.

procedure zstr.cat(src:zstring; dest:zstring);

This function concatenates one zero-terminated string to the end of another. The caller must ensure that the
destination buffer is large enough to hold the resulting string; the zstr.cat function has no way to verify the size
of the destination buffer, so it cannot check for buffer overflow (this is typical for zero-terminated string
functions).

This string is useful for manipulating zero-terminated strings some external code provides without the
overhead of first converting the strings to HLA strings. If you call two external functions that return zero-
terminated strings and you need to pass their concatenated result to some other external function that expects a
zero-terminated string, and there is no string manipulation in your HLA code, then using zstr.cat is more efficent
than converting the strings to an HLA string and using the HLA string concation function.
Page 1004 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
When using this function, don’t forget that it’s parameters are untyped reference parameters. When passing
the address of a buffer variable you may specify the name of the buffer directly. However, when passing a
pointer to the buffer, you’ll probably need to use the VAL operator to tell HLA to pass the pointer’s value rather
than the pointer’s address. Here are some examples of zstr.cat invocations:
static

buffer1 :char[256];
buffer2 :char[254];
bufptr1 :zstring;
bufptr2 :zstring;

.

.

.
lea(eax, buffer1);
mov(eax, bufptr1);
lea(eax, buffer2);
mov(eax, bufptr2);

.

.

.
zstr.cat(bufptr1, bufptr2);
zstr.cat(buffer2, edi);
zstr.cat(bufptr2, esi);

You can also use the zstr.cat procedure to copy data from an HLA string to a zero-terminated string:
static

hlaStr :string;
zs :char[256];
zPtr :zstring;

.

.

.
lea(eax, zs);
mov(eax, zPtr);

.

.

.
zstr.zcat(hlaStr, zPtr);
zstr.zcat(hlaStr, esi);

It really does not make any sense to specify an HLA string variable as the destination operand. zstr.cat does
not update the HLA string’s length field, so if you supply an HLA string as the destination operand, the zstr.cat
procedure may corrupt the HLA string, forcing you to manually compute the length yourself. If you need to
copy a zero-terminated string to an HLA string, use the zstr.cat function instead.
Released to the Public Domain Page 1005

HLA Standard Library
Page 1006 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
38 HOWL: The HLA Object Windows Library

The HLA Object Windows Library (HOWL) is an application framework for Microsoft Windows that
greatly simplifies GUI application development for Windows in assembly language. It lets you declare forms and
widgets that describe the visual layout of a GUI application and then you need only write small procedures that
handle events associated with your GUI elements. This is far less work than writing a standard Win32
application and processing all the messages that Windows sends to such an application.

Once you master the basics of HOWL, you can write the GUI portion of a Win32 application in a fraction of
the time it would take using standard Win32 API programming techniques. Your programs will be easier to read
and easier to maintain, as well.

As its name suggests, the HLA Object Windows Library makes extensive use of HLA’s object-oriented
programming facilities. If you are unfamiliar with object-oriented programming, or are uncomfortable with
HLA’s implementation of object-oriented programming, you should take a look at the chapter on “Classes and
Objects” in The Art of Assembly Language and the chapter on Object-Oriented Programming in the HLA
reference manual.

Note: Successful use of HOWL requires HLA v2.8 or later. If you have an earlier version, you will need to
upgrade to the latest version in order to use HOWL. It should be obvious by now, but HOWL for Windows only
supports Microsoft Windows (2000, XP, Vista, and Windows 7; no guarantees on earlier versions).

38.1 The HOWL Application Framework
Most HLA programs (at least to date) are written with a “main program” that controls the activities of that

application by calling various procedures and other code within the application; the main program is the “traffic
cop” that determines what happens and the sequence of those operations. An application framework (like
HOWL), on the other hand, contains its own “main program” that controls the sequence of operations within the
program. As an application programmer, you will supply various procedures that the framework will call and
your procedures will handle various tasks as requested by the application framework’s main program. This
paradigm takes a small amount of effort to get used to if you’ve never written event-driven applications before,
but it’s fairly easy to master and you should be able to master it in a few short hours.

For technical reasons, your HOWL applications will still be written as an HLA program. However, the
main program for your HOWL application is trivial; if your program is named “howlDemo”, then this is what
your main program will look like:

begin howlDemo;

HowlMainApp();

end howlDemo;

HowlMainApp is the HOWL application framework main program that you must call from your main
program to get the application running.1

Beyond the main program in your HOWL application, there are two methods and three procedures you must
also supply:

• An “onClose” method (usually containing a single statement)
• An “onCreate” method (usually empty)
• An “AppStart” procedure
• An “AppTerminate” procedure
• An “AppException” procedure

Your application will normally contain many more procedures and other code, of course, but every HOWL
application will have at least these five procedures and methods.

The first step in creating a HOWL application is to create a subclass of the wForm_t type. You could create
such a new class using a declaration like the following:

1. In theory, the HOWL framework could require that you create a unit and the HOWL main program could have been
linked in automatically. However, you cannot insert any main programs into the HLA Standard Library (where HOWL
resides) without creating linkage problems for all other applications. The simple alternative is to require HOWL apps to call
the HowlMainApp procedure from their main program.
Released to the Public Domain Page 1007

HLA Standard Library
myNewForm_t:
class inherits(wForm_t);

<< any new fields you want to add >>
endclass;

However, in an typical HOWL application you won’t create a new wForm_t type this way. Instead, you’ll
use the wForm..endwForm declaration to achieve this:

wForm(myForm)
<< any new fields you want to add >>
<< any widget declarations you want >>

endwForm

The wForm..endwForm statement does several things for you:
• It defines a new class type that is a subclass of wForm_t. This new class type is given the name

“myForm_t” (substituting whatever name you supply as the argument to wForm for “myForm”
in this example).

• It creates a static global variable named “pformname” (substituting the name you supply in the
wForm invocation for formname) that is a pointer to an object of type formname_t (again,
substituting the name you supply in the invocation to wForm for formname).

• It creates a static global variable named “formname” (usual substitution) that is an instance of
the class object formname_t.

• It initializes “pformname” with the address of the global “formname” variable.
• It creates a macro, named formname_implementation, that you can invoke to create a

constructor for this new class that initializes all the widgets you declare in the
wForm..endwForm statement.

You could manually do all of these things that the wForm..endwForm declaration does for you, but it’s a lot
easier and less error prone to to use the wForm..endwForm statement. So this documentation will only consider
that approach. If you’re interested in learning how to manually create new wForm_t subclass types, take a look
at the macro implementation of wForm..endwForm in the howl.hhf header file.

In order to provide concrete examples, this documentation will assume that you’re supplying the name
“myForm” as an argument to the wForm..endwForm macro invocation. Please keep in mind that you can use
any name you choose (and “myForm” is not a particularly descriptive or good name) in these examples. In
general, you might want to consider using your application’s name (if you’re not already using that as an
identifier elsewhere in your program) as the main form name.

With the basic description wForm out of the way, we can now take a look at a complete HOWL application
(the generic equivalent of a “hello world” application in the GUI world). The following code appears in pieces in
order to explain the purpoes of each piece.

program howlDemo;
#linker("comdlg32.lib")
#linker("comctl32.lib")

The HOWL library makes use of the Windows common controls and common dialogs dynamically linked
libraries. The two #linker statements above instruct HLA to emit instructions to the linker to link in these
libraries (so you don’t have to specify these library names on the HLA compiler command line).

?@NoDisplay := true;
?@NoStackAlign := true;

By default, HLA emits code to generate displays for all procedures and it also emits code to align the stack
at the beginning of each procedure. These options are rarely needed in HOWL programming, so it’s a good idea
to include the two statements above in order to turn off the code generation for these two features.

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

Like most HLA applications, we’ll include the HLA standard library generic header file (stdlib.hhf) so we
can take advantage of most of the standard library’s features. Because stdlib.hhf doesn’t automatically include
the howl.hhf header file, the code needs to explicitly include this header file as well in order to use HOWL
features.
Page 1008 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
static
 align(4);
 bkgBrush_g :dword;
 bkgColor_g :dword;

The bkgBrush_g and bkgColor_g variables will hold the background color and brush for our forms. We
need to declare these variables before our form declaration because many widgets (controls) will need a
background color and the widgets will look better if their background color is the same as the form’s.

wForm(myForm)
endwForm

Here’s our wForm declaration. It is important for you to understand that the wForm..endwForm declaration
is equivalent to a class declaration in the type section of an HLA program. The wForm macro, in fact, expands
in-place) to a type section with a class declaration for myForm_t. There are two things you can place between the
wForm and endwForm clauses: class field declarations and invocations of certain context-free macros defined by
the wForm macro invocation. We’ll take a look at both of these options a little later, for the current example our
wForm..endwForm macro invocation is empty because we’re just creating an empty formfor our application.
Note, and this is very important, that the wForm..endwForm statement must appear at some point in your
program where it is legal to begin a type section that defines a class (because this is exactly what
wForm..endwForm is going to do).

// Implement the mainAppWindow create procedure and object instances:

myForm_implementation();

One of the tasks that the wForm..endwForm macro invocation accomplishes is the creation of a macro
(named myForm_implementation in this example) that will expand to some code that the wForm..endwForm
macro generates. Somewhere in your program you must invoke this macro (myForm_implementation) in
order to actually emit the code that the new class you’ve created requires. If you’re wondering why the
wForm..endwForm macro doesn’t emit this code directly, just keep in mind that the wForm..endwForm
declaration often appears in a header file (rather than directly in your main program as it appears here) and if
wForm..endwForm automatically emitted this code, it would be emitted in every file that included the header
file. This would result in duplicate code (and duplicate external labels). Therefore, the wForm..endwForm
statement generates this macro that you must invoke exactly once in your program in order to compile the code
that wForm..endwForm generates.

method myForm_t.onCreate;
begin onCreate;
end onCreate;

method myForm_t.onClose;
begin onClose;

 w.PostQuitMessage(0);

end onClose;

 The myForm_t class that wForm..endwForm creates will define two methods but it will not generate
the code for these methods, you will have to provide the code for these methods. Most of the time, these
methods will appear exactly as the two above. The HOWL main program invokes the onCreate method at the
very end of the execution of the constructor procedure for the myForm_t class. You could put code in this
method to execute immediately after the creation of the new form but, as you’ll soon see, you’ll most often put
this “on creation” code in the appStart procedure. So most of the time the onCreate method will be empty.
Why does HOWL generate a call to a method you’ll almost always leave empty? Well, this is an artifact of
object-oriented programming. The onCreate method is quite useful for other classes that are derived from
myForm_t’s parent class, so rather than make a special case out of myForm_t (or the other classes), HOWL
requires you to write this (usually empty) method and it will call it. Fortunately, this only takes a few bytes of
memory and it only gets called once, so there really isn’t an efficiency loss for doing this.
Released to the Public Domain Page 1009

HLA Standard Library
When the user of your application clicks on the form’s close button, or otherwise tells the application to
terminate, HOWL will direct control to the myForm_t.onClose method. You can do other things to clean up
your application when the program is about to quit, but the main thing you need to do is to tell Windows that the
application is quitting and this is done by executing w.PostQuitMessage(0); As it turns out, you generally
won’t put any application cleanup code directly in the onClose method; there is an appTerminate procedure
that HOWL will call when your program terminates execution and you’ll put all your cleanup code in that
procedure.

We’ve talked about the appStart and appTerminate procedures, let’s take a look at them. A typical
appStart procedure takes the following form:

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, bkgColor_g);
 w.CreateSolidBrush(eax);
 mov(eax, bkgBrush_g);

The above statements initialize the bkgColor_g and bkgBrush_g global variables with the color (and
corresponding solid brush) of the menu area on a typical Windows’ window. Though it’s not strictly necessary
to have these global variables, they are useful when creating widgets in more complex applications, so most
appStart procedures will initialize these variables. Note that you must initialize these variables before calling
the constructor for the myForm_t class because the widget declarations appearing in the wForm..endwForm
statement will be initialized in the call to the constructor for myForm. Note that you don’t have to specify the
w.COLOR_MENU background color. You can specify any RGB color you like. You can use the RGB macro (e.g.,
RGB(255, 128, 0)) to specify the individual red, green, and blue (respectively) components of the RGB color.

The wForm(mForm) .. endwForm statement appearing earlier in the source file (and the
myForm_implementation macro invocation) automatically generated a constructor for the myForm_t class
named create_myForm. That declaration also created an instance variable (an object) of type myForm_t
named myForm. In order to initialize and display the form, you must call this constructor with the following (or
reasonably compatible) arguments:

 myForm.create_myForm
 (
 "My Form", // Window title
 0, // Extended style
 0, // Style
 NULL, // No parent window
 w.CW_USEDEFAULT, // x-position on screen
 w.CW_USEDEFAULT, // y-position on screen
 600, // Width
 600, // Height
 bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmyForm); // Save pointer to main window object.

The first argument is a string parameter that HOWL will display in the title bar of the application’s main
form. You can put any string you like here, although you should generally put the program’s name in the title
bar.

The next two parameters let you extend the window style and extended style. In general, this two
parameters will contain zero. HOWL always uses the style (w.WS_CLIPCHILDREN |
w.WS_OVERLAPPEDWINDOW) and the extended style w.WS_EX_CONTROLPARENT when creating windows for a
HOWL form. The styles you specify in the second and third constructor arguments will be logically ORed into
HOWL’s existing styles.
Page 1010 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The fourth parameter is the handle of the form’s parent form. For main application windows, this argument
is always NULL.

The fifth and sixth arguments in the constructor invocation are the x- and y-coordinates on the screen where
Windows will position the upper-left-hand corner of the form. You may specify any reasonable values here
(within the range of the size of your screen, if you want the form to be visible) or you can specify
w.CW_USEDEFAULT, in which case Windows will position the window automatically for you. For the position
on the screen, the default coordinates are probably good values to use.

The seventh and eighth arguments are the width and height of the window you’re creating. You’ll have to
pick these numbers based on the layout of the widgets on your form. You can also specify w.CW_USEDEFAULT
for the width and height and Windows will pick values it feels are appropriate. Generally, though, you’ll want to
explicitly specify the width and height for a typical form.

The ninth parameter is the background color to use for the main client area of the form. This is an RGB
color value. As this example demonstrates, it’s a good idea to u se the bkgColor_g value in this parameter
argument so you can specify that same value (or bkgBrush_g) for other elements on the display that have a
background color.

 // Return main window handle in EAX if you want the system
 // to support control selection via the TAB key. Return
 // NULL in EAX if you don't want to support TAB key selection
 // of the controls:

 mov(myForm.handle, eax);
 pop(esi);

end appStart;

The caller to appStart checks the return value in EAX to determine whether the form supports tab control
selection. If you return NULL in EAX, then the form ignores the tab key during execution. If you return the
form’s handle (myForm.handle), then Windows will support control/widget tab selection on the form.

// appTerminate-
//
// Called when the application is quitting, giving the app a chance
// to clean up after itself.
//
// Note that this is called *after* the mainAppWindow_t.onClose method
// executes (indeed, mainAppWindow_t.onClose, by posting the quit message,
// is what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 myForm.destroy();
 w.DeleteObject(bkgBrush_g);

end appTerminate;

The HOWL system will call the appTerminate procedure after the myForm.onClose method terminates.
The appTerminate procedure is a good place to call the class destructor (myForm.destroy) and clean up any
other resources in use. In the code above, for example, the appTerminate procedure deletes the brush resource
created in the appStart procedure. Note that you should only call the main form destructor in the
appTerminate procedure, not in the myForm.onClose method. The destructor will free up any allocated
storage and other resources in use and you shouldn’t do this while the object is still active (e.g., while the
onClose method is executing).

// appException-
Released to the Public Domain Page 1011

HLA Standard Library
//
// Gives the application the opportunity to clean up before
// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

 raise(eax);

end appException;

HOWL will call the appException procedure if an unhandled exception occurs during the execution of
your program. As a general rule, it’s a good idea to clean up resouces as best you can before bailing out of the
program.

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin howlDemo;

 HowlMainApp();

end howlDemo;

The main application of a HOWL program, as noted earlier, should simply call the HowlMainApp procedure
which is the real “main program” of the system.

Here’s the complete “trivial HOWL application” withou the annotations:

program howlDemo;
#linker("comdlg32.lib")
#linker("comctl32.lib")

?@NoDisplay := true;
?@NoStackAlign := true;

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

static
 align(4);
 bkgBrush_g :dword;
 bkgColor_g :dword;

wForm(myForm)
endwForm

// Implement the mainAppWindow create procedure and object instances:

myForm_implementation();

method myForm_t.onClose;
begin onClose;

 w.PostQuitMessage(0);
Page 1012 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

end onClose;

method myForm_t.onCreate;
begin onCreate;
end onCreate;

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, bkgColor_g);
 w.CreateSolidBrush(eax);
 mov(eax, bkgBrush_g);
 myForm.create_myForm
 (
 "My Form", // Window title
 0, // Extended style
 0, // Style
 NULL, // No parent window
 w.CW_USEDEFAULT, // Let Windows position this guy
 w.CW_USEDEFAULT, // " " " " "
 600, // Width
 600, // Height
 bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmyForm); // Save pointer to main window object.

 // Return main window handle in EAX if you want the system
 // to support control selection via the TAB key. Return
 // NULL in EAX if you don't want to support TAB key selection
 // of the controls:

 mov(myForm.handle, eax);
 pop(esi);

end appStart;

// appTerminate-
//
// Called when the application is quitting, giving the app a chance
// to clean up after itself.
//
// Note that this is called *after* the mainAppWindow_t.onClose method
// executes (indeed, mainAppWindow_t.onClose, by posting the quit message,
// is what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;
Released to the Public Domain Page 1013

HLA Standard Library
 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 myForm.destroy();
 w.DeleteObject(bkgBrush_g);

end appTerminate;

// appException-
//
// Gives the application the opportunity to clean up before
// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

 raise(eax);

end appException;

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin howlDemo;

 HowlMainApp();

end howlDemo;

Assuming you’ve named this file “myForm.hla”, you can compile and run this program as follows:

hla myForm

You can run the application from a command-line by typing “myForm” or you can double-click on the icon
to run it in a traditional GUI style. Note that if you double-click on the icon, Windows will open up both the GUI
window (your form) and a console window. As it turns out, having the console window is useful for debugging
purposes, but if you want to ship a release version of your application, you’ll probably want to ditch the console
window. You can achieve this by using the following command line to compile your application:

hla -w myForm

When you run the program (either from the command line or by double clicking on an icon), an empty gray
window will appear. You can quit the program by clicking on the close box on the title bar.

To understand how the HOWL application framework functions, we need an example that is slightly more
complex than the trivial example presented thus far. Consider the following modifications to the previous
example:

procedure onPress(thisPtr:dword; wParam:dword; lParam:dword); forward;

wForm(myForm)

 wPushButton
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 10, // x position
 10, // y position
Page 1014 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm
 .
 .
 .
procedure onPress(thisPtr:dword; wParam:dword; lParam:dword);
begin onPress;

 w.PostQuitMessage(0);

end onPress;

The onPress procedure is an example of an event handler. The HOWL code will automatically call various
event handlers in response to some system event, such as someone pressing a button on a form. In this example,
we’re going to place a push button on the formand the HOWL code will call the onPress event handler in
response to someone pressing that button. How does HOWL know to call onPress rather than some other
function? Easy, we’re going to tell it about onPress. The first step is to create a forward declaration for
onPress that must appear before the wForm..endwForm statement. We’re going to reference onPress inside
the wForm..endwForm statement, so we have to make sure it’s declared before wForm(myForm); the
forward declaration achieves this.2

The wPushButton delcaration appearing inside the wForm..endwForm statement tells HOWL to create a
push button object on the form. The first argument (myButton) is the name of the field that HOWL will create
inside the myForm class to represent the push button object. This is roughly equivalent to the following
declaration in HLA:
type

myForm: class inherits(wForm_t);
var

myButton: wPushButton_p;
.
.
.

endclass;

(note that type wPushButton_p is defined to be a pointer to wPushButton_t.)

The remaining arguments in the wPushButton statement define the appearance of the button on the actual
form. The second argument is the string label that HOWL will display on the button. The third through sixth
arguments, as the comments state, specfy the x- and y-coordinates and the width and height of the button on the
form. Note that the coordinates are relative to the upper-left-hand corner of the client area on the form.3 The last
argument is the one of most interest to us here. This is the name of the “on click” event handler that HOWL will
call when you press the push button on the form.

All widget event handlers are “widget procs”. This means that they are procedures with the following
parameter list:

type
 widgetProc :procedure(thisPtr:dword; wParam:dword; lParam:dword);

Note that widgetProc procedures are not class procedures or methods, they are standard procedures.
Specifically, this means that you can’t use the this or super reserved words inside a widgetProc. However,
note that a widgetProc does have a thisPtr parameter. This parameter will contain the address of the object
that signaled the event (that is, thisPtr will point at the myButton object in this example when the user presses
the button and HOWL calls the onPress procedure). In this example, we’ll not use thisPtr, but in more

2. You could also put the entire onPress procedure before the wForm declaration, but generally it’s better programming

style to put all procedure code after the declarations (like wForm), hence the use of the forward declaration in this code.

3. The client area does not include the title bar nor the menus. If the form is tabbed, it doesn’t include the area holding the
tabs, either.
Released to the Public Domain Page 1015

HLA Standard Library
complex examples having a pointer to the object turns out to be important. The wParam and lParam arguments
are passed from Windows message procedure on to the widgetProc unchanged. For certain widget types, these
arguments contain important data. In the current example, we ignore these arguments as well.

For the onPress procedure in this example, we simply want to quit the program when the user presses the
“close” button. Therefore, this onPress procedure executes the same code as the main form’s onClose method,
that is: w.PostQuitMessage(0); If you compile this code and run it, you can quit the program by pressing
on the “close” button.

In most cases, these event handler procedures are how HOWL communicates with your code. Whenever the
user initiates some event by interacting with the widgets on the form, HOWL calls the corresponding widget
procedure(s) to let your program handle the event.
Page 1016 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
38.2 The HOWL Declarative Language
In the previous section you saw a couple of simple examples of the HOWL declarative language. The

HOWL declarative language is the set of statements that are legal inside a wForm..endwForm sequence. The
wPushButton statement was a good example of a HOWL declarative language statement. There are many other
widget-defining statements present in the HOWL declarative language. This section will describe those
statements.

Before describing the actual statements that define widgets, you should note that the wForm..endwForm
statement is actually a class declaration in the HLA language. So in addition to all the legal declarative
statements, you can also put any legal class declarations inside a wForm..endwForm statement. For example, if
you want to communicate some data between various widgets on a form, one way to achieve this is by placing
some class var declarations inside the wForm..endwForm statement:

wForm(myForm)
var

someData :dword;
.
.
.

endwForm

Your event handlers and other code and refer to this data field using the syntax myForm.someData.
Of course, you can add any other legal class objects into this declaration including class constants,

procedures, methods, and iterators.
The howl.hhf header file implements the HOWL declarative language using an HLA context-free macro.

The wForm..endwForm macro declaration includes various #keyword macros (like wPushButton) that
expand into appropriate declarations in the class (and via some macro magic, store away code to create the
constructor procedure for the class). When you look at some HOWL delcarative code, it’s easy to forget that
you’re looking at a declaration, not at executable code. It’s easy to think that you should be able to do something
like the following:

wForm(myForm)

 mov(btnXPosn, eax);
 add(10, eax);
 mov(btnYPosn, ecx);
 add(10, ecx);
 wPushButton
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 eax, // x position
 ecx, // y position
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm

However, this won’t work. Don’t forget that the statements inside the wForm..endwForm declaration are
emitted inside a class declaration. Stray statements such as “mov(btnXPosn, eax);” cannot appear inside a class
declaration.

It is possible to sneak certain statements into the your widget declarations. Except for the first parameter in
most widget declarations (which is the widget object’s name in the class declaration), HOWL records the
parameter’s value and “plays it back” when generating the code for the form’s class constructor. This means you
can sneak in some code if that code is appropriate for a parameter in a procedure call. Consider the following:

wForm(myForm)

 wPushButton
Released to the Public Domain Page 1017

HLA Standard Library
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 returns
 ({
 mov(btnXPosn, eax);
 add(10, eax);
 }, "eax"),
 10, // y position
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm

You may specify global variables as arguments to a widget declaration, but you have to ensure that you’ve
declared the global object prior to the wForm statement at that you’ve initialized the global object before calling
the constructor for that form.

The following subsections describe the wForm..endwForm statement as well as all the widgets that may
appear within a wForm..endwForm declaration.

 38.2.1 wForm
wForm(<<formname>>)
<< widget and class field declarations >>

endwForm

The wForm..endwForm statement declares a form (or window) for an application. Every application will
have at least one of these statements. The single argument is the name associated with the form. HOWL takes
this name and generates five distinct program entities from it:

• A class type named formname_t that represents the form’s type and holds the declarations
for all the widgets on the form.

• A data type named formname_p,
• A global variable named formname, of type formname_t, that is an instance of the form

object.
• A global variable named pformname of type formname_p that is initialized with the address

of the formname object.
• A constructor (class procedure) of the name formname_t.create_formname. You will call

this constructor to initialize the formname variable object.
Most programs will use the formname variable directly and ignore the pformname variable. However,

pformname is available if having a pointer to the object is more convenient that the object itself.
The constructor for the object has the following prototype:

procedure formname_t.create_formname
(
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword;
 visible :boolean
);

caption HOWL displays this string in the title bar of the form’s window.
Page 1018 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
exStyle HOWL logically ORs this MS Windows "extended window style" (w.WS_EX_* constants) with
w.WS_EX_CONTROLPARENT when creating the window for the form.

style HOWL logically ORs this MS Windows "window style" (w.WS_* constants) with
w.WS_CLIPCHILDREN | w.WS_OVERLAPPEDWINDOW when creating the window for the
form.

parent This is the handle of the parent window for this form. As most wForm objects do not have parent
windows, this parameter should contain NULL.

x The x-coordinate on the screen of the upper-left-hand corner of the form.

y The y-coordinate on the screen of the upper-left-hand corner of the form.

width The width of the form (in pixels)

height The height of the form (in pixels)

fillColor This is an RGB value that specifies the background color for the form. The red component is the
L.O. eight bits of this value, the green component is in bits 8..15 of this value, and the blue
component is in bits 16..23. Bits 24..31 should contain zero. The howl.hhf header file defines a
macro, RGB, that lets you assemble an RGB value from three constants: RGB(redConst,
greenConst, blueConst). For example, RGB(255, 0, 0) corresponds to red will a full intensity.

visible This is a boolean constant that specifies whether the form will be created in a visible (true) or
hidden (false) state. You can always call the formname.show() method to make a form visible
or the formname.hide() method to hide the form at run-time. For the main application
window, this field normally contains true.

Generally, formname objects are singletons. That is, you typically create only a single instance of a
formname object. However, as formname_t is a standard HLA data type, there is nothing stopping you from
creating multiple objects of this type. Most of the type, however, it would be somewhat confusing to have two
instances of the same form on the display at one time. In some instances this is reasonable. For example, if you
have a text editor form and you want to allow the user to edit multiple files (or multiple views of the same file)
concurrently, it might make sense to have two instances of the same window on the screen at one time.

wForm..endwForm declarations are not recursive. That is, you cannot embed a wForm inside another
wForm declaration. wForm windows are main application forms and support menus, tabs, and other facilities
only possible on the main application form, hence the restriction.

wForm objects are examples of containers in HOWL. A container, as its name suggests, may contain other
objects (specifically widget objects). There are a couple of different kinds of containers in HOWL, but wForm
contains are special because they can contain two things that other containers cannot: menus and tabs. Therefore,
this document will describe these widgets next

 38.2.2 wMainMenu..endwMainMenu
wMainMenu

<< main menu widget declarations >>

endwMainMenu

A wForm object can contain an optional main menu widget. This consists of the
wMainMenu..endwMainMenu statement. If a form contains a main menu widget, the main menu widget must be
the first widget declaration appearing on the form. E.g.,

wForm(myForm)

 wMainMenu

 << menu item declarations >>

 endwMainMenu

 << other widget declarations >>

endwForm
Released to the Public Domain Page 1019

HLA Standard Library
Within the wMainMenu..endwMainMenu declaration you define the items that appear on the menu. These
include menu items, submenus, and separators. The following subsections describe each of these items.

A wMainMenu object can be thought of as a container object, albeit a very specialized one. wMainMenu
objects can contain wMenuItems, wMenuSeparators, and wSubMenu objects. Unlike normal containers,
however, wMainMenu objects cannot contain arbitrary HOWL objects.

 38.2.2.1 wMenuItem
A wMenuItem declaration defines a single menu item in a main menu or a submenu. This declaration is only

legal within a wMainMenu..endwMainMenu or wSubMenu..endwSubMenu declaration.

wMenuItem
(
 menuItemName,
 menuItemChecked,
 menuString,
 menuHandler
);

The menuItemName argument is an identifier that HOWL inserts into the wForm object to represent this
particular menu item. You generally won’t directly refer to this identifier in your programs, but HOWL requires
a field name so you must supply a unique (to the class) identifier here.

The menuItemCheck argument is a boolean constant that specifies whether the menu item can contain a
check mark next to it in the menu display. If this is true, then the menu item will have the ability to display (or
not display) a checkmark next to the menu item. If this field is false, then the menu item will not have this ability.
See the discussion of the wMenuItem_t.checked method to see how to set or clear this checkmark.

The menuString argument is a string constant that specifies the text that HOWL will display for the menu
item.

The menuHandler argument is either NULL or the name of a widgetProc that HOWL will call when the
user selects this particular menu item. If the argument is NULL, HOWL will ignore the selection of the menu
item.

HOWL displays menu items across the menu bar on a wForm (the menu bar appears immediately below the
title bar in the window). Generally, most main menu items are actually submenus, though straight menu items
are also legal in and main menu.

 38.2.2.2 wMenuSeparator

wMenuSeparator

The wMenuSeparator declaration should only appear in a submenu (that is, within a
wSubMenu..endwSubMenu declaration). This draws a horizontal bar across the menu to separate sets of menu
items in a submenu.

 38.2.2.3 wSubMenu..endwSubMenu

 wSubenu

 << menu item declarations >>

 endwSubmenu

Submenu item declarations are syntactically similar to main menu declarations. However, submenus must
always appear inside another menu declaration (either a wMainMenu..endwMainMenu or some other
wSubMenu..endwSubmenu declaration). Unlike wMenuItem declarations, there is no handler associated with a
submenu. HOWL (and Windows) automatically handles all the processing associated with a submenu.

 38.2.2.4 Menu Example
Here’s a complete menu declaration, including submenus within submenus and menu items in the main

menu:
Page 1020 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
wForm(mainAppWindow);

wMainMenu;

wSubMenu(menu_1, "menu1");

wMenuItem(menu_1_1, false, "Item_1_1", handler_1_1);
wMenuItem(menu_1_2, true, "Item_1_2", handler_1_2);
wMenuItem(menu_1_3, true, "Item_1_3", handler_1_3);
wMenuSeparator;
wMenuItem(menu_exit, false, "Exit", exitHandler);

endwSubMenu;

wSubMenu(menu_2, "menu2");

wMenuItem(menu_2_1, false, "Item_2_1", handler_2_1);
wSubMenu(menu_2_2, "Menu_2_2");

wMenuItem(menu_2_2_1, false, "Item_2_2_1", handler_2_2_1);
wMenuItem(menu_2_2_2, false, "Item_2_2_2", handler_2_2_2);

endwSubMenu;

endwSubMenu;

wMenuItem(menu_3, false, "menu3", handler_3);

endwMainMenu;

<< other widget declarations >>

endwForm

 38.2.3 wTab
wTab
(

tabName, // identifier
tabString, // string
tabHandler, // widgetProc name or NULL
bkgColor // RGB color

)

By default, a wForm object provides a single surface to which you can attach widgets. The wTab declaration
allows you to specify multiple surfaces on a form, each user-selectable by clicking on a tab at the top of the form.
Like wForm objects, wTab objects are containers and may contain all the same widgets (except wMainMenu
items). If you utilize tabs on a wForm object, the first wTab declaration must appear after the wMainMenu
declaration (if any) and before any other widgets, e.g.,
wForm(mainAppWindow);

wMainMenu;

wMenuItem(exitMenu, false, "exit", exitHandler);

endwMainMenu;

wTab(tab1, "tab1", NULL, bkgColor_g);

<< widgets associated with tab1 >>
.

Released to the Public Domain Page 1021

HLA Standard Library
.

.

The declarations for widgets associated with a tab appear immediately after that tab up to the next tab
declaration or the endwForm clause. Most forms, if they use tabs, will have at least two tabs. Here’s an example
declaration of a form with two tabs:

wForm(mainAppWindow);

wMainMenu;

wMenuItem(exitMenu, false, "exit", exitHandler);

endwMainMenu;

wTab(tab1, "tab1", NULL, bkgColor_g);

wPushButton
(

buttonOnTab1, // Identifier for button
"Tab1 Button", // Caption for push button
10, // x position
10, // y position
125, // width
25, // height
onClick1 // "on click" event handler

);

wTab(tab2, "tab2", NULL, bkgColor_g);

wPushButton
(

buttonOnTab2, // Identifier for button
"Tab2 Button", // Caption for push button
10, // x position
10, // y position
125, // width
25, // height
onClick2 // "on click" event handler

);

endwForm

This example creates two tab pages on the form, each with on button on the respective forms.
HOWL and Windows automatically handle switching from one form to the other when the user clicks on the

tabs.
Note that if you place on or more tabs on a form, the size of the client area (where you can put other widgets)

is reduced by the size of the tabs bar at the top of the form.

 38.2.4 Check Boxes
HOWL supports four types of check boxes: standard check boxes (wCheckBox), three-state check boxes

(wCheckBox3), left-text check boxes (wCheckBoxLT), and three-state left-text checkboxes (wCheckBox3LT).
The non-three-state checkboxes alternate between two states when the user clicks on the check box (or its

caption): checked and unchecked. The three-state check boxes alternate between three states: unchecked,
checked, and grayed (don’t care).

The standard (non-LT) checkboxes draw their check boxes immediately to the left of the caption (that is, the
text is to the right of the check box). The LT (left text) check boxes draw their text to the left of the check box.

CheckBox declarations let you specify an "onClick" event handler that HOWL will call whenever the user
clicks on a checkbox and changes its state. This argument should either be the name of a widgetProc procedure
Page 1022 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
or NULL (if you don’t want HOWL to call any procedure, which is actually a common occurrence with
checkboxes).

 38.2.4.1 wCheckBox
wCheckBox
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a standard checkbox on the form.

 38.2.4.2 wCheckBox3
wCheckBox3
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a three-state checkbox on the form.

 38.2.4.3 wCheckBox3LT
wCheckBox3LT
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a three-state, left-text, checkbox on the form.

 38.2.4.4 wCheckBoxLT
wCheckBoxLT
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a left-text checkbox on the form.
Released to the Public Domain Page 1023

HLA Standard Library
 38.2.5 wComboBox
A combobox is a combination editBox, listBox, and pull-down menu. The user can type text directly into the

editBox section of the combo box or click on the arrow on the right side of the widget to open up a pull-down
menu from which the user can select an item.

wComboBox
(

comboBoxID, // ComboBox name (an identifier)
"combo box", // Initial string in the edit box (usually and empty string)
x, // x
y, // y
w, // width
h, // height
sorted, // true or false
onCBSelChange, // onSelChange handler (or NULL)
"comboBox1", // List of initial string values for the list
"comboBox2", // This list may contain zero or more items.
"comboBox3"

);

The comboBoxID argument is the HLA identifier name that HOWL will use for the comboBox object
within the wForm declaration; this name should be unique within the form declaration.

The second argument is a string that HOWL will use as the default value of the edit box field when the form
is first created. Most often, this will be the empty string. Note that once the user enters data into the edit box or
selects and entry from the pull-down menu list, the initial string value is lost.

The x, y, w, and h fields specify the position and size of the combo box on the form.
The sorted field is a boolean value that determines whether the fields of the pull-down menu list are sorted

or remain in their "inserted" order. If this field is true, then Windows will sort each entry you add to the list
(including the initial entries). If this field is false, then Windows leaves the entries in the order that you add them.
Note that it is certainly possible to add and delete fields while the program is running; see the discussion of the
wComboBox_t type later in this document. Most often, you’ll probably specify false for this field.

The onCBSelChange field lets you specify an "on selection change" event handler or NULL if you don’t
want HOWL to invoke an event handler when the selection change. Normally, you’ll put NULL in this field
because you’ll normally read the text from the widget when you press some other button or when some other
event occurs, not when the user changes the text selection in the edit box or selects some entry from the pull-
down menu list.

The remaining entries in the wComboBox declaration are optional. These entries, if present, must all be
string constants that HOWL will use to populate the pull-down menu list. Note that you can add strings to the list
at run time, so you don’t have to populate the list at declaration time. However, for many lists you’ll know the
items the user can select from at design time, so you can fill in those entries in the wComboBox declaration.

 38.2.6 wDragListBox
A wDragListBox object is similar to a wListBox (list box) object that provides the user with the ability to

rearrange items in the list box. The declaration of a wDragListBox is

wDragListBox
(

dlName, // DragListBox name (HLA identifier)
x, // x-coordinate
y, // y-coordinate
w, // width
h, // height
onListBoxClick, // onClick handler
"DragListBox1", // Initial list population (can be empty)
"DragListBox2",
"DragListBox3"

);
Page 1024 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The dlName argument is the name that HOWL will use in the wForm declaration for this wDragListBox
object. This name must be unique within the wForm declaration.

The x, y, w, and h arguments specify the position and size of the wDragListBox object on the form.
The onListBoxClick argument is the name of a widgetProc that HOWL will call whenever the user

clicks on one of the list items. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user clicks on an item (this is actually a common situation; usually the program will determine the
currently selected item in a wDragListBox when some other event occurs, and ignore the immediate changes
that might occur in a wDragListBox object).

The remaining objects are optional. If present, they must all be strings and the wDragListBox declaration
uses these strings to initially populate the wDragListBox object.

 38.2.7 wEditBox
A wEditBox object allows the user to enter string data into a program.

wEditBox
(

ebName, // HLA identifier for this object
InitialText, // Initial text for edit box
x, // x position
y, // y position
w, // width
h, // height
s, // style
onChange // onChange handler (can be NULL)

);

The ebName argument is the name that HOWL will use in the wForm declaration for this wEditBox object.
This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the edit box’s text
field when the form is first created.

The x, y, w, and h arguments specify the position and size of the wEditBox object on the form.
The s argument is the edit box style. This is any of the following edit box styles that HOWL logically ORs

with the w.AUTOHSCROLL style:

w.ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters when the user types a
character at the end of the line. When the user presses the ENTER key, the
control scrolls all text back to position zero.

w.ES_AUTOVSCROLL Automatically scrolls text up one page when the user presses the ENTER key on
the last line.

w.ES_CENTER Centers text in a multiline edit control.

w.ES_LEFT Left-aligns text.

w.ES_LOWERCASE Converts all characters to lowercase as they are typed into the edit control.

w.ES_MULTILINE Designates a multiline edit control. The default is single-line edit control.

When the multiline edit control is in a dialog box, the default response to
pressing the ENTER key is to activate the default button. To use the ENTER key
as a carriage return, use the ES_WANTRETURN style.

When the multiline edit control is not in a dialog box and the
ES_AUTOVSCROLL style is specified, the edit control shows as many lines as
possible and scrolls vertically when the user presses the ENTER key. If you do
not specify ES_AUTOVSCROLL, the edit control shows as many lines as
possible and beeps if the user presses the ENTER key when no more lines can be
displayed.

If you specify the ES_AUTOHSCROLL style, the multiline edit control
automatically scrolls horizontally when the caret goes past the right edge of the
control. To start a new line, the user must press the ENTER key. If you do not
specify ES_AUTOHSCROLL, the control automatically wraps words to the
Released to the Public Domain Page 1025

HLA Standard Library
beginning of the next line when necessary. A new line is also started if the user
presses the ENTER key. The window size determines the position of the word
wrap. If the window size changes, the word wrapping position changes and the
text is redisplayed.

Multiline edit controls can have scroll bars. An edit control with scroll bars
processes its own scroll bar messages. Note that edit controls without scroll bars
scroll as described in the previous paragraphs and process any scroll messages
sent by the parent window.

w.ES_NOHIDESEL Negates the default behavior for an edit control. The default behavior hides the
selection when the control loses the input focus and inverts the selection when
the control receives the input focus. If you specify ES_NOHIDESEL, the
selected text is inverted, even if the control does not have the focus.

w.ES_NUMBER Allows only digits to be entered into the edit control.

w.ES_OEMCONVERT Converts text entered in the edit control. The text is converted from the Windows
character set to the OEM character set and then back to the Windows set. This
ensures proper character conversion when the application calls the CharToOem
function to convert a Windows string in the edit control to OEM characters. This
style is most useful for edit controls that contain filenames.

w.ES_PASSWORD Displays an asterisk (*) for each character typed into the edit control. You can
use the EM_SETPASSWORDCHAR message to change the character that is
displayed.

w.ES_READONLY Prevents the user from typing or editing text in the edit control.

w.ES_RIGHT Right-aligns text in a multiline edit control.

w.ES_UPPERCASE Converts all characters to uppercase as they are typed into the edit control.

w.ES_WANTRETURN Specifies that a carriage return be inserted when the user presses the ENTER key
while entering text into a multiline edit control in a dialog box. If you do not
specify this style, pressing the ENTER key has the same effect as pressing the
dialog box's default push button. This style has no effect on a single-line edit
control.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the edit box. This field can be NULL, in which case HOWL won’t bother to call any procedure when the
user changes the text (this is actually a common situation; usually the program will determine the currently
selected item in a wEditBox when some other event occurs, and ignore the immediate changes that might occur
in a wEditBox object). Note that if onChange is non-NULL, then HOWL will call the widgetProc any time
there is a single-character change to the edit box; this is probably more often than you’d like, which is why this
field is generally NULL and applications simply read the data from the edit box when some other event occurs.

 38.2.8 wEllipse
wEllipse
(

ellipseName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor // Ellipse exterior color (RGB)

)

The ellipseName argument is the identifier name that HOWL uses in the wForm declaration for the ellipse
object. This name must be unique within the wForm declaration.
Page 1026 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the ellipse.
If these coordinates and sizes form a square, then you’ll draw a circle on the form.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the ellipse
(the pen color). wEllipse objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the ellipse.
wEllipse objects always fill the interior with a solid brush (color).

The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the ellipse. As a general rule, this should be the same color as the background color
for the form unless you want a visible rectangle surrounding the ellipse.

 38.2.9 wIcon
The wIcon declaration places an icon object on the form.

wIcon
(

iconIdentifier, // icon name (HLA identifier)
IconResourceStr, // icon resource value
x, // x
y, // y
w, // width
h, // height
bkgColor // background color

)

The iconIdentifier field is an HLA identifier that HOWL uses in the form declaration for this particular
icon. This name must be unique within the wForm declaration.

The IconResourceStr argument is either a string containing the name of an internal icon resource value
or a constant that is less than $1_0000 (that specifies a system icon). If this is a string, it is not a filename for the
icon, rather it is a resource ID produced by a resource compiler. See the HLA examples (HOWL directory) for
examples that show how to use the resource compiler to produce icons for a program. If this is a value less than
$1_0000, then it must be one of the following values:

• w.IDI_APPLICATION
• w.IDI_ASTERISK
• w.IDI_EXCLAMATION
• w.IDI_HAND
• w.IDI_QUESTION
• w.IDI_WINLOGO

Because of syntactical issues with the HLA macro language, if you want to specify these constants as the
IconResourceStr argument (which normally must be a string), the best way to do this is to use instruction
composition thusly:

wIcon
(

icon1, // icon name
mov(w.IDI_APPLICATION, eax), // icon resource value
10, // x
440, // y
32, // width
32, // height
bkgColor_g // background color

)

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the icon. If
this bounding box is too small for the icon, portions of the icon will be clipped. If this bounding box is too big for
the icon, then HOWL will fill the extra area with the background color.

The bkgColor argument specifies the background color that HOWL will use to fill the bounding box for the
icon if the icon itself is smaller than the bounding box specified by the x, y, w, and h fields.
Released to the Public Domain Page 1027

HLA Standard Library
 38.2.10 wGroupBox..endwGroupBox
A wGroupBox object is a container. It draws a rectangular box on a form that contains other objects. All the

widgets you declare between a wGroupBox statement and the corresponding endwGroupBox terminator will be
contained by the group box (and can be treated as a whole) at run time.

Note that placing wRadioButtons within a wGroupBox object does not automatically create a set of radio
set buttons. See the wRadioSet declaration for that purpose. wGroupBox objects really exist just to make the
form look pretty.

wGroupBox
(

groupBoxID, // HLA identifier
Caption, // String caption for group box
x, // x position
y, // y position
w, // width
h // height

)

<<Other widget declarations, not including Radio Sets >>

endwGroupBox

 38.2.11 wLabel
wLabel
(

labelID, // HLA identifier
labelString, // Label string
x, // x
y, // y
w, // width
y, // height
style, // Alignment and style
textColor, // Foreground color
bkgColor // Background color

);

The wLabel declaration lets you place a text string on the form.
The labelID argument is the name of the wLabel field within the form’s class. This name must be unique

within the wForm declaration.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the label’s

string. If this bounding box is too small for the string, portions of the string will be clipped. If this bounding box
is too big for the icon, then HOWL will fill the extra area with the background color.

The style field is one or more of the following Windows constants logically-ORed together:

w.DT_BOTTOM Bottom-justifies text. This value must be combined with DT_SINGLELINE.

w.DT_CENTER Centers text horizontally.

w.DT_EXPANDTABS Expands tab characters. The default number of characters per tab is eight.

w.DT_LEFT Aligns text to the left.

w.DT_NOPREFIX Turns off processing of prefix characters. Normally, DrawText interprets the
mnemonic-prefix character & as a directive to underscore the character that
follows, and the mnemonic-prefix characters && as a directive to print a single
&. By specifying DT_NOPREFIX, this processing is turned off.

w.DT_RIGHT Aligns text to the right.

w.DT_SINGLELINE Displays text on a single line only. Carriage returns and linefeeds do not break
the line.
Page 1028 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
w.DT_TOP Top-justifies text (single line only).

w.DT_VCENTER Centers text vertically (single line only).

w.DT_WORDBREAK Breaks words. Lines are automatically broken between words if a word would
extend past the edge of the rectangle specified by the lpRect parameter. A
carriage return-linefeed sequence also breaks the line.

For example, to vertically and horizontally center a string within the wLabel bounding box, you would use
the following constant for the style field:

w.DT_CENTER | w.DT_VCENTER | w.DT_SINGLELINE

The textColor and bkgColor fields are RGB values that specify the (solid) colors used to draw the text
and the backgroun for the text. Usually the text’s background color is the same as the form’s background color
unless you are trying to create a special effect.

 38.2.12 wListBox
A wListBox object contains a sequence of strings from which the user can select a single entry. The

declaration of a wListBox is

wListBox
(

lbName, // ListBox name (HLA identifier)
x, // x-coordinate
y, // y-coordinate
w, // width
h, // height
sort, // true or false
onListBoxClick, // onClick handler
"ListBox1", // Initial list population (can be empty)
"ListBox2",
"ListBox3"

);

The lbName argument is the name that HOWL will use in the wForm declaration for this wListBox object.
This name must be unique within the wForm declaration.

The x, y, w, and h arguments specify the position and size of the wListBox object on the form.
The onListBoxClick argument is the name of a widgetProc that HOWL will call whenever the user

clicks on one of the list items. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user clicks on an item (this is actually a common situation; usually the program will determine the
currently selected item in a wListBox when some other event occurs).

The remaining objects are optional. If present, they must all be strings and the wListBox declaration uses
these strings to initially populate the wListBox object.

 38.2.13 wPasswdBox
A wPasswdBox object is very similar to a wEditBox object insofar as it allows the user to enter a string of

text onto the form. The difference is that the wPasswdBox object displays asterisks (or some other character)
when the user types a string into the editbox. This shields sensitive information from prying eyes.

wPasswdBox
(

pbName, // HLA identifier for this object
IntitialText, // Initial text for edit box
x, // x position
y, // y position
w, // width
h, // height
Released to the Public Domain Page 1029

HLA Standard Library
s, // style
onChange // onChange handler (can be NULL)

);

The pbName argument is the name that HOWL will use in the wForm declaration for this wPasswdBox
object. This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the password box’s
text field when the form is first created. This is almost always the empty string.

The x, y, w, and h arguments specify the position and size of the wPasswdBox object on the form.
The s parameter is the Windows edit box style that HOWL logically ORs with the value

(w.ES_AUTOHSCROLL | w.ES_PASSWORD). See the discussion of the available styles in the description of the
wEditBox object.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the password box. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user changes the text (this is actually a common situation; usually the program will determine the
currently selected item in a wPasswdBox when some other event occurs, and ignore the immediate changes that
might occur in a wPasswdBox object). Note that if onChange is non-NULL, then HOWL will call the
widgetProc any time there is a single-character change to the password box; this is probably more often than
you’d like, which is why this field is generally NULL and applications simply read the data from the password
box when some other event occurs.

 38.2.14 wPie
The wPie declaration defines a graphic object on the form that is a "pie slice", that is, a portion of a pie

graph.
wPie
(

pieName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
startAngle, // Starting handle (in degrees)
endAngle, // Ending angle (in degrees)
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor // Ellipse exterior color (RGB)

)

The pieName argument is the identifier name that HOWL uses in the wForm declaration for the pie slice
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the pie slice.
The startAngle parameter is a real64 value that specifies the starting angle of the pie slice. The angle is

specified in degrees. Angles are measured in a counter-clockwise fashion from the vertical line going from the
middle of the bounding box to the top of the bounding box (warning: this is not intuitive).

The endAngle parameter is a real64 value that specifies the ending angle of the pie slice. The angle is
specified in degrees. The wPie object draws a slice of a pie graph filling in the ellipse from the startAngle to
the endAngle in a counter-clockwise fashion.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the pie
slice (the pen color). wPie objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the pie slice. wPie
objects always fill the interior with a solid brush (color).

The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the pie slice. As a general rule, this should be the same color as the background
color for the form unless you want a visible rectangle surrounding the pie slice.

 38.2.15 wPolygon
The wPolygon object draws a multi-vertex polygon on the screen.
Page 1030 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
wPolygon
(

polyName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor, // Ellipse exterior color (RGB)
x1, // Optional points list
y1, // Must have an even number of coordinates
x2,
y2,
.
.
.
xn,
yn

)

The polyName argument is the identifier name that HOWL uses in the wForm declaration for the polygon
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the polygon.
The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the

polygon (the pen color). wPolygon objects always draw the outline with a solid line.
The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the polygon.

wPolygon objects always fill the interior with a solid brush (color).
The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,

y, w, and h that is outside the polygon. As a general rule, this should be the same color as the background
color for the form unless you want a visible rectangle surrounding the polygon.

The remain arguments always appear in pairs and specify the points that make up the polygon. If you specify
n points (n*2 arguments), HOWL will draw n lines between each pair of points (and between (xn,yn) and (x1,y1)
to complete the closed polygon).

 38.2.16 wBitmap
The wBitmap declaration creates a bitmapped object on the form.

wBitmap
(

bmName, // HLA identifier
bmResource, // Bitmap resource name
x, // x
y, // y
w, // width
h, // height
bkgColor // RGB background color

)

The bmName argument is the identifier name that HOWL uses in the wForm declaration for the bitmapped
object. This name must be unique within the wForm declaration.

The bmResource argument is a string constant specifying the name of the bitmap resource within the
executable file. Note that this is not a filename on the disk. You must use the resource editor to compile a bitmap
file into the executable file. The name you provide to the resource editor for this bitmapped object is the name
you use for the bmResource string.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the bitmap.
If the w and h fields are too small, Windows will truncate the bitmap when it draws it. If the w and h fields are
larger than the bitmap, Windows will fill the extra area with the value of the bkgColor argument.
Released to the Public Domain Page 1031

HLA Standard Library
The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the bitmap. As a general rule, this should be the same color as the background color
for the form unless you want a visible rectangle surrounding the bitmap.

 38.2.17 wProgressBar
The wProgressBar declaration creates a progress bar object on the form.

wProgressBar
(

pbName, // HLA identifier
x, // x
y, // y
w, // width
h // height

)

The pbName argument is the identifier name that HOWL uses in the wForm declaration for the progress bar
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the progress
bar.

See the description of the wProgressBar_t class type later in the document to learn how to specify the
current progress in the progress bar.

 38.2.18 wPushButton
wPushButton
(

pbID, // Identifier for push button
caption, // Caption for push button
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

The pbName argument is the identifier name that HOWL uses in the wForm declaration for the push button
object. This name must be unique within the wForm declaration.

The caption argument is a string that Windows will display on the push button.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the push

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding button on the form.

 38.2.19 Radio Button Objects
wForm declarations allow you to place radio buttons directly on a form or you can group a set of radio

buttons together in a radio button set. In general, you’ll rarely use the first form because wRadioButton and
wRadioButtonLT objects don’t readily exhibit button semantics. On a form by themselves, radio buttons behave
just like check box objects so you’re better off using check box objects than radio buttons for this purpose.
Generally, wRadioButton and wRadioButtonLT objects are useful when you’re building a form dynamically
at run time rather than at design time with the HOWL declarative language. Nevertheless, the HOWL
declarative language includes entries for wRadioButton and wRadioButtonLT objects for the sake of
completeness.

 38.2.19.1 wRadioButton
wRadioButton
(

rbID, // Identifier for radio button
caption, // Caption for radio button
Page 1032 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
style, // Style for radio button
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

The rbName argument is the identifier name that HOWL uses in the wForm declaration for the radio button
object. This name must be unique within the wForm declaration.

The caption argument is a string that Windows will display to the right of the radio button.
The style argument is either 0 (for standalone radio buttons) or one of the following constants (for radio

button groups):
For the first radio button in a group:

w.BS_AUTORADIOBUTTON | w.WS_GROUP | w.WS_TABSTOP

For all but the first radio button in a group:

w.BS_AUTORADIOBUTTON

Note that you should really use the wRadioSet object to create sets of radio buttons rather than grouping
them manually. Note that you must declare all grouped radio buttons consecutively in your source file. Any
intervening widgets will end a radio set button group.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio
button.

The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user
presses the corresponding radio button on the form.

 38.2.19.2 wRadioButtonLT
wRadioButtonLT
(

rbID, // Identifier for radio button
caption, // Caption for radio button
style, // Style for radio button
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

wRadioButtonLT objects are identical to wRadioButton objects except the caption text is draw on the left
side of the radio buton rather than on the right side.

 38.2.19.3 wRadioSet..endwRadioSet
Functional radio buttons are created as part of a radio button set. The wRadioSet..endwRadioSet block

encapsulates a set of wRadioSetButton and wRadioSetButtonLT objects that HOWL treats as a single set of
radio buttons rather than independent buttons. The wRadioSet declaration takes the following form:
wRadioSet
(

rsID, // Identifier for radio set
caption, // Caption for radio set group box
x, // x position on form
y, // y position on form
w, // width
h // height

);
Released to the Public Domain Page 1033

HLA Standard Library
<< radio set button declarations >>

endwRadioSet

Only wRadioSetButton and wRadioSetButtonLT declarations may appear within a
wRadioSet..endwRadioSet declaration and you cannot nest wRadioSet..endwRadioSet declarations.
The wRadioSet..endwRadioSet declaration creates a group box with the specified bounding box. It draws
the caption string through the line of the bounding box in the upper left hand corner.

All radio set buttons appearing in a wRadioSet group are treated as a single set of radio buttons. At most
one radio set button will be checked in the group; pressing one button unchecks any other buttons in the same
group.

Note that a wRadioSet object is a container object. It contains all the radio set buttons associated with the
radio set.

 38.2.19.3.1 wRadioSetButton
wRadioSetButton
(

rsbtnID, // HLA identifier
caption, // String caption for radio button
x, // x position
y, // y position
w, // width
y, // height
onClick // "on click" event handler

);

The wRadioSetButton declaration may only appear within a wRadioSet..endwRadioSet statement.
The rsbtnID argument must be a unique (to the form) HLA identifier. HOWL uses this identifier as the

field name within the form class of the wForm..endwForm declaration.
The caption field is a string that HOWL displays to the right of the radio button image.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding radio button on the form.

 38.2.19.3.2 wRadioSetButtonLT
wRadioSetButtonLT
(

rsbtnID, // HLA identifier
caption, // String caption for radio button
x, // x position
y, // y position
w, // width
y, // height
onClick // "on click" event handler

);

The wRadioSetButtonLT declaration may only appear within a wRadioSet..endwRadioSet statement.
The rsbtnID argument must be a unique (to the form) HLA identifier. HOWL uses this identifier as the

field name within the form class of the wForm..endwForm declaration.
The caption field is a string that HOWL displays to the left of the radio button image.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding radio button on the form.
Page 1034 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.2.20 wRectangle
wRectangle
(

rectName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
lineColor, // linecolor (RGB)
fillColor // Rectangle interior color (RGB)

)

The rectName argument is the identifier name that HOWL uses in the wForm declaration for the rectangle
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the
rectangle.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the
rectangle (the pen color). wRectangle objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the rectangle.
wRectangle objects always fill the interior with a solid brush (color).

Note that there is no background color (as exists for other graphic objects). This is because the rectangle
completely fills the bounding box so there is no need to fill the background area as it never shows through.

 38.2.21 wRoundRect
wRoundRect
(

rrectName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
cw, // Corner width
cht, // Corner height
lineColor, // linecolor (RGB)
fillColor, // Round rectangle interior color (RGB)
BkgColor // Round rectangle exterior color (RGB)

)

The rrectName argument is the identifier name that HOWL uses in the wForm declaration for the round
rectangle object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the round
rectangle.

The cw and cht arguments specify the width and height of the ellipse used to draw the corners of the round
rectangle.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the round
rectangle (the pen color). wRoundRect objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the rectangle.
wRectangle objects always fill the interior with a solid brush (color).

Note that there is no background color (as exists for other graphic objects). This is because the rectangle
completely fills the bounding box so there is no need to fill the background area as it never shows through.

 38.2.22 wScrollBar
wScrollBar
(

scrollBarID, // Scrollbar name (HLA id)
Released to the Public Domain Page 1035

HLA Standard Library
x, // x
y, // y
w, // width
h, // height
style, // Scroll bar style
onChange // On change handler

)

The scrollBarID argument is the identifier name that HOWL uses in the wForm declaration for the scroll
bar object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the scroll
bar.

The style argument specifies the scroll bar style and is the logical-OR of zero or more of the following
constants:

w.SBS_BOTTOMALIGN Aligns the bottom edge of the scroll bar with the bottom edge of the
rectangle defined by the CreateWindow parameters x, y, nWidth, and
nHeight. The scroll bar has the default height for system scroll bars. Use
this style with the SBS_HORZ style.

w.SBS_HORZ Designates a horizontal scroll bar. If neither the SBS_BOTTOMALIGN
nor SBS_TOPALIGN style is specified, the scroll bar has the height,
width, and position specified by the parameters of CreateWindow.

w.SBS_LEFTALIGN Aligns the left edge of the scroll bar with the left edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
width for system scroll bars. Use this style with the SBS_VERT style.

w.SBS_RIGHTALIGN Aligns the right edge of the scroll bar with the right edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
width for system scroll bars. Use this style with the SBS_VERT style.

w.SBS_SIZEBOX Designates a size box. If you specify neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor the
SBS_SIZEBOXTOPLEFTALIGN style, the size box has the height,
width, and position specified by the parameters of CreateWindow.

w.SBS_SIZEBOXBOTTOMRIGHTALIGN Aligns the lower-right corner of the size box with the lower-
right corner of the rectangle specified by the parameters of
CreateWindow. The size box has the default size for system
size boxes. Use this style with the SBS_SIZEBOX style.

w. SBS_SIZEBOXTOPLEFTALIGN Aligns the upper-left corner of the size box with the upper-left
corner of the rectangle specified by the parameters of
CreateWindow. The size box has the default size for system
size boxes. Use this style with the SBS_SIZEBOX style.

w.SBS_SIZEGRIP Same as SBS_SIZEBOX, but with a raised edge.

w.SBS_TOPALIGN Aligns the top edge of the scroll bar with the top edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
height for system scroll bars. Use this style with the SBS_HORZ style.

w.SBS_VERT Designates a vertical scroll bar. If you specify neither the
SBS_RIGHTALIGN nor the SBS_LEFTALIGN style, the scroll bar has
the height, width, and position specified by the parameters of
CreateWindow.

The onChange argument is the name of a widgetProc that HOWL will call whenever there is a change
made to the scroll bar’s position.

 38.2.23 wTextEdit
A wTextEdit object allows the user to enter a text file object.

wTextEdit
Page 1036 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
(
teName, // HLA identifier for this object
InitialText, // Initial text for text edit object
x, // x position
y, // y position
w, // width
h, // height
s, // style
onChange // onChange handler (can be NULL)

);

The teName argument is the name that HOWL will use in the wForm declaration for this wTextEdit object.
This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the text editor’s text
field when the form is first created.

The x, y, w, and h arguments specify the position and size of the wTextEdit object on the form.
The s argument is the Windows editbox style that HOWL logically ORs with the value (w.ES_MULTILINE

| w.ES_WANTRETURN | w.WS_HSCROLL | w.WS_VSCROLL). See the discussion of the legal values in the
section on wEditBox.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the text editor. This field can be NULL, in which case HOWL won’t bother to call any procedure when
the user changes the text (this is actually the most common situation; usually the program will determine the
currently selected item in a wTextEdit when some other event occurs, and ignore the immediate changes that
might occur in a wTextEdit object). Note that if onChange is non-NULL, then HOWL will call the
widgetProc any time there is a single-character change to the text edit object; this is probably more often than
you’d like, which is why this field is generally NULL and applications simply read the data from the text edit
object when some other event occurs.

 38.2.24 wTrackBar
wTrackBar
(

trackBarID, // Trackbar name (HLA id)
x, // x
y, // y
w, // width
h, // height
style, // Track bar style
onChange // On change handler

)

The trackBarID argument is the identifier name that HOWL uses in the wForm declaration for the track
bar object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the track
bar.

The style argument specifies the track bar style and is the logical-OR of zero or more of the following
constants:

w.TBS_HORZ Designates a horizontal track bar (this is the default).

w.TBS_TOP Display tick marks on the top of a horizontal track bar.

w.TBS_BOTTOM Display tick marks on the bottom of a horizontal track bar (default).

w.TBS_VERT Designates a vertical track bar.

w.TBS_LEFT Display tick marks on the left side of a vertical track bar.

w.TBS_RIGHT Display tick marks on the right side of a vertical track bar (default).

w.TBS_BOTH Display tick marks on both sides of a track bar (vert or horz).

Note that all wTrackBar objects have the w.TBS_AUTOTICKS style.
Released to the Public Domain Page 1037

HLA Standard Library
The onChange argument is the name of a widgetProc that HOWL will call whenever there is a change
made to the scroll bar’s position.

 38.2.25 wUpDown
wUpDown
(

upDownID, // Up/down control object name
style, // No special format/style/alignment
x, // x
y, // y
w, // width
h, // height
min, // Minimum position
max, // Maximum position
initial, // Initial position
onUpDown // Click event handler

);

A wUpDown widget is a pair of arrow buttons that the user can click on to increment or decrement a value.
wUpDown objects are stand-alone (see wUpDownEditBox for a version that is connected to an edit box).

The upDownID field is an HLA identifier that HOWL uses as the name of the object on the form. This name
must be unique within the form class declaration.

The style argument is one of the following values:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of the buddy
window. The buddy window is moved to the right and its width
decreased to accommodate the width of the up-down control. This style
is generally used only with the UDS_AUTOBUDDY style. See
wUpDownEditBox for additional details concerning buddy controls.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge of the buddy
window. The width of the buddy window is decreased to accommodate
the width of the up-down control. This style is generally used only with
the UDS_AUTOBUDDY style. See wUpDownEditBox for additional details
concerning buddy controls.

UDS_ARROWKEYS Causes the up-down control to increment and decrement the position
when the UP ARROW and DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z order as the up-
down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and right instead of up
and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every three decimal
digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the buddy window (using
the WM_SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or decremented
beyond the ending or beginning of the range.

The x, y, w, and h arguments specify the position and size of the wUpDown object on the form. HOWL
ignores these values if you specify a non-NULL buddy value; in that
case, HOWL uses the bounding box of the wEditBox object to control
the placement of the up/down arrows.

The min argument specifies the minimum value that a wUpDown object will return. If the control’s current
value is equal to the min value and the user presses the down arrow, the wUpDown object will not decrement the
value.
Page 1038 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
The max argument specifies the maximum value that a wUpDown object will return. If the control’s current
value is equal to the max value and the user presses the up arrow, the wUpDown object will not increment the
value.

The initial argument specifies the initial value of the wUpDown object when the form is created.
The onUpDown argument is either NULL or specifies the name of a widgetProc procedure that HOWL

will call whenever the user presses an up or down arrow on the control. If this field is NULL, then HOWL will
not call a function whenever an up or down arrow is pressed and the application will have to call an appropriate
wUpDown method to retrieve the current value of the wUpDown control.

 38.2.26 wUpDownEditBox
wUpDownEditBox
(

upDownID, // Up/down control object name
style, // No special format/style/alignment
x, // x
y, // y
w, // width
h, // height
min, // Minimum position
max, // Maximum position
initial, // Initial position
onTextChange, // On Change event handler (edit box)
onUpDown // Click event handler (up/down arrow)

);

A wUpDown widget is a pair of arrow buttons that the user can click on to increment or decrement a value.
wUpDown objects can be stand-alone or they can be associated with a wEditBox object (the "buddy"). When a
wUpDown object is associated with a buddy wEditBox object, the arrows are connect to the edit box and clicking
on the up or down arrows produces a string in the wEditBox object representing the current value of the
wUpDown object.

The style argument is one of the following values:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of the buddy
window. The buddy window is moved to the right and its width
decreased to accommodate the width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge of the buddy
window. The width of the buddy window is decreased to accommodate
the width of the up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and decrement the position
when the UP ARROW and DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z order as the up-
down control's buddy window. This style shouldn’t be used with
wUpDownEditBox objects.

UDS_HORZ Causes the up-down control's arrows to point left and right instead of up
and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every three decimal
digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the buddy window (using
the WM_SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or decremented
beyond the ending or beginning of the range.

The x, y, w, and h arguments specify the position and size of the wUpDown object on the form. HOWL
ignores these values if you specify a non-NULL buddy value; in that case, HOWL uses the bounding box of the
wEditBox object to control the placement of the up/down arrows.
Released to the Public Domain Page 1039

HLA Standard Library
The min argument specifies the minimum value that a wUpDown object will return. If the control’s current
value is equal to the min value and the user presses the down arrow, the wUpDown object will not decrement the
value.

The max argument specifies the maximum value that a wUpDown object will return. If the control’s current
value is equal to the max value and the user presses the up arrow, the wUpDown object will not increment the
value.

The initial argument specifies the initial value of the wUpDown object when the form is created.
The onTextChange argument is either NULL or specifies the name of a widgetProc procedure that

HOWL will call whenever the user changes a value in the edit box control. If this field is NULL, then HOWL
will not call a function whenever the edit box changes and the application will have to call an appropriate
wUpDownEditBox method to retrieve the current value of the wUpDownEditBox’s edit box control. Note that
pressing an up or down error will cause a change to the edit box, which will call HOWL to call this function.

The onUpDown argument is either NULL or specifies the name of a widgetProc procedure that HOWL
will call whenever the user presses an up or down arrow on the control. If this field is NULL, then HOWL will
not call a function whenever an up or down arrow is pressed and the application will have to call an appropriate
wUpDown method to retrieve the current value of the wUpDown control.

 38.2.27 wTimer
wTimer
(

timerID, // Timer control object name
period, // Timeout value in milliseconds
timing, // Type of timer (wTimer_t.oneShot or wTimer_t.periodic)
onTimeOut // Timeout event handler

);

A wTimer widget creates a small background thread that calls the onTimeOut widget after some period of
time. Timers operate on one of two modes: oneShot or periodic. In the wTimer_t.oneShot mode , the
timer delays for at least the number of milliseconds specified by the period argument and then calls the
onTimeOut widgetProc exactly once. In the wTimer_t.periodic mode, the timer calls the onTimeOut
widgetProc once every period milliseconds.

Note that declaring a wTimer object in the HOWL declarative language does not actually start the timer
operating. It initializes the object, but you must call the wTimer_t.start method associated with the class to
actually begin the timing process. See the description of the wTimer_t class later in this document for more
details.

 38.2.28 wWindow..endwWindow
A wWindow object is a container. It specifies a rectangular area on a form that contains other objects. All the

widgets you declare between a wWindow statement and the corresponding endwWindow terminator will be
contained by the window (and can be treated as a whole) at run time.

wWindow
(

windowID, // HLA identifier
caption, // Window title (ignored unless style calls for title)
exStyle, // Extended style for window
style, // Windows’ style for window
x, // x position
y, // y position
w, // width
h, // height
bkgColor // RGB background color for window

)

<<Other widget declarations >>

endwWindow
Page 1040 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
38.3 The HOWL Run-time Library
Although the HOWL declarative language (the wForm..endwForm macro) makes it very easy to design

forms, your applications will need to interact with the HOWL run-time library code in order to make full use of
HOWL’s capabilities. This section of this document describes the run-time semantics of the HOWL library.

The first thing to note is that HOWL is an object-oriented library. Almost all HOWL data types and code are
part of the HOWL object hierarchy. So the best place to start when describing HOWL is with a description of the
object hierarchy.

HOWL contains a single base class, appropriately named wBase_t. All other objects in HOWL are derived
from this class. We’ll describe wBase_t completely in the next section, but the important thing to note is that
wBase_t is the root of the class hierarchy tree for HOWL.

As you should know from object-oriented programming, descendant (child/derived) classes inherit all the
fields of their base (parent/ancestor) classes. Therefore, all the classes in the HOWL object hierarchy inherit the
fields of the wBase_t class (and all other ancestor classes to that particular class). In the following sections that
describe each of the classes in the HOWL hierarchy, the descriptions will only discuss the fields that are specific
to a given class; this document assumes that you understand that each class will inherit fields from all the
ancestor classes and that you should look at the documentation for those ancestor classes in order to get the full
picture for each class.

Every HOWL object (that is derived from wBase_t) contains a special wType field. This is an lword (128-
bit) object that HOWL uses to maintain run-time type information about that particular object. This is an array of
128 bits that specify membership/absence from a particular class. When an application is given a generic pointer
to an object of any HOWL type (e.g., wBase_t), the application can test this array to see if that object is a
specific type (or is derived from a specific type). To accommodate this, HOWL defines a set of constants for
each of that HOWL class types (except wBase_t) that have the following names and functions:

• typename_b ("b" stands for "bit number") is a small integer number between zero and the
number of HOWL class types (less that 128) that associates a unique enumerated value with
each HOWL class type. This also provides an index into the wType bit array.

• typename_ps ("ps" stands for "power set") is a singleton set constant containing a "1" bit at
index typename_b with all other bits containing zero.

• typename_c ("c" stands for "constant") is a constant (up to 128 bits) with a "1" bit in each bit
position specifying whether typename is a descendant (or is) the type indicated by the
typename_b bit position into typename_c. For example, wProgressBar_c would contain set
bits in bit positions wProgressBar_b and wVisual_p because wProgressBar_t is derived
from wVisual_t. Because all HOWL objects are derived from wBase_t, there is no need to
set aside a bit position for wBase_t in wProgressBar_c. Note that typename_c is generated
via the logical-OR of typename_ps and all the ancestor class "_ps" values for typename_t.

The following diagram shows the HOWL object hierarchy. The nodes in gray are abstract classes; you do
not normally create objects of these types (generally, you only create objects of types derived from abstract base
classes).
Released to the Public Domain Page 1041

HLA Standard Library
wBase_t

wMenuItem_t

wMenu_t

wFont_twVisual_t

wScrollBar_t wTrackBar_t wLabel_twProgressBar_t

wClickable_t

wSurface_t wListBox_t

wButton_t wUpDown_t

wCheckable_t wPushButton_t

wCheckBox3LT_t wCheckBoxLT_twCheckBox3_twCheckBox_t

wRadioButton_t wRadioButtonLT_t wRadioSetButton_t wRadioSetButtonLT_t

wComboBox_t wDragListBox_t

wIcon_t wBitmap_twFilledFrame_t

wEllipse_t wPie_t wPolygon_t wRectangle_t

wRoundRect_twContainer_t

wTabs_t wRadioSet_t wGroupBox_t window_t

wForm_t

wView_t

wabsEditBox_t

wEditBox_t wPasswdBox_t wTextEdit_t wUpDownEditBox_t
Page 1042 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.3.1 Private Data Fields
Many HOWL classes contain private data fields. Although HLA will not prevent you from accessing these

private data fields, application programmers should avoid direct access of these private fields. Access to the
private data fields is intended for use by HOWL functions only.

For those data fields whose values might be of interest to a HOWL application programmer, the HOWL
library generally provides accessor ("getter") and mutator ("setter") functions that let you access these private
fields. You should always attempt to use these accessor/mutator functions for all private data access. Reading the
values of some private fields (by calling the accessor functions) may cause HOWL to make a Win32 API call to
make the value consistent with Windows; writing to a private data field (via a mutator) may cause HOWL to
execute some additional code to tell Windows (or the rest of HOWL) about the change. Reading and writing
these private data fields directly may circumvent these actions that keep HOWL’s internal data structures
consistent.

The private fields in a class are easily distinguished in the howl.hhf header file; the header collects all
private data fields into record variables within the classes that have a "_private" suffix. Unless you are writing a
class that is an extension of the HOWL library, you should not directly access these fields.

 38.3.2 Abstract Classes
The HOWL class hierarchy contains several abstract base classes that combine features common to various

concrete classes. The following subsections describe each of these base classes.

 38.3.2.1 wBase_t
The wBase_t class is the root class of the entire HOWL hierarchy. This class has the following definition:

 wBase_t:
 class

 var
 handle :dword;
 _name :string;
 wType :lword;

 wBase_private:
 record

 visible :boolean;
 enabled :boolean;
 onHeap :boolean;
 align(4);

 objectID :dword;
 nextWidget :wBase_p;

 // Pointer the wForm object that this
 // object belongs to.

 parentForm :wForm_p;

 // Handle of the Windows parent window associated
 // with this control. Note that parentForm.handle
 // may not be the same as parentHandle because this
 // object could belong to some other window that
 // is a child window of the main form. (Okay, parentForm
 // was probably a bad name to use).

 parentHandle :dword;

Released to the Public Domain Page 1043

HLA Standard Library

 endrecord;

 static
 objectID_g :dword; external("objectID_object_t");

 // Constructors/Destructors:

 procedure create_wBase
 (
 wbName :string
); external;

 method destroy; external;
 method show; external;
 method hide; external;
 method enable; external;
 method disable; external;

 // Accessor/mutator functions:

 method get_handle; @returns("eax"); external;
 method get_objectID; @returns("eax"); external;
 method get_visible; @returns("al"); external;
 method get_enabled; @returns("al"); external;
 method get_onHeap; @returns("al"); external;
 method get_parentHandle; @returns("eax"); external;
 method get_parentForm; @returns("eax"); external;

 method set_onHeap(onHeap:boolean); external;
 method set_parentHandle(parentHandle:dword); external;
 method set_parentForm(parentForm:wForm_p); external;

 // Default message processor:

 method processMessage
 (
 hwnd :dword;
 uMsg :dword;
 wParam :dword;
 lParam :dword
); external;

 endclass;

objectID_g This is a static field that HOWL uses to dynamically assign unique Windows identifiers to
objects. Applications should not reference this field; they must not modify the value of
this field. HOWL automatically increments this field whenever you create an instance of
some HOWL object.

wType The wType field is a 128-bit bit array that provides run-time type information about an
object to the application. If you test bit position typename_b in the wType field, you can
determine if the current object is derived from (or is) type typename. The howl.hhf header
file defines typename_b constants for all the HOWL types (subsituting the appropriate
type name, such as wButton_t, for typename). This is a public field for read-only access.
Applications must never modify its value.

handle Almost all HOWL objects have a Windows handle associated with them. The handle
field contains this value. Technically, handle ought to be a private data field (there is even
an accessor function for it), however, because applications need to frequently access this
Page 1044 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
field, it was made public. Note, however, that an application should never write data to
this field.

_name This field is a string representation of the object’s name in the main form. This field is
mainly useful for testing, debugging, and tracing purposes. Other than initializing this
string pointer, the HOWL library doesn’t access this field at all, so an application is free to
use this field however it wants.

visible This boolean variable contains true if the object is a wVisual_t object and is visible on
the form. It contains false if the object is not visible. If the object isn’t a wVisual_t (or
descendant) object, then this field’s value is meaningless. This is a private field, always
use the accessor function to retrieve its value. Applications must never directly change the
value of this field.

enabled This boolean variable contains true if the object is a wVisual_t object and is enabled on
the form. It contains false if the object is not enabled. If the object isn’t a wVisual_t (or
descendant) object, then this field’s value is meaningless. This is a private field, always
use the accessor function to retrieve its value. Applications must never directly change the
value of this field.

onHeap This field contains true if the object’s storage is allocated on the heap. It contains false if
the object’s storage is not allocated on the heap. If you initialize an object in storage that is
not on the heap, it is your responsibility to set this field to false. If you create an object and
request heap allocation for it (by calling a class procedure constructor with ESI equal to
zero), the HOWL constructors will automatically set this field to true. This is a private
field, always use the accessor function to retrieve its value. Applications must never
directly change the value of this field.

objectID The objectID field contains the specific Windows ID (if applicable) for the current
object. The create method for an object generally copies the global objectID_g value to
this field and then increments the global value to generate unique ID values for each
object. For the most part, HOWL ignores this field (it identifies objects by the pointer to
the object rather than by the Windows ID). This is a private field, always use the accessor
function to retrieve its value. Applications must never directly change the value of this
field.

nextWidget wContainer_t objects use this field to create a linked list of widgets contained by the
container object. All objects created via the HOWL declarative language (except the
wForm object) are contained by some object (e.g., the wForm object). However, it is
possible to dynamically instantiate objects that are not contained by a form, and the form
object itself isn’t contained by another container, so you cannot assume that this field
contains a valid value unless you iterator across the widgets of a container object. This is a
private data field, no application program access is legal.

parentForm This is a pointer to the wForm object that holds the current widget. Note that this is the
actual object pointer, not the form’s handle. This is a private field, always use the
accessor/mutator functions to read/write its value.

parentHandle This is the window handle of the Windows’ object on which the current widget is a child
control. This is a private field, always use the accessor/mutator functions to read or write
its value.

create_wBase The create_wBase procedure is the constructor for the class. Because wBase_t is an
abstract class, you never instantiate objects of type wBase_t. Unless you are writing a
constructor for a new class you’ve derived from wBase_t, you will probably never call
this constructor. This constructor is responsible for setting up the object’s _name field
(passed as an argument), setting up the ObjectID field, and initializing all the other fields
to reasonable default values (that the derived classes’ constructors will probably
overwrite).

destroy This is the base level destructor function. You do not generally call this method directly;
instead, a higher-level destructor function will probably call this function when you
Released to the Public Domain Page 1045

HLA Standard Library
invoke destroy on some object. The wBase_t.destroy method checks the onHeap field
and will deallocate the storage associated with the object if the storage was allocated on
the heap.

show,

hide These two methods simply store true (show) or false (hide) into the visible field. Other
than that, they do nothing. They are included in wBase_t just to allow code to show and
hide all objects. Generally, wBase_t descendant classes (usually wVisual_t
descendants) override these methods to show or hide a visual object on the screen.

enable,

disable These two methods store true (enable) or false (disable) into the enabled field.. Other
than that, they do nothing. They are included in wBase_t just to allow code to enable and
disable objects. Generally, wBase_t descendant classes (usually wVisual_t
descendants) override these methods to enable or disable a visual object on the screen.

get_handle,

get_objectID,

get_visible,

get_enabled,

get_onHeap,

get_parentHandle

get_parentForm These are "accessor" functions that retrieve the value of the associated class field. As a
general rule you should always call the accessor function to retrieve an object’s data field
values as the accessor might contain code to "condition" those values prior to consumption

set_onHeap This is a "mutator" function that lets an application write a value to the onHeap field.
Applications should always call this mutator rather than writing directly to the onHeap
field because their might be code in the mutator that does additional processing required
by the class.

set_parentHandle

This is a "mutator" function that lets an application write a value to the parentHandle
field. Applications should be very careful about writing to this field. The only time an
application should write to parentHandle is when it dynamically creates a new object at
run-time (or, in the rare case of moving a widget from one form to another).

set_parentForm This is a "mutator" function that lets an application write a value to the parentForm field.
Applications should be very careful about writing to this field. The only time an
application should write to parentHandle is when it dynamically creates a new object at
run-time (or, in the rare case of moving a widget from one form to another).

processMessage The processMessage method is used by HOWL to do default Windows message
processing when no other object handles a message sent from Windows. This is a
Windows callback function and you should never call it directly unless you’re extending
HOWL by added new classes (and you wind up calling this code from the
processMessage function in your new class). See the HOWL source code for more
details on this function.

 38.3.2.2 wVisual_t
The wVisual_t class, derived from wBase_t, contains the basic information that all visual objects (that is,

those appearing on a form) possess. Of course, as wVisual_t is derived from wBase_t, all wVisual_t objects
include all the fields from the wBase_t type.

 wVisual_t:
 class inherits(wBase_t);

 var
Page 1046 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 align(4);
 wVisual_private:
 record

 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 bkgBrush :dword;
 style :dword;
 exStyle :dword;

 endrecord;

 // Constructors/Destructors:

 procedure create_wVisual
 (
 wvName :string;
 parentHandle :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 // Accessor functions:

 method get_x; @returns("eax"); external;
 method get_y; @returns("eax"); external;
 method get_width; @returns("eax"); external;
 method get_height; @returns("eax"); external;
 method get_bkgColor; @returns("eax"); external;
 method get_style; @returns("eax"); external;
 method get_exStyle; @returns("eax"); external;

 method set_x(x:dword); external;
 method set_y(y:dword); external;
 method set_width(width:dword); external;
 method set_height(height:dword); external;
 method set_bkgColor
 (
 bkgColor:dword
); external;

 method move(x:dword; y:dword); external;
 method resize(width:dword; height:dword); external;

 method setFocus; external;

 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;
 override method destroy; external;

Released to the Public Domain Page 1047

HLA Standard Library
 method onClose; external;
 method onCreate; external;

 endclass;

x, y, width,

height These fields form a bounding rectangle into which the object will appear. These are
private data fields. HOWL applications should use the accessor/mutator functions to
change their values.

bkgColor This field holds an RGB value representing the background color for the window defined
by the wVisual_t object. Never access this field directly; always use the accessor/
mutator functions so that HOWL can properly update the private bkgBrush field. Note all
objects derived from the wVisual_t class use this field,those objects that do not simply
ignore its value.

bkgBrush This is the brush that Windows uses to paint the background color for the wVisual_t
object. Note that this is a private field and applications should never access it. HOWL
computes the value for this field from the bkgColor field. Note all objects derived from
the wVisual_t class use this field,those objects that do not simply ignore its value.

style This is the window style used for various window objects. Not all wVisual_t objects make
use of this field.

exStyle This is the window extended style used for various window objects. Not all wVisual_t
objects make use of this field.

create_wVisual This is the constructor for the class. Because this is an abstract base class, you must never
call this function with ESI containing NULL. In general, you will never directly call this
function unless you are creating your own HOWL classes. Whenever you call the
constructor for a concrete HOWL class, it will automatically call this constructor for you.

get_x,

get_y,

get_width,

get_height,

get_bkgColor

get_style,

get_exStyle

These are the "accessor" functions for this class. You should call these functions to
retrieve any data fields for the object.

set_x,

set_y,

set_width,

set_height,

set_bkgColor

set_style

set_exStyle These are the "mutator" functions for the class. You must call these functions rather than
storing values directly into the data fields for the object. These function do additional
work that is necessary for the system (such as redrawing objects when you change their
possition or size).

move This is a combination of set_x and set_y rolled into a single convenient package (which
causes less redraw flashing on the screen versus making the two separate calls).

resize This is a combination of set_width and set_height rolled into a single convenient package
(which causes less redraw flashing on the screen versus making the two separate calls).
Page 1048 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
show, hide These methods make a visual object visible (show) or invisible (hide) on the form. These
methods are also responsible for updating the object’s visible field.

enable, disable These methods enable or disable (gray) an object on the form. Note that not all visual
objects can be enabled or disabled. Those that cannot be disabled simply ignore calls to
these methods.

set_focus This method changes the window focus to the current object.

onCreate,

onClose These methods are intended for internal use by the HOWL system. You should never call
them directly.

 38.3.2.3 wClickable_t
The wClickable_t type is an abstract base class derived from wVisual_t that contains fields and code

associated with objects that the user can click on (with the mouse) on the form. This class inherits all the fields
from wVisual_t. This class handles both single-click and double-click events. Some objects don’t support
double-clicking, in which case the double-click facilities wind up being unused.4

 wClickable_t:
 class inherits(wVisual_t);
 var
 align(4);
 wClickable_private:
 record

 onClick :widgetProc;
 onDblClick :widgetProc;

 endrecord;

 procedure create_wClickable
 (
 wcName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 method get_onClick; @returns("eax"); external;
 method get_onDblClick; @returns("eax"); external;

 method set_onClick(onClick :widgetProc); external;
 method set_onDblClick(onDblClick :widgetProc); external;
 method click; external;

 endclass;

4. Technically, this class should have been split into two classes: wSingleClickable_t and wDoubleClickable_t (derived
from wSingleClickable_t) and derived classes that don’t support double-clicking would simply be derived from
wSingleClickable_t. However, it’s probably a bit more efficient to implement the single class and ignore double-click
operations if they aren’t used.
Released to the Public Domain Page 1049

HLA Standard Library
onClick This is a pointer to a widgetProc procedure that HOWL will call when the user clicks on
a wClickable_t object. This field must either contain NULL (meaning HOWL will
ignore the click operation) or the address of a widgetProc procedure.

onDblClick This is a pointer to a widgetProc procedure that HOWL will call when the user double-
clicks on a wClickable_t object. If this field contains NULL, then HOWL disables the
double-click operation. Note that not all wClickable_t objects support double-clicking,
so this field may be ignored by HOWL. Also note that if the user double-clicks on an
object (that supports double clicking) and both the onClick and onDblClick fields contain
non-NULL values, HOWL will call the onClick widgetProc procedure twice and the
onDblClick widgetProc procedure once.

create_wClickable

This is the class constructor. Applications will not normally call this procedure (the
constructors for derived classes will call this procedure).

get_onClick,

get_onDblClick These methods return the value of the onClick and onDblClick data fields. Application
programs should always call these "accessor" functions rather than directly accessing
these fields.

set_onClick,

set_onDblClick These "mutator" functions set the value of the onClick and onDblClick data fields.

click This method simulates a click on the current object’s button.

 38.3.2.4 wButton_t
The wButton_t type is an abstract class that contains common fields for all the button, checkbox, and radio

button class types. This class is derived from wClickable_t, so it inherits all the wClickable_t fields.

 wButton_t:
 class inherits(wClickable_t);

 var
 align(4);
 wButton_private:
 record

 onPaint :widgetProc;
 onHilite :widgetProc;
 onUnHilite :widgetProc;
 onDisable :widgetProc;
 onSetFocus :widgetProc;
 onKillFocus :widgetProc;

 endrecord;

 procedure create_wButton
 (
 wbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
Page 1050 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
); external;

 method get_onPaint; @returns("eax"); external;
 method get_onHilite; @returns("eax"); external;
 method get_onUnHilite; @returns("eax"); external;
 method get_onDisable; @returns("eax"); external;
 method get_onSetFocus; @returns("eax"); external;
 method get_onKillFocus; @returns("eax"); external;

 method set_onPaint (onPaint :widgetProc); external;
 method set_onHilite (onHilite :widgetProc); external;
 method set_onUnHilite (onUnHilite :widgetProc); external;
 method set_onDisable (onDisable :widgetProc); external;
 method set_onSetFocus (onSetFocus :widgetProc); external;
 method set_onKillFocus (onKillFocus:widgetProc); external;

 method get_text(txt:string); external;
 method a_get_text; external;
 method set_text(txt:string); external;

 override method processMessage; external;

 endclass;

onPaint This is a pointer to a widgetProc procedure that HOWL will call whenever the button is
painted on the screen. If this pointer contains NULL, HOWL does not call any user-
defined onPaint procedure. On older versions of Windows this notification was used for
owner-drawn buttons. Newer versions of Windows use the "owner drawn" style for this
purpose. By default, the wButton_t.create_wButton constructor initializes this field
with NULL.

onHilite This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is first pressed. On older versions of Windows, this was used to draw the
button in a special depressed state. In HOWL, you can use this event to trigger some
operation when the button is first clicked. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onUnHilite This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is released. On older versions of Windows, this was used to draw the
button in a normal non-depressed state. In HOWL, you can use this event to trigger some
operation when the button is released. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onDisable This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is disabled. On older versions of Windows, this was used to draw the
button in a disabled state. In HOWL, you can use this event to trigger some operation
when the button is disabled. By default, the wButton_t.create_wButton constructor
initializes this field with NULL.

onSetFocus This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when focus is shifted to the button. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onKillFocus This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when focus is shifted away from the button. By default, the
wButton_t.create_wButton constructor initializes this field with NULL.

Note that wButton_t objects inherit the remaining button notification functions, onClick and
onDblClick, from the wClickable_t class.
Released to the Public Domain Page 1051

HLA Standard Library
create_wButton The create_wButton procedure is the constructor for this class. Like all the constructors
in HOWL abstract classes, user application do not normally call this constructor directly;
constructors in derived classes will call this procedure.

get_onPaint,

get_onHilite,

get_onUnHilite,

get_onDisable,

get_onSetFocus,

get_onKillFocus These are accessor functions that return the values of the corresponding widgetProc
function pointers. Note that the create_wButton construction initializes all these
pointers to NULL when an object is first created.

set_onPaint,

set_onHilite,

set_onUnHilite,

set_onDisable,

set_onSetFocus,

set_onKillFocus These are the mutator functions that let you set the addresses of the event handler
functions for this class.

get_text This function retrieves the caption text for a button and stores that text into the string
passed as a parameter to this function. The string you pass to this function must have
sufficient storage allocated for it to hold the caption or this function will raise an
ex.StringOverflow exception.

a_get_text This function makes a copy of the button’s caption on the heap and returns a pointer to this
string in the EAX register. It is the caller’s responsibility to free the storage associated
with this string when it is done using the string data.

set_text This function changes the button’s caption text to the string value you pass as an
argument.

processMessage This is an internal HOWL function. User applications do not call this method.

 38.3.2.5 wCheckable_t
The wCheckable_t class is an abstract base class for button objects that are "checkable". This includes the

various check boxes and radio buttons.

 wCheckable_t:
 class inherits(wButton_t);

 procedure create_wCheckable_t
 (
 wchkName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 method set_check(state:dword); external;
 method get_check; @returns("eax"); external;

Page 1052 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 endclass;

create_wCheckable

 The procedure is the constructor for this class. Like all abstract base class constructors,
applications should not call this procedure. The constructors for concrete classes will
make calls to this constructor as appropriate.

get_check This method retrieves the current state of the checkable button. It returns true in EAX if
the button is checked, false if the button is not checked.

set_check This method sets the current state of the checkable button. If the single argument contains
true, the button will be checked; if the argument contains false, the button will be
unchecked.

 38.3.2.6 wSurface_t
The wSurface_t abstract base class represents a single "window" on a form onto which HOWL can draw

things. This abstract class, for example, is the base class for graphic objects like rectangles as well as HOWL
views and windows. wSurface_t objects are clickable (as this class inherits the wClickable_t class).

 wSurface_t:
 class inherits(wClickable_t);

 var
 align(4);
 wSurface_private:
 record

 // onPaint event pointer:

 onPaint :widgetProc;

 endrecord;

 procedure create_wSurface
 (
 wsName :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 override method destroy; external;
 override method processMessage; external;
 override method onClose; external;
 override method onCreate; external;

 method get_onPaint; @returns("eax"); external;
 method set_onPaint(onPaint:widgetProc); external;

 endclass;
Released to the Public Domain Page 1053

HLA Standard Library
onPaint This widgetProc pointer is either NULL or points at a procedure that HOWL will call
when it receives a w.WM_PAINT message for the surface.

create_wSurface The create_wSurface procedure is the constructor for the wSurface_t class. Like all
abstract base class constructors, applications will not directly call this procedure -- the
derived class constructors are the ones that will call this procedure.

destroy The destroy method is responsible for freeing up the storage associated with the object
and the _bkgBrush system resource when an application is done using a wSurface_t
object. Normally, applications will not directly call this destructor. Instead, derived class
destructor methods will call this method when they are destroyed.

processMessage,

onClose,

onCreate These are private methods used by HOWL. Application programs should not call these
methods.

get_onPaint,

set_onPaint These are the accessor/mutator functions that get/set the address of the onPaint event-
handling widgetProc.

 38.3.2.7 wFilledFrame_t
The wFilledFrame_t abstract base class is used for objects that contain graphic entities drawn with a line

and filled with an interior color. This includes objects such as rectangles, ellipses, and round rectangles. This
extends the wSurface_t type by adding a line drawing color and a fill color (on top of the background color
provided by wSurface_t).

 wFilledFrame_t:
 class inherits(wSurface_t);
 var
 align(4);
 wFilledFrame_private:
 record

 lineColor :dword;
 fillColor :dword;

 _linePen :dword;
 _lineBrush :dword;
 _fillBrush :dword;

 endrecord;

 procedure create_wFilledFrame
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 method get_fillColor; @returns("eax"); external;
 method get_lineColor; @returns("eax"); external;

Page 1054 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 method set_fillColor(fillColor:dword); external;
 method set_lineColor(lineColor:dword); external;

 override method destroy; external;
 override method processMessage; external;

 endclass;

lineColor This is the RGB color of the pen used to draw the outline of the graphic object.
Applications must not access this field directly but should, instead, use the accessor/
mutator functions because those function maintain the private _linePen and
_lineBrush fields as well.

fillColor This is the RGB color of the brush used to fill the interior of the graphic object.
Applications must not access this field directly but should, instead, use the accessor/
mutator functions because those function maintain the private _fillBrush field as well.
Note that the fillColor differs from the background color (inherited from
wSurface_t) in that the fill color paints the interior of the graphic object while the
background color paints the exterior of the graphic object (within the bounding rectangle).

_linePen,

_lineBrush,

_fillBrush These are private fields in the class that applications must not access. These fields are
automatically maintained by HOWL whenever you call one of the wFilledFrame_t
mutator functions.

create_wFilledFrame

This is the constructor for the wFilledFrame_t class. Like other abstract base classes, you
do not call this constructor directly, the derived classes’ constructions will call this
constructor for you.

destroy This is the destructor for the class. It frees up storage allocated for an object and frees up
the system brush resources created for the object. Applications do not normally call this
destructor directly; derived class destructors will call this destructor automatically.

get_lineColor

get_fillColor,

set_fillColor,

set_lineColor These are the accessor and mutator functions for the wFilledFrame_t data fields. You
must always call these functions to access the data fields of this class because these
functions also maintain the private pen and brush fields for this class.

 38.3.2.8 wabsEditBox_t
The wabsEditBox_t class is the abstract base class used by the classes that support textual input from the

user (e.g., wEditBox_t, wPasswdBox_t, and wTextEdit_t). Edit boxes (and text editors) are among the
more feature-rich controls provided by Windows, so it’s not surprising that there are many fields and functions
associated with this base class.

 wabsEditBox_t:
 class inherits(wVisual_t);

 var
 align(4);
 wabsEditBox_private:
 record

Released to the Public Domain Page 1055

HLA Standard Library
 onChange :widgetProc;
 onErrSpace :widgetProc;
 onHScroll :widgetProc;
 onVScroll :widgetProc;
 onMaxText :widgetProc;
 onUpdate :widgetProc;
 onSetFocus :widgetProc;
 onKillFocus :widgetProc;
 textColor :dword;

 endrecord;

 procedure create_wabsEditBox
 (
 webName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_onChange; @returns("eax"); external;
 method get_onErrSpace; @returns("eax"); external;
 method get_onHScroll; @returns("eax"); external;
 method get_onMaxText; @returns("eax"); external;
 method get_onUpdate; @returns("eax"); external;
 method get_onSetFocus; @returns("eax"); external;
 method get_onKillFocus; @returns("eax"); external;

 method set_onChange (onChange :widgetProc); external;
 method set_onErrSpace (onErrSpace :widgetProc); external;
 method set_onHScroll (onHScroll :widgetProc); external;
 method set_onMaxText (onMaxText :widgetProc); external;
 method set_onUpdate (onUpdate :widgetProc); external;
 method set_onSetFocus (onSetFocus :widgetProc); external;
 method set_onKillFocus (onKillFocus:widgetProc); external;

 method get_textColor; @returns("eax"); external;

 method set_textColor(textColor:dword); external;

 method undo; external;
 method cut; external;
 method copy; external;
 method paste; external;
 method clear; external;

 method get_canUndo; @returns("eax"); external;
 method emptyUndoBuffer; external;

 method get_modified; @returns("eax"); external;
 method set_modified(modified:boolean); external;

 method get_text(txt:string); external;
 method a_get_text; @returns("eax"); external;
 method set_text(txt:string); external;
Page 1056 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 method get_length; @returns("eax"); external;

 method get_selectedText(txt:string); external;
 method a_get_selectedText; @returns("eax"); external;

 method get_selection
 (
 var startPosn :dword;
 var endPosn :dword
); external;

 method set_selection
 (
 startPosn :dword;
 endPosn :dword
); external;

 method replace_selection
 (
 replacement :string;
 canUndo :boolean
); external;

 override method processMessage; external;

 endclass;

onChange This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever any
change is made to the text associated with the control. Note that HOWL will call this
function after the update is drawn to the screen.

onErrSpace This is a widgetProc pointer that HOWL will call (if it is not NULL) if Windows cannot
allocate sufficient storage to handle the current editor operator.

onHScroll This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
clicks on the control’s horizontal scroll bar. Note that HOWL will call this function before
the update is drawn to the screen.

onVScroll This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
clicks on the control’s vertical scroll bar. Note that HOWL will call this function before
the update is drawn to the screen.

onMaxText This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
exceeds the maximum number of character for the edit control.

onUpdate This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever any
change is made to the text associated with the control. Note that HOWL will call this
function before the update is drawn to the screen (this is the crucial difference between
this function and the onChange handler).

onSetFocus This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever focus
shifts to the edit control.

onKillFocus This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever focus
shifts away from the edit control.

textColor This is the RGB color that Windows will use to draw the text on the editbox. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

get_onChange,

set_onChange,
Released to the Public Domain Page 1057

HLA Standard Library
get_onErrSpace,

set_ onErrSpace,

get_onHScroll,

set_onHScroll,

get_onVScroll,

set_onVScroll,

get_onMaxText,

set_onMaxText,

get_onUpdate,

set_onUpdate,

get_onSetFocus,

set_onSetFocus,

get_onKillFocus,

set_onKillFocus These are the accessor and mutator functions for all the data fields specific to this abstract
base class. Applications should call these functions to access the data fields rather than
accessing them directly.

canUndo This function returns true in EAX if it is possible to undo the last operation to the editBox
buffer (via the undo method).

emptyUndoBuffer This method clears the undo buffer and sets the canUndo flag to false.

undo,

cut,

copy,

paste,

clear These methods perform the standard Windows editing functions on the current selection
in an edit control. Normally, you’d call these functions when the user selects an
appropriate "edit" menu entry or they press one of the standard accelerator keys (e.g.,
"control-C" for copy).

get_text This function retrieves the string (text) associated with an editor control and stores the text
into the string argument passed as the parameter. The string passed as an argument must
be large enough to hold the text or this function will raise an ex.StringOverflow exception.

a_get_text This function retrieves the string (text) associated with an editor control and stores the text
into a string allocated on the heap. It is the caller’s responsibility to free the storage
associated with this string when it is done using it. This function returns a pointer to the
new string in the EAX register.

set_text This function replaces the text in the edit control with the string passed as an argument.

get_length This function returns the current number of characters in the string associated with the edit
control.

get_selection This function retrieves the starting and ending zero-based indexes into the string of the
current text selection of the edit control. These indexes are returned in the two arguments
passed by value. Note that the ending index will contain the offset to the character just
beyond the selection in the edit control.

set_selection This function sets the starting and ending indexes for the edit control.

replace_selection

This function replaces the selected text in the editBox with the string you supply as the
argument.

get_textColor,

set_textColor These accessor/mutator functions get and set the text color that the widget uses.

processMessage This is a private method in the wabsEditBox_t class. Applications should not directly
call this method.
Page 1058 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.3.2.9 wContainer_t
The wContainer_t abstract base class, as its name suggests, is a special class that can contain other

widgets. Containers possess a special linked list of wBase_t objects and the wContainer_t provides methods to
manipulate this list of objects. Classes derived from wContainer_t include form classes, windows, radio sets,
and group boxes.

 wContainer_t:
 class inherits(wVisual_t);

 var
 align(4);
 wContainer_private:
 record

 numWidgets :uns32;
 widgetList :wVisual_p;
 lastWidget :wVisual_p;

 endrecord;

 procedure create_wContainer
 (
 wcName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 override method destroy; external;
 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;

 method get_numWidgets; @returns("eax"); external;
 method insertWidget(theWidget:wBase_p); external;
 method findWidget(objectID:dword); external;
 iterator widgetOnForm(nestingLevel:uns32); external;
 iterator widgetsJustOnForm; external;

 endclass;

numWidgets This is the number of widgets contained by the wContainer_t object. The constructor
initializes this field to zero and inserting widgets into the container increments this field
by one. This is a private field; use the get_numWidgets method to retrieve this field’s
value. Applications should never store a value directly into this field.

widgetList This is a pointer to the first item in the list of widgets contained by the wContainer_t
object. This is a private field; applications should never access this field.

lastWidget This is a pointer to the last item in the list of widgets contained by the wContainer_t
object. This is a private field; applications should never access this field.
Released to the Public Domain Page 1059

HLA Standard Library
destroy This method iteratively calls the destructor for all widgets contained by the
wContainer_t object and then it frees the storage held by the container object itself.
Because wContainer_t is an abstract base class, applications should not call this
destructor directly. Instead, they will call the destructor for some derived class which will
indirectly call this method. Imporant note: because a container automatically calls the
destructor for all widgets contained by the container, an application must not explicitly
call the destructor for any of those widgets.

show This method iteratively calls all the show methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the show method for some derived class
which will indirectly call this method.

hide This method iteratively calls all the hide methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the hide method for some derived class
which will indirectly call this method.

enable This method iteratively calls all the enable methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the enable method for some derived class
which will indirectly call this method.

disable This method iteratively calls all the disable methods for each of the widgets contained
by the container. Because wContainer_t is an abstract base class, applications should
not call this method directly. Instead, they will call the disable method for some derived
class which will indirectly call this method.

get_numWidgets This method returns the value of the numWidgets field in the EAX register. Note that
there is no corresponding "set_numWidgets" mutator function; applications cannot
directly set the value of this field, wContainer_t objects increment the value of this field
by calling the insertWidget method.

insertWidget This method inserts a widget into the wContainer_t’s linked list. The argument is a
pointer to a wVisual_t object (or some object type derived from wVisual_t). Widgets
are inserted into the linked list at the end of the list (i.e., after the widget pointed at by
lastWidget). As this is being written, there is no way to remove a widget from a
wContainer_t’s widget list. This restriction may be relaxed in a future version of
HOWL.

findWidget This function searches for a widget in the wContainer_t’s widget list. The single
argument is the ObjectID value (inherited from wBase_t) of the object to search for.
This function is mainly useful for various Windows callback functions (message handlers)
that pass along a widgets object identifier without specifying the object itself.

widgetOnForm This is an HLA iterator (that you use in an HLA foreach loop) that iterates over all the
widgets in a container’s widget list. This iterator is recursive. This means that if one of the
items in a widget list is a wContainer_t class (or a class derived from wContainer_t),
then the iterator will drill down into that container and return its list of widgets as well. For
example, the wContainer_t destroy, show, hide, enable, and disable
methods all use this iterator to process all the widgets held by the container. On each
iterator of the foreach loop, this iterator returns a pointer to the current widget in the EAX
register.

widgetsJustOnForm

This iterator is very similar to widgetOnForm except that it is not recursive. On each
iteration of the foreach loop it will return an entry from the current container’s widget list.
It will not recursively process the lists of any wContainer_t objects appearing in the
current container.
Page 1060 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.3.3 Containers
There are five main (concrete) container objects in HOWL: wForm_t objects, window_t objects,

wGroupBox_t objects, wTabs_t objects, and wRadioSet_t objects. We’ll consider the first three of these
objects in this section (plus menu objects, because it makes sense to discuss menus along with wForm_t objects)
and wRadioSet_t objects in the section on buttons.

 38.3.3.1 Forms and Menus
The main form for an application is a wForm_t object. Most applications will have a single wForm_t object,

though a multi-window application can certainly support two or more wForm_t windows. A wForm_t menu is
special (compared, say, to a wTabPage_t object) because it supports a menu. In a sense, a wForm_t object is a
double container because it can contain an arbitrary list of widgets and it can contain a list of menu items.

 38.3.3.1.1 wForm_t
The wForm_t class type is a window_t object with the addition of a list of menu items (which may be

empty). The wForm statement in the HOWL declarative language defines a class that is derived from wForm_t.
The wForm statement inserts the widget declarations into this new class and creates a constructor for the new
class. Therefore, wForm_t is the basis for all forms created with the HOWL declarative language. Technically,
wForm_t is a concrete class , not an abstract class, (meaning you can create objects of type wForm_t). However,
in most HOWL applications your main window will actually consist of an object whose type is derived from
wForm_t (the wForm..endwForm declaration creates this class for you).

 wForm_t:
 class inherits(window_t);
 var
 align(4);
 wForm_private:
 record

 menuList :wMenuItem_p;

 endrecord;

 procedure create_wForm
 (
 wwName :string;
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword;
 visible :boolean
); external;

 method appendMenuItem(mi:wMenuItem_p); external;
 override method insertWidget; external;
 override method processMessage; external;

 endclass;

menuList This is a private data field that points at the list of menu items for the wForm_t’s menu.
Applications should not access this field.
Released to the Public Domain Page 1061

HLA Standard Library
create_wForm This is the constructor for wForm_t objects. If you call this procedure using the
classname, e.g., "wForm_t.create_wForm(...);" then this constructor will allocate storage
for the wForm_t object on the heap and initialze all the fields of the wForm_t object with
reasonable values (including the parameter values you specify). If you have a statically
declared wForm_t object, or a pointer to a wForm_t object you’ve already allocated
storage for, then calling this procedure via that object will initialize the fields of that
object, e.g., "somewFormObject.create_wForm(...);", without allocating new storage for
the object. Although wForm_t is a concrete class and it’s not unreasonable for an
application to call create_wForm directly, most applications will actually work with
classes derived from wForm_t, so it would be unreasonable for an application to call this
constructor directly. If you look back at the discussion of the wForm..endwForm
statement in the section on the HOWL declarative language, you’ll notice that the
appStart procedure calls a constructor named "myForm.create_myForm". This
constructor is a good example of a constructor for a class (myForm_t) derived from
wForm_t. Note that myForm is a statically declared object of type myForm_t (which is
derived from wForm_t) in the examle given earlier in this documentation.

wwName: this is a string that HOWL stores in the _name field of the object (from
wBase_t). HOWL does not copy this string, so the character data associated with this
argument must exist for the duration of the program (and must not change). You should
use str.a_cpy to create a copy of this string to pass to create_wForm if the original
string might change during the execution of the program.

caption: This is the string that HOWL will display in the title bar of the wForm_t’s
window on the screen. Note that Windows will create an internal copy of this string, so it
need not continue to exist after the call to the constructor.

exStyle: the constructor logically-ORs the value you supply to this parameter with the
Windows’ w.WS_EX_CONTROLPARENT extended window style. Normally you would
supply zero for this parameter value. However, if you want your form to have some
additional window extended style attributes, you can supply one (or more) of the
w.WS_EX_* constants here. See the Windows documentation for w.CreateWindowEx
for more details on the possible extended style constants you can use.

style: the constructor logically-ORs this value with the (w.WS_CLIPCHILDREN |
w.WS_OVERLAPPEDWINDOW) style when creating the window. Normally you would
supply zero for this parameter value. However, if you want your form to have some
additional window style attributes, you can supply one (or more) of the w.WS_* constants
here. See the Windows documentation for w.CreateWindow for more details on the
possible window style constants you can use.

parent: this is the handle of the parent window for this form. This should always be
NULL (if you are creating a child window, you’ll probably be using the window_t type,
not a wForm_t type).

x, y, width, height: These fields describe the position and size of the wForm_t window on
the main screen. These will either be the pixel coordinates and sizes or the Windows’
constant w.CW_USEDEFAULT (that tells Windows to pick good default values for these
arguments).

fillColor: This is the RGB background color you want to use for the client (drawing) area
of the wForm_t window.

visible: if true, then the constructor makes this form visible when it creates it. If this
argument is false, then you must explicitly call the show method to make the form visible
on the screen. For the main form, this argument is almost always true. If you are creating
multiple windows (forms), then you might set this argument to false for all but the main
form and call the show method to display the windows as needed.

appendMenuItem This method appends a new menu item to the wForm_t object’s menu list. See the
discussion of menu items (following shortly) for a complete discussio of those objects. In
most HOWL applications, you will not directly call this method; the HOWL declarative
language automatically appends all menu items you declare in the wMenu..endwMenu
Page 1062 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
statement to the main window’s wForm_t object. However, if you want to manually
create a wForm_t object, you can call this functiont to attach a menu item to the form.

insertWidget See wContainer_t.insertWidget for more details. Note that this overridden version
will also set the parentForm field of the widget you insert (plus all contained widgets, if
the argument is a container) to the value of the form.

processMessage This is an internal HOWL method. Applications should not call this function.

 38.3.3.1.2 wMenu_t
Exactly one wMenu_t object is create for every wForm_t object that has a menu. The wMenu_t object

corresonds to the main menu for the form. This should be the first menu item (note that wMenu_t is derived from
wMenuItem_t, described next) added to the wForm_t object via an appendMenuItem method call.

 wMenu_t:
 class inherits(wMenuItem_t);

 // Constructors/Destructors:

 procedure create_wMenu
 (
 wmName :string;
 wmText :string;
 parentHandle :dword
); external;

 override method destroy; external;

 endclass;

create_wMenu This constructor creates the main menu item.

wmName: this is a string that HOWL stores in the _name field of the main menu object
(from wBase_t). HOWL does not copy this string, so the character data associated with
this argument must exist for the duration of the program (and must not change). You
should use str.a_cpy to create a copy of this string to pass to create_wMenu if the
original string might change during the execution of the program.

wmText: This is basically ignored and should be the empty string or some string like
"main menu".

parentHandle: This must be the handle of the wForm_t object that contains this menu.

destroy This is the destructor method for the wMenu_t object. Applications should not call this
method directly if the menu is on a form. The wForm_t object that holds the menu will
automatically call the destructors for all the objects on its menu list (including the
wMenu_t object).

 38.3.3.1.3 wMenuItem_t
wMenuItem_t objects generally correspond to the actual menu items present in the main window.

 wMenuItem_t:
 class inherits(wBase_t);

 var
 align(4);
 wMenuItem_private:
 record
Released to the Public Domain Page 1063

HLA Standard Library

 nextMenu :wMenuItem_p;
 itemType :dword;
 itemString :string;
 itemHandler :widgetProc;

 endrecord;

 // Constructors/Destructors:

 procedure create_wMenuItem
 (
 wmiName :string;
 parentHandle :dword;
 itemType :dword;
 itemString :string;
 itemHandler :widgetProc
); external;

 override method enable; external;
 override method disable; external;

 method checked(state:boolean); external;

 // Accessor functions:

 method get_itemType; @returns("eax"); external;
 method get_itemString; @returns("eax"); external;
 method get_itemHandler; @returns("eax"); external;

 method set_itemType(itemType:dword); external;
 method set_itemString(itemString:string); external;
 method set_itemHandler(itemHandler:widgetProc); external;

 endclass;

nextMenu This is a private data field that the wForm_t class uses to create a linked list of menu items
on the main form. Applications should not access this field.

parentHandle This is the handle of the main application’s form

itemType This field specifies the type of the menu item. It must be the logical OR of oe or more of
the following constants: w.MF_STRING, w.MF_CHECKED, w.MF_DISABLED,
w.MF_ENABLED, w.MF_GRAYED, w.MF_SEPARATOR, and w.MF_UNCHECKED. See the
Windows documentation for w.AppendMenu for more details.

itemString This is the string text that Windows displays for the menu item.

itemHandler This is a widgetProc procedure that HOWL will call when the user selects a menu item.

enable,

disable These two methods will enable or disable a menu item, respectively. Note that when
HOWL disables a menu item, it will gray that menu item and will prevent the user from
selecting it in the menu. This is equivalent to the (w.MF_DISABLE | w.MF_GRAYED)
item type.
Page 1064 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
checked If the current menu item has the w.MF_CHECKED flag, then calling this method will
display a check mark if the argument is true, it will clear a displayed check mark if the
argument is false.

get_itemType,

get_itemString,

get_itemHandler These accessor functions return the values of the respective fields in the EAX register.

set_itemType,

set_itemString,

set_itemHandler These mutator functions set the values of the respective fields to the value passed as an
argument. Note that the set_itemString function does not make a copy of the string
data, it stores the string pointer directly into the itemString data field. Therefore, your
application should make a copy of the string to pass to this mutator if the string data could
change.

 38.3.3.2 Tabbed Forms
A tabbed form is a wForm_t object that contains exactly one wTabs_t object on it. A wTabs_t object is a

container that contains a list of wTabPage_t (window) objects on it, one wTabPage_t object for each tab.
present on the wTabs_t control. Whenever the user selects one of the tabs on the wTabs_t control, HOWL will
display the corresponding wTabPage_t object (hiding the previously displayed wTabPage_t object). This lets
an application have multiple pages on the main form that the user can select the pages as needed.

 38.3.3.2.1 wTabs_t
The wTabs_t class is a special type of container class. If used correctly, wTabs_t objects only hold

wTabPage_t objects (called "pages") that correspond to a window on top of the main form that hold the widgets
associated with a tab on that main form. wTabs_t objects represent the current state of a tabbed form.

 wTabPage_array :pointer to wTabPage_p;

 wTabs_t:
 class inherits(wContainer_t);

 var
 align(4);
 wTabs_private:
 record

 curSelection :dword;
 numTabs :uns32;
 pages :wTabPage_array;
 numElements :dword;

 endrecord;

 procedure create_wTabs
 (
 wtName :string;
 parent :window_p;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 method get_numTabs; @returns("eax"); external;
 method curTab; @returns("eax"); external;
Released to the Public Domain Page 1065

HLA Standard Library
 method setTab(tab:uns32); external;
 method get_page(tabIndex:dword); @returns("eax"); external;
 method deleteTab(tabIndex:dword); @returns("eax"); external;
 method insertTab
 (
 index :dword;
 tabText :string;
 page :wTabPage_p
); external;

 override method destroy; external;
 override method processMessage; external;

 endclass;

curSelection This field contains the zero-based tab index for the currently active tab on a wForm_t
tabbed object. This is a private data field that applications must not access.

numTabs This private data field contains the number of tabs currently associated with the wTabs_t
object. Applications should never directly access this data field. They can use the
get_numTabs accessor method to query its value. Applications must never directly
change the value of this field.

pages The pages data field is a pointer to an array of wTabPage_p pointers. This is a private
data field and applications should not access or modify its contents. Applications can use
the get_page method to read entries from the array pointed at by pages.

numElements This is a private data field that specifies the number of elements in the array pointed at by
the pages data field. Applications must not access or modify this value.

create_wTabs This is the constructor for the wTabs_t class. If called as a class procedure (e.g.,
"wTabs_t.create_wTabs") then this procedure will allocate storage on the heap for a new
wTabs_t object and return a pointer to that new object in ESI. If you call this method via
an object variable (e.g., "myTab.create_wTab") then this constructor will initialize the
fields of that object without allocating new storage for it (and return a pointer to the object
in ESI).

wtName: this string is assigned to the _name field of the object. This string should not
change during the execution of the program. Pass a copy of the string (using str.a_cpy) if it
is possible for this string to change during program execution.

parent: this is the handle of the parent window_t object (e.g., wForm_t object) that holds
this wTabs_t object.

x, y, width, height: These arguments specify the position and size of the tab control
within the client area of the parent object. The x and y values are almost always zero, the
width should be the width of the client area of the parent window, and the height should 25
or some other similar value.

destroy This is the destructor for the wTabs_t class. Generally, tabs are attached to a wForm_t
object and that object will destroy the tabs when it is destroyed. Therefore, an application
will rarely call a wTabs_t destructor unless it explicitly creates the wTab_t object and
doesn’t attach those tabs to some other container (e.g., wForm_t) object).

get_numTabs This method returns the current number of tabs on the tab control. In addition to returning
the value of the numTabs data field, this method also does a sanity check to ensre that the
number of tabs on the Windows control matches the numTabs data field value.

curTab This method returns the currently selected tab index (0..numtabs-1). Note that this method
actually calls Windows to retrieve this value, it is not simply an accessor to the
curSelection data field (indeed, this is a mutator to the curSelection field because it
will update curSelection with the value that Windows returns). This also does a sanity
check on the values and raises an exception if Windows and HOWL have different ideas
about the number of tabs on the control.
Page 1066 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
setTab This method sets the currently selected tab to the value you pass as an argument. This
value must be in the range 0..numTabs-1. If the argument is outside this range, the
setTab method raises an exception. This method also does a sanity check to ensure that
Windows’ and HOWL’s tab counts are the same.

deleteTab This function deletes a tab (specified by the zero-based tabIndex argument) from the tab
bar on the form. Note that this function does not call the destructor for the tab object, nor
does it destroy any of the widgets contained on the form. It simply removes the tab from
the tab bar (and the corresponding entry from the array pointed at by the pages data
field). This function returns the pointer to the wTabPage_t widget removed from the
pages array in the EAX register. Note that this method does not remove the wTabPage_t
object from the tab’s widgetList (that is, the tab still contains the wTabPage_t object).
Therefore, if you destroy the tab, or otherwise iterate over all the widgets held by the
wTabs_t container, you will still process the deleted tab. All that deleting a tab does is
visibly remove it from the tab control on the form. Note that you can insert the deleted
wTabPage_t object (whose address is returned in EAX by deleteTab) by calling
insertTab. It is your responsibility to save the value returned by deleteTab (or
otherwise locate the deleted item) if you intend to reinsert it into the tab control later on.

insertTab This build adds a new tab entry to the tab control and inserts a pointer to a wTabPage_t
object into the array pointed at by the tab’s pages data field.

index: This is the zero-based index specifying the tab position. This value must be in the
range 0..numTabs. If index is less than numTabs, then insertTab will insert the new
tab in front of the tab at the specified index. If index is equal to numTabs, then
insertTab will append the new tab to the end of the tab list. If index is greater than
numTabs, insertTab will raise an exception.

tabText: this is the string that Windows will draw on the tab. Windows will make a copy
of this string’s character data.

page: this is the wTabPage_t object that HOWL will display when you select the new
tab. Generally, a program will place several other widgets on thie wTabPage_t display
surface

processMessage This is a private method. Applications should never call this method..

 38.3.3.3 wGroupBox_t
A wGroupBox_t object is a rectangular panel with a caption along the upper-left-hand corner of the

rectangle (on top of the line outlining the rectangle). Generally, wGroupBox_t objects are used to visually
separate and group items on a form.

 wGroupBox_t:
 class inherits(wContainer_t);

 procedure create_wGroupBox
 (
 wgbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 endclass;

create_wGroupBox This is the constructor for the wGroupBox_t class.
Released to the Public Domain Page 1067

HLA Standard Library
wgbName: This is the name of the object that HOWL stores into the _name data field.

caption: This is the string that Windows displays in the upper-left-hand corner of the
group box. Windows makes a copy of this string for its internal use.

parent: This is the handle of the window (usually the main form or a wView_t object on a
tabbed form) that contains the group box.

x, y, width, height: These are the (parent-form-relative) coordinates and size for the group
box.

 38.3.4 Graphic Objects
Graphic objects in HOWL are static images that HOWL draws on a form. Examples include rectangles and

ellipses. All graphic objects are derived from wSurface_t, which is derived from wClickable_t, so graphic
objects can respond to single clicks. Note that although the wClickable_t type also handles double clicks,
graphic objects don’t send double-click notifications, so if you try to install a double-click handler for one of
these objects (which is legal to do), it won’t have any effect. Double-clicks will simply be treated as two single
clicks. Because attaching an "onClick" handler to a graphic object is not the common case, you will have to
explicitly call the set_onClick method to initialize an onClick handler. The HOWL declarative language
doesn’t provide an option to do this for you.

 38.3.4.1 wBitmap_t
The wBitmap_t class lets you create objects that display a bit mapped image on a form.

 wBitmap_t:
 class inherits(wSurface_t);

 var
 align(4);
 wBitmap_private:
 record

 stretch :boolean;
 align(4);

 imageName :string;
 imageHandle :dword;
 sourceX :dword;
 sourceY :dword;
 sourceW :dword;
 sourceH :dword;
 destW :dword;
 destH :dword;

 endrecord;

 procedure create_wBitmap
 (
 wiName :string;
 imageName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 method get_imageName; @returns("eax"); external;
Page 1068 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 method get_sourceX; @returns("eax"); external;
 method get_sourceY; @returns("eax"); external;
 method get_sourceW; @returns("eax"); external;
 method get_sourceH; @returns("eax"); external;
 method get_destW; @returns("eax"); external;
 method get_destH; @returns("eax"); external;
 method get_stretch; @returns("al"); external;

 method load_bitmap(imageName:string); external;
 override method destroy; external;
 override method processMessage; external;

 method normalBitmap; @returns("eax"); external;
 method stretchBitmap
 (
 sourceX :dword;
 sourceY :dword;
 sourceW :dword;
 sourceH :dword;
 destW :dword;
 destH :dword
); external;

 endclass;

imageName This is a string that specifies the name of the bitmap resource within the executable file.
Important this is not the name of a ".bmp" file on the disk. You must compile ".bmp" files
into your executable using a "resouce compiler". The name you attach to the resource is
the name that this string will contain. This is a private field. Applications should not
access it directly. Note that if the value of this field is less than $1_0000, then it specifies
a standard Windows bitmap resource rather than an actual resource name. See the
discussion of the load_bitmap method for more details.

imageHandle,

sourceX,

sourceY,

sourceW,

sourceH,

destW,

destH These are private data fields that applications must not access or modify.

stretch This private field determines whether a bitmap is stretched or displayed normal. This field
is set to true by the stretchBitmap method and set to false by the normalBitmap
method.

create_wBitmap This is the constructor for the wBitmap_t class. If called as a class procedure (e.g.,
"wBitMap_t.create_wBitmap") this procedure will allocate storage on the heap for the
object and return a pointer to the new (initialized) object in ESI. If you call this constructor
specifying an existing object, then it will simply initialize that object in-place.

wiName: this is the string that the HOWL code stores into the _name field. This string’s
value should not change over the lifetime of the bitmap object.

imageName: This is either a string containing a bitmap resource name within the
executable file, or a standard Windows bitmap resource value. Legal bitmap resource
constants are:

w.OBM_BTNCORNERS, OBM_BTSIZE, w.OBM_CHECK, w.OBM_CHECKBOXES,
w.OBM_CLOSE, w.OBM_REDUCE, w.OBM_COMBO, w.OBM_REDUCED,
w.OBM_DNARROW, w.OBM_RESTORE, w.OBM_DNARROWD,
Released to the Public Domain Page 1069

HLA Standard Library
w.OBM_RESTORED, w.OBM_DNARROWI, w.OBM_RGARROW,
w.OBM_LFARROW, w.OBM_RGARROWD, w.OBM_LFARROWD,
w.OBM_RGARROWI, w.OBM_LFARROWI, w.OBM_SIZE, w.OBM_MNARROW,
w.OBM_UPARROW, w.OBM_UPARROWD, w.OBM_UPARROWI, w.OBM_ZOOM,
w.OBM_ZOOMD.

See the Windows documentation for more details on these constants.

parent: this is the handle of the form, wView_t, or other drawing surface that contains the
wBitmap_t object (and on whose surface the bitmap will be drawn).

x, y, width, height: these arguments specify the bounding box on the parent’s form where
the bitmap will be drawn. If this bounding rectangle is larger than the bitmap image (in
any dimension), then HOWL will fill the unaccounted-for area wth the background color.
If this bounding rectangle is smaller than the image (in any dimension), then HOWL will
clip the bitmap when drawing it.

bkgColor: this is the RGB background color that HOWL uses to fill in the bounding
rectangle if the bitmap is smaller than the bounding rectangle.

load_bitmap This method loads the bitmap object with an image resource in the executable file. The
argument is a string specifying the resource name or one of the standard Windows bitmap
resource constants (see the discussion in create_wBitmap). Note that this is not a
".bmp" filename. You must compile bitmaps into the executable file using a resource
compiler and specify the resource name as the parameter to load_bitmap.

destroy This is the class destructor. This method releases all resources and memory in use by the
wBitmap_t object. Usually, applications will not call this method directly. Instead,
HOWL will automatically call this destructor when destroying the main application’s
wForm_t form or a wView_t object that contains the bitmap.

processMessage This is a private method that applications should never call.

normalBitmap This method sets the stretch field to false to display the bitmap in a normal form.

stretchBitmap This method sets the stretch field to true and copies the parameters to the corresponding
private data fields.

sourceX: The stretched bitmap will be copied from the original bit map starting at this
zero-based x-coordinate.

sourceY: The stretched bitmap will be copied from the original bit map starting at this
zero-based y-coordinate.

sourceW: This many bits along the X axis will be copied to the stretched bitmap.

sourceH: This many bits along the Y axis will be copied to the stretched bitmap.

destW: The bit mapped will be stretched (or shrunk) so that the sourceW bits will be
displayed using destW bits.

destH: The bit mapped will be stretched (or shrunk) so that the sourceH bits will be
displayed using destH bits.

 38.3.4.2 wEllipse_t
Ellipse graphic objects (of which circles are special cases) allow you to place ellipses anywhere on a form or

wView_t object.

 wEllipse_t:
 class inherits(wFilledFrame_t);

 procedure create_wEllipse
 (
 wrName :string;
 parent :dword;
 x :dword;
Page 1070 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method processMessage; external;

 endclass;

create_wEllipse This is the consructor for the wEllise_t class. If you call this as a class procedure (e.g.,
"wEllipse_t.create_wEllipse") then this procedure will allocate storage for a new
wEllipse_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wEllipse will initialize that object
in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the ellipse will be
drawn.

x, y, width, height: These arguments form a bounding box in which the ellipse will be
drawn. If width and height are the same value (meaning the bounding rectangle is a
square), then the ellipse will form a circle.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the ellipse.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the ellipse.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the ellipse.

processMessage This is a private method that applications must not call.

 38.3.4.3 wPie_t
The wPie_t graphic object draws a slice of a pie graph on a window. Note that wPie_t is only capable of

drawing a single wedge of a pie graph. Note: the procedures and methods in the wPie_t class make use of the
FPU on the CPU. You must ensure that the FPU is initialized (i.e., you’re not in MMX mode) before using these
functions.

 wPie_t:
 class inherits(wFilledFrame_t);

 var
 align(8);
 wPie_private:
 record

 startAngle :real64;
 endAngle :real64;

 endrecord;

 procedure create_wPie
 (
 wrName :string;
Released to the Public Domain Page 1071

HLA Standard Library
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 startAngle :real64;
 endAngle :real64;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method processMessage; external;

 method get_startAngle; @returns("st0"); external;
 method get_endAngle; @returns("st0"); external;

 method set_startAngle(startAngle:real64); external;
 method set_endAngle(endAngle:real64); external;

 endclass;

startAngle This is the starting angle (measure counter-clockwise from the vertical line) from which
wPie_t objects between drawing the wedge. Applications should not access or modify
this field directly; they should use the supplied accessor and mutator functions for this
purpose. Do not assume the value of this field is degrees or radians.

endAngle This is the ending angle (measured counter-clockwise from the vertical line) to which
wPie_t object draw the wedge (from the startAngle to the endAngle in the counter-
clockwise direction). Applications should not access or modify this field directly; they
should use the supplied accessor and mutator functions for this purpose. Do not assume
the value of this field is degrees or radians.

create_wPie This the is the constructor for the wPie_t class. If you call this as a class procedure (e.g.,
"wPie_t.create_wPie") then this procedure will allocate storage for a new wPie_t object
on the heap and return a pointer to that object in ESI. If you make a standard object call to
this constructor, then create_wPie will initialize that object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the wedge will be
drawn.

x, y, width, height: These arguments form a bounding box in which the pie wedge will be
drawn.

startAngle: starting angle for the wedge (see the discussion above). This angle is
specified in degrees (not radians).

endAngle: ending angle for the wedge (see the discussion above). This angle is specified
in degrees, not radians.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the wedge.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the wedge.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the wedge.

processMessage This is a private method that applications must not call.

get_startAngle,
Page 1072 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
get_endAngle These are accessor functions for the startAngle and endAngle data fields. Note that
because these values are real, these functions return their results on the top of the FPU
stack. These functions return the angles in degrees.

set_startAngle,

set_endAngle These are the mutator functions for the startAngle and endAngle data fields. These
functions expect the angle in degrees.

 38.3.4.4 wPolygon_t
A polygon is a closed geometric object created by drawing a set of lines between the points in a list (and

from the last point to the first point to close the object).
Note: Windows automatically resizes most geographic objects you draw (e.g., rectangles and ellipses). It

does not, however, resize a polygon if you change its bounding box. The HOWL polygon class, fortunately,
contains extra code to resize a polygon if you change the width or height of the bounding box. Therefore, when
using HOWL, your programs can treat polygons just like other geometric objects with respect to the resize
method.

 ptArray :pointer to w.POINT; // w.POINT:[x:dword, y:dword]

 wPolygon_t:
 class inherits(wFilledFrame_t);

 var
 align(4);
 wPolygon_private:
 record

 points :ptArray;
 scaledPoints :ptArray;
 nPoints :uns32;
 origW :dword;
 origH :dword;

 endrecord;

 procedure create_wPolygon
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method destroy; external;
 override method processMessage; external;

 override method set_width; external;
 override method set_height; external;
 override method resize; external;

 method set_points
 (
 nPoints :dword;
Released to the Public Domain Page 1073

HLA Standard Library
 points :ptArray
); external;

 method get_points; @returns("eax"); external;
 method get_nPoints; @returns("eax"); external;

 endclass;

points This is the address of an array of w.POINT objects in memory (each element is 8 bits, a
four-byte x-coordinate followed by a four byte y-coordinate value). This is a private data
field that applications should not access or modify directly.

scaledPoints This is the address of an array of w.POINT objects in memory (each element is 8 bits, a
four-byte x-coordinate followed by a four byte y-coordinate value). The Polygon class
uses this array (rather than points) to draw the polygon if the polyon has been resized since
it was created. This is a private data field that applications should not access or modify
directly.

nPoints This is the number of points in the array pointed at by the points field. If this field is
zero, then the points data field may contain an arbitary value. This is a private data field
that applications should not access or modify directly.

origW This field holds the original (created) width of the current polygon. The polygon class uses
this value to determine if it has to scale the polygon along the x-axis because the polygon
has been resized. This is a private data field that applications should not access or modify
directly.

origH This field holds the original (created) height of the current polygon. The polygon class
uses this value to determine if it has to scale the polygon along the y-axis because the
polygon has been resized. This is a private data field that applications should not access or
modify directly.

create_wPolygon This the is the constructor for the wPolygon_t class. If you call this as a class procedure
(e.g., "wPolygon_t.create_wPolygon") then this procedure will allocate storage for a new
wPolygon_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wPolygon will initialize that object
in-place. Note that this constructor initializes nPoints to zero (and points to NULL).
So immediately upon creation, the polygon has no vertexes and it will not draw anything
on the form until you provide a list of points.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the polygon will
be drawn.

x, y, width, height: These arguments form a bounding box in which the polygon will be
drawn.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the wedge.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the wedge.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the wedge.

processMessage This is a private method that applications must not call.

destroy This is the destructor for the wPolygon_t class. Normally, applications do not call this
destructor directly; instead, a container will call this destructor automatically when the
container is destroyed. However, if you’ve created an independent (of any container)
polygon object, you should call this destructor to free the resources it uses when you are
done with the polygon.

set_width,
Page 1074 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
set_height,

resize This are overridden methods from the wFilledFrame_t class. They handle scaling the
polygon when you change the size of the polygon’s bounding box. See the descriptions in
wFillFrame_t for more details. Note that the these functions will usually make a copy
of the points data pointed at by the points field and then set scaledPoints to point at
this new data (note, however, that if you reset the size back to the original size, then these
functions will deallocate the storage pointed at by the scaledPoints field).

set_points This is the mutator for the points and nPonts data fields.

nPoints: This argument specifies the number of points in the points array passed as the
second argument.

points: this is a pointer to an array of nPoints w.POINT elements. The set_points
method will make a copy of this data into internally allocated storage (on the heap) and
store a pointer to the new data in the points field (this call also frees any storage previously
in use by the points and scaledPoints fields).

get_nPoints This accessor returns the number of points in the polygon (the value of the nPoints
field).

get_points The get_points accessor function returns the value of the points or scaledPoints
field. It returns a pointer to the points field if the current bounding box width and
height of the polygon haven’t changed since the last set_points call. This method
returns scaledPoints if the polygon has been resized.

 38.3.4.5 wRectangle_t
The wRectangle_t graphic object displays a (clickable) rectangle on a window or form.

 wRectangle_t:
 class inherits(wFilledFrame_t);

 procedure create_wRectangle
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword
); external;

 override method processMessage; external;

 endclass;

create_wRectangle

This is the consructor for the wRectangle_t class. If you call this as a class procedure
(e.g., "wRectangle_t.create_wRectangle") then this procedure will allocate storage for a
new wRectangle_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then wRectangle_t will initialize that
object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the window object on which the ellipse will be drawn.
Released to the Public Domain Page 1075

HLA Standard Library
x, y, width, height: These arguments form a bounding box in which the rectangle will be
drawn. If width and height are the same value, then the rectangle will form a square.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the rectangle.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the rectangle.

processMessage This is a private method that applications must not call.

 38.3.4.6 wRoundRect_t
wRoundRect_t objects are graphic objects that are rectangles with rounded corners.

 wRoundRect_t:
 class inherits(wFilledFrame_t);

 var
 align(4);
 wRoundRect_private:
 record

 cornerWidth :dword;
 cornerHeight :dword;

 endrecord;

 procedure create_wRoundRect
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 cornerWidth :dword;
 cornerHeight :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 method get_cornerWidth; @returns("eax"); external;
 method get_cornerHeight; @returns("eax"); external;

 method set_cornerWidth(cornerWidth:dword); external;
 method set_cornerHeight(cornerHeight:dword); external;

 override method processMessage; external;

 endclass;

cornerWidth This data field controls the width of the ellipse that Windows draws on each corner of the
rounded rectangle. Applications should not access this field directly, they should use the
appropriate accessor and mutator functions to access or set the value of this data field.
This value should be less than 1/2 the height of the round rectangle object.

cornerHeight This data field controls the height of the ellipse that Windows draws on each corner of the
rounded rectangle. Applications should not access this field directly, they should use the
Page 1076 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
appropriate accessor and mutator functions to access or set the value of this data field.
This value should be less than 1/2 the height of the round rectangle object.

create_wRoundRect

This is the consructor for the wRoundRect_t class. If you call this as a class procedure
(e.g., "wRoundRect_t.create_wRoundRect") then this procedure will allocate storage for a
new wRoundRect_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wRoundRect will initialize
that object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the round
rectangle will be drawn.

x, y, width, height: These arguments form a bounding box in which the round rectangle
will be drawn.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the round rectangle.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the round rectangle.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the round rectangle (the area just outside the rounded corners).

get_cornerWidth,

get_cornerHeight These are the accessor functions for the cornerWidth and cornerHeight data fields.
Applications should call these methods rather than accessing the data fields directly.

set_cornerWidth,

set_cornerHeight These are the mutator functions for the cornerWidth and cornerHeight data fields.
Applications should call these methods rather than writing directly to the data fields.

processMessage This is a private method that applications must not call.

 38.3.5 Buttons
The HOWL button widgets come in two basic varieties: checkable (check boxes and radio buttons) and non-

checkable (push buttons). All buttons are derived from the wClickable_t class. The constructors for these
buttons let you initialize the onClick widgetProc associated with all buttons; you can also call the
set_onDblClick method to make a button double-clickable.

 38.3.6 wCheckBox_t
wCheckBox_t objects hare a binary state (checked or unchecked). Whenever the user clicks on a checkbox,

the widget toggles its state. Note that wCheckBox_t objects inherit the fields of the wCheckable_t class. You
can call the get_check and set_check methods of that class to get the current wCheckBox_t object state or to
set it.

 wCheckBox_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox
 (
 wcbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
Released to the Public Domain Page 1077

HLA Standard Library
 onClick :widgetProc
); external;

 endclass;

create_wCheckBox

This is the consructor for the wCheckBox_t class. If you call this as a class procedure
(e.g., "wCheckBox_t.create_wCheckBox") then this procedure will allocate storage for a
new wCheckBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wCheckBox will initialize
that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the right of the check
box. Windows makes an internal copy of this string, so the value need only exist for as
long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 38.3.7 wCheckBox3_t
wCheckBox3_t checkboxes are similar to standard checkboxes except they have three states: checked,

unchecked, and grayed. The get_state method (inherited from wCheckable_t) will return 0 (unchecked), 1
(checked), or 2 (grayed).

 wCheckBox3_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox3
 (
 wcb3Name :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBox3

This is the consructor for the wCheckBox3_t class. If you call this as a class procedure
(e.g., "wCheckBox3_t.create_wCheckBox3") then this procedure will allocate storage for
a new wCheckBox3_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wCheckBox3 will initialize
that object in-place.
Page 1078 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the right of the check
box. Windows makes an internal copy of this string, so the value need only exist for as
long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 38.3.8 wCheckBox3LT_t
wCheckBox3LT_t checkboxes are similar to wCheckBox3_t checkboxes except they draw the caption text

to the left of the checkbox rather than to the right of it. The get_state method (inherited from wCheckable_t)
will return 0 (unchecked), 1 (checked), or 2 (grayed).

 wCheckBox3LT_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox3LT
 (
 wcb3ltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBox3LT

This is the consructor for the wCheckBox3LT_t class. If you call this as a class procedure
(e.g., "wCheckBox3LT_t.create_wCheckBox3LT") then this procedure will allocate
storage for a new wCheckBox3LT_t object on the heap and return a pointer to that object
in ESI. If you make a standard object call to this constructor, then
create_wCheckBox3LT will initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the left of the check box.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.
Released to the Public Domain Page 1079

HLA Standard Library
 38.3.9 wCheckBoxLT_t
wCheckBoxLT_t checkboxes are similar to wCheckBox_t checkboxes except they draw the caption text to

the left of the checkbox rather than to the right of it.

 wCheckBoxLT_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBoxLT
 (
 wcb3ltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBoxLT

This is the consructor for the wCheckBoxLT_t class. If you call this as a class procedure
(e.g., "wCheckBoxLT_t.create_wCheckBoxLT") then this procedure will allocate storage
for a new wCheckBoxLT_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wCheckBoxLT will
initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the left of the check box.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 38.3.10 wPushButton_t
wPushButton_t objects are standard Windows push button widgets. They almost always invoke some sort of

"onClick" widgetProc procedure when the button is pressed.

 wPushButton_t:
 class inherits(wButton_t);

 procedure create_wPushButton
 (
 wpbName :string;
 caption :string;
 parent :dword;
Page 1080 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wPushButton

This is the consructor for the wPushButton_t class. If you call this as a class procedure
(e.g., "wPushButton_t.create_wPushButton") then this procedure will allocate storage for
a new wPushButton_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wPushButton will
initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn on the push button. Windows makes an
internal copy of this string, so the value need only exist for as long as the constructor call
is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the push button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the push button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the push button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure.

 38.3.11 wRadioButton_t
wRadioButton_t objects are stand-alone radio buttons on a form. You’ll rarely use these objects because

radio buttons are generally employed in sets (using a wRadioSet_t container and wRadioSetButton_t
objects). A stand-alone radio button is essentially a check box with a circle and a dot rather than a square and an
"x". The main purpose for wRadioButton_t objects (and wRadioButtonLT_t objects) is for programmers who
want to manually control the operation of the radio buttons.

 wRadioButton_t:
 class inherits(wCheckable_t);

 procedure create_wRadioButton
 (
 wrbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioButton
Released to the Public Domain Page 1081

HLA Standard Library
This is the consructor for the wRadioButton_t class. If you call this as a class procedure
(e.g., "wRadioButton_t.create_wRadioButton") then this procedure will allocate storage
for a new wRadioButton_t object on the heap and return a pointer to that object in ESI.
If you make a standard object call to this constructor, then create_wRadioButton will
initialize that object in-place.

wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the right of the radio button.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 38.3.12 wRadioButtonLT_t
wRadioButton_LT objects are just like wRadioButton_t objects except the text appears to the left of the

radio button rather than to the right.

 wRadioButtonLT_t:
 class inherits(wCheckable_t);

 procedure create_wRadioButtonLT
 (
 wrbltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioButtonLT

This is the consructor for the wRadioButton_t class. If you call this as a class procedure
(e.g., "wRadioButtonLT_t.create_wRadioButtonLT") then this procedure will allocate
storage for a new wRadioButtonLT_t object on the heap and return a pointer to that
object in ESI. If you make a standard object call to this constructor, then
create_wRadioButtonLT will initialize that object in-place.

wrbltName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the left of the radio button. Windows
makes an internal copy of this string, so the value need only exist for as long as the
constructor call is in progress.
Page 1082 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButtonLT_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on. Note that the
wRadioSet..endwRadioSet statement in the HOWL declarative language will report
an error if you attempt to add some non-radio-set-button widget to the wRadioSet_t
object you’re creating.

 38.3.13 wRadioSet_t
A wRadioSet_t object is a container that holds (only) wRadioSetButton_t and

wRadioSetButtonLT_t objects. The wRadioSet_t object automatically maintains all the buttons it contains,
ensuring that (at most) one button is checked at a time. Note that an application must only insert groups of
wRadioSetButton_t and wRadioSetButtonLT_t objects into the widget list of a wRadioSet_t object. If
an application (manually) inserts other objects into a wRadioSet_t widget list, the radio buttons may not
behave properly. Visually, a wRadioSet_t object is identical to a wGroupBox_t object. That is, it is a
rectangular panel with a caption in the upper-left-hand corner of the rectangle.

 wRadioSet_t:
 class inherits(wContainer_t);

 var
 align(4);
 wRadioSet_private:
 record

 // Windows handle for the group box window

 groupBoxHndl :dword;

 endrecord;

 procedure create_wRadioSet
 (
 wrsName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 override method processMessage; external;
 override method destroy; external;
 override method set_width; external;
 override method set_height; external;
 override method resize; external;

Released to the Public Domain Page 1083

HLA Standard Library
 endclass;

groupBoxHndl This is the handle for the actual group box (a separate surface for the background is use to
fill in the area behind the group box). This is a private field. Applications should not
access it.

create_wRadioSet This is the constructor for the wRadioSet_t class. If you call this as a class procedure (e.g.,
"wRadioSet_t.create_wRadioSet") then this procedure will allocate storage for a new
wRadioSet_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wRadioSet will initialize that
object in-place.

wrsName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn in the upper-left-hand corner of the
wRadioSet_t’s panel rectangle. Windows makes an internal copy of this string, so the
value need only exist for as long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio set group
box will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

processMessage This is a private method. Applications must not call it.

destroy This is the class constructor. Usually, a container object will call this destructor
automatically for you; applications don’t normally call this destructor unless they create a
wRadioSet_t object and don’t insert it into some container’s widget list.

set_width,

set_height,

resize These fields are overriden from the wVisual_t class. See the description there for more
details.

You will want to call the insertWidget method (inherited from wContainer_t) in order to add
wRadioSetButton_t or wRadioSetButtonLT_t objects to a wRadioSet_t object.

 38.3.13.1 wRadioSetButton_t
A wRadioSetButton_t is a standard radio set button that appears within a wRadioSet_t group box.

wRadioSetButton_t objects are identical to wRadioButton_t objects except that they support automatic
radio button control on a wRadioSet_t group box. You can actually specify wRadioSetButton_t objects
outside of a wRadioSet_t group box; however, HOWL will only maintain automatic radio button operation on
those buttons you declare (in the HOWL declarative language) in a sequence without any other intervening
widget types (except wRadioSetButtonLT_t objects, which can be intermixed with wRadioSetButton_t
objects).

 wRadioSetButton_t:
 class inherits(wCheckable_t);

 procedure create_wRadioSetButton
 (
 wrbName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
Page 1084 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
); external;

 endclass;

create_wRadioSetButton

This is the consructor for the wRadioSetButton_t class. If you call this as a class
procedure (e.g., "wRadioSetButton_t.create_wRadioSetButton") then this procedure will
allocate storage for a new wRadioSetButton_t object on the heap and return a pointer
to that object in ESI. If you make a standard object call to this constructor, then
create_wRadioSetButton will initialize that object in-place.

wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the right of the radio button.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 38.3.13.2 wRadioSetButtonLT_t
A wRadioSetButtonLT_t is identical to a wRadioSetButton_t object except it draws the caption text to

the left of the button rather than to the right of the button.

 wRadioSetButtonLT_t:
 class inherits(wCheckable_t);

 procedure create_wRadioSetButtonLT
 (
 wrbltName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioSetButtonLT

This is the consructor for the wRadioSetButtonLT_t class. If you call this as a class
procedure (e.g., "wRadioSetButtonLT_t.create_wRadioSetButtonLT") then this
procedure will allocate storage for a new wRadioSetButton_t object on the heap and
return a pointer to that object in ESI. If you make a standard object call to this constructor,
then create_wRadioSetButtonLT will initialize that object in-place.
Released to the Public Domain Page 1085

HLA Standard Library
wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the left of the radio button. Windows
makes an internal copy of this string, so the value need only exist for as long as the
constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 38.3.14 Editors and Edit Boxes
The HOWL edit widgets allow users to enter passwords, single lines of text, or text documents (up to 32KB

long). Users can cut and paste data between edit widgets and perform many other text-editing functions.
Applications can select text from an edit widget, insert text into the widget, or extract text from the widget.
Indeed, with just a little extra code, it’s quite possible to create a fully-featured text editor using the HOWL edit
widgets.

Perhaps the biggest limitation to these widgets is their 32K text limitation. A future version of HOWL will
include an extended text editor that overcomes this limitation.

All of the HOWL edit widgets are subclasses of the wabsEditBox_t class and, therefore, inherit all the
fields and methods from that abstract base class. You should take a moment to review that abstract base class
before looking at the following derived class definitions.

 38.3.14.1 wEditBox_t
A wEditBox_t object allows a user to enter a single string (a single line of text) from the keyboard.

 wEditBox_t:
 class inherits(wabsEditBox_t);

 procedure create_wEditBox
 (
 webName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 endclass;

create_wEditBox This is the consructor for the wEditBox_t class. If you call this as a class procedure (e.g.,
"wEditBox_t.create_wEditBox") then this procedure will allocate storage for a new
wEditBox_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wEditBox will initialize that object
in-place.
Page 1086 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the edit box’s text entry field with this string. This is
commonly an empty string in most objects.

parent: this is the handle of the wView_t or wForm_t object on which the edit box will be
drawn.

x, y, width, height: These arguments form a bounding box in which the edit box will be
drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the edit box widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in an edit box in response to some other system event (such as a button press or loss of
focus).

 38.3.14.2 wPasswdBox_t
A wPasswdBox_t object is almost identical to a wEditBox_t object. The difference is that Windows

substitutes asterisks (or some other user-defined character) for the characters the user types at the keyboard to
protect passwords from prying eyes.

 wPasswdBox_t:
 class inherits(wabsEditBox_t);

 procedure create_wPasswdBox
 (
 wpwbName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_passwordChar; @returns("eax"); external;
 method set_passwordChar(pwc:char); external;

 endclass;

create_wPasswdBox

This is the consructor for the wPasswdBox_t class. If you call this as a class procedure
(e.g., "wPasswdBox_t.create_wPasswdBox") then this procedure will allocate storage for
a new wPasswdBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wPasswdBox will initialize
that object in-place.

webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the password box’s text entry field with this string. This
is commonly an empty string in most objects.
Released to the Public Domain Page 1087

HLA Standard Library
parent: this is the handle of the wView_t or wForm_t object on which the password box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the password box will
be drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the password box widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in a password box in response to some other system event (such as a button press or
loss of focus).

 38.3.14.3 wTextEdit_t
A wTextEdit_t object allows the user to enter multiple lines of text in a text editor format. If the text editor

string data contains more lines (or more characters on a given line) than will fit in the text editor window,
Windows will automatically attach scroll bars to the window so the user can scroll through the text data.

 wTextEdit_t:
 class inherits(wabsEditBox_t);

 procedure create_wTextEdit
 (
 wteName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method getLineCount; @returns("eax"); external;

 method getLineIndex(charIndex:dword);
 @returns("eax"); external;

 method getCharIndex(lineIndex:dword);
 @returns("eax"); external;

 method getLine(lineIndex:dword; txt:string); external;

 method a_getLine(lineIndex:dword);
 @returns("eax"); external;

 method scroll(horz:int32; vert:int32); external;
 method scrollCaret; external;
 method setTabStops(tabstops:dword); external;

 endclass;

create_wTextEdit
Page 1088 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
This is the consructor for the wTextEdit_t class. If you call this as a class procedure
(e.g., "wTextEdit_t.create_wTextEdit") then this procedure will allocate storage for a new
wTextEdit_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTextEdit will initialize that
object in-place.

webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the text editor’s text entry field with this string. This is
commonly an empty string in most objects.

parent: this is the handle of the wView_t or wForm_t object on which the text editor will
be drawn.

x, y, width, height: These arguments form a bounding box in which the text editor will be
drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the text editor widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in a text editor widget in response to some other system event (such as a button press
or loss of focus).

get_lineCount This method returns the number of lines of text in the text editor widget.

get_lineIndex Given a zero-based character index into the text editor’s string (up to 32K), this function
will return a zero-based line number for that index (that is, the line number of the line that
contains that particular character).

get_charIndex Given a (zero-based) line number into the text editor’s data string, this function returns the
(zero-based) character index (into the text editor’s string data) of the first character on that
line.

get_line Given a line index into the text editor’s data string, this function returns the specified
string.

lineIndex This is the zero-based line index into the text editor’s data string.

txt: this is a string object wher get_line will copy the string data for the specified line. This
string must be previously allocated and have sufficient storage to hold the string or
HOWL will raise an exception.

a_get_line Given a line index, this method makes a copy of the specified text editor line on the heap
and returns a pointer to this string in the EAX register. It is the caller’s responsibility to
free the storage associated with this string with the application is done using it.

scroll This function will scroll the text editor window the number of characters specified by the
two arguments in the horizontal and vertical directions.

horz: this is the number of characters to scroll in the horizontal direction.

vert: this is the number of characters to scroll in the vertical direction. Windows will not
let you scroll beyond the last line in the text editor’s string; if you attempt to do so,
Windows will simply display the last line of text at the top of the editor’s window.

scrollCaret Positions the text display window so that the text containing the insertion caret is visible
on the screen.

setTabStops This function sets tabstops every ’tabstops’ characters, where ’tabstops’ is the argument
you pass to this method.
Released to the Public Domain Page 1089

HLA Standard Library
 38.3.15 List, Drag, and Combo Boxes
List and drag boxes are tables of data from which the user can select an item (a row) by clicking on the line

of text associated with that item. Applications can add, delete, or rearrange lines of text in list and drag boxes.
End users can rearrange data in a drag box with no interaction from the application.

 38.3.15.1 wListBox_t
A wListBox_t object is a table of strings created by the application. The user can click or double-click on

these strings. The application can insert and delete strings in the list box. If there are too many strings to display
in the window, then Windows will attach a vertical scroll bar to the list box and allow the user to scroll through
the list box entry.

A list box will either display the strings in the order the application inserts them into the list box, or it can
display them in a sorted order. You specify whether you want a sorted or unsorted list box when you create it.

 wListBox_t:
 class inherits (wClickable_t);

 var
 align(4);
 wListBox_private:
 record

 textColor :dword;

 endrecord;

 procedure create_wListBox
 (
 wlbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 sort :boolean;
 onClick :widgetProc
); external;

 method add_string(s:string); external;
 method insert_string(index:dword; s:string); external;
 method delete_string(index:dword); external;
 method reset; external;

 method find_prefix
 (
 s :string;
 startIndex :dword
); @returns("eax"); external;

 method find_string
 (
 s :string;
 startIndex :dword
); @returns("eax"); external;

 method get_count; @returns("eax"); external;
 method get_curSel; @returns("eax"); external;
 method get_itemData(i:dword); @returns("eax"); external;
 method a_get_text(i:dword); @returns("eax"); external;
 method get_text(i:dword; s:string); external;

Page 1090 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 method set_curSel(index:dword); @returns("eax"); external;
 method set_itemData
 (
 index :dword;
 data :dword
); external;

 method load_dir
 (
 pathname :string;
 attributes :dword
); external;

 method get_textColor; @returns("eax"); external;
 method set_textColor(textColor:dword); external;

 override method processMessage; external;

 endclass;

textColor This is the RGB color that Windows will use to draw the text on the listbox. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

create_wListBox

This is the consructor for the wListBox_t class. If you call this as a class procedure (e.g.,
"wListBox_t.create_wListBox") then this procedure will allocate storage for a new
wListBox_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wListBox will initialize that object
in-place.

wlbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the list box will be
drawn.

x, y, width, height: These arguments form a bounding box in which the list box will be
drawn.

sort: if this field is true, then the constructor will create a sorted list box. If this value is
false, then the constructor will create an unsorted list box.

onClick: this is the name of a widgetProc that HOWL will call whenever select a (new)
line in a list box.

add_string This method appends a string (specified as the argument) to the end of an unsorted list
box. It will insert the string at the proper position within a sorted list box. Note that
Windows will make an internal copy of the string’s data.

insert_string This method inserts a string before some other entry in the list box. This method ignores
the sorted/unsorted state of the list box and always inserts the string at the specified index.
The index must be in the range 0..count where count is the number of entries in the list
box. If you specify the value count as the index, then this method appends the item to the
end of the list (similar to add_string, except no sorting).

index: the line number before which the string is to be inserted. This is a zero-based index.

s: this is the string data to insert into the list box.

delete_string This method deletes the string at the specified index in the list box.

reset This method deletes all the strings in the list box.

find_prefix This method searches for a line of text in the list box that begins with some string. This
method begins searching starting with an application-defined line index into the list box.
Released to the Public Domain Page 1091

HLA Standard Library
This method returns the index into the list box where the string prefix was found, or the
constant w.LB_ERR if it could find no string with the specified prefix.

s: the string prefix to search for in the list box.

startIndex: the starting line index to begin the search.

find_string This method searches for a line of text in the list box that matches some string. This
method begins searching starting with an application-defined line index into the list box.
This method returns the index into the list box where the string was found, or the constant
w.LB_ERR if it could not find the string.

s: the string to search for in the list box.

startIndex: the starting line index to begin the search.

get_count This method returns the number of lines in the list box (in EAX).

get_curSel This method returns the index of the currently selected item in the list box (in EAX).

get_itemData Each line of text in a list box has a 32-bit user-defined data value associated with it. You
could, for example store a pointer to some object or other data type in this field and
retrieve it when the user selects an item in the list box. The get_itemData method
retrieves this user data from the list box. The single argument is the index of the list box
entry for which you want the user data (you would typically supply the data returned by
get_curSel as this argument).

a_get_text This method makes a copy of the string data (on the heap) for the line in the list box at the
index specified by the argument. It returns a pointer to this new string in EAX. It is the
caller’s responsibility to free the storage for this string when the caller is done with it.

get_text This method makes a copy of the string data for the line in the list box at a user-supplied
index. It stores the string data into a string object whose address the caller passes as an
argument. That string must have sufficient storage allocated for it or HOWL will raise an
exception.

i: index of the line in the list box whose string data this method will extract.

s: pointer to a string object where this method will store the result.

set_curSel This methods highlights the line at the specified index in the list box (it becomes the
"currently selected" item).

set_itemData This method allows you to associate a user-defined 32-bit data value with an item in the
list box. If 32 bits is insufficient for your needs, you can always store a pointer to the
actual data in this data area.

index: this is the (zero-based) index of the line in the list box that you want to attach the
data to.

data: this is the 32-bit value you want to associate with the line in the list box.

load_dir This method populates the list box with the file names from the directory specified by the
pathname argument.

pathname: an ambiguous pathname (e.g., "c:*.*" that specifies the path to the files and
the files at that path tha t you want to load into the list box.

attributes: either zero, or the logical OR of one or more of the following Windows’
attribute constants:

w.DDL_ARCHIVE Includes archived files.

w.DDL_DIRECTORY Includes subdirectories. Subdirectory names are enclosed in
square brackets ([]).

w.DDL_DRIVES Includes drives. Drives are listed in the form [-x-], where x is
the drive letter.

w.DDL_EXCLUSIVE Includes only files with the specified attributes. By default,
read-write files are listed even if DDL_READWRITE is not
specified.
Page 1092 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
w.DDL_HIDDEN Includes hidden files.

w.DDL_READONLY Includes read-only files.

w.DDL_READWRITE Includes read-write files with no additional attributes.

w.DDL_SYSTEM Includes system files.

get_textColor,

set_textColor These accessor/mutator functions get and set the text color that the widget uses.

processMessage This is a private method. Applications must not call it.

 38.3.15.2 wDragListBox_t
A wDragListBox_t object is a special kind of list box that allows the user to rearrange the items in the list

box without any interaction from the application. An application uses drag list boxes exactly like list boxes
(except, of course, for the object’s type name). As the wDragListBox_t class is derived from wListBox_t, all
of the list box methods are available to wDragListBox_t objects. Note that HOWL does not offer drag list
boxes the "sort" option, which makes little sense as the end user will probably rearrange their drag list boxes thus
defeating the purpose of the sort option.

 wDragListBox_t:
 class inherits (wListBox_t);

 var
 align(4);
 wDragListBox_private:
 record

 // The following is a private field.
 // External code should not access it.

 startDragIndex :dword;

 endrecord;

 procedure create_wDragListBox
 (
 wlbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 override method processMessage; external;

 endclass;

create_wDragListBox

This is the consructor for the wDragListBox_t class. If you call this as a class procedure
(e.g., "wDragListBox_t.create_wDragListBox") then this procedure will allocate storage
for a new wDragListBox_t object on the heap and return a pointer to that object in ESI.
If you make a standard object call to this constructor, then create_wDragListBox will
initialize that object in-place.
Released to the Public Domain Page 1093

HLA Standard Library
wlbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the drag list box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the drag list box will
be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever the user
selects a (new) line in a drag list box.

 38.3.15.3 wComboBox_t
The wComboBox_t object is a combination of an edit box, a list box, and a pull-down menu. The user can

type text directly into a list box or click on a button attached to the combo box and select an item from a list box
that appears in a pull-down menu.

 wComboBox_t:
 class inherits (wListBox_t);

 var
 align(4);
 wComboBox_private:
 record

 onEditChange :widgetProc;
 onCancel :widgetProc;
 onSelEndOk :widgetProc;

 endrecord;

 procedure create_wComboBox
 (
 wcbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 sort :boolean;
 onSelChange :widgetProc
); external;

 method get_onEditChange; @returns("eax"); external;
 method get_onCancel; @returns("eax"); external;
 method get_SelEndOk; @returns("eax"); external;

 method set_onEditChange(onEditChange:widgetProc); external;
 method set_onCancel(onCancel:widgetProc); external;
 method set_SelEndOk(onSelEndOk:widgetProc); external;

 method a_get_editBoxText; @returns("eax"); external;
 method get_editBoxText(theText:string); external;

 method set_editBoxText(theText:string); external;

 override method load_dir; external;
 override method processMessage; external;
Page 1094 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 override method add_string; external;
 override method insert_string; external;
 override method delete_string; external;
 override method reset; external;
 override method find_prefix; external;
 override method find_string; external;
 override method get_count; external;
 override method get_curSel; external;
 override method get_itemData; external;
 override method a_get_text; external;
 override method get_text; external;
 override method set_curSel; external;
 override method set_itemData; external;

 endclass;

onEditChange This is a pointer to a widgetProc that HOWL will call whenever the user makes a change
to the edit box component of a combo box. If this field is NULL, HOWL will ignore it.
Note that applications should only access or modify this field using the associated
accessor/mutator methods.

onCancel This is a pointer to a widgetProc that HOWL will call whenever the user cancels a change
to the edit box component of a combo box. If this field is NULL, HOWL will ignore it.
Note that applications should only access or modify this field using the associated
accessor/mutator methods.

onSelEndOk This is a pointer to a widgetProc that HOWL will call whenever the user selects and item
from the pull-down list box and the application should select that entry. If this field is
NULL, HOWL will ignore it. Note that applications should only access or modify this
field using the associated accessor/mutator methods.

create_wComboBox

This is the consructor for the wComboBox_t class. If you call this as a class procedure
(e.g., "wComboBox_t.create_wComboBox") then this procedure will allocate storage for
a new wComboBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wComboBox will initialize
that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: This is the initial string data for the combo box’s edit box field.

parent: this is the handle of the wView_t or wForm_t object on which the combo box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the combo box will
be drawn.

sort: like list boxes, combo boxes offer the option of sorting the list for you. If this field is
true, HOWL will create a sorted list in the combo box; if this field is false, the list in the
combo box will be unsorted.

onSelChange: this is the name of a widgetProc that HOWL will call whenever the user
selects a (new) line in the list of a combo box.

get_onEditChange,

get_onCancel,

get_onSelEndOk These are the accessor functions for the combo box’s data fields.

set_onEditChange,

set_onCancel,
Released to the Public Domain Page 1095

HLA Standard Library
set_onSelEndOk These are the mutator functions for the combo box’s data fields.

a_get_editBox_text This method returns a copy of the string data currently held in the combo box’s edit box
component. HOWL allocates storage for this string and returns a pointer to the new string
in the EAX register. It is the caller’s responsibility to free the storage for this string.

get_editBox_text This method retrieves the string from the combo box and stores the string data in the string
object passed as a parameter. The destination string must have sufficient storage or
HOWL will raise an exception.

set_editBox_text This function replaces the combo box’s string data with the string passed as an argument.

The remaining methods listed in the wComboBox_t declaration above are overriden methods from the
wListBox_t class. The overriding occurs for internal technical reasons. To an application, these methods are
used exactly like those in a list box. Please see the discussion in the list box section for more details on the
operation of these methods.

 38.3.16 Progress Bars
A progress bar is a bar graph that shows the progress of some lengthy operation during the execution of an

application.

 38.3.16.1 wProgressBar_t
The wProgressBar_t type implements Windows progress bars in HOWL. A progress bar has three main

attributes: a current position (the current "progress"), a minimum position, and a maximum position. When
drawing a progress bar, Windows will create a horizontal bar graph and will fill the bar graph from the left to the
right based on the current position, minimum, and maximum values.

 wProgressBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wProgressBar_private:
 record

 position :word;
 align(4);

 lowRange :word;
 hiRange :word;

 endrecord;

 procedure create_wProgressBar
 (
 wpbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 method get_position; @returns("eax"); external;
 method set_position(position:word); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
 method set_range(low:word; high:word); external;
Page 1096 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

 endclass;

position These data field is the current position of the track bar. Applications should never access
this field directly. Instead, they should use the accessor/mutator methods to read or write
this field’s data.

lowRange This is the minimum value for the progress bar’s position. It is usually zero, but you can
set any minimum value you like as long as it is less than the value held in the hiRange
data field. You should never set the value of the position data field to a value lower than
the lowRange value. Applications should never access this field directly. Instead, they
should use the accessor/mutator methods to read or write this field’s data.

hiRange This is the maximum value for the progress bar’s position. You can set any maximum
value you like as long as it is greater than the value held in the lowRange data field. You
should never set the value of the position data field to a value higher than the hiRange
value. Applications should never access this field directly. Instead, they should use the
accessor/mutator methods to read or write this field’s data.

create_wProgressBar

This is the consructor for the wProgressBar_t class. If you call this as a class procedure
(e.g., "wProgressBar_t.create_wProgressBar") then this procedure will allocate storage for
a new wProgressBar_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wProgressBar will
initialize that object in-place.

wpbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the progress bar
will be drawn.

x, y, width, height: These arguments form a bounding box in which the progress bar will
be drawn.

get_position,

get_lowRange,

get_hiRange These are the accessor methods for the class’ data fields.

set_position,

set_lowRange,

set_hiRange These are the mutator functions for the class’ data fields. Note that changing any of these
values (and in particular, changing the position value) will cause Windows to redraw the
progress bar reflecting the new values.

 38.3.17 Scroll Bars and Track Bars
Scroll bars and track bars are positional input devices. Applications generally use scroll bars to specify a

position to view on a form (when the form’s contents are too large to fit in the window and one time) whereas a
trackbar provides a generic numeric input device selectable by the position of the slider on the trackbar. Both
widgets are available in horizontal and vertical orientations.

Note that Windows can automatically associate horizontal and vertical scroll bars with a window when you
create that window. For window scrolling purposes, this is generally how you create and use scroll bars.
However, you can create stand-alone scroll bars for use by your applications using the scrollbar widget.

 38.3.17.1 wScrollBar_t
The wScrollBar_t class lets you create stand-alone scroll bars in your application. Scroll bars offer a large

number of event notifications that tell you about various user interactions with the scroll bar.
Released to the Public Domain Page 1097

HLA Standard Library
Scroll bars in early versions of Windows were limited to 16-bit range and position values. For the most part,
later versions of Windows extended all these values to 32 bits. However, one important pair of values, returned
when tracking movements on scroll bars, is still limited to 16-bit values. Therefore, if you plan to make full use
of the scroll bar’s feature set and notifications, you need to limit yourself to using 16-bit ranges and positions. In
general, this is not a severe limitations because there aren’t enough pixels on the screen to provide a granularit of
16 bits, much less 32. However, just note that although you can set the low and high range values for a scroll bar
to arbitrary 32-bit values, you should limit yourself to 16-bit values.

 wScrollBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wScrollBar_private:
 record

 onChange :widgetProc;
 onThumbPosn :widgetProc;
 onThumbTrack :widgetProc;
 onLineLeft :widgetProc;
 onLineRight :widgetProc;
 onLineDown :widgetProc;
 onLineUp :widgetProc;
 onEndScroll :widgetProc;
 onPageDown :widgetProc;
 onPageUp :widgetProc;
 onPageLeft :widgetProc;
 onPageRight :widgetProc;
 onTop :widgetProc;
 onBottom :widgetProc;

 lineInc :uns32;
 pageInc :uns32;
 curPosn :dword;
 info :w.SCROLLINFO;
 textColor :dword;

 endrecord;

 procedure create_wScrollBar
 (
 wtbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 override method enable; external;
 override method disable; external;
 override method show; external;
 override method hide; external;

 method get_position; @returns("eax"); external;
 method set_position(position:dword); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
Page 1098 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 method set_range(low:dword; high:dword); external;

 method get_onChange; @returns("eax"); external;
 method get_onThumbPosn; @returns("eax"); external;
 method get_onThumbTrack; @returns("eax"); external;
 method get_onLineDown; @returns("eax"); external;
 method get_onLineUp; @returns("eax"); external;
 method get_onLineLeft; @returns("eax"); external;
 method get_onLineRight; @returns("eax"); external;
 method get_onEndScroll; @returns("eax"); external;
 method get_onPageDown; @returns("eax"); external;
 method get_onPageUp; @returns("eax"); external;
 method get_onPageLeft; @returns("eax"); external;
 method get_onPageRight; @returns("eax"); external;
 method get_onTop; @returns("eax"); external;
 method get_onBottom; @returns("eax"); external;
 method get_lineInc; @returns("eax"); external;
 method get_pageInc; @returns("eax"); external;

 method set_onChange(onChange:widgetProc); external;
 method set_onThumbPosn(onThumbPosn:widgetProc); external;
 method set_onThumbTrack(onThumbTrack:widgetProc); external;
 method set_onLineDown(onLineDown:widgetProc); external;
 method set_onLineUp(onLineUp:widgetProc); external;
 method set_onLineLeft(onLineLeft:widgetProc); external;
 method set_onLineRight(onLineRight:widgetProc); external;
 method set_onEndScroll(onEndScroll:widgetProc); external;
 method set_onPageDown(onPageDown:widgetProc); external;
 method set_onPageUp(onPageUp:widgetProc); external;
 method set_onPageLeft(onPageLeft:widgetProc); external;
 method set_onPageRight(onPageRight:widgetProc); external;
 method set_onTop(onTop:widgetProc); external;
 method set_onBottom(onBottom:widgetProc); external;

 method set_lineInc(lineInc:dword); external;
 method set_pageInc(pageInc:dword); external;

 method get_textColor; @returns("eax"); external;

 method set_textColor(textColor:dword); external;

 override method processMessage; external;

 endclass;

onChange This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on the scroll bar (using any means to
change the value). Upon entry into the widgetProc procedure, the H.O. word of the
wParam argument contains the current scroll bar position.

onThumbPosn This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on the scroll bar by dragging the
thumb. HOWL calls this procedure after the user has released the mouse button while
dragging the thumb control. Upon entry into the widgetProc procedure, the H.O. word
of the wParam argument contains the current scroll bar position.

onThumbTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call while
the user is dragging the thumb around the scroll bar. An application can use this
Released to the Public Domain Page 1099

HLA Standard Library
notification to dynamically adjust the screen during thumb movement. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position. Note that this is the only notification that provides only a 16-bit value
for the thumb position; if you don’t need to use this notification, it is possible to obtain 32-
bit values for the thumb position (from the other notification calls).

onLineLeft This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by pressing
the left arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineRight This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by pressing
the right arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by pressing
the down arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by pressing
the up arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O. word
of the wParam argument contains the current scroll bar position.

onEndScroll This field, if non-NULL, points at a widgetProc procedure that HOWL will call after
any scroll operation is complete. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onPageDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by clicking on
the scroll bar between the thumb and the down arrow on the scroll bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by clicking on
the scroll bar between the thumb and the up arrow on the scroll bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageLeft This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by clicking
on the scroll bar between the thumb and the left arrow on the scroll bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageRight This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by clicking
on the scroll bar between the thumb and the right arrow on the scroll bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onTop This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the thumb all the way to the top on a vertical scroll bar or all the
way to the left on a horizontal scroll bar. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current scroll bar position (which should
be the maximum value).

onBottom This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the thumb all the way to the bottom on a vertical scroll bar or all
the way to the right on a horizontal scroll bar. Upon entry into the widgetProc
procedure, the H.O. word of the wParam argument contains the current scroll bar position
(which should be the maximum value).
Page 1100 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
lineInc This data field contains the number of positions that will be added to or subtracted from
the scroll bar thumb’s current position when the user clicks on one of the scroll bar’s
arrow buttons. Applications should not access this data field directly, they should use the
standard class accessor/mutator functions to read and write this value.

pageInc This data field contains the number of positions that will be added to or subtracted from
the scroll bar thumb’s current position when the user clicks on the scroll bar between the
thumb and one of the arrow buttons. Applications should not access this data field
directly, they should use the standard class accessor/mutator functions to read and write
this value.

curPosn This is a private field used by the class. Applications should not access it.

info This is a private field used by the class. Applications should not access it.

textColor This is the RGB color that Windows will use to draw the text on the scrollbar. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

bkgColor This is the RGB color that Windows will use to paint the background of the scrollbar.
This is a private data field; applications should only access this value using the associated
access and mutator. The constructor initializes the backgroun color to white.

bkgBrush This is a private data field; applications should never access it.

create_wScrollBar

This is the consructor for the wScrollBar_t class. If you call this as a class procedure
(e.g., "wScrollBar_t.create_wScrollBar") then this procedure will allocate storage for a
new wScrollBar_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wScrollBar will initialize
that object in-place.

wtbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the scroll bar will
be drawn.

x, y, width, height: These arguments form a bounding box in which the scroll bar will be
drawn.

style: HOWL logically ORs this value with the Windows styles (w.WS_CHILD |
w.WS_VISIBLE) when creating the scroll bar. At the very least, this field should contain
w.SBS_HORZ for a horizontal scroll bar or w.SBS_VERT for a vertical scroll bar. Please
see the Windows documentation or the HLA w.hhf header file for additional scroll bar
style (SBS_*) constants.

onChange: this is the address (which can be NULL) of an onChange widgetProc
procedure. The constructor will initialize the onChange field with this value.

enable,

disable These two methods will enable or disable the scroll bar on the form. A disabled scroll bar
is still visible, but the user will be unable to interact with it.

show,

hide These two methos will make a scroll bar visible or invisible on the form.

get_position This function returns the current scroll bar position as a 32-bit value in the EAX register.
Note that you can call this method from any of the event notification procedures except
onThumbTrack to obtain the true 32-bit position of the thumb control (rather than
limiting yourself to the upper 16 bits of the wParam parameter). If you call this method
from the onThumbTrack notification procedure, it will not return the current position of
the thumb, instead it will return the last position before the user started dragging the thumb
around. Sadly, there is no way to obtain a 32-bit current thumb position while dragging
the thumb.
Released to the Public Domain Page 1101

HLA Standard Library
set_position This method sets the current thumb position on the scroll bar. The argument you pass to
this method must be between the low and high range values for the scroll bar.

get_lowRange This method returns (in EAX) the current lower range for the scroll bar. This is typically
zero, but you can program any 32-bit value you desire (see set_range).

get_hiRange This method returns (in EAX) the current upper range for the scroll bar.

set_range This method lets you set the low and high range values for the scroll bar. The default range
is 0..100, but you can set any 32-bit values you like. Note that if you intend to use the
onThumbTrack notification, you should limit the range to 16-bit values.

low: the lower bound of the scroll bar range

high: the upper bound of the scroll bar range.

get_onChange,

get_onThumbPosn,

get_onThumbTrack,

get_onLineDown,

get_onLineUp,

get_onLineLeft,

get_onLineRight,

get_onEndScroll,

get_onPageDown,

get_onPageUp,

get_onPageLeft,

get_onPageRight,

get_onTop,

get_onBottom These are the accessor methods for the corresponding widgetProc pointer data fields in
this class.

get_lineInc,

get_pageInc These are the accessor methods for the corresponding data fields in the class. Applications
should always use these accessor methods to read the values of the lineInc and
pageInc fields.

set_onChange,

set_onThumbPosn,

set_onThumbTrack,

set_onLineDown,

set_onLineUp,

set_onLineLeft,

set_onLineRight,

set_onEndScroll,

set_onPageDown,

set_onPageUp,

set_onPageLeft,

set_onPageRight,

set_onTop,

set_onBottom These are the mutator functions for all the widgetProc pointer fields in the class.

set_lineInc,
Page 1102 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
set_pageInc These are the mutator methods for the corresponding data fields in the class. Applications
should always use these accessor methods to write the values of the lineInc and
pageInc fields.

get_textColor,

set_textColor,

get_bkgColor,

set_bkgColor These accessor/mutator functions get and set the text and background colors that the
widget uses.

processMessage This is a private method in the class. Applications must not call this method.

 38.3.17.2 wTrackBar_t
wTrackBar_t objects are very similar in use to a scroll bar insofar as they provide a slider control that the

user can move between two extremes on the widget. However, whereas scroll bars have a specific user interface
purpose (moving the view through a window), track bars are generalized numeric input devices. Their purpose is
to input a numeric value between a low range and a high range via a slider control.

Like scroll bars, you should limit the range of trackbar responses to 16 bits if you intend to use the
onThumbTrack notification.

 wTrackBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wTrackBar_private:
 record

 onChange :widgetProc;
 onThumbPosn :widgetProc;
 onThumbTrack :widgetProc;
 onBottom :widgetProc;
 onLineDown :widgetProc;
 onLineUp :widgetProc;
 onTop :widgetProc;
 onEndtrack :widgetProc;
 onPageDown :widgetProc;
 onPageUp :widgetProc;

 endrecord;

 procedure create_wTrackBar
 (
 wtbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_position; @returns("eax"); external;
 method set_position(position:dword); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
 method set_range(low:dword; high:dword); external;
Released to the Public Domain Page 1103

HLA Standard Library

 method get_onChange; @returns("eax"); external;
 method get_onThumbPosn; @returns("eax"); external;
 method get_onThumbTrack; @returns("eax"); external;
 method get_onBottom; @returns("eax"); external;
 method get_onLineDown; @returns("eax"); external;
 method get_onLineUp; @returns("eax"); external;
 method get_onTop; @returns("eax"); external;
 method get_onEndtrack; @returns("eax"); external;
 method get_onPageDown; @returns("eax"); external;
 method get_onPageUp; @returns("eax"); external;

 method set_onChange(onChange:widgetProc); external;
 method set_onThumbPosn(onThumbPosn:widgetProc); external;
 method set_onThumbTrack(onThumbTrack:widgetProc); external;
 method set_onBottom(onBottom:widgetProc); external;
 method set_onLineDown(onLineDown:widgetProc); external;
 method set_onLineUp(onLineUp:widgetProc); external;
 method set_onTop(onTop:widgetProc); external;
 method set_onEndtrack(onEndtrack:widgetProc); external;
 method set_onPageDown(onPageDown:widgetProc); external;
 method set_onPageUp(onPageUp:widgetProc); external;

 override method processMessage; external;

 endclass;

onChange This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on the track bar (using any means to
change the value). Upon entry into the widgetProc procedure, the H.O. word of the
wParam argument contains the current track bar position.

onThumbPosn This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on the track bar by dragging the
slider. HOWL calls this procedure after the user has released the mouse button while
dragging the slider control. Upon entry into the widgetProc procedure, the H.O. word of
the wParam argument contains the current scroll bar position.

onThumbTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call while
the user is dragging the slider around the track bar. An application can use this notification
to dynamically adjust the system during slider movement. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar slider position.

onBottom This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the slider all the way to the bottom on a vertical track bar or all
the way to the left on a horizontal track bar. Upon entry into the widgetProc procedure,
the H.O. word of the wParam argument contains the current track bar position (which
should be the maximum value).

onLineDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by pressing the down
arrow or the right arrow key on the keyboard. Upon entry into the widgetProc
procedure, the H.O. word of the wParam argument contains the current track bar position.

onLineUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by pressing the up
arrow or left arrow key on the keyboard. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current track bar position.
Page 1104 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
onTop This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the slider all the way to the top on a vertical track bar or all the
way to the left on a horizontal track bar. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current track bar position (which should
be the maximum value).

onEndTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call after
any trackbar operation is complete. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current track bar position.

onPageDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a vertical scroll bar by clicking on
the track bar between the slider and the left or bottom end of the track bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar position.

onPageUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by clicking on the track
bar between the slider and the top or right side of the track bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar position.

create_wTrackBar

This is the consructor for the wTrackBar_t class. If you call this as a class procedure
(e.g., "wTrackBar_t.create_wTrackBar") then this procedure will allocate storage for a
new wTrackBar_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wTrackBar will initialize
that object in-place.

wtbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

x, y, width, height: These arguments form a bounding box in which the track bar will be
drawn.

style: HOWL logically ORs this value with the Windows styles (w.WS_CHILD |
w.WS_VISIBLE | w.TBS_AUTOTICKS) when creating the scroll bar. At the very least,
this field should contain w.TBS_HORZ for a horizontal track bar or w.TBS_HORZ for a
vertical track bar. Please see the Windows documentation or the HLA w.hhf header file for
additional track bar style (TBS_*) constants.

onChange: this is the address (which can be NULL) of an onChange widgetProc
procedure. The constructor will initialize the onChange field with this value.

get_position This function returns the current track bar position as a 32-bit value in the EAX register.
Note that you can call this method from any of the event notification procedures except
onThumbTrack to obtain the true 32-bit position of the slider control (rather than limiting
yourself to the upper 16 bits of the wParam parameter). If you call this method from the
onThumbTrack notification procedure, it will not return the current position of the slider,
instead it will return the last position before the user started dragging the slider around.
Sadly, there is no way to obtain a 32-bit current thumb position while dragging the thumb.

set_position This method sets the current thumb position on the track bar. The argument you pass to
this method must be between the low and high range values for the track bar.

get_lowRange This method returns (in EAX) the current lower range for the track bar. This is typically
zero, but you can program any 32-bit value you desire (see set_range).

get_hiRange This method returns (in EAX) the current upper range for the track bar.
Released to the Public Domain Page 1105

HLA Standard Library
set_range This method lets you set the low and high range values for the track bar. The default range
is 0..100, but you can set any 32-bit values you like. Note that if you intend to use the
onThumbTrack notification, you should limit the range to 16-bit values.

low: the lower bound of the track bar range

high: the upper bound of the track bar range.

get_onChange,

get_onThumbPosn,

get_onThumbTrack,

get_onLineDown,

get_onLineUp,

get_onLineLeft,

get_onLineRight,

get_onEndtrack,

get_onPageDown,

get_onPageUp,

get_onPageLeft,

get_onPageRight,

get_onTop,

get_onBottom These are the accessor methods for the corresponding widgetProc pointer data fields in
this class.

set_onChange,

set_onThumbPosn,

set_onThumbTrack,

set_onLineDown,

set_onLineUp,

set_onLineLeft,

set_onLineRight,

set_onEndtrack,

set_onPageDown,

set_onPageUp,

set_onPageLeft,

set_onPageRight,

set_onTop,

set_onBottom These are the mutator functions for all the widgetProc pointer fields in the class.

processMessage This is a private method in the class. Applications must not call this method.

 38.3.18 Up/Down Arrows
An up/down arrow control is a pair of (stacked) arrow buttons that that user can click on in order to

increment or decrement a value. Up/down arrow widgets can be stand-alone or they can be attached to a "buddy"
edit box widget (wUpDownEditBox_t widgets_. When attached to a buddy edit box, the up/down arrow control
reflects the current value of the control in the edit box.

 38.3.18.1 wUpDown_t
The wUpDown_t class is used to create up/down arrow objects on a form.
Page 1106 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 wUpDown_t:
 class inherits(wClickable_t);

 procedure create_wUpDown
 (
 wudName :string;
 parent :dword;
 alignment :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lowerRange :dword;
 upperRange :dword;
 initialPosn :dword;
 onClick :widgetProc
); external;

 method get_lowerRange; @returns("eax"); external;
 method get_upperRange; @returns("eax"); external;
 method get_position; @returns("eax"); external;

 method set_lowerRange(lowerRange:word); external;
 method set_upperRange(upperRange:word); external;
 method set_position(position :word); external;

 override method processMessage; external;

 endclass;

create_wUpDown

This is the consructor for the wUpDown_t class. If you call this as a class procedure (e.g.,
"wUpDown_t.create_wUpDown") then this procedure will allocate storage for a new
wUpDown_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wUpDown will initialize that object
in-place.

wudName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

alignment: this is one of the following Up/Down window styles:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of
the buddy window. The buddy window is moved to
the right and its width decreased to accommodate the
width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge
of the buddy window. The width of the buddy
window is decreased to accommodate the width of the
up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and
decrement the position when the UP ARROW and
DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z
order as the up-down control's buddy window.
Released to the Public Domain Page 1107

HLA Standard Library
UDS_HORZ Causes the up-down control's arrows to point left and
right instead of up and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the
buddy window (using the WM_SETTEXT message)
when the position changes. The text consists of the
position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or
decremented beyond the ending or beginning of the
range.

x, y, width, height: These arguments form a bounding box in which the up/down
arrow will be drawn. If buddy contains a non-NULL
value, then Windows will ignore these values and
will, instead, attach the arrows to the buddy edit box.

lowerRange: This is the minimum value that the up/down arrow control will decrement
to. This value is typically zero, but it can be any 16-bit value that is less than the
upperRange value. If the up/down control’s current value is equal to lowerRange and
the user presses on the down arrow, Windows will ignore the decrement request.

upperRange: This is the maximum value that the up/down arrow control will increment
to. This value can be any 16-bit value that is greater than the lowerRange value. If the
up/down control’s current value is equal to upperRange and the user presses on the up
arrow, Windows will ignore the increment request.

initialPosn: This is the initial value of the up/down arrow control. It must be a 16-bit
value in the range lowerRange..upperRange.

onClick: this is the address (which can be NULL) of an onClick widgetProc procedure.
The constructor will initialize the onClick field with this value. (Note that the onClick
field is inherited from the wClickable_t parent class).

get_lowerRange This method retrieves the 16-bit lower range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_upperRange This method retrieves the 16-bit upper range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_position This method retrieves the 16-bit position value for the up/down arrow control. It returns
this 16-bit value (zero extended) in the EAX register.

set_lowerRange This method sets the 16-bit lower range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_upperRange This method sets the 16-bit upper range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_position This method sets the 16-bit position value for the up/down arrow control. Applications
should limit the parameter to a 16-bit value.

processMessage This is a private method. Applications must not call this method.

 38.3.18.2 wUpDownEditBox_t
The wUpDownEditBox_t class is used to create a combination edit box and up/down arrow on a form.

 wUpDownEditBox_t:
 class inherits(wabsEditBox_t);
 var
 wUpDownEditBox_private:
 record
Page 1108 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

 lowerRange :dword;
 upperRange :dword;
 upDownHandle :dword;
 upDownStyle :dword;
 onUpDown :widgetProc;

 endrecord;

 procedure create_wUpDownEditBox
 (
 wudName :string;
 initialTxt :string;
 parent :dword;
 style :dword;
 upDownStyle :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lowerRange :dword;
 upperRange :dword;
 initialPosn :dword;
 onChange :widgetProc;
 onUpDown :widgetProc
); external;

 method get_lowerRange; @returns("eax"); external;
 method get_upperRange; @returns("eax"); external;
 method get_position; @returns("eax"); external;

 method set_lowerRange(lowerRange:word); external;
 method set_upperRange(upperRange:word); external;
 method set_position(position :word); external;

 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;

 override method processMessage; external;

 endclass;

create_wUpDownEditBox

This is the consructor for the wUpDownEditBox_t class. If you call this as a class
procedure (e.g., "wUpDownEditBox_t.create_wUpDown") then this procedure will
allocate storage for a new wUpDownEditBox_t object on the heap and return a pointer to
that object in ESI. If you make a standard object call to this constructor, then
create_wUpDown will initialize that object in-place.

wudName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

alignment: this is one of the following Up/Down window styles:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of
the buddy window. The buddy window is moved to
Released to the Public Domain Page 1109

HLA Standard Library
the right and its width decreased to accommodate the
width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge
of the buddy window. The width of the buddy
window is decreased to accommodate the width of the
up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and
decrement the position when the UP ARROW and
DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z
order as the up-down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and
right instead of up and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the
buddy window (using the WM_SETTEXT message)
when the position changes. The text consists of the
position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or
decremented beyond the ending or beginning of the
range.

x, y, width, height: These arguments form a bounding box in which the up/down
arrow will be drawn. If buddy contains a non-NULL
value, then Windows will ignore these values and
will, instead, attach the arrows to the buddy edit box.

lowerRange: This is the minimum value that the up/down arrow control will decrement
to. This value is typically zero, but it can be any 16-bit value that is less than the
upperRange value. If the up/down control’s current value is equal to lowerRange and
the user presses on the down arrow, Windows will ignore the decrement request.

upperRange: This is the maximum value that the up/down arrow control will increment
to. This value can be any 16-bit value that is greater than the lowerRange value. If the
up/down control’s current value is equal to upperRange and the user presses on the up
arrow, Windows will ignore the increment request.

initialPosn: This is the initial value of the up/down arrow control. It must be a 16-bit
value in the range lowerRange..upperRange.

onClick: this is the address (which can be NULL) of an onClick widgetProc procedure.
The constructor will initialize the onClick field with this value. (Note that the onClick
field is inherited from the wClickable_t parent class).

get_lowerRange This method retrieves the 16-bit lower range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_upperRange This method retrieves the 16-bit upper range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_position This method retrieves the 16-bit position value for the up/down arrow control. It returns
this 16-bit value (zero extended) in the EAX register.

set_lowerRange This method sets the 16-bit lower range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_upperRange This method sets the 16-bit upper range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_position This method sets the 16-bit position value for the up/down arrow control. Applications
should limit the parameter to a 16-bit value.
Page 1110 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
processMessage This is a private method. Applications must not call this method.

 38.3.19 Icons
Icons are generally 16x16 or 32x32 bitmapped objects drawn on the screen.

 38.3.19.1 wIcon_t
A wIcon_t object on a form can draw a user-defined icon or a system icon.

 wIcon_t:
 class inherits(wSurface_t);

 var
 align(4);
 wIcon_private:
 record

 iconName :string;
 iconHandle :dword;

 endrecord;

 procedure create_wIcon
 (
 wiName :string;
 iconName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 method get_iconName; @returns("eax"); external;
 method load_icon(iconName:string); external;
 override method destroy; external;
 override method processMessage; external;

 endclass;

iconName This is either the name of an icon resource within the executable file, or a special numeric
value (less than $1_0000) that specifies a system icon. Note that this field does not
contain the name of an icon file on the disk. Applications should not set the value of this
field directly. Instead, they should use the constructor or the load_icon method to set the
icon name.

iconHandle This is a handle for the icon resource associated with thie wIcon_t object. This is a
private field and applications should not read or write its value.

create_wIcon This is the consructor for the wIcon_t class. If you call this as a class procedure (e.g.,
"wIcon_t.create_wIcon") then this procedure will allocate storage for a new wIcon_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then wIcon will initialize that object in-place.

wiName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.
Released to the Public Domain Page 1111

HLA Standard Library
iconName: this is the name of the icon resource in the executable file to associate with the
icon (if this value is a string), or it is a value less than $1_0000 that specifies a system icon
value. The following are valid non-string values to supply to this parameter:
w.IDI_APPLICATION, w.IDI_ASTERISK, w.IDI_EXCLAMATION, w.IDI_HAND,
w.IDI_QUESTION, and w.IDI_WINLOGO.

parent: this is the handle of the wView_t or wForm_t object on which the icon will be
drawn.

x, y, width, height: These arguments form a bounding box in which the up/down arrow
will be drawn. If buddy contains a non-NULL value, then Windows will ignore these
values and will, instead, attach the arrows to the buddy edit box.

bkgColor: this is the RGB background color that HOWL will fill the bounding rectangle
with if the bounding rectangle is larger than the icon.

load_icon This method loads the icon resource whose name you specify as the string parameter into
the icon object. The parameter must either be the (string) name of an icon resource in the
executable file or one of the system-defined icon constants (see the discussion for the
constructor).

destroy This is the destructor for the wIcon_t object. Applications won’t normally call this
destructor for icons attached to some form (or other container) as destroying that container
will automatically invoke the destructor for the icon. However, if you create a stand-alone
icon object and don’t attach it to some container object, then you should call the icon’s
destructor when you are done with the icon to free the associated system resources.

processMessage This is a private method. Applications must not call it.

 38.3.20 Text
HOWL provides two classes for dealing with text: the wFont_t class and the wLabel_t class. Unlike most

concrete classes in HOWL, wFont_t objects are not widgets (that is, controls that appear visually on a form).
Font objects are associated with wLabel_t objects (which do appear on a form) and other text, but are not visual
items themselves.

 38.3.20.1 wFont_t
Font objects represent a particular typeface for use by wLabel_t and other text objects in HOWL. Note that

wFont_t objects are somewhat unique amongst the HOWL concrete classes insofar as there is no statement in
the HOWL declarative language to create a font object. In general, an application will create all the fonts it
needs in the appStart procedure and it will call the destructors for those font objects in the appTerminate
procedure.

 wFont_t:
 class inherits(wBase_t);

 var
 align(4);
 wFont_private:
 record

 family :byte;
 bold :boolean;
 italic :boolean;
 underline :boolean;
 strikeout :boolean;
 monospaced :boolean;
 align(4);

 faceName :string;
 size :uns32;
Page 1112 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

 endrecord;

 procedure create_wFont
 (
 wfName :string;
 parentHandle :dword;
 faceName :string;
 family :byte;
 size :uns32;
 bold :boolean;
 italic :boolean;
 underline :boolean;
 strikeout :boolean;
 monospaced :boolean
); external;

 override method destroy; external;

 // Accessor functions:

 method get_facename; @returns("eax"); external;
 method get_size; @returns("eax"); external;
 method get_family; @returns("al"); external;
 method get_bold; @returns("al"); external;
 method get_italic; @returns("al"); external;
 method get_underline; @returns("al"); external;
 method get_strikeout; @returns("al"); external;
 method get_monospaced; @returns("al"); external;

 endclass;

faceName This string is the name of the Windows typeface to use for the font. This is a string such as
"Courier New" or "Times New Roman". If this field is NULL or is the empty string, then
Windows will pick an appropriate font that matches the other font characteristics. If
Windows cannot find the specified font name, it will find the closest one that matches the
font characteristics you provide. Applications should not write values to this field.

size This is the size, in points, for the typeface. Applications should not write values to this
field.

family This is one of the following constants:

w.FF_DECORATIVE Novelty fonts. Old English is an example.

w.FF_DONTCARE Don't care or don't know.

w.FF_MODERN Fonts with constant stroke width, with or without serifs. Pica,
Elite, and Courier New® are examples.

w.FF_ROMAN Fonts with variable stroke width and with serifs. MS® Serif is an
example.

w.FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive are
examples.

w.FF_SWISS Fonts with variable stroke width and without serifs. MS Sans
Serif is an example.

 Applications should not write values to the family field.

bold True for boldfaced fonts, false for normal weight fonts. Applications should not write
values to this field.
Released to the Public Domain Page 1113

HLA Standard Library
italic True for italic slant fonts, false for normal fonts. Applications should not write values to
this field.

underline True for underlined fonts, false for normal fonts. Applications should not write values to
this field.

strikeout True for strikeout fonts, false for normal fonts. Applications should not write values to
this field.

monospaced True for monospaced fonts, false for proportional fonts. Applications should not write
values to this field.

create_wFont This is the consructor for the wFont_t class. If you call this as a class procedure (e.g.,
"wFont_t.create_wFont") then this procedure will allocate storage for a new wFont_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then create_wFont will initialize that object in-place.

wfName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

The remaining parameters all correspond to the data fields for this class. See their
descriptions for more details. Calling the constructor is the only legal way to write values
to the wFont_t class’ data fields.

destroy This is the destructor for the wFont_t class. Because fonts aren’t normally attached to a
form (and you cannot create them via the HOWL declarative language), it is usually the
applications responsibility to call the destructor for a font when the application is done
using it. Alternately, an application can insert a font into a container object and let that
container destroy the font object when the container is destroyed.

 38.3.20.2 wLabel_t
A wLabel_t object displays static text on a form. Actually, "static" is a bit of a misnomer because an

application can change the text will a method call, but Windows, HOW, and the user do not change this text
behind the application’s back.

 wLabel_t:
 class inherits(wVisual_t);
 var
 align(4);
 wLabel_private:
 record

 caption :string;
 font :wFont_p;
 alignment :dword;
 foreColor :dword;

 endrecord;

 procedure create_wLabel
 (
 wlName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 alignment :dword;
 foreColor :dword;
Page 1114 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 bkgColor :dword
); external;

 override method destroy; external;
 override method processMessage; external;

 method get_font; @returns("eax"); external;
 method get_caption; @returns("eax"); external;
 method a_get_caption; @returns("eax"); external;
 method get_foreColor; @returns("eax"); external;

 method set_font(font:wFont_p); external;
 method set_caption(caption:string); external;
 method set_foreColor(foreColor:dword); external;

 endclass;

caption This data field points at the textual data that the wLabel_t object will display on a form.
Applications should never read or write this data field directly, they should always use the
get_caption and set_caption accessor/mutator methods to manipulate this string.

font This is a pointer to a wFont_t object or the value NULL. If this field contains NULL,
Windows will pick an appropriate system font and use that to draw the label’s text. If this
field contains a pointer to a wFont_t object, this Windows will use that particular font to
draw the label’s text. Applications should never read or write this data field directly, they
should always use the get_font and set_font accessor/mutator methods to manipulate this
value.

alignment Applications should not write to this field. It’s value is set by the constructor. This field
should contain one of the following constants:

w.DT_BOTTOM Bottom-justifies text. This value must be combined with
DT_SINGLELINE.

w.DT_CENTER Centers text horizontally.

w.DT_EXPANDTABS Expands tab characters. The default number of characters
per tab is eight.

w.DT_LEFT Aligns text to the left.

w.DT_NOPREFIX Turns off processing of prefix characters. Normally,
DrawText interprets the mnemonic-prefix character & as a
directive to underscore the character that follows, and the
mnemonic-prefix characters && as a directive to print a
single &. By specifying DT_NOPREFIX, this processing
is turned off.

w.DT_RIGHT Aligns text to the right.

w.DT_SINGLELINE Displays text on a single line only. Carriage returns and
linefeeds do not break the line.

w.DT_TOP Top-justifies text (single line only).

w.DT_VCENTER Centers text vertically (single line only).

w.DT_WORDBREAK Breaks words. Lines are automatically broken between
words if a word would extend past the edge of the
rectangle specified by the lpRect parameter. A carriage
return-linefeed sequence also breaks the line.

foreColor This is the foreground color for the text (the RGB color used to draw the actual
characters). Applications should never read or write this data field directly, they should
always use the get_foreColor and set_foreColor accessor/mutator methods to manipulate
this value.
Released to the Public Domain Page 1115

HLA Standard Library
create_wLabel This is the consructor for the wLabel_t class. If you call this as a class procedure (e.g.,
"wLabel_t.create_wLabel") then this procedure will allocate storage for a new wLabel_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then create_wLabel will initialize that object in-place.

wlName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is string data HOWL will associate with the label object. Note that HOWL
will make an internal copy (on the heap) of this string.

parent: this is the handle of the wView_t or wForm_t object on which the label will be
drawn.

x, y, width, height: These arguments form a bounding box in which the up/down arrow
will be drawn. If buddy contains a non-NULL value, then Windows will ignore these
values and will, instead, attach the arrows to the buddy edit box.

alignment: this is one of the alignment constants described under the alignment field,
earlier. It this field is zero, w.DT_LEFT is the default value.

foreColor: this is an RGB value that specifies the foreground color for the label.

bkgColor: this is an RGB value that specifies the background color for the label.

destroy This is the destructor for the label class. Normally, the container form holding the label
will call this destructor automatically when you destroy the form. If you create a label
manually and don’t insert it into the widget list of a container object, then you will need to
call this destructor yourself.

processMessage This is a private method. Applications should not call this method.

get_font This is the accessor method that returns a pointer to the wFont_t object (or NULL)
pointed at by the font data field.

get_caption This returns the caption string pointer in EAX for read-only access. The application must
not modify this string or HOWL will display inconsistent results.

a_get_caption This method returns a pointer to a copy of the caption string (that it allocates on the
heap) in the EAX register. It is the caller’s responsibility to free the storage associated
with this string when it is done using the string data.

get_foreColor This accessor method returns the current foreground color that the wLabel_t object uses
to draw the text.

set_font This method is the mutator function for the font data field. Applications should always
call this method to change the font of a wLabel_t object.

set_caption This method is the mutator function for the caption data field. Applications should
always call this method to change the string associated with a wLabel_t object.

set_foreColor This method is the mutator function for the foreColor data field. Applications should
always call this method to change the foreground color associated with a wLabel_t
object.

 38.3.21 Views, Windows, and Tab Pages
A view is a container object that is also a surface upon which you can draw or place other widgets. In this

sense, a view is very similar to a wForm_t object. Actually, a view is equivalent to the client area of a wForm_t
object; that is, it’s the application window without the title bar or system menu components.

 38.3.21.1 wTabPage_t
The wTabPage_t class is basically a concrete implementation of the abstract window_t class.
Page 1116 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 wTabPage_t:
 class inherits(window_t);

 var
 align(4);
 wTabPage_private:
 record

 pageHandler :widgetProc;

 endrecord;

 procedure create_wTabPage
 (
 wpName :string;
 parentWindowHandle :dword;
 handler :widgetProc;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword
); external;

 override method processMessage; external;

 endclass;

pageHandler This is a widgetProc pointer to a user-defined processMessage function for the
wTabPage_t object. If this pointer contains NULL, then HOWL will invoke the parent
(window_t) processMessage handler. If all a wForm_t object is doing is containing other
widgets, this is all that is necessary. However, if you’re going to draw on the wTabPage_t
object, then you will have to write your own processMessage function and intercept
w.WM_PAINT and other messages. A discussion of the actual pageHandler procedure
appears a little later in this section.

create_wTabPage This is the consructor for the wTabPage_t class. If you call this as a class procedure (e.g.,
"wTabPage_t.create_wTabPage") then this procedure will allocate storage for a new
wTabPage_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTabPage will initialize that object in-
place.

wpName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parentWindowHandle: this is the handle of the wTabPage_t or wForm_t object on
which the wTabPage_t object will be placed.

x, y, width, height: These arguments form a bounding box in which the wTabPage_t
object will be drawn.

fillColor: this is an RGB value that specifies the background color for the window.

processMessage This is a private method. Applications must not call it.

The pageHandler widgetProc needs some additional explanation. To begin with, although this pointer
type is widgetProc, technically it ought to have the same prototype as the processMessage method (hwnd,
uMsg, wParam, and lParam parameters). To overcome the difference in prototypes, HOWL passes to the
pageHandler procedure the uMsg parameter value in the EAX register. The hwnd (window handle) argument is
easily accessible as the handle field of the wTabPage_t object (accessible via the thisPtr parameter).
Released to the Public Domain Page 1117

HLA Standard Library
The pageHandler procedure is basically the Windows’ wndproc procedure that handles the messages for the
wTabPage_t object (that is, it’s equivalent to a wTabPage_t.processMessage function). If you want to draw
on the wTabPage_t surface, you’ll need to intercept Windows’ messages such as w.WM_PAINT and so on.
Most of the time, you’ll only want to handle a few of the messages sent to a wTabPage_t object yourself and
you’ll want to pass the rest of them on to a default message handler. In a pure Win32 application, you’d
accomplish this by calling the w.DefWindowProc procedure. In an object-oriented system such as HOWL,
however, what you really want to do is call the parent class’ message handler (that is,
window_t.processMessage in the case of a wTabPage_t object). Unfortunately, it’s difficult to do this
directly, so HOWL cheats and defines a special class procedure in the window_t class that you can call directly
that is an alias for the window_t.processMessage method. This class procedure is called
window_t.view_t_processMessage (so there is no mistaking its purpose). If ESI contains a pointer to the
wTabPage_t object (and it must when you call window_t.view_t_processMessage), then you can call this
procedure with the following statement:

(type window_t [esi]).view_t_processMessage

Here is a sample pageHandler procedure that does exactly the same thing as would happen if the
pageHandler pointer were NULL (which is to call the window_t.processMessage method):

simplePH:widgetProc;
begin simplePH;

mov(thisPtr, esi); // Technically not needed, ESI contains this already
(type window_t [esi]).view_t_processMessage // Call special alias proc
(

(type wTabPage_t [esi]).handle, // Handle to the wTabPage_t window
eax, // Message code passed to us in EAX
wParam, // Pass on the wParam value
lParam // Pass on the lParam value

);

end simplePH;

Of course, it doesn’t make much sense to do nothing more than call the view_t_processMessage procedure.
You could leave the pageHandler NULL and the wTabPage_t class would automatically do this for you (more
efficiently, too). In general, you’ll check for a few messages you need to handle and call
view_t_processMessage as the default handler, e.g.,:

typicalPH:widgetProc;
begin typicalPH;

if(eax = someMessage) then

// code to handle someMessage

elseif(eax = someOtherMessage) then

// code to handle someOtherMessage

else // Default case

mov(thisPtr, esi); // Technically not needed, ESI contains this already
(type window_t [esi]).view_t_processMessage // Call special alias proc
(

(type wTabPage_t [esi]).handle, // Handle to the wTabPage_t window
eax, // Message code passed to us in EAX
wParam, // Pass on the wParam value
lParam // Pass on the lParam value

);

endif;
Page 1118 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
end typicalPH;

Please see the appropriate Windows documentation for details on how to handle message in a wndproc
(message handling) procedure.

 38.3.21.2 wView_t
wView_t objects are a concrete implementation of the wSurface_t class. You use wView_t objects to

create bordless windows on which to draw things. Note that wView_t is not a container class (like window_t),
so you cannot place other objects on a wView_t window. Please see the discussion of the wSurface_t class for
more details concerning the capabilities of a wView_t object.

 wView_t:
 class inherits(wSurface_t);

 procedure create_wView
 (
 wsName :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 endclass;

 38.3.21.3 window_t
The window_t type is functionally equivalent to wSurface_t with on major difference: the window_t

class is derived from wContainer_t rather than directly from wVisual_t, so window_t objects can contain
other widgets.

 window_t:
 class inherits(wContainer_t);

 var
 align(4);
 window_private:
 record

 // onPaint event pointer:

 onPaint :widgetProc;

 endrecord;

 procedure create_window
 (
 wwName :string;
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
Released to the Public Domain Page 1119

HLA Standard Library
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 override method destroy; external;
 override method processMessage; external;
 override method onClose; external;
 override method onCreate; external;

 method get_onPaint; @returns("eax"); external;
 method set_onPaint(onPaint:widgetProc); external;

 procedure view_t_processMessage
 (
 hwnd :dword;
 uMsg :dword;
 wParam :dword;
 lParam :dword
); external("window_t_processMessage");

 endclass;

onPaint This widgetProc pointer is either NULL, or it points at a widgetProc procedure that
HOWL will call whenever Windows sends the form a w.WM_PAINT message.

destroy This method is the destructor for the window_t class. Because the window_t class is
derived from wContainer_t, invoking this destructor will also (recursively) invoke the
destructors of all the widgets held by the window_t object. This destructor will also free
up the system brush resource (held by _bkgBrush) and free any storage associated with
the window_t object. As is true for all abstract base classes, an application will not
directly call this destructor method. Instead, the application will call the destructor of a
derived class which, in turn, will call this destructor.

processMessage,

onClose,

onCreate These are private methods in the class. Applications should not call them.

get_onPaint

set_onPaint These are the accessor/mutator methods for the onPaint field. Applications must use
these methods to access or modify the value of the onPaint field.

view_t_processMessage

Most of the time the rule is that applications do not call the processMessage method. In
the case of the wTabPage_t derived class, however, there is a special case where an
application needs to call the window_t.processMessage method. Normally, this is a
somewhat difficult thing to do (especially from a widgetProc, from where the call is
going to be made). The view_t_processMessage class procedure is actually an alias
for the window_t.processMessage method, so that a wTabPage_t object’s
pageHandler can call window_t.processMessage in that special case. In general,
applications should never call view_t_processMessage except in this one special case.
Please see the discussion of wTabPage_t for more details.
Page 1120 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 38.3.22 Timers
HOWL provides a wTimer_t class that lets you create "one-shot" or "periodic" timers in your HOWL

applications.

 38.3.22.1 wTimer_t
wTimer_t objects are non-visual objects that can automatically call a widgetProc for you whenever a

certain amount of time (in milliseconds) elapses. wTimer_t objects are useful for passing control to your code
on a periodic basis even if there are no user interface interactions with your application’s form.

Timers are unique amongst the widgets. You will notice that the wTimer_t class is derived from the
wVisual_t class. However, wTimer_t objects aren’t exactly visual because such objects don’t appear visually
on a form. wTimer_t objects need to be actual window_t objects so that they can have a Windows’ wndProc
message handler that can receive messages from a timing thread and appear in a widget list of some container
object (the window itself is just a 1x1 pixel window at position (0,0) on your form). Normally, this window is
hidden from the user. You should take care not to call the show method to make it visible.

wTimer_t objects operate in one of two modes: periodic and one-shot. If you initialize a wTimer_t object
with the constant wTimer_t.oneShot and then start the timer, it will run for the specified amount of time (in
milliseconds) and then call an onTimeOut widgetProc exactly once. This is useful if you need exactly one
notification at some future time.

wTimer_t objects can also operate in periodic mode. If you initialize the wTimer_t object with the
wTimer_t.periodic constant, then it will automatically call an onTimeOut widgetProc (approximately)
every period milliseconds until you explicitly stop the timer.

Note that although a wTimer_t object spawns a thread to handling the timing chores, that thread does not
call any HLA Standard Library code, and invoking the onTimeOut widgetProc is done via a
w.PostMessage Win32 call, so you don’t have to compile the program with the HLA "-thread" command-line
parameter and you don’t have to worry about multi-threaded synchronization. The onTimeOut procedure always
executes in the same thread as your main program.

 wTimer_t:
 class inherits(wVisual_t);

 const
 oneShot := 0;
 periodic := 1;

 static
 messageCode :dword := 0;

 var
 align(4);
 wTimer_private:
 record

 // Timeout value in milliseconds:

 period :dword;

 // oneShot or periodic

 timing :dword;

 // Widget proc to call on time out:

 onTimeOut :widgetProc;

 // 1 = run, 0 = wait

 trigger :dword;

 // Win32 thread handle for timer

Released to the Public Domain Page 1121

HLA Standard Library
 threadHandle :dword;

 endrecord;

 procedure create_wTimer
 (
 timerName :string;
 parentHandle :dword;
 periodInMsec :dword;
 timing :dword;
 onTimeOut :widgetProc
); external;

 override method destroy; external;
 override method processMessage; external;

 method start; external;
 method stop; external;

 method get_onTimeOut; @returns("eax"); external;
 method set_onTimeOut(onTimeOut:widgetProc); external;
 method get_period; @returns("eax"); external;
 method set_period(period:dword); external;
 method get_timing; @returns("eax"); external;
 method set_timing(timing:dword); external;

 // Apps must never call this, it is put here for
 // convenience (to be able to use "this"):

 procedure _timerThread(wTimerObj:wTimer_p); external;

 endclass;

wTimer_t.oneShot This is the constant you specify as the timing argument to create_wTimer or
set_timing if you want to create a one-shot timer object.

wTimer_t.periodic

This is the constant you specify as the timing argument to create_wTimer or
set_timing if you want to create a free-running periodic timer object.

period This is the time, in milliseconds, that a wTimer_t object will delay before posting a
message that will call the onTimeOut widgetProc. This is a private data field.
Applications should not access it directly but should, instead, use the provided accessor/
mutator methods.

timing This field determines the type of the timer. It will contain one of the following constants:

wTimer_t.oneShot: the timer, when started, will call the onTimeOut widgetProc
exactly once and then disable itself.

wTimer_t.periodic: the timer, when started, will call the onTimeOut widgetProc
about every period milliseconds until you explicitly stop the timer.

This is a private data field. Applications should not access it directly but should, instead,
use the provided accessor/mutator methods.

onTimeOut This is the address of the widgetProc that HOWL will call when the timer times out. If this
field is NULL, HOWL will not call any widgetProc and the timeout will go unnoticed by
the application. This is a private data field. Applications should not access it directly but
should, instead, use the provided accessor/mutator methods.
Page 1122 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
_trigger This is an internal field that the wTimer_t object uses to communicate between the main
thread and the timer thread. Applications should never access this field.

_threadHandle This is an internal field that the wTimer_t object uses to communicate between the main
thread and the timer thread. Applications should never access this field.

create_wTimer This is the class constructor for wTimer_t objects. If you call this as a class procedure
(e.g., "wTimer_t.create_wTimer") then this procedure will allocate storage for a new
wTimer_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTimer will initialize that object in-
place. Note that calling the constructor does not start the timer running. You must
explicitly call the wTimer_t object’s start method to start the timer running. This
procedure has the following parameters:

timerName: a string specifying the timer variable’s name (in HLA).

parentHandle: the handle of the wForm object on which the timer is attached.

periodInMsec: this is the initial timeout period for the timer. The constructor will
initialize the period field with this value. You can use the accessor/mutator methods to
change this value later.

timing: this is the initial type of the timer. This value should either be
wTimer_t.oneShot or wTimer_t.periodic. You can use the accessor and mutator
methods to change the timer type at a later time.

onTimeOut: this is either NULL or the address of a widgetProc that the timer will call
whenever the timer times out. You can use the accessor and mutator methods to change
the timeout widgetProc at a later time.

destroy This is the destructor for the wTimer_t object. Normally, wTimer_t objects are inserted
onto a widget list and the container automatically calls the destructor when the container is
destroyed. However, if you create a wTimer_t object and you don’t attach it to some
container’s widget list, then you will need to explicitly call the destructor to free up the
timer object.

processMessage This is an internal procedure. Applications must not call it.

get_onTimeOut,

get_period,

get_timing These are the accessor methods for the corresponding data fields in the class. Applications
should call these methods to access the data fields rather than reading their values directly.

set_onTimeOut,

set_period,

set_timing These are the mutator methods for the corresponding data fields in the class. Applications
should call these methods to access the data fields rather than writing their values directly.
Note that you should take care when setting these values while a timer is actually running.
Although access to these objects is synchronized (you don’t have to worry about thread
problems), changing these values while a timer is operating can make your programs
difficult to read and modify and it can introduce some obscure bugs.

start This starts the timer. If the timer was already running, this will kill the current timer thread
and start a new one. When the timer expires (after no sooner than period milliseconds),
the timer thread will post a message to the wTimer_t object to tell it to call the
onTimeOut widgetProc. Note that the onTimeOut procedure could actually be called
much later, based on the number of messages in the Windows’ message queue and the
time it takes to process all those messages. Do not assume that exactly period
milliseconds have passed since the call to start when your onTimeOut procedure begins
execution. It could actually be much later than this.

stop This method immediately stops the timer. This generally means that (if the timer is
running) there will be no call to the onTimeOut procedure. However, the timer could have
Released to the Public Domain Page 1123

HLA Standard Library
already posted an onTimeOut call in the message queue, so you should not assume that
there will be no call to onTimeOut after you call stop.
Page 1124 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Index

Numerics
128-bit arithmetic and logical operations

511
64-Bit arithmetic and logical Operations

503
A

a_adrsToStr (socket module) 625, 642
a_appendFile (blobs module) 54
a_appendFileExtended (blobs module) 55
Abstract classes in HOWL 1043
a_bToStr (conversions module) 117
a_bufToBlob1 (blobs module) 52
a_bufToBlob2 (blobs module) 52
a_cat (blobs module) 48
a_cat (strings module) 904
a_catbuf (strings module) 909
a_catbuf2 (strings module) 909
a_catbuf3 (strings module) 909
a_catsub (blobs module) 50
a_catsub (strings module) 907
a_catz (strings module) 906
accept (socket module) 626
AccessDenied (exceptions module) 307
AccessViolation (exceptions module) 309
Accumulate (timer class) 998
a_cmdLn (args module) 9
a_columnize2 (strings module) 886
a_columnize3 (strings module) 886
_acos (math module) 532
acos (math module) 532
acos32 (math module) 533
acos64 (math module) 533
acos80 (math module) 533
_acot (math module) 534
acot (math module) 534
acot32 (math module) 534
acot64 (math module) 534
acot80 (math module) 534
a_cpy (blobs module) 42
a_cpy (strings module) 829
a_cpyz (strings module) 829
_acsc (math module) 535
acsc (math module) 535
acsc32 (math module) 535

acsc64 (math module) 535
acsc80 (math module) 535
addDays (date module) 287
addDays (date/time module) 298
addHours (time class module) 994
addHours (time module) 985
addl (math module) 512
addMins (time class module) 994
addMins (time module) 985
addMonths (date/time module) 287, 299
addq (math routine) 503
addSecs (time class module) 994
addSecs (time module) 985
addYears (date/time module) 288, 299
a_delete (strings module) 837
a_delLeadingSpaces (strings module) 839
a_delTrailingSpaces (strings module) 840
a_deTab2 (strings module) 890
a_deTab3 (strings module) 891
adrsToStr (socket module) 625, 642
a_dToStr (conversions module) 123
a_e32ToStr (conversions module) 236
a_e64ToStr (conversions module) 235
a_e80ToStr (conversions module) 234
a_enTab2 (strings module) 894
a_enTab3 (strings module) 894
a_extract (patterns module) 607
a_extractBase (filesys module) 448
a_extractExt (filesys module) 450
a_extractFilename (filesys module) 451
a_extractPath (filesys module) 452
a_first (strings module) 831
afterRow (arrays module) 19
a_get (environment module) 301
a_getField2 (strings module) 875
a_getField3 (strings module) 876
a_getFullPathName (filesys module) 460
a_gets (blobs module) 64
a_gets (file class module) 334
a_gets (file I/O module) 429
a_gets (socket module) 659
a_gets (stdin module) 739
a_h128ToStr (conversions module) 145
a_h16ToStr (conversions module) 136
a_h32ToStr (conversions module) 138
a_h64ToStr (conversions module) 141
a_h80ToStr (conversions module) 143
a_h8ToStr (conversions module) 132
Released to the Public Domain Page 1125

HLA Standard Library
a_i128TStr (conversions module) 181
a_i16ToStr (conversions module) 173
a_i32ToStr (conversions module) 176
a_i64ToStr (conversions module) 178
a_i8ToStr (conversions module) 170
a_insert (strings module) 836
a_joinPaths (filesys module) 453
a_last (strings module) 833
alloc (blobs module) 37
allocAligned (blobs module) 38
allocBlockInHeap (memory module) 557
a_load (blobs module) 53
a_loadExtended (blobs module) 53
a_lower (strings module) 899
a_lToStr (conversions module) 129
andl (math module) 517
andq (math module) 508
a_normalize (filesys module) 455
append (lists module) 493
appendFile (blobs module) 54
append_index (list module) 493
append_last (list module) 494
append_node (list module) 493
appException 1011
AppException procedure 1007
Application Framework 1007
appStart 1010
AppStart procedure 1007
appTerminate 1011
AppTerminate procedure 1007
a_qToStr (conversions module) 125
a_r32ToStr (conversions module) 243
a_r64ToStr (conversions module) 243
a_r80ToStr (conversions module) 242
arb (patterns module) 608
a_reverse (strings module) 900
arg.a_cmdLn 9
arg.args 12
arg.a_v 11
arg.c 10
arg.cmdLn 9
arg.delete 11
arg.destroy 12
arg.globalOptions 12
arg.localOptions 13
arg.v 10
args (args module) 12
Arithmetic and logical operations (128-bit)

 511
Arithmetic and logical operations (64-bit_

503
a_rmv1stWord1 (strings module) 880
a_rmv1stWord2 (strings module) 881
a_rmvLastWord1 (strings module) 882
a_rmvLastWord2 (strings module) 882
a_rmvTrailingSpaces (strings module)

843
a_roman (conversions module) 245
Array manipulation 15
Array operations 18
array.afterRow 19
array.beforeRow 19
array.cpy 18
array.daAlloc 16
array.daFree 16
array.dArray 15
array.element 17
array.endreduce 19
array.index 17
array.IsItDynamic 17
array.IsItVar 17
array.lookupTable 22
array.reduce 19
array.reduction 19
array.transpose 20
ArrayBounds (exceptions module) 308
ArrayShapeViolation (exceptions module)

308
asDword (HLA module) 470
_asec (math module) 536
asec (math module) 536
asec32 (math module) 536
asec64 (math module) 536
asec80 (math module) 536
_asin (math module) 531
asin (math module) 531
asin32 (math module) 531
asin64 (math module) 531
asin80 (math module) 531
AssertionFailed (exceptions module) 306
Assignments (blobs module) 42
a_subBlob (blobs module) 44
a_substr (strings module) 830
asWord (HLA module) 470
atan (math module) 526
atan32 (math module) 526
Page 1126 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
atan64 (math module) 526
atan80 (math module) 526
a_tbToStr (conversions module) 127
atof (conversions module) 244
atoi128 (conversions module) 185
atoi16 (conversions module) 183
atoi32 (conversions module) 184
atoi64 (conversions module) 185
atoi8 (conversions module) 182
a_toNativePath (filesys module) 460
a_toString (date/time module) 291, 299
a_toString (time class module) 995
a_toString (time module) 987
atou128 (conversions module) 222
atou16 (conversions module) 220
atou32 (conversions module) 220
atou64 (conversions module) 221
atou8 (conversions module) 219
a_toUnixPath (filesys module) 457
a_toWin32Path (filesys module) 458
atPos (patterns module) 588
a_translate (strings module) 902
a_trim (strings module) 842
a_truncate (strings module) 834
AttemptToDerefNull (exceptions module)

306
AttemptToFreeNULL (exceptions module)

 308
a_u128ToStr (conversions module) 217
a_u16ToStr (conversions module) 210
a_u32ToStr (conversions module) 213
a_u64ToStr (conversions module) 215
a_u8ToStr (conversions module) 206
a_upper (strings module) 898
a_v (args module) 11
a_wToStr (conversions module) 120

B
Back tracking 609
Back tracking support in pattern matching

functions 611
BadFileHandle (exceptions module) 306
BadObjPtr (exceptions module) 306
beforeRow (arrays module) 19
bind (socket module) 626
Bit manipulation 25
Bitmaps (HOWL) 1031
bits.cnt 25
bits.coalese 33

bits.distribute function 32
bits.extract 32
bits.merge16 29
bits.merge32 28
bits.merge8 29
bits.nibbles16 31
bits.nibbles32 30
bits.nibbles8 31
bits.reverse16 26
bits.reverse32 26
bits.reverse8 27
bkgColor_g (in HOWL apps) 1010
Blob accessor functions 39
Blob assignment functions 42
Blob comparison functions 45
Blob concatenation functions 48
Blob conversion functions 51
Blob extraction functions 44
Blob internal representation 36
Blob scanning functions 45
Blob variable initialization and allocation

37
blob.a_appendFile 54
blob.a_appendFileExtended 55
blob.a_bufToBlob1 52
blob.a_bufToBlob2 52
blob.a_cat 48
blob.a_catsub 50
blob.a_cpy 42
blob.a_gets 64
blob.alloc 37
blob.allocAligned 38
blob.a_load 53
blob.a_loadExtended 53
blob.appendFile 54
blob.a_subBlob 44
blob.bufToBlob2 51
blob.bufToBlob3 51
blob.cat2 49
blob.cat3 49
blob.catbuf2 50
blob.catbuf3a 50
blob.catbuf3b 51
blob.catbuf4 51
blob.catsub 49
blob.catsub4 49
blob.catsub5 49
blob.chpos 47
Released to the Public Domain Page 1127

HLA Standard Library
blob.chpos2 47
blob.chpos3 47
blob.cpy 43
blob.destroy 39
blob.eof 42
blob.eoln 64
blob.eq 45
blob.fillb 43
blob.filld 44
blob.fillw 43
blob.free 39
blob.get 64
blob.getByte 60
blob.getc 64
blob.getDword 61
blob.getf 64
blob.geth128 64
blob.geth16 64
blob.geth32 64
blob.geth64 64
blob.geth8 64
blob.geth80 64
blob.geti128 64
blob.geti16 64
blob.geti32 64
blob.geti64 64
blob.geti8 64
blob.getLword 62
blob.getQword 62
blob.gets 64
blob.getTbyte 62
blob.getu128 64
blob.getu16 64
blob.getu32 64
blob.getu64 64
blob.getu8 64
blob.getWord 61
blob.index 46
blob.index2 46
blob.index3 46
blob.indexStr 46
blob.indexStr2 46
blob.indexStr3 46
blob.init 37
blob.init16 37
blob.length 39
blob.load 53
blob.maxlen 40

blob.ne 45
blob.newln 63
blob.put 64
blob.putb 63
blob.putbool 63
blob.putByte 57
blob.putc 63
blob.putcset 63
blob.putcSize 63
blob.putd 63
blob.putDword 58
blob.pute32 64
blob.pute64 64
blob.pute80 64
blob.puth128 63
blob.puth16 63
blob.puth16Size 63
blob.puth32 63
blob.puth32Size 63
blob.puth64 63
blob.puth64Size 63
blob.puth8 63
blob.puth80 63
blob.puth80Size 63
blob.puth8Size 63
blob.puti128 63
blob.puti128Size 63
blob.puti16 63
blob.puti16Size 63
blob.puti32 63
blob.puti32Size 63
blob.puti64 63
blob.puti64Size 63
blob.puti8 63
blob.puti8Size 63
blob.putl 63
blob.putLword 59
blob.putq 63
blob.putQword 58
blob.putr32 64
blob.putr64 64
blob.putr80 64
blob.puts 63
blob.putsSize 63
blob.puttb 63
blob.putTbyte 59
blob.putu128 64
blob.putu128Size 64
Page 1128 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
blob.putu16 63
blob.putu16Size 63
blob.putu32 63
blob.putu32Size 63
blob.putu64 63
blob.putu64Size 64
blob.putu8 63
blob.putu8Size 63
blob.putw 63
blob.putWord 58
blob.rchpos 48
blob.rchpos2 48
blob.rchpos3 48
blob.rcursor 40
blob.read 60
blob.readAt 60
blob.readLn 64
blob.realloc 38
blob.reset 42
blob.rindex 46
blob.rindex2 46
blob.rindex3 46
blob.rindexStr 46
blob.rindexStr2 46
blob.rindexStr3 46
blob.save 55
blob.setLength 39
blob.setMaxlen 40
blob.setrCursor 41
blob.setwCursor 41
blob.subBlob 44
blob.wcursor 41
blob.write 55
blob.writeAt 57
blobRec (blobs module) 36
Blobs 35
blobs.hhf 35
BlockAlreadyFree (exceptions module)

308
blockInHeap (memory module) 557
BoundInstr (exceptions module) 310
Breakpoint (exceptions module) 309
brk (strings module) 863
brk2 (strings module) 863
brk3 (strings module) 864
bSize (conversions module) 92
bToBuf (conversions module) 101
bToStr (conversions module) 115

bufToBlob2 (blobs module) 51
bufToBlob3 (blobs module) 51
Buttons (HOWL) 1077

C
c (args module) 10
CannotCreateDir (exceptions module) 307
CannotFreeMemory (exceptions module)

308
CannotRemoveDir (exceptions module)

307
CannotRemoveFile (exceptions module)

307
CannotRenameFile (exceptions module)

308
Case insensitive character matching rou-

tines 600
case macro 961
cat (strings module) 905
cat (zstrings module) 1004
cat2 (blobs module) 49
cat2 (strings module) 905
cat3 (blobs module) 49
cat3 (strings module) 905
catb (strings module) 917
catbool (strings module) 911
catbuf (strings module) 910
catbuf2 (blobs module) 50
catbuf2 (strings module) 910
catbuf3a (blobs module) 50
catbuf3a (strings module) 910
catbuf3b (blobs module) 51
catbuf3b (strings module) 910
catbuf4 (blobs module) 51
catbuf4 (strings module) 910
catc (strings module) 912
catcset (strings module) 914
catcSize (strings module) 913
catd (strings module) 923
cate32 (strings module) 953
cate64 (strings module) 954
cate80 (strings module) 954
cath128 (strings module) 930
cath128Size (strings module) 931
cath16 (strings module) 921
cath16Size (strings module) 922
cath32 (strings module) 924
cath32Size (strings module) 924
cath64 (strings module) 926
Released to the Public Domain Page 1129

HLA Standard Library
cath64Size (strings module) 926
cath80 (strings module) 928
cath80Size (strings module) 928
cati128 (strings module) 940
cati128Size (strings module) 941
cati16 (strings module) 935
cati16Size (strings module) 936
cati32 (strings module) 937
cati32Size (strings module) 937
cati64 (strings module) 939
cati64Size (strings module) 939
cati8 (strings module) 932
cati8Size (strings module) 934
catl (strings module) 930
catq (strings module) 925
catr32 (strings module) 955
catr64 (strings module) 956
catr80 (strings module) 957
cats (strings module) 915
catsSize (strings module) 916
catsub (blobs module) 49
catsub (strings module) 907
catsub4 (blobs module) 49
catsub4 (strings module) 908
catsub5 49
catsub5 (strings module) 908
cattb (strings module) 928
catu128 (strings module) 951
catu128Size (strings module) 951
catu16 (strings module) 945
catu16Size (strings module) 946
catu32 (strings module) 947
catu32Size (strings module) 947
catu64 (strings module) 949
catu64Size (strings module) 949
catu8 (strings module) 943
catu8Size (strings module) 944
catw (strings module) 920
catz (strings module) 906
cd (filesys module) 464
CDFailed (exceptions module) 307
Character classification 65
Character concatenation functions 912
Character insertion/removal functions

(console module) 78
Character matching functions 595
Character set concatenation functions 912
Character set construction 259

Character set searching functions 863
Character sets 251
Character utilities 65
charInStr (strings module) 874
chars.isAlpha 66
chars.isAlphaNum 68
chars.isASCII 71
chars.isCtrl 71
chars.isDigit 68
chars.isGraphic 70
chars.isLower 67
chars.isSpace 70
chars.isUpper 67
chars.isXDigit 69
chars.toLower 65
chars.toUpper 65
charToCset (character sets) 262
Check boxes (HOWL) 1022
Checkable objects (HOWL) 1052
checkPoint (timer class) 999
chpos (blobs module) 47
chpos (strings module) 858
chpos2 (blobs module) 47
chpos2 (strings module) 858
chpos3 (blobs module) 47
chpos3 (strings module) 858
Circles (HOWL) 1027
Class traits 819
Clickable objects (HOWL) 1049
Client applications (socket module) 638
Client/Server applications 635
Client/server communication 638
client_t.close 639
client_t.create 639
client_t.destroy 639
Close (file class module) 316
Close (file I/O module) 344
close (memory-mapped files module) 549
Close (socket module) 639
close (socket module) 627
clrLn (console module) 77
clrToBOLN (console module) 77
clrToBOScrn (console module) 78
clrToEOLN (console module) 77
clrToEOScrn (console module) 78
cls (console module) 77
cmdLn (args module) 9
cnt (bits module) 25
Page 1130 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
coalese (bits module) 33
cocall (coroutines module) 249
cofree (coroutines module) 249
columnize3 (strings module) 887
columnize4 (strings module) 887
Combo boxes (HOWL) 1090
Combobox (HOWL) 1024
Command-line arguments 9
Compile-time traits (stl) 820
Compiling HOWL applications 1014
complement (character sets) 270
Concatenation functions (blobs module)

48
connect (socket module) 627
Console clearing functions 76
Console display control 73
Console output colors 81
Console scrolling 80
console.clrLn 77
console.clrToBOLN 77
console.clrToBOScrn 78
console.clrToEOLN 77
console.clrToEOScrn 78
console.cls 77
console.deleteChar 79
console.deleteChars 80
console.deleteLine 80
console.deleteLines 80
console.down 74
console.gotorc 73
console.gotoxy 73
console.home 77
console.insertChar 78
console.insertChars 78
console.insertLine 79
console.insertLines 79
console.left 75
console.ndown 75
console.nleft 75
console.nright 76
console.nup 74
console.restoreCursor 76
console.right 75
console.saveCursor 76
console.scrollDown 81
console.scrollUp 80
console.setAttrs 81
console.up 74

Container objects (HOWL) 1059
Containers (HOWL) 1061
ControlC (exceptions module) 309
conv.a_bToStr 117
conv.a_dToStr 123
conv.a_e32ToStr 236
conv.a_e64ToStr 235
conv.a_e80ToStr 234
conv.a_h128ToStr 145
conv.a_h16ToStr 136
conv.a_h32ToStr 138
conv.a_h64ToStr 141
conv.a_h80ToStr 143
conv.a_h8ToStr 132
conv.a_i128ToStr 181
conv.a_i16ToStr 173
conv.a_i32ToStr 176
conv.a_i64ToStr 178
conv.a_i8ToStr 170
conv.a_lToStr 129
conv.a_qToStr 125
conv.a_r32ToStr 243
conv.a_r64ToStr 243
conv.a_r80ToStr 242
conv.a_roman 245
conv.a_tbToStr 127
conv.atof 244
conv.atoi128 185
conv.atoi16 183
conv.atoi32 184
conv.atoi64 185
conv.atoi8 182
conv.atou128 222
conv.atou16 220
conv.atou32 220
conv.atou64 221
conv.atou8 219
conv.a_u128ToStr 217
conv.a_u16ToStr 210
conv.a_u32ToStr 213
conv.a_u64ToStr 215
conv.a_u8ToStr 206
conv.a_wToStr 120
conv.bSize 92
conv.bToBuf 101
conv.bToStr 115
conv.dSize 93
conv.dToBuf 103
Released to the Public Domain Page 1131

HLA Standard Library
conv.dToStr 122
conv.e32ToBuf 231
conv.e32ToStr 234
conv.e64ToBuf 231
conv.e64ToStr 233
conv.e80ToBuf 230
conv.e80ToStr 232
conv.getDelimiters 88
conv.getUnderscores 87
conv.h128Size 100
conv.h128ToBuf 113
conv.h128ToStr 144
conv.h16Size 97
conv.h16ToBuf 109
conv.h16ToStr 134
conv.h32Size 97
conv.h32ToBuf 110
conv.h32ToStr 137
conv.h64Size 98
conv.h64ToBuf 111
conv.h64ToStr 139
conv.h80Size 99
conv.h80ToBuf 112
conv.h80ToStr 142
conv.h8Size 96
conv.h8ToBuf 108
conv.h8ToStr 130
conv.hhf 83
conv.i128Size 160
conv.i128ToBuf 166
conv.i128ToStr 179
conv._i16Size 157
conv.i16Size 158
conv.i16ToBuf 163
conv.i16ToStr 172
conv.i32Size 159
conv.i32ToBuf 164
conv.i32ToStr 175
conv.i64Size 159
conv.i64ToBuf 165
conv.i64ToStr 177
conv.i8Size 157
conv.i8ToBuf 162
conv.i8ToStr 168
conv._intToBuf128 157
conv._intToBuf128Size 157
conv._intToBuf64Size 157
conv.lSize 95

conv.lToBuf 106
conv.lToStr 128
conv.qSize 94
conv.qToBuf 104
conv.qToStr 124
conv.r32ToBuf 239
conv.r32ToStr 241
conv.r64ToBuf 238
conv.r64ToStr 240
conv.r80ToBuf 237
conv.r80ToStr 240
conv.roman 245
conv.setDelimiters 89
conv.setUnderscores 85
conv.strToFlt 245
conv.strToh128 155
conv.strToh16 152
conv.strToh32 153
conv.strToh64 154
conv.strToh8 151
conv.strToi128 191
conv.strToi16 188
conv.strToi32 189
conv.strToi64 190
conv.strToi8 187
conv.strTou128 228
conv.strTou16 224
conv.strTou32 225
conv.strTou64 226
conv.strTou8 223
conv.tbSize 94
conv.tbToBuf 105
conv.tbToStr 126
conv.u128Size 196
conv.u128ToBuf 202
conv.u128ToStr 216
conv._u16Size 193
conv.u16Size 194
conv.u16ToBuf 199
conv.u16ToStr 208
conv._u32Size 193
conv.u32Size 195
conv.u32ToBuf 200
conv.u32ToStr 211
conv.u64Size 195
conv.u64ToBuf 201
conv.u64ToStr 214
conv._u8Size 193
Page 1132 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
conv.u8Size 193
conv.u8ToBuf 197
conv.u8ToStr 204
conv.wSize 93
conv.wToBuf 102
conv.wToStr 119
Conversion format control 84
Conversion functions (blobs module) 51
ConversionError (exceptions module) 306
Conversions 83
coret (coroutines module) 250
Coroutines 247
coroutines.hhf 247
coroutine_t.cocall 249
coroutine_t.cofree 249
coroutine_t.create 248
_cos (math module) 522
cos (math module) 522
cos32 (math module) 522
cos64 (math module) 522
cos80 (math module) 522
_cot (math module) 527
cot (math module) 527
cot32 (math module) 527
cot64 (math module) 528
cot80 (math module) 528
Counting the number of set bits in an object

 25
cpy (arrays module) 18
cpy (blobs module) 43
cpy (character sets) 260
cpy (strings module) 829
cpy (zstrings module) 1004
cpyz (strings module) 830
create (coroutines module) 248
create (file class module) 314
create (list module) 492
create (memory-mapped files module) 548
create (socket module) 639
create (tables module) 963– 964
create (threads module) 967
create (time class module) 993
create (timer class) 998
createCriticalSection (threads module)

973
createEvent (threads module) 971
createSemaphore (threads module) 974
createTLS (threads module) 969

create_wBase (HOWL) 1045
create_wCheckable (HOWL) 1053
create_wClickable (HOWL) 1050
create_wFilledFrame (HOWL) 1055
create_wSurface 1054
Creating new list class types 490
Critical sections 972
cs.charToCset 262
cs.complement 270
cs.cpy 260
cs.difference 269
cs.empty 259
cs.eq 257
cs.extract 266
cs.intersection 268
cs.IsEmpty 251
cs.member 252
cs.ne 258
cs.psubset 255
cs.psuperset 256
cs.rangeChar 263
cs.removeChar 272
cs.removeStr 275
cs.removeStr2 276
cs.setunion 268
cs.strToCset 265
cs.subset 253
cs.superset 254
cs.unionChar 271
cs.unionStr 273
cs.unionStr2 274
_csc (math module) 529
csc (math module) 529
csc32 (math module) 529
csc64 (math module) 529
csc80 (math module) 529
Current system time 986
Cursor position within a pattern 610
curTime (date/time module) 986
curTime (time class module) 994

D
daAlloc (arrays module) 16
daFree (arrays module) 16
dArray (arrays module) 15
Date functions 279
date.addDays 287
date.addMonths 287
date.addYears 288
Released to the Public Domain Page 1133

HLA Standard Library
date.a_toString 291
date.daterec 279
date.dayNumber 285
date.dayOfWeek 285
date.daysBetween 286
date.daysLeft 285
date.fromJulian 284, 298
date.isLeapYear 281
date.isValid 282
date.outputFormat 280
date.pack 283
date.setFormat 290
date.setSeparator 290
date.subDays 288
date.subMonths 288
date.subYears 288
date.today 289, 299
date.toJulian 283
date.toString 291
date.unpack 283
date.utc 289
date.validate 282
daterec (date/time module) 279
DateStarted (timer class) 998
DateStopped (timer class) 998
datetime.hhf 279, 977
dayNumber (date/time module) 285, 298
dayOfWeek (date/time module) 285, 298
daysBetween (date/time module) 286,

298
daysLeft (date/time module) 285, 298
Declaring Blob variables 36
default macro 961
Deferred evaluation 609
Delay functions 561
delete (args module) 11
delete (filesys module) 463
delete (lists module) 495
delete (strings module) 838
delete3 (strings module) 838
delete4 (strings module) 838
deleteChar (console module) 79
deleteChars (console module) 80
deleteCriticalSection (threads module)

973
deleteEvent (threads module) 971
delete_first (list module) 496
delete_index (list module) 495

delete_last (list module) 496
deleteLine (console module) 80
deleteLines (console module) 80
delete_node (list module) 496
deleteSemaphore (threads module) 975
delLeadingSpaces (strings module) 839
delLeadingSpaces1 (strings module) 840
delLeadingSpaces2 (strings module) 840
delTrailingSpaces (strings module) 841
delTrailingSpaces1 (strings module) 841
delTrailingSpaces2 (strings module) 841
Deque (stl) 824
destroy (args module) 12
destroy (blobs module) 39
destroy (HOWL) 1045
destroy (list module) 492
destroy (memory-mapped files module)

548
destroy (socket module) 639
destroy (tables module) 963– 964
deTab2 (strings module) 891
deTab3a (strings module) 892
deTab3b (strings module) 892
deTab4 (strings module) 893
difference (character sets) 269
difference (date/time module) 298
difference (time class module) 994
Directory and File manipulation functions

463
Directory and file predicates 461
dirIn (filesys module) 467
dirInCwd (filesys module) 467
disable (HOWL) 1046, 1049
DiskFullError (exceptions module) 307
distribute (bits module) 32
DivideError (exceptions module) 310
divl (math module) 513
divq (math routine) 504
down (console module) 74
Drag list boxes (HOWL) 1090
dSize (conversions module) 93
dtClass.make_timeClass 989
dToBuf (conversions module) 103
dToStr (conversions module) 122
durationToSecs (time module) 980

E
e32ToBuf (conversions module) 231
e32ToStr (conversions module) 234
Page 1134 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
e64ToBuf (conversions module) 231
e64ToStr (conversions module) 233
e80ToBuf (conversions module) 230
e80ToStr (conversions module) 232
Eager evaluation 609
Edit boxes (HOWL) 1025, 1086
Editors (HOWL) 1086
element (arrays module) 17
elementsAreObjects_c (stl) 820– 821,

823
Ellipses (HOWL) 1026
empty (character sets) 259
enable (HOWL) 1046, 1049
enabled (HOWL) 1045
endMatch (pattern matching module) 587
EndOfFile (exceptions module) 307
endreduce (arrays module) 19
endswitch macro 961
endwForm 1008, 1018
endwMainMenu 1019
endwRadioSet 1033
endwSubMenu 1020
enTab2 (strings module) 895
enTab3a (strings module) 896
enTab3b (strings module) 896
enTab4 (strings module) 897
enterCriticalSection (threads module) 973
env.a_get 301
env.get 301
env.hhf 301
Environment variables 301
eof (blobs module) 42
eof (file I/O module) 346
eoln (blobs module) 64
eoln (file I/O module) 427
eoln (stdin module) 737
eoln2 (stdin module) 737
eq (blobs module) 45
eq (character sets) 257
eq (strings module) 844
Events (threads module) 971
ex.AccessDenied 307
ex.AccessViolation 309
ex.ArrayBounds 308
ex.ArrayShapeViolation 308
ex.AssertionFailed 306
ex.AttemptToDerefNULL 306
ex.AttemptToFreeNULL 308

ex.BadFileHandle 306
ex.BadObjPtr 306
ex.BlockAlreadyFree 308
ex.BoundInstr 310
ex.Breakpoint 309
ex.CannotCreateDir 307
ex.CannotFreeMemory 308
ex.CannotRemoveDir 307
ex.CannotRemoveFile 307
ex.CannotRenameFile 308
ex.CDFailed 307
ex.ControlC 309
ex.ConversionError 306
ex.DiskFullError 307
ex.DivideError 310
ex.EndOfFile 307
ex.exceptionMsg 311
ex.ExecutedAbstract 306
ex.fDenormal 310
ex.fDivByZero 310
ex.FileCloseError 307
ex.FileNotFound 306
ex.FileOpenFailure 307
ex.FileReadError 307
ex.FileSeekError 307
ex.FileWriteError 307
ex.fInexactResult 310
ex.fInvalidOperation 310
ex.fOverflow 310
ex.fStackCheck 310
ex.fUnderflow 310
ex.IllegalChar 306
ex.IllegalInstr 309
ex.InPageError 309
ex.IntoInstr 310
ex.InvalidAlignment 306
ex.InvalidDate 308
ex.InvalidDateFormat 308
ex.InvalidHandle 309
ex.InvalidTime 309
ex.InvalidTimeFormat 309
ex.MemoryAllocationFailure 308
ex.MemoryFreeFailure 308
ex.NoMemory 309
ex.PointerNotInHeap 308
ex.printExceptionError 311
ex.PrivInstr 309
ex.SingleStep 309
Released to the Public Domain Page 1135

HLA Standard Library
ex.StackOverflow 309
ex.StringIndexError 305
ex.StringOverflow 305
ex.TimeOverflow 309
ex.TooManyCmdLnParms 306
ex.ValueOutOfRange 305
ex.WidthTooBig 306
exactlyNChar (patterns module) 597
exactlyNCset (patterns module) 593
exactlyNiChar (patterns module) 602
exactlyNtoMChar (patterns module) 599
exactlyNtoMCset (patterns module) 595
exactlyNtoMiChar (pattern matching mod-

ule) 604
exceptionMsg (exceptions module) 311
Exceptions 303
excepts.hhf 303
ExecutedAbstract (exceptions module)

306
exists (filesys module) 461
_exp (math module) 540
exp (math module) 540
exp32 (math module) 540
exp64 (math module) 540
exp80 (math module) 540
Extended-precsion arithmetic functions

503
extract (bits module) 32
extract (character sets) 266
extract (patterns module) 606
extractExt (filesys module) 450
extractFilename (filesys module) 451
Extraction functions (blobs module) 44
extractPath (filesys module) 453

F
fail (patterns module) 588
fastAppend_c (stl) 820– 821, 823
fastElementSwap_c (stl) 820– 821, 824
fastInsert_c (stl) 820– 821, 823
fastPrepend_c (stl) 820– 821, 823
fastRemove_c (stl) 820– 821, 823
fastSearch_c (stl) 820– 821, 824
fastSwap_c (stl) 820– 821, 824
fd_clr (socket module) 633
fDenormal (exceptions module) 310
fd_isset (socket module) 633
fDivByZero (exceptions module) 310
fd_set (socket module) 633

fd_zero (socket module) 633
fence (patterns module) 588
File class 313
File I/O module 341
File information functions 462
File input routines 425
File system routines 445
file.create 314
fileclass.hhf 313
FileCloseError (exceptions module) 307
fileIn (filesys module) 465
fileInCwd (filesys module) 466
fileio.a_gets 429
fileio.append 348
fileio.Close 344
fileio.eof 346
fileio.eoln 427
fileio.flush 345
fileio.get (fileio module) 443
fileio.getc 428
fileio.getf 442
fileio.geth128 441
fileio.geth16 438
fileio.geth32 439
fileio.geth64 440
fileio.geth8 437
fileio.geti128 433
fileio.geti16 430
fileio.geti32 431
fileio.geti64 432
fileio.geti8 430
fileio.gets 428
fileio.getu128 436
fileio.getu16 435
fileio.getu32 435
fileio.getu64 436
fileio.getu8 434
fileio.hhf 341
fileio.newln 356
fileio.Open 341
fileio.OpenNew 343
fileio.position 349
fileio.put 424
fileio.putb 365
fileio.putbool 357
fileio.putc 358
fileio.putcset 361
fileio.putcsize 360
Page 1136 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
fileio.putd 373
fileio.pute32 416, 807
fileio.pute64 417
fileio.pute80 418
fileio.puth128 385
fileio.puth128Size 386
fileio.puth16 370
fileio.puth16Size 371
fileio.puth32 374
fileio.puth32Size 375
fileio.puth64Size 378
fileio.puth8 366
fileio.puth80 381
fileio.puth80Size 382
fileio.puth8Size 367
fileio.puti128 399
fileio.puti128size 400
fileio.puti16Size 393
fileio.puti16size 391
fileio.puti32 394
fileio.puti32Size 395
fileio.puti64 397
fileio.puti64size 398
fileio.puti8 388
fileio.putl 384
fileio.putq 377
fileio.putr32 420
fileio.putr64 421
fileio.putr80 423
fileio.puts 362
fileio.putssize 363
fileio.puttb 380
fileio.putu128 413
fileio.putu128size 414
fileio.putu16 405
fileio.putu16size (file I/O module) 407
fileio.putu32 408
fileio.putu32size 409
fileio.putu64 411
fileio.putu64size 412
fileio.putu8 402
fileio.putu8size 404
fileio.putw 369
fileio.read 425
fileio.ReadLn 426
fileio.rewind 347
fileio.rSeek 351
fileio.seek 350

fileio.size 353
fileio.truncate 352
fileio.write 354
Filename and pathname string functions

445
FileNotFound (exceptions module) 306
FileOpenFailure 307
FileReadError (exceptions module) 307
FileSeekError (exceptions module) 307
filesys.a_extractBase 448
filesys.a_extractExt 450
filesys.a_extractFilename 451
filesys.a_extractPath 452
filesys.a_getFullPathName 460
filesys.a_joinPaths 453
filesys.a_normalize 455
filesys.a_toNativePath 460
filesys.a_toUnixPath 457
filesys.a_toWin32Path 458
filesys.cd 464
filesys.delete 463
filesys.dirIn 467
filesys.dirInCwd 467
filesys.exists 461
filesys.extractExt 450
filesys.extractFilename 451
filesys.extractPath 453
filesys.fileIn 465
filesys.fileInCwd 466
filesys.fileWithSuffix 465
filesys.getFullPath 460
filesys.gwd 464
filesys.hasDriveLetter 445
filesys.hasExtension 446
filesys.hasPath 448
filesys.hasUncName 447
filesys.hhf 445
filesys.isDir 462
filesys.isFile 461
filesys.itemInCwd 468
filesys.itemWithSuffix 468
filesys.joinPaths 454
filesys.mkdir 463
filesys.normalize1 456
filesys.normalize2 456
filesys.rename 464
filesys.rmdir 465
filesys.size 462
Released to the Public Domain Page 1137

HLA Standard Library
filesys.toNativePath1 460
filesys.toNativePath2 460
filesys.toUnixPath1 457
filesys.toUnixPath2 458
filesys.toWin32Path1 459
filesys.toWin32Path2 459
filevar.a_gets 334
filevar.Close 316
filevar.get 339
filevar.getc 333
filevar.getf 339
filevar.geth128 339
filevar.geth16 338
filevar.geth32 338
filevar.geth64 338
filevar.geth8 337
filevar.geti128 336
filevar.geti16 335
filevar.geti32 335
filevar.geti64 335
filevar.geti8 334
filevar.gets 333
filevar.getu16 336
filevar.getu32 336
filevar.getu64 337
filevar.getu8 336
filevar.handle 315
filevar.newln 318
filevar.Open 315
filevar.OpenNew 315
filevar.put 332
filevar.putb 319
filevar.putbool 317
filevar.putc 318
filevar.putcset 318
filevar.putcsize 318
filevar.putd 321
filevar.pute32 329
filevar.pute64 329
filevar.pute80 330
filevar.puth16Size 321
filevar.puth64Size 322
filevar.puth8Size 320
filevar.puti128 326
filevar.puti128size 326
filevar.puti16 324
filevar.puti16size 325
filevar.puti32 325

filevar.puti32size 325
filevar.puti64 325
filevar.puti64size 325
filevar.putr32 330
filevar.putr64 331
filevar.puts 319
filevar.putssize 319
filevar.puttb 322
filevar.putu16size 327
filevar.putu8 326
filevar.putw 320
filevar.read 333
filevar.ReadLn 333
filevar.write 317
fileWithSuffix (filesys module) 465
FileWriteError (exceptions module) 307
fillb (blobs module) 43
filld (blobs module) 44
fillw (blobs module) 43
filteredNodeInList (lists module) 498
filteredNodeInListReversed (lists module)

498
findInCset (strings module) 867
findInCset2 (strings module) 867
findInCset3 (strings module) 867
fInexactResult (exceptions module) 310
fInvalidOperation (exceptions module)

310
first (strings module) 832
first2 (strings module) 832
first3 (strings module) 832
firstNChar (patterns module) 598
firstNCset (patterns module) 593
firstNiChar (patterns module) 602
Fixed length hexadecimal numeric to nuff-

er conversions 101
Fixed size hexadecimal size functions 92
Floating-point concatenation functions

952
Floating-point functions 520
Floating-point numeric output using scien-

tific notation (socket module) 654
Floating-point numeric to buffer conver-

sions, exponential form 230
flush (file I/O module) 345
FlushInput (stdin module) 737
Forms (HOWL) 1061
fOverflow (exceptions module) 310
Page 1138 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
free (blobs module) 39
free (memory module) 553
freeBlockInHeap (memory module) 558
fromJulian (date/time module) 284, 298
fromSecs (time class module) 993
fromSecs (time module) 981
fromUnixTime (time module) 982
fromWinFileTime (time module) 983
fStackCheck (exceptions module) 310
fUnderflow (exceptions module) 310

G
ge (strings module) 847
get (blobs module) 64
get (environment module) 301
get (file class module) 339
get (fileio module) 443
get (socket module) 665
get (stdin module) 747
getAdrs (socket module) 641
getByte (blobs module) 60
getc (blobs module) 64
getc (file class module) 333
getc (file I/O module) 428
getc (socket module) 659
getc (stdin module) 738
getCurrentThreadHandle (threads module)

969
getDelimiters (conversions module) 88
getDword (blobs module) 61
get_enabled (HOWL) 1046
get_exStyle (HOWL) 1048
getf (blobs module) 64
getf (file class module) 339
getf (file I/O module) 442
getf (socket module) 664
getf (stdin module) 747
getField3 (strings module) 877
getField4 (strings module) 877
getFileName (memory-mapped files mod-

ule) 549
getFullPath (filesys module) 460
geth128 (blobs module) 64
geth128 (file class module) 339
geth128 (file I/O module) 441
geth128 (socket module) 664
geth128 (stdin module) 741
geth16 (blobs module) 64
geth16 (file class module) 338

geth16 (file I/O module) 438
geth16 (socket module) 663
geth16 (stdin module) 740
geth32 (blobs module) 64
geth32 (file class module) 338
geth32 (file I/O module) 439
geth32 (socket module) 663
geth32 (stdin module) 740
geth64 (blobs module) 64
geth64 (file class module) 338
geth64 (file I/O module) 440
geth64 (socket module) 664
geth64 (stdin module) 741
geth8 (blobs module) 64
geth8 (file class module) 337
geth8 (file I/O module) 437
geth8 (socket module) 663
geth8 (stdin module) 739
geth80 (blobs module) 64
get_handle (HOWL) 1046
get_height (HOWL) 1048
gethostbyaddr (socket module) 633
gethostbyname (socket module) 632
gethostname (socket module) 632
geti128 (blobs module) 64
geti128 (file class module) 336
geti128 (file I/O module) 433
geti128 (socket module) 661
geti128 (stdin module) 744
geti16 (blobs module) 64
geti16 (file class module) 335
geti16 (file I/O module) 430
geti16 (socket module) 660
geti16 (stdin module) 742
geti32 (blobs module) 64
geti32 (file class module) 335
geti32 (file I/O module) 431
geti32 (socket module) 660
geti32 (stdin module) 743
geti64 (blobs module) 64
geti64 (file class module) 335
geti64 (file I/O module) 432
geti64 (socket module) 661
geti64 (stdin module) 743
geti8 (blobs module) 64
geti8 (file class module) 334
geti8 (file I/O module) 430
geti8 (socket module) 660
Released to the Public Domain Page 1139

HLA Standard Library
geti8 (stdin module) 742
getLword (blobs module) 62
getMalloc (memory-mapped files module)

550
getNode (tables module) 963, 966
get_objectID (HOWL) 1046
get_onHeap (HOWL) 1046
getOpen (memory-mapped files module)

549
get_parentForm (HOWL) 1046
get_parentHandle (HOWL) 1046, 1048
getpeername (socket module) 633
getPort (socket class module) 642
getPos (patterns module) 588
getQword (blobs module) 62
getref (memory module) 556, 559
gets (blobs module) 64
gets (file class module) 334
gets (file I/O module) 428
gets (socket module) 659
gets (stdin module) 738
getsockname (socket module) 633
get_style (HOWL) 1048
getTbyte (blobs module) 62
getTimeout (socket class module) 641
getTLS (threads module) 970
getu128 (blobs module) 64
getu128 (file class module) 337
getu128 (file I/O module) 436
getu128 (socket module) 662
getu128 (stdin module) 746
getu16 (blobs module) 64
getu16 (file class module) 336
getu16 (file I/O module) 435
getu16 (socket module) 662
getu16 (stdin module) 745
getu32 (blobs module) 64
getu32 (file class module) 336
getu32 (file I/O module) 435
getu32 (socket module) 662
getu32 (stdin module) 745
getu64 (blobs module) 64
getu64 (file class module) 337
getu64 (file I/O module) 436
getu64 (socket module) 662
getu64 (stdin module) 746
getu8 (blobs module) 64
getu8 (file class module) 336

getu8 (file I/O module) 434
getu8 (socket module) 661
getu8 (stdin module) 744
get_visible (HOWL) 1046
getWhiteSpace (patterns module) 607
get_width (HOWL) 1048
getWord (blobs module) 61
getWordDelims (patterns module) 606
get_x (HOWL) 1048
get_y (HOWL) 1048
globalOptions (args module) 12
gotorc (console module) 73
gotoxy (console module) 73
Graphic objects (HOWL) 1068
gt (strings module) 846
gwd (filesys module) 464

H
h128Size (conversions module) 100
h128ToBuf (conversions module) 113
h128ToStr (conversions module) 144
h16Size (conversions module) 97
h16ToBuf (conversions module) 109
h16ToStr (conversions module) 134
h32Size (conversions module) 97
h32ToBuf (conversions module) 110
h32ToStr (conversions module) 137
h64Size (conversions module) 98
h64ToBuf (conversions module) 111
h64ToStr (conversions module) 139
h80Size (conversions module) 99
h80ToBuf (conversions module) 112
h80ToStr 142
h8Size (conversions module) 96
h8ToBuf (conversions module) 108
h8ToStr (conversions module) 130
handle (file class module) 315
handle (HOWL) 1044
handle (stdin module) 735
handle (stdio module) 749
hasDriveLetter (filesys module) 445
hasExtension (filesys module) 446
hasPath (filesys module) 448
hasUncName (filesys module) 447
Hexadecimal concatenation functions 917
Hexadecimal conversions 91
Hexadecimal input from a socket 663
Hexadecimal numeric size functions 92
Hexadecimal numeric to buffer conver-
Page 1140 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
sions 101
Hexadecimal numeric to string conversions

 115
Hexadecimal size functions 96
hide (HOWL) 1046, 1049
High-level language statements 961
HLA macros and constants 469
HLA Object Windows Library 1007
HLA string data type 825
hla.asDword 470
hla.asWord 470
hla.hhf 469
hla.IsHex 469
hla.IsInt 469
hla.IsNumber 469
hla.IsNumeric 470
hla.IsOrdinal 470
hla.IsReal 469
hla.IsUns 469
_hla.make_listClass 490
hll.cswitch 962
hll.usebubblesort 962
home (console module) 77
HOWL 1007
HOWL Declarative Language 1017
HOWL object hierarchy 1042
HOWL Run-time Library 1041
HowlMainApp 1007

I
i128Size (conversions module) 160
i128TBuf (conversions module) 166
i128ToStr (conversions module) 179
_i16Size (conversions module) 157
i16Size (conversions module) 158
i16ToBuf (conversions module) 163
i16ToStr (conversions module) 172
i32Size (conversions module) 159
i32ToBuf (conversions module) 164
i32ToStr (conversions module) 175
i64Size (conversions module) 159
i64ToBuf (conversions module) 165
i64ToStr (conversions module) 177
i8Size (conversions module) 157
i8ToBuf (conversions module) 162
i8ToStr (conversions module) 168
ichpos (strings module) 859
ichpos2 (strings module) 859
ichpos3 (strings module) 859

Icons (HOWL) 1111
idivl (math module) 513
idivq (math module) 505
ieq (strings module) 847
ige (strings module) 849
igt (strings module) 849
iindex (strings module) 853
iindex3 (strings module) 854
ile (strings module) 849
IllegalChar (exceptions module) 306
IllegalInstr (exceptions module) 309
ilt (strings module) 848
imodl (math module) 515
imodq (math module) 506
imull (math module) 516
imulq (math module) 507
index (arrays module) 17
index (blobs module) 46
index (list module) 497
index (strings module) 852
index2 (blobs module) 46
index2 (strings module) 852
index3 (blobs module) 46
index3 (strings module) 852
indexStr 46
indexStr2 (blobs module) 46
indexStr3 (blobs module) 46
ine (strings module) 848
init (blobs module) 37
init (strings module) 827
init16 (blobs module) 37
Initializing and allocating blob variables

37
InPageError (exceptions module) 309
insert (lists module) 494
insert (strings module) 836
insert3 (strings module) 836
insert4 (strings module) 837
insertChar (console module) 78
insertChars (console module) 78
insert_first (list module) 495
insert_index (list module) 494
insertLine (console module) 79
insertLines (console module) 79
insert_node (list module) 495
intersection (character sets) 268
IntoInstr (exceptions module) 310
_intToBuf128 (conversions module) 157
Released to the Public Domain Page 1141

HLA Standard Library
_intToBuf128Size (conversions module)
157

_intToBuf32 (conversions module) 157
_intToBuf32Size (conversions module)

157
_intToBuf64Size (conversions module)

157
InvalidArgument (exceptions module)

306
InvalidDate (exceptions module) 308
InvalidDateFormat (exceptions module)

308
InvalidHandle (exceptions module) 309
InvalidTime (exceptions module) 309
InvalidTimeFormat (exceptions module)

309
irchpos (strings module) 861
irchpos2 (strings module) 862
irchpos3 (strings module) 862
irindex (strings module) 856
irindex2 (strings module) 856
irindex3 (strings module) 857
isAlloc field in stl classes 824
isAlpha (chars module) 66
isAlphaNum (chars module) 68
IsArray_c (stl) 820– 821
isArray_c (stl) 822
isASCII (chars module) 71
isContainer_c (stl) 820– 821
isCtrl (chars module) 71
isDeque_c (stl) 820– 822
isDigit (chars module) 68
isDir (filesys module) 462
IsEmpty (character sets) 251
isFile (filesys module) 461
isGraphic (chars module) 70
IsHex (HLA module) 469
isInHeap (memory module) 554
IsInt (HLA module) 469
IsItDynamic (arrays module) 17
IsItVar (arrays module) 17
isLeapYear (date/time module) 281, 298
isList_c (stl) 820– 822
isLower (chars module) 67
IsNumber (HLA module) 469
IsNumeric (HLA module) 470
IsOrdinal (HLA module) 470
isRandomAccess_c (stl) 820– 822

IsReal (HLA module) 469
isSpace (chars module) 70
isSTL_c 819
isTable_c (stl) 820– 822
IsUns (HLA module) 469
isUpper (chars module) 67
isValid (date/time module) 282, 298
isValid (time class module) 993
_isValid (time module) 979
isValid (time module) 979
isValue (date/time module) 979
isVector_c (stl) 820– 821
isXDigit (chars module) 69
item (tables module) 963
itemInCwd (filesys module) 468
itemWithSuffix (filesys module) 468

J
joinPaths (filesys module) 454

L
l_arb (patterns module) 609
last (strings module) 833
last2 (strings module) 833
last3 (strings module) 834
Lazy/deferred evaluation 609
le (strings module) 846
leaveCriticalSection (threads module) 974
left (console module) 75
Left-text check boxes 1022
Left-text radio buttons (HOWL) 1033
Left-text radio set buttons (HOWL) 1034
len (zstrings module) 1002
length (blobs module) 39
length (strings module) 828
l_ExactlyNtoMChar (patterns module)

600
l_ExactlyNtoMCset (patterns module)

595
l_ExactlyNtoMiChar (patterns module)

604
Linux 485
linux.hhf 485
List (stl) 824
List boxes (HOWL) 1029, 1090
List constructor and destructor 492
List procedures, methods, and iterators

491
list.append_index 493
list.append_last 494
Page 1142 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
list.append_node 493
list.create 492
list.delete_first 496
list.delete_index 495
list.delete_last 496
list.delete_node 496
list.destroy 492
list.index 497
list.insert_first 495
list.insert_index 494
list.insert_node 495
list.numNodes 493
listen (socket module) 627
Lists 487
lists.hhf 487
list_t (lists module) 487
list_t.append 493
list_t.delete 495
list_t.filteredNodeInList 498
list_t.filteredNodeInListReversed 498
list_t.insert 494
list_t.nodeInList 497
list_t.nodeInListReversed 497
list_t.reverse 499
list_t.search 500
list_t.sort 500
list_t.xchgNodes 500
_ln (math module) 544
ln (math module) 544
ln32 (math module) 544
ln64 (math module) 544
ln80 (math module) 544
l_NorLessChar (patterns module) 598
l_NorLessCset (patterns module) 593
l_NorLessiChar (patterns module) 603
l_NorMoreChar (patterns module) 599
l_NorMoreCset (patterns module) 594
l_NorMoreiChar (patterns module) 603
l_NtoMChar (patterns module) 599
l_NtoMCset (patterns module) 594
l_NtoMiChar (patterns module) 604
load (blobs module) 53
localOptions (args module) 13
_log (math module) 543
log (math module) 543
log32 (math module) 543
log64 (math module) 543
log80 (math module) 543

Logarithmic arithmetic operations 520
l_OneOrMoreChar (patterns module) 597
l_OneOrMoreCset (patterns module) 592
l_OneOrMoreiChar (patterns module) 602
lookup (tables module) 963, 965
Lookup tables 22
lookupTable (arrays module) 22
lower (strings module) 900
lower1 (strings module) 900
lower2 (strings module) 900
lSize (conversions module) 95
lt (strings module) 845
lToBuf (conversions module) 106
lToStr (conversions module) 128
l_ZeroOrMoreChar (patterns module) 597
l_ZeroOrMoreCset (patterns module) 592
l_ZeroOrMoreiChar (patterns module)

601
l_ZeroOrOneChar (patterns module) 596
l_ZeroOrOneCset (patterns module) 591
l_ZeroOrOneiChar (patterns module) 601

M
make_timeClass (time class module) 989
match (pattern matching module) 587
Matching an arbitrary sequence of charac-

ters 608
matchiStr (patterns module) 605
matchiWord (patterns module) 606
matchStr (patterns module) 604
matchToiStr (patterns module) 605
matchToStr (patterns module) 605
matchWord (patterns module) 605
Math functions 503
math._acos 532
math.acos 532
math.acos32 533
math.acos64 533
math.acos80 533
math._acot 534
math.acot 534
math.acot32 534
math.acot64 534
math.acot80 534
math._acsc 535
math.acsc 535
math.acsc32 535
math.acsc64 535
math.acsc80 535
Released to the Public Domain Page 1143

HLA Standard Library
math.addl 512
math.addq 503
math.andl 517
math.andq 508
math._asec 536
math.asec 536
math.asec32 536
math.asec64 536
math.asec80 536
math._asin 531
math.asin 531
math.asin32 531
math.asin64 531
math.asin80 531
math._atan 526
math.atan 526
math.atan32 526
math.atan64 526
math.atan80 526
math._cos 522
math.cos 522
math.cos32 522
math.cos64 522
math.cos80 522
math._cot 527
math.cot32 527
math.cot64 528
math.cot80 528
math._csc 529
math.csc32 529
math.csc64 529
math.csc80 529
math.divl 513
math._exp 540
math.exp 540
math.exp32 540
math.exp64 540
math.exp80 540
math.hhf 503
math.idivl 513
math.idivq 505
math.imodl 515
math.imodq 506
math.imull 516
math.imulq 507
math._ln 544
math.ln 544
math.ln32 544

math.ln64 544
math.ln80 544
math._log 543
math.log 543
math.log32 543
math.log64 543
math.log80 543
math.modl 514
math.modq 506
math.mull 515
math.mulq 507
math.negl 516
math.negq 508
math.notl 519
math.notq 510
math.orl 518
math.orq 509
math._sec 530
math.sec32 530
math.sec64 530
math.sec80 530
math.shll 519
math.shlq 510
math.shrl 520
math.shrq 511
math._sin 521
math.sin 521
math.sin32 521
math.sin64 521
math.sin80 521
math._sincos 525
math.sincos 525
math.sincos32 525
math.sincos64 525
math.sincos80 525
math.subl 512
math.subq 504
math._tan 524
math.tan 524
math.tan32 524
math.tan64 524
math.tan80 524
math.TenToX 539
math._tenToX 539
math.tenToX32 539
math.tenToX64 539
math.tenToX80 539
math.TwoToX 538
Page 1144 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
math._twoToX 538
math.twoToX32 538
math.twoToX64 538
math.twoToX80 538
math.xorl 518
math.xorq 509
math._YtoX 541
math.ytoX 541
math.YtoX32 541
math.YtoX64 541
math.YtoX80 541
maxlen (blobs module) 40
mem.alloc 551
mem.alloc1 (memory module) 551
mem.alloc2 (memory module) 552
mem.allocBlockInHeap 557
mem.blockInHeap (memory module) 557
mem.free 553
mem.freeBlockInHeap 558
mem.getref 556
mem.isInHeap 554
mem.isInHeap (memory module) 554
mem.newref 556
mem.realloc 553
mem.realloc1 553
mem.realloc2 553
mem.size 555
mem.stat 555
mem.talloc 554
mem.zalloc 552
member (character sets) 252
Memory management 551
memory.hhf 551
MemoryAllocationFailure (exceptions

module) 308
MemoryFreeFailure (exceptions module)

308
Memory-mapped I/O 547
Menu separator items 1020
Menu widgets (HOWL) 1019
Menus (HOWL) 1061
merge32, merge16, merge8 (bits module)

28
mkdir (filesys module) 463
mmap.hhf 547
mmap_t.close 549
mmap_t.create 548
mmap_t.destroy 548

mmap_t.getFileName 549
mmap_t.getMalloc 550
mmap_t.getOpen 549
mmap_t.open 548
mmap_t.openNew 548
modl (math module) 514
modq (math module) 506
move (HOWL) 1048
mSleep (os module) 562
msStarted (timer class) 998
msStopped (timer class) 998
mull (math module) 515
mulq (math module) 507

N
_name (HOWL) 1045
ndown (console module) 75
ne (blobs module) 45
ne (character sets) 258
ne (strings module) 845
negl (math module) 516
negq (math module) 508
newln (blobs module) 63
newln (file class module) 318
newln (file I/O module) 356
newln (socket module) 643
newln (stderr module) 669
newln (stdout module) 751
newref (memory module) 556
nextWidget (HOWL) 1045
nibbles32, nibbles16, nibbles8 (bits mod-

ule) 30
nleft (console module) 75
nodeInList (lists module) 497
nodeInListReversed (lists module) 497
nodePtr_t (lists module) 487
NoMemory (exceptions module) 309
norLessChar (patterns module) 598
norLessCset (patterns module) 593
norLessiChar (patterns module) 602
normalize1 (filesys module) 456
normalize2 (filesys module) 456
norMoreChar (patterns module) 598
norMoreCset (patterns module) 594
norMoreiChar (patterns module) 603
notl (math module) 519
notq (math routine) 510
nright (console module) 76
ntoMChar (patterns module) 599, 603
Released to the Public Domain Page 1145

HLA Standard Library
ntoMCset (patterns module) 594
numNodes (list module) 493
nup (console module) 74

O
objectID (HOWL) 1045
onClick (HOWL) 1050
onClose (HOWL) 1049
onCreate (HOWL) 1049
onDblClick (HOWL) 1050
oneChar (patterns module) 596
oneCset (patterns module) 590
oneiChar (patterns module) 600
oneOrMoreChar (patterns module) 597
oneOrMoreCset (patterns module) 592
oneOrMoreiChar (patterns module) 601
oneOrMorePat (patterns module) 590
oneOrMoreWS (patterns module) 608
onePat (patterns module) 589
One-shot timers (HOWL) 1121
onHeap (HOWL) 1045
onPaint (HOWL) 1054
Open (file class module) 315
Open (file I/O module) 341
open (memory-mapped files module) 548
OpenNew (file class module) 315
OpenNew (file I/O module) 343
openNew (memory-mapped files module)

548
orl (math module) 518
orq (math routine) 509
OS functions 561
os.hhf 561
os.mSleep 562
os.sleep 562
os.system 561
OutputFormat (date/time module) 280

P
pack (date/time module) 283
pack (time module) 980
parentForm (HOWL) 1045
parentHandle (HOWL) 1045
Passing byte parameters on the stack 3
Passing dword parameters on the stack 5
Passing lword parameters on the stack 7
Passing parameters by reference and by

value 2
Passing parameters to Standard Library

routines 1

Passing qword parameters on the stack 6
Passing tbyte parameters on the stack 7
Passing word parameters on the stack 5
Passwords (HOWL) 1029
pat.a_extract 607
pat.arb 608
pat.atPos 588
pat.endMatch 587
pat.exactlyNChar 597
pat.exactlyNCset 593
pat.exactlyNiChar 602
pat.exactlyNtoMChar 599
pat.exactlyNtoMCset 595
pat.exactlyNtoMiChar 604
pat.extract 606
pat.fail 588
pat.FailRec object 612
pat.fence 588
pat.firstNChar 598
pat.firstNCset 593
pat.firstNiChar 602
pat.getPos 588
pat.getWhiteSpace 607
pat.getWordDelims 606
pat.l_arb 609
pat.l_ExactlyNtoMChar 600
pat.l_ExactlyNtoMCset 595
pat.l_ExactlyNtoMiChar 604
pat.l_NorLessChar 598
pat.l_NorLessCset 593
pat.l_NorLessiChar 603
pat.l_NorMoreChar 599
pat.l_NorMoreCset 594
pat.l_NorMoreiChar 603
pat.l_NtoMChar 599
pat.l_NtoMCset 594
pat.l_NtoMiChar 604
pat.l_OneOrMoreChar 597
pat.l_OneOrMoreCset 592
pat.l_OneOrMoreiChar 602
pat.l_ZeroOrMoreChar 597
pat.l_ZeroOrMoreCset 592
pat.l_ZeroOrMoreiChar 601
pat.l_ZeroOrOneChar 596
pat.l_ZeroOrOneCset 591
pat.l_ZeroOrOneiChar 601
pat.match 587
pat.matchiStr 605
Page 1146 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
pat.matchiWord 606
pat.matchStr 604
pat.matchToiStr 605
pat.matchToStr 605
pat.matchWord 605
pat.norLessChar 598
pat.norLessCset 593
pat.norLessiChar 602
pat.norMoreChar 598
pat.norMoreCset 594
pat.norMoreiChar 603
pat.ntoMChar 599
pat.ntoMCset 594
pat.ntoMiChar 603
pat.oneChar 596
pat.oneCset 590
pat.oneiChar 600
pat.oneOrMoreChar 597
pat.oneOrMoreCset 592
pat.oneOrMoreiChar 601
pat.oneOrMorePat 588, 590
pat.oneOrMoreWS 608
pat.onePat pattern matching function 589
pat.peekChar 595
pat.peekCset 590
pat.peekiChar 600
pat.peekWS 608
pat.peekWSorEOS 608
pat.position 587
pat.setWhiteSpace 607
pat.setWordDelims 606
pat.skip 588
pat._success_ macro 612
pat.upToChar 596
pat.upToCset 591
pat.upToiChar 600
pat.upToiStr 605
pat.upToStr 605
pat.WSorEOS 608
pat.WSthenEOS 608
pat.zeroOrMoreChar 596
pat.zeroOrMoreCset 592
pat.zeroOrMoreiChar 601
pat.zeroOrMorePat 590
pat.zeroOrMoreWS 607
pat.zeroOrOneChar 596
pat.zeroOrOneCset 591
pat.zeroOrOneiChar 600

pat.zeroOrOnePat 590
Patterm matching 563
peekc (stdin module) 738
peekChar (patterns module) 595
peekCset (patterns module) 590
peekiChar (patterns module) 600
peekWS (patterns module) 608
peekWSorEOS (patterns module) 608
Periodic timers (HOWL) 1121
Pie wedges (HOWL) 1030
PointerNotInHeap (exceptions module)

308
Polygons (HOWL) 1030
position (patterns module) 587
Predicates (chars module) 66
prefix (strings module) 850
prefix3 (strings module) 851
printExceptionError (exceptions module)

311
PrivInstr (exceptions module) 309
processMessage (HOWL) 1046
Progress bars (HOWL) 1032, 1096
psubset (character sets) 255
psuperset (character sets) 256
Push buttons (HOWL) 1032
put (blobs module) 64
put (file class module) 332
put (file I/O module) 424
put (socket module) 657
put (stderr module) 733
put (stdout module) 815
put (strings module) 959
putb (blobs module) 63
putb (file class module) 319
putb (file I/O module) 365
putb (socket module) 645
putb (stderr module) 677
putb (stdout module) 759
putbool (blobs module) 63
putbool (file class module) 317
putbool (file I/O module) 357
putbool (socket module) 643
putbool (stderr module) 669
putbool (stdout module) 751
putByte (blobs module) 57
putc (blobs module) 63
putc (file class module) 318
putc (file I/O module) 358
Released to the Public Domain Page 1147

HLA Standard Library
putc (socket module) 643
putc (stderr module) 670
putc (stdout module) 752
putcset (blobs module) 63
putcset (file class module) 318
putcset (file I/O module) 361
putcset (socket module) 644
putcset (stderr module) 673
putcset (stdout module) 755
putcSize (blobs module) 63
putcsize (file class module) 318
putcsize (file I/O module) 360
putcsize (socket module) 644
putcSize (stderr module) 672
putcSize (stdout module) 754
putd (blobs module) 63
putd (file class module) 321
putd (file I/O module) 373
putd (socket module) 647
putd (stderr module) 684
putd (stdout module) 766
putDword (blobs module) 58
pute32 (blobs module) 64
pute32 (file class module) 329
pute32 (file I/O module) 416
pute32 (socket module) 654
pute32 (stderr module) 725
pute32 (stdout module) 808
pute64 (blobs module) 64
pute64 (file class module) 329
pute64 (file I/O module) 417
pute64 (socket module) 655
pute64 (stderr module) 726
pute64 (stdout module) 808
pute80 (blobs module) 64
pute80 (file class module) 330
pute80 (file I/O module) 418
pute80 (socket module) 655
pute80 (stderr module) 727
pute80 (stdout module) 809
puth128 (blobs module) 63
puth128 (file class module) 323
puth128 (file I/O module) 385
puth128 (socket module) 649
puth128 (stderr module) 695
puth128 (stdout module) 778
puth128Size (file class module) 323
puth128Size (file I/O module) 386

puth128Size (socket module) 649
puth128Size (stderr module) 696
puth128Size (stdout module) 779
puth16 (blobs module) 63
puth16 (file class module) 320
puth16 (fileio module) 370
puth16 (socket module) 646
puth16 (stderr module) 682
puth16 (stdout module) 764
puth16Size (blobs module) 63
puth16Size (file I/O module) 371
puth16Size (fileclass module) 321
puth16Size (socket module) 646
puth16Size (stderr module) 683
puth16Size (stdout module) 765
puth32 (blobs module) 63
puth32 (file class module) 321
puth32 (file I/O module) 374
puth32 (socket module) 647
puth32 (stderr module) 685
puth32 (stdout module) 767
puth32Size (blobs module) 63
puth32Size (file class module) 321
puth32Size (file I/O module) 375
puth32Size (socket module) 647
puth32Size (stderr module) 686
puth32Size (stdout module) 768
puth64 (blobs module) 63
puth64 (file class module) 322
puth64 (file I/O module) 377
puth64 (socket module) 648
puth64 (stderr module) 688
puth64 (stdout module) 770
puth64Size (blobs module) 63
puth64Size (file class module) 322
puth64Size (file I/O module) 378
puth64Size (socket module) 648
puth64Size (stderr module) 689
puth64Size (stdout module) 771
puth8 (blobs module) 63
puth8 (file class module) 320
puth8 (fileio module) 366
puth8 (socket module) 645
puth8 (stdout module) 760
puth80 (blobs module) 63
puth80 (file class module) 322
puth80 (file I/O module) 381
puth80 (socket module) 648
Page 1148 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
puth80 (stderr module) 691
puth80 (stdout module) 774
puth80Size (blobs module) 63
puth80Size (file class module) 323
puth80Size (file I/O module) 382
puth80Size (socket module) 648
puth80Size (stderr module) 692
puth80Size (stdout module) 775
puth8Size (blobs module) 63
puth8Size (file class module) 320
puth8Size (file I/O module) 367
puth8Size (socket module) 646
puth8Size (stderr module) 679
puth8Size (stdout module) 761
puti128 (blobs module) 63
puti128 (file class module) 326
puti128 (file I/O module) 399
puti128 (socket module) 651
puti128 (stderr module) 709
puti128 (stdout module) 792
puti128Size (blobs module) 63
puti128size (file class module) 326
puti128size (file I/O module) 400
puti128Size (socket module) 652
puti128Size (stderr module) 709
puti128Size (stdout module) 792
puti16 (blobs module) 63
puti16 (file class module) 324
puti16 (file I/O module) 391
puti16 (socket module) 650
puti16 (stderr module) 701
puti16 (stdout module) 784
puti16Size (blobs module) 63
puti16size (file class module) 325
puti16size (file I/O module) 393
puti16size (socket module) 650
puti16Size (stderr module) 702
puti16Size (stdout module) 785
puti32 (blobs module) 63
puti32 (file class module) 325
puti32 (file I/O module) 394
puti32 (socket module) 650
puti32 (stderr module) 704
puti32 (stdout module) 787
puti32Size (blobs module) 63
puti32size (file class module) 325
puti32size (file I/O module) 395
puti32size (socket module) 651

puti32Size (stderr module) 705
puti32Size (stdout module) 788
puti64 (blobs module) 63
puti64 (file class module) 325
puti64 (file I/O module) 397
puti64 (socket module) 651
puti64 (stderr module) 706
puti64 (stdout module) 789
puti64Size (blobs module) 63
puti64size (file class module) 326
puti64size (file I/O module) 398
puti64size (socket module) 651
puti64Size (stderr module) 707
puti64Size (stdout module) 790
puti8 (blobs module) 63
puti8 (file class module) 324
puti8 (file I/O module) 388
puti8 (socket module) 650
puti8 (stderr module) 698
puti8 (stdout module) 781
puti8Size (blobs module) 63
puti8size (file class module) 324
puti8size (file I/O module) 390
puti8size (socket module) 650
puti8Size (stderr module) 700
puti8Size (stdout module) 783
putl (blobs module) 63
putl (file class module) 323
putl (file I/O module) 384
putl (socket module) 649
putl (stderr module) 694
putl (stdout module) 777
putLword (blobs module) 59
putq (blobs module) 63
putq (file class module) 322
putq (file I/O module) 377
putq (socket module) 647
putq (stderr module) 687
putq (stdout module) 769
putQword (blobs module) 58
putr32 (blobs module) 64
putr32 (file class module) 331
putr32 (file I/O module) 420
putr32 (socket module) 656
putr32 (stdout module) 811
putr64 (blobs module) 64
putr64 (file class module) 331
putr64 (file I/O module) 421
Released to the Public Domain Page 1149

HLA Standard Library
putr64 (socket module) 656
putr64 (stderr module) 730
putr64 (stdout module) 812
putr80 (blobs module) 64
putr80 (file class module) 331
putr80 (file I/O module) 423
putr80 (socket module) 657
putr80 (stderr module) 731
putr80 (stdout module) 813
puts (blobs module) 63
puts (file class module) 319
puts (file I/O module) 362
puts (socket module) 644
puts (stderr module) 674
puts (stdout module) 756
putsSize (blobs module) 63
putssize (file class module) 319
putssize (file I/O module) 363
putsSize (socket module) 644
putsSize (stderr module) 675
putsSize (stdout module) 757
puttb (blobs module) 63
puttb (file class module) 322
puttb (file I/O module) 380
puttb (socket module) 648
puttb (stderr module) 691
puttb (stdout module) 773
putTbyte (blobs module) 59
putu128 (blobs module) 64
putu128 (file class module) 328
putu128 (file I/O module) 413
putu128 (socket module) 654
putu128 (stderr module) 722
putu128 (stdout module) 805
putu128Size (blobs module) 64
putu128size (file class module) 328
putu128Size (file I/O module) 414
putu128Size (socket module) 654
putu128Size (stderr module) 723
putu128Size (stdout module) 805
putu16 (blobs module) 63
putu16 (file class module) 327
putu16 (file I/O module) 405
putu16 (socket module) 652
putu16 (stderr module) 714
putu16 (stdout module) 797
putu16Size (blobs module) 63
putu16size (file class module) 327

putu16size (socket module) 653
putu16Size (stderr module) 715
putu16Size (stdout module) 798
putu32 (blobs module) 63
putu32 (file class module) 327
putu32 (file I/O module) 408
putu32 (socket module) 653
putu32 (stderr module) 717
putu32 (stdout module) 800
putu32Size (blobs module) 63
putu32size (file class module) 327
putu32size (socket module) 653
putu32Size (stderr module) 718
putu32Size (stdout module) 801
putu64 (blobs module) 63
putu64 (file class module) 328
putu64 (file I/O module) 411
putu64 (socket module) 653
putu64 (stderr module) 719
putu64 (stdout module) 802
putu64Size (blobs module) 64
putu64size (file class module) 328
putu64size (file I/O module) 412
putu64size (socket module) 653
putu64Size (stderr module) 720
putu64Size (stdout module) 803
putu8 (blobs module) 63
putu8 (file class module) 326
putu8 (file I/O module) 402
putu8 (socket module) 652
putu8 (stderr module) 711
putu8 (stdout module) 794
putu8Size (blobs module) 63
putu8size (file class module) 327
putu8size (file I/O module) 404
putu8size (socket module) 652
putu8Size (stderr module) 713
putu8Size (stdout module) 796
putw (blobs module) 63
putw (file class module) 320
putw (file I/O module) 369
putw (socket module) 646
putw (stderr module) 681
putw (stdout module) 763
putWord (blobs module) 58
putz (socket module) 644
putzSize (socket module) 645
Page 1150 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
Q
qSize (conversions module) 94
qToBuf (conversions module) 104
qToStr (conversions module) 124

R
r32ToBuf (conversions module) 239
r32ToStr (conversions module) 241
r64ToBuf (conversions module) 238
r64ToStr (conversions module) 240
r80ToBuf (conversions module) 237
r80ToStr (conversions module) 240
Radio button sets 1033
Radio button styles 1033
Radio buttons 1032
Radio buttons (HOWL) 1032
Radio set buttons (HOWL) 1034
Random numbers 621
rangeChar (character sets) 263
rbrk (strings module) 864
rbrk2 (strings module) 864
rbrk3 (strings module) 864
rchpos (blobs module) 48
rchpos (strings module 860
rchpos2 (blobs module) 48
rchpos2 (strings module) 860
rchpos3 (blobs module) 48
rchpos3 (strings module) 861
rcursor (blobs module) 40
read (blobs module) 60
read (file class module) 333
read (file I/O module) 425
read (socket module) 658
read (stdin module) 736
readAt (blobs module) 60
readLn (blobs module) 64
ReadLn (file class module) 333
ReadLn (file I/O module) 426
readLn (socket module) 659
ReadLn (stdin module) 737
Real to string output using decimal notation

 955
Real to string output using scientific nota-

tion 953
realloc (blobs module) 38
realloc (memory module) 553
realloc1 (memory module) 553
realloc2 (memory module) 553
Rectangles (HOWL) 1035

recv (socket module) 627
recvfrom (socket module) 627
reduce (arrays module) 19
reduction (arrays module) 19
releaseSemaphore (threads module) 976
removeChar (character sets) 272
removeStr (character sets) 275
removeStr2 (character sets) 276
rename (filesys module) 464
reset (blobs module) 42
resize (HOWL) 1048
restart (timer class) 999
restoreCursor (console module) 76
reverse (lists module) 499
reverse (strings module) 901
reverse1 (strings module) 901
reverse2 (strings module) 901
reverse32, reverse16, reverse8 (bits mod-

ule) 26
rfindInCset (strings module) 868
rfindInCset2 (strings module) 868
rfindInCset3 (strings module) 869
right (console module) 75
rindex (blobs module) 46
rindex (strings module) 855
rindex2 (blobs module) 46
rindex2 (strings module) 855
rindex3 (blobs module) 46
rindex3 (strings module) 855
rindexStr (blobs module) 46
rindexStr2 (blobs module) 46
rindexStr3 (blobs module) 46
rmdir (filesys module) 465
rmv1stChar1 (strings module) 878
rmv1stChar2 (strings module) 879
rmv1stWord3 (strings module) 884
rmvLastChar1 (strings module) 879
rmvLastChar2 (strings module) 880
rmvLastWord2 (strings module) 884
rmvLastWord3 (strings module) 885
rmvTrailingSpaces1 (strings module) 843
rmvTrailingSpaces2 (strings module) 844
roman (conversions module) 245
Round rectangles (HOWL) 1035
rskipInCset (strings module) 865
rskipInCset2 (strings module) 865
rskipInCset3 (strings module) 866
rspan (strings module) 863
Released to the Public Domain Page 1151

HLA Standard Library
rspan2 (strings module) 863
rspan3 (strings module) 863
Running (timer class) 998
Run-time traits (stl) 820

S
save (blobs module) 55
saveCursor (console module) 76
Scanning functions (blobs module) 45
Scroll bars (HOWL) 1035, 1097
scrollDown (console module) 81
scrollUp (console module) 80
search (lists module) 500
_sec (math module) 530
sec (math module) 530
sec32 (math module) 530
sec64 (math module) 530
sec80 (math module) 530
secsBetweenTimes (time class module)

994
secsBetweenTimes (time module) 983
select (socket module) 628
Semaphores 974
send (socket module) 629
sendto (socket module) 629
Server applications (socket module) 635
server_t.close 639
server_t.create 639
server_t.destroy 639
setAdrs (socket module) 641
setAttrs (console module) 81
setDelimiters (conversions module) 89
setEvent (threads module) 971
set_exStyle (HOWL) 1048
set_focus (HOWL) 1049
setFormat (date/time module) 290
setFormat (time module) 987
set_height (HOWL) 1048
setLength (blobs module) 39
setMaxLen (blobs module) 40
set_onHeap (HOWL) 1046
set_parentHandle (HOWL) 1046, 1048
setPort (socket class module) 642
setrCursor (blobs module) 41
setSeparator (date/time module) 290
set_style (HOWL) 1048
setTimeout (socket class module) 641
setTimeout (socket module) 632
setTimeout2 (socket class module) 641

setTLS (threads module) 970
setUnderscores (conversions module) 85
setunion (character sets) 268
setwCursor (blobs module) 41
setWhiteSpace (patterns module) 607
set_width (HOWL) 1048
setWordDelims (patterns module) 606
set_x (HOWL) 1048
set_y (HOWL) 1048
Shell commands 561
shll (math module) 519
shlq (math routine) 510
show (HOWL) 1046, 1049
shrl (math module) 520
shrq (math module) 511
Signed integer concatenation functions

932
Signed integer input (socket module) 660
Signed integer numeric output (socket

module) 649
_sin (math module) 521
sin (math module) 521
sin32 (math module) 521
sin64 (math module) 521
sin80 (math module) 521
_sincos (math module) 525
sincos (math module) 525
sincos32 (math module) 525
sincos64 (math module) 525
sincos80 (math module) 525
SingleStep (exceptions module) 309
size (filesys module) 462
size (memory module) 555
skip (patterns module) 588
skipInCset (strings module) 864
skipInCset2 (strings module) 864
skipInCset3 (strings module) 865
sleep (os module) 562
sock.a_adrsToStr 625
sock.accept 626
sock.adrsToStr 625
sock.bind 626
sock.close 627
sock.connect 627
sock.fd_clr 633
sock.fd_isset 633
sock.fd_set 633
sock.fd_zero 633
Page 1152 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
sock.gethostbyaddr 633
sock.gethostbyname 632
sock.gethostname 632
sock.getpeername 633
sock.getsockname 633
sock.listen 627
sock.recv 627
sock.recvfrom 627
sock.select 628
sock.send 629
sock.sendto 629
sock.setTimeout 632
sock.socket 629
sock.socketCleanup 625
sock.socketInit 625
sock.strToAdrs 626
socket (socket module) 629
Socket class operations 639
Socket classes 634
socketCleanup (socket module) 625
socketInit (socket class module) 625
Sockets 625
sort (lists module) 500
span (strings module) 863
span2 (strings module) 863
span3 (strings module) 863
spread2 (strings module) 888– 889
spread3 (strings module) 889
StackOverflow (exceptions module) 309
Standard Error output routines 667
Standard input routines 735
Standard output routines 749
Standard Template Library 817
start (timer class) 999
stat (memory module) 555
stderr.hhf 667
stderr.newln 669
stderr.put 733
stderr.putb 677
stderr.putbool 669
stderr.putc 670
stderr.putcset 673
stderr.putcSize 672
stderr.putd 684
stderr.pute32 725
stderr.pute64 726
stderr.pute80 727
stderr.puth128 695

stderr.puth128Size 696
stderr.puth16 682
stderr.puth16Size 683
stderr.puth32 685
stderr.puth32Size 686
stderr.puth64 688
stderr.puth64Size 689
stderr.puth80 691
stderr.puth80Size 692
stderr.puth8Size 679
stderr.puti128 709
stderr.puti128Size 709
stderr.puti16 701
stderr.puti16Size 702
stderr.puti32 704
stderr.puti32Size 705
stderr.puti64 706
stderr.puti64Size 707
stderr.puti8 698
stderr.puti8Size 700
stderr.putl 694
stderr.putq 687
stderr.putr64 730
stderr.putr80 731
stderr.puts 674
stderr.putsSize 675
stderr.puttb 691
stderr.putu128 722
stderr.putu128Size 723
stderr.putu16 714
stderr.putu16Size 715
stderr.putu32 717
stderr.putu32Size 718
stderr.putu64 719
stderr.putu64Size 720
stderr.putu8 711
stderr.putu8Size 713
stderr.putw 681
stderr.write 668
stdin.a_gets 739
stdin.eoln 737
stdin.eoln2 737
stdin.FlushInput 735
stdin.get 747
stdin.getc 738
stdin.getf 747
stdin.geth128 741
stdin.geth16 740
Released to the Public Domain Page 1153

HLA Standard Library
stdin.geth32 740
stdin.geth64 741
stdin.geth8 739
stdin.geti128 744
stdin.geti16 742
stdin.geti32 743
stdin.geti64 743
stdin.geti8 742
stdin.gets 738
stdin.getu128 746
stdin.getu16 745
stdin.getu32 745
stdin.getu64 746
stdin.getu8 744
stdin.handle 735
stdin.hhf 735
stdin.peekc 738
stdin.read 736– 737
stdin.ReadLn 737
stdout.handle 667, 749
stdout.hhf 749
stdout.newln 751
stdout.put 815
stdout.putb 759
stdout.putbool 751
stdout.putc 752
stdout.putcset 755
stdout.putcSize 754
stdout.putd 766
stdout.pute32 808
stdout.pute64 808
stdout.pute80 809
stdout.puth128 778
stdout.puth128Size 779
stdout.puth16 764
stdout.puth16Size 765
stdout.puth32 767
stdout.puth32Size 768
stdout.puth64 770
stdout.puth64Size 771
stdout.puth8 760
stdout.puth80 774
stdout.puth80Size 775
stdout.puth8Size 761
stdout.puti128 792
stdout.puti128Size 792
stdout.puti16 784
stdout.puti16Size 785

stdout.puti32 787
stdout.puti32Size 788
stdout.puti64 789
stdout.puti64Size 790
stdout.puti8 781
stdout.puti8Size 783
stdout.putl 777
stdout.putq 769
stdout.putr32 811
stdout.putr64 812
stdout.putr80 813
stdout.puts 756
stdout.putsSize 757
stdout.puttb 773
stdout.putu128 805
stdout.putu128Size 805
stdout.putu16 797
stdout.putu16Size 798
stdout.putu32 800
stdout.putu32Size 801
stdout.putu64 802
stdout.putu64Size 803
stdout.putu8 794
stdout.putu8Size 796
stdout.putw 763
stdout.write 750
stl.elementsAreObjects_c 820– 821, 823
stl.fastAppend_c 820– 821, 823
stl.fastElementSwap_c 820– 821, 824
stl.fastInsert_c 820– 821, 823
stl.fastPrepend_c 820– 821, 823
stl.fastRemove_c 820– 821, 823
stl.fastSearch_c 820– 821, 824
stl.fastSwap_c 820– 821, 824
stl.IsArray_c 820– 821
stl.isArray_c 822
stl.isContainer_c 820– 821
stl.isDeque_c 820– 822
stl.isList_c 820– 822
stl.isRandomAccess_c 820– 822
stl.isTable_c 820– 822
stl.isVector_c 820– 821
stl.supportsAppend_c 821– 822
stl.supportsCompare_c 820– 822
stl.supportsCursor_c 820– 821, 823
stl.supportsElementSwap_c 820– 821,

823
stl.supportsForEach_c 820– 821, 823
Page 1154 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
stl.supportsInsert_c 820– 822
stl.supportsObjSwap_c 820– 821, 823
stl.supportsOutput_c 820– 822
stl.supportsPrepend_c 820– 822
stl.supportsRemove_c 820– 822
stl.supportsrForEach_c 820– 821
stl.supportsSearch_c 820– 821, 823
stl.supportsSwap_c 820– 821
stl.vector 817
stop (timer class) 999
str.a_cat 904
str.a_catbuf 909
str.a_catbuf2 909
str.a_catbuf3 909
str.a_catsub 907
str.a_catz 906
str.a_columnize2 886
str.a_columnize3 886
str.a_cpy 829
str.a_cpyz 829
str.a_delete 837
str.a_delLeadingSpaces 839
str.a_delTrailingSpaces 840
str.a_deTab2 890
str.a_deTab3 891
str.a_enTab2 894
str.a_enTab3 894
str.a_first 831
str.a_getField2 875
str.a_getField3 876
str.a_insert 836
str.a_last 833
str.alloc (memory/string module) 559
str.a_lower 899
str.a_reverse 900
str.a_rmv1stWord1 880
str.a_rmv1stWord2 881
str.a_rmvLastWord1 882
str.a_rmvLastWord2 882
str.a_rmvTrailingSpaces 843
str.a_spread2 888
str.a_substr 830
str.a_translate 902
str.a_trim 842
str.a_truncate 834
str.a_upper 898
str.brk 863
str.brk2 863

str.brk3 864
str.cat 905
str.cat2 905
str.cat3 905
str.catb 917
str.catbool 911
str.catbuf 910
str.catbuf2 910
str.catbuf3a 910
str.catbuf3b 910
str.catbuf4 910
str.catc 912
str.catcset 914
str.catcSize 913
str.catd 923
str.cate32 953
str.cate64 954
str.cate80 954
str.cath128 930
str.cath128Size 931
str.cath16 921
str.cath16Size 922
str.cath32 924
str.cath32Size 924
str.cath64 926
str.cath64Size 926
str.cath80 928
str.cath80Size 928
str.cati128 940
str.cati128Size 941
str.cati16 935
str.cati16Size 936
str.cati32 937
str.cati32Size 937
str.cati64 939
str.cati64Size 939
str.cati8 932
str.cati8Size 934
str.catl 930
str.catq 925
str.catr32 955
str.catr64 956
str.catr80 957
str.cats 915
str.catsSize 916
str.catsub 907
str.catsub4 908
str.catsub5 908
Released to the Public Domain Page 1155

HLA Standard Library
str.cattb 928
str.catu128 951
str.catu128Size 951
str.catu16 945
str.catu16Size 946
str.catu32 947
str.catu32Size 947
str.catu64 949
str.catu64Size 949
str.catu8 943
str.catu8Size 944
str.catw 920
str.catz 906
str.charInStr 874
str.chpos 858
str.chpos2 858
str.chpos3 858
str.columnize3 887
str.columnize4 887
str.cpy 829
str.cpyz 830
str.delete 838
str.delete3 838
str.delete4 838
str.delLeadingSpaces 839– 840
str.delLeadingSpaces1 840
str.delTrailingSpaces 841
str.delTrailingSpaces1 841
str.delTrailingSpaces2 841
str.deTab2 891
str.deTab3a 892
str.deTab3b 892
str.deTab4 893
str.enTab2 895
str.enTab3a 896
str.enTab3b 896
str.enTab4 897
str.eq 844
str.findInCset 867
str.findInCset2 867
str.findInCset3 867
str.first 832
str.first2 832
str.first3 832
str.free (memory/string module) 559
str.ge 847
str.getField3 877
str.getField4 877

str.getref 559
str.gt 846
str.ichpos 859
str.ichpos2 859
str.ichpos3 859
str.ieq 847
str.ige 849
str.igt 849
str.iindex 853
str.iindex3 854
str.ile 849
str.ilt 848
str.index 852
str.index2 852
str.index3 852
str.ine 848
str.init 827
str.insert 836
str.insert3 836
str.insert4 837
str.irchpos 861
str.irchpos2 862
str.irchpos3 862
str.irindex 856
str.irindex2 856
str.irindex3 857
str.isInHeap (memory/string module) 559
str.last 833
str.last2 833
str.last3 834
str.le 846
str.length 828
str.lower 900
str.lower1 900
str.lower2 900
str.lt 845
str.ne 845
str.newref (memory/string module) 559
str.prefix 850
str.prefix3 851
str.put 959
str.rbrk 864
str.rbrk2 864
str.rbrk3 864
str.rchpos 860
str.rchpos2 860
str.rchpos3 861
str.realloc (memory/string module) 559
Page 1156 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
str.reverse 901
str.reverse1 901
str.reverse2 901
str.rfindInCset 868
str.rfindInCset2 868
str.rfindInCset3 869
str.rindex 855
str.rindex2 855
str.rindex3 855
str.rmv1stChar1 878
str.rmv1stChar2 879
str.rmv1stWord2rmv1stWord2 (strings

module) 883
str.rmv1stWord3 884
str.rmvLastChar1 879
str.rmvLastChar2 880
str.rmvLastWord2 884
str.rmvLastWord3 885
str.rmvTrailingSpaces1 843
str.rmvTrailingSpaces2 844
str.rskipInCset 865
str.rskipInCset2 865
str.rskipInCset3 866
str.rspan 863
str.rspan2 863
str.rspan3 863
str.skipInCset 864
str.skipInCset2 864
str.skipInCset3 865
str.span 863
str.span2 863
str.span3 863
str.spread2 889
str.spread3 889
str.strvar 827
str.substr 831
str.talloc (memory/string module) 559
str.tokenCnt1 869
str.tokenCnt2 870
str.tokenInStr 873
str.tokenInStr2 873
str.tokenize 870
str.tokenize3 870
str.tokenize4 872
str.translate 903
str.translate3 903
str.translate4 903
str.trim 842

str.trim1 842
str.trim2 842
str.truncate 835
str.truncate2 835
str.truncate3 835
str.upper 898
str.upper1 898
str.upper2 899
str.wordInStr 874
String allocation macros and functions 827
String assignment 828
String comparison functions 844
String concatenation functions 904
String concatentation functions 912
String conversion functions 897
String deletion 836
String extraction functions (pattern match-

ing module) 606
String formatting routines 885
String insertion and deletion 836
String length calculations 828
String matching functions 604
String memory allocation 558
String parsing functions 869
String Searching Functions 850
String value concatenation functions 911
StringIndexError (exceptions module) 305
StringOverflow (exceptions module) 305
Strings 825
strings.hhf 825
strToAdrs (socket module) 626
strToFlt (conversions module) 245
strToh128 (conversions module) 155
strToh16 (conversions module) 152
strToh32 (conversions module) 153
strToh64 (conversions module) 154
strToh8 (conversions module) 151
strToi128 (conversions module) 191
strToi16 (conversions module) 188
strToi32 (conversions module) 189
strToi64 (conversions module) 190
strToi8 (conversions module) 187
strTou128 (conversions module) 228
strTou16 (conversions module) 224
strTou32 (conversions module) 225
strTou64 (conversions module) 226
strTou8 (conversions module) 223
subBlob (blobs module) 44
Released to the Public Domain Page 1157

HLA Standard Library
subDays (date module) 288
subDays (date/time module) 299
subHours (time class module) 994
subHours (time module) 984
subl (math module) 512
subMins (time class module) 994
subMins (time module) 984
subMonths (date/time module) 288, 299
subq (math routine) 504
subSecs (time class module) 994
subSecs (time module) 984
subset (character sets) 253
substr (strings module) 831
Substring functions 830
subYears (date/time module) 288, 299
superset (character sets) 254
supportsAppend_c (stl) 821– 822
supportsCompare_c (stl) 820– 822
supportsCursor_c (stl) 820– 821, 823
supportsElementSwap_c (stl) 820– 821,

823
supportsForEach_c (stl) 820– 821, 823
supportsInsert_c (stl) 820– 822
supportsObjSwap_c (stl) 820– 821, 823
supportsOutput_c (stl) 820– 822
supportsPrepend_c (stl) 820– 822
supportsRemove_c (stl) 820– 822
supportsrForEach_c (stl) 820– 821
supportsrForeach_c (stl) 823
supportsSearch_c (stl) 820– 821, 823
supportsSwap_c (stl) 821
switch macro 961
system (os module) 561
System icons (HOWL) 1027
System time 986

T
Tab pages (HOWL) 1116
Tabbed forms 1065
Table (stl) 824
Table class 963
tableNode_t 963
Tables 963
tables.hhf 963
table_t.create 963– 964
table_t.destroy 963– 964
table_t.getNode 963, 966
table_t.item 963
table_t.lookup 963, 965

talloc (memory module) 554
_tan (math module) 524
tan (math module) 524
tan32 (math module) 524
tan64 (math module) 524
tan80 (math module) 524
tbSize (conversions module) 94
tbToBuf (conversions module) 105
tbToStr (conversions module) 126
Templates (stl) 818
TenToX (math module) 539
_tenToX (math module) 539
tenToX32 (math module) 539
tenToX64 (math module) 539
tenToX80 (math module) 539
Text (HOWL) 1112
Text editor widgets (HOWL) 1036
Thread local storage 969
thread.create 967
thread.createCriticalSection 973
thread.createEvent 971
thread.createSemaphore 974
thread.createTLS 969
thread.deleteCriticalSection 973
thread.deleteEvent 971
thread.deleteSemaphore 975
thread.enterCriticalSection 973
thread.getCurrentThreadHandle 969
thread.getTLS 970
thread.leaveCriticalSection 974
thread.releaseSemaphore 976
thread.setEvent 971
thread.setTLS 970
thread.waitForEvent 972
thread.waitSemaphore 975
Threads 967
threads.hhf 967
Three-state check boxes 1022
Time arithmetic 983
Time conversions 980
Time delay functions 561
Time functions 977
Time string conversions 987
time.addHours 985
time.addMins 985
time.addSecs 985
time.a_toString 987
time.curTime 986, 994
Page 1158 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
time.durationToSecs 980
time.fromSecs 981
time.fromUnixTime 982
time.fromWinFileTime 983
time._isValid 979
time.isValid 979
time.pack 980
time.secsBetweenTimes 983
time.setFormat 987
time.subHours 984
time.subMins 984
time.subSecs 984
time.timerec 977
time._toSecs 981
time.toSecs 981
time.toString 987
time.toUnixTime 981
time.toWinFileTime 982
time.unpack 980
time.utcTime 986, 994
time.validate 978
TimeOverflow (exceptions module) 309
Timer functions 997
Timer procedures and methods 998
Timer widgets (HOWL) 1040
timer.hhf 997
timerec (date/time module) 977
Timers (HOWL) 1121
timer_t 997
timer_t.Accumulated 998
timer_t.checkPoint 999
timer_t.create 998
timer_t.DateStarted 998
timer_t.DateStopped 998
timer_t.msStarted 998
timer_t.msStopped 998
timer_t.restart 999
timer_t.Running 998
timer_t.start 999
timer_t.stop 999
timer_t.TimeStarted 998
timer_t.TimeStopped 998
TimeStarted (timer class) 998
TimeStopped (timer class) 998
today (date/time module) 289, 299
toJulian (date/time module) 283, 298
tokenCnt1 (strings module) 869
tokenCnt2 (strings module) 870

tokenInStr (strings module) 873
tokenInStr2 (strings module) 873
tokenize (strings module) 870
tokenize3 (strings module) 870
tokenize4 (strings module) 872
toLower (chars module) 65
toNativePath1 (filesys module) 460
toNativePath2 (filesys module) 460
TooManyCmdLnParms (exceptions mod-

ule) 306
toSecs (time class module) 993
_toSecs (time module) 981
toSecs (time module) 981
toString (date/time module) 291, 299
toString (time class module) 995
toString (time module) 987
toUnixPath (filesys module) 457
toUnixPath2 (filesys module) 458
toUnixTime (time module) 981
toUpper (chars module) 65
toWin32Path1 (filesys module) 459
toWin32Path2 (filesys module) 459
toWinFileTime (time module) 982
Track bar widgets (HOWL) 1037
Track bars (HOWL) 1097
Trait constants 821
traits (stl classes) 819
Transcendental arithmetic operations 520
translate (strings module) 903
translate3 (strings module) 903
translate4 (strings module) 903
transpose (arrays module) 20
trim (strings module 842
trim1 (strings module) 842
trim2 (strings module) 842
truncate (strings module) 835
truncate2 (strings module) 835
truncate3 (strings module) 835
_twoToX (math module) 538
twoToX (math module) 538
twoToX32 (math module) 538
twoToX64 (math module) 538
twoToX80 (math module) 538
typeName field in stl classes 824

U
u128Size (conversions module) 196
u128ToBuf (conversions module) 202
u128ToStr (conversions module) 216
Released to the Public Domain Page 1159

HLA Standard Library
_u16Size (conversions module) 193
u16Size (conversions module) 194
u16ToBuf (conversions module) 199
u16ToStr (conversions module) 208
_u32Size (conversions module) 193
u32Size (conversions module) 195
u32ToBuf (conversions module) 200
u32ToStr (conversions module) 211
u64Size (conversions module) 195
u64ToBuf (conversions module) 201
u64ToStr (conversions module) 214
_u8Size (conversions module) 193
u8Size (conversions module) 193
u8ToBuf (conversions module) 197
u8ToStr (conversions module) 204
Underscore control 84
unionChar (character sets) 271
unionStr (character sets) 273
unionStr2 (character sets) 274
UnknownException (exception) 305, 308
unpack (date/time module) 283
unpack (time module) 980
Unsigned integer concatenation functions

942
Unsigned integer conversions 192
Unsigned integer numeric output (socket

module) 652
up (console module) 74
Up/Down arrow widgets (HOWL) 1038–

1039
Up/Down arrows (HOWL) 1106
upper (strings module) 898
upper1 (strings module) 898
upper2 (strings module) 899
upToChar (patterns module) 596
upToCset (patterns module) 591
upToiChar (patterns module) 600
upToiStr (patterns module) 605
upToStr (patterns module) 605
utc (date/time module) 289
utcTime (time class module) 994
utcTime (time module) 986

V
v (args module) 10
validate (date/time module) 282, 298
validate (time class module) 993
validate (time module) 978
ValueOutOfRange (exceptions module)

305
Variable length hexadecimal numeric to

buffer conversions 108
Vector (stl) 824
Views (HOWL) 1116
visible (HOWL) 1045

W
wabsEditBox_t 1055
waitForEvent (threads module) 972
waitSemaphore (threads module) 975
wBase_t 1041, 1043
wBitmap 1031
wBitmap_t 1068
wButton_t 1050
wCheckable_t 1052
wCheckBox 1023
wCheckBox3 1023
wCheckBox3LT 1023
wCheckBox3LT_t 1079
wCheckBox3_t 1078
wCheckBoxLT 1023
wCheckBoxLT_t 1080
wCheckBox_t 1077
wClickable_t 1049
wComboBox 1024
wComboBox_t 1094
wContainer_t 1059
wcursor (blobs module) 41
wDragListBox 1024
wDragListBox_t 1093
wEditBox 1025
wEditBox_t 1086
wEllipse 1026
wEllipse_t 1070
wFilledFrame_t 1054
wFont_t 1112
wForm 1008, 1017– 1018
wForm_t 1061
wGroupBox 1028
wGroupBox_t 1067
wIcon 1027
wIcon_t 1111
widgetProc 1015
WidthTooBig (exceptions module) 306
Window objects (HOWL) 1119
window_t 1119
wLabel 1028
wLabel_t 1114
Page 1160 Version: 4/28/10Written by Randall Hyde

HLA Standard Library Reference
wListBox 1029
wListBox_t 1090
wMainMenu 1019
wMenuItem 1020
wMenuItem_t 1063
wMenuSeparator 1020
wMenu_t 1063
wordInStr (strings module) 874
wPasswdBox 1029
wPasswdBox_t 1087
wPie 1030
wPie_t 1071
wPolygon 1030
wPolygon_t 1073
wProgressBar 1032
wProgressBar_t 1096
wPushButton 1015, 1017, 1032
wPushButton_t 1080
wRadioButton 1032
wRadioButtonLT 1033
wRadioButtonLT_t 1082
wRadioButton_t 1081
wRadioSet 1033
wRadioSetButton 1034
wRadioSetButtonLT 1034
wRadioSetButtonLT_t 1085
wRadioSetButton_t 1084
wRadioSet_t 1083
wRectangle 1035
wRectangle_t 1075
write (blobs module) 55
write (file class module) 317
write (file I/O module) 354
write (socket module) 642
write (stderr module) 668
write (stdout module) 750
writeAt (blobs module) 57
Writing your own pattern matching rou-

tines 609
wRoundRect 1035
wRoundRect_t 1076
wScrollBar 1035
wScrollBar_t 1097
wSize (conversions module) 93
WSorEOS (patterns module) 608
WSthenEOS (patterns module) 608

wSubMenu 1020
wSurface_t 1053
wTab 1021
wTabPage_t 1116
wTabs_t 1065
wTextEdit 1036
wTextEdit_t 1088
wTimer 1040
wTimer_t 1121
wToBuf (conversions module) 102
wToStr (conversions module) 119
wTrackBar 1037
wTrackBar_t 1103
wType (HOWL) 1041, 1044
wUpDown 1038– 1039
wUpDown_t 1106, 1108
wView_t 1119
wVisual_t 1046

X
xchgNodes (lists module) 500
xorl (math module) 518
xorq (math routine) 509

Y
_YtoX (math module) 541
ytoX (math module) 541
YtoX32 (math module) 541
YtoX64 (math module) 541
YtoX80 (math module) 541

Z
zalloc (memory module) 552
zcmp (zstrings module) 1003
zeroOrMoreChar (patterns module) 596
zeroOrMoreCset (patterns module) 592
zeroOrMoreiChar (patterns module) 601
zeroOrMorePat (patterns module) 590
zeroOrMoreWS (patterns module) 607
zeroOrOneChar (patterns module) 596
zeroOrOneCset (patterns module) 591
zeroOrOneiChar (patterns module) 600
zeroOrOnePat (patterns module) 590
Zero-terminated strings 1001
zstr.cat 1004
zstr.cpy 1004
zstr.len 1002
zstr.zcmp 1003
zstring.hhf 1001
Released to the Public Domain Page 1161

	
	HLA Standard Library Reference Manual
	1 Passing Parameters to Standard Library Routines
	1.1 Parameter Passing
	1.2 Passing Parameters by Reference and by Value
	1.3 Passing Byte Parameters on the Stack
	1.4 Passing Word Parameters on the Stack
	1.5 Passing DWord Parameters on the Stack
	1.6 Passing QWord Parameters on the Stack
	1.7 Passing TByte Parameters on the Stack
	1.8 Passing LWord Parameters on the Stack

	2 Command-Line Arguments (args.hhf)
	2.1 The Args Module
	2.2 Retrieving the Command Line
	procedure arg.cmdLn();
	procedure arg.a_cmdLn();

	2.3 Argument Count and Item
	procedure arg.c();
	procedure arg.v(whichArg:dword);
	procedure arg.a_v(whichArg:dword);

	2.4 Deleting Command Line Arguments
	procedure arg.delete(index:uns32);
	procedure arg.destroy();

	2.5 Argument Iterators
	iterator arg.args();
	iterator arg.globalOptions(options:cset);
	iterator arg.localOptions(options:cset);

	3 Arrays Module (arrays.hhf)
	3.1 The Arrays Module
	3.2 Array Data Types
	#macro array.dArray(type, dimensions);

	3.3 Array Allocation and Deallocation
	#macro array.daAlloc(dynamicArrayName, <<list of dimension bounds>>);
	#macro array.daFree(dynamicArrayName);

	3.4 Array Predicates
	#macro array.IsItVar(objectName)
	#macro array.IsItVar(objectName)
	#macro array.IsItDynamic(arrayName)

	3.5 Array Element Access
	#macro array.index(reg32, arrayName, <<list of indicies>>);
	iterator array.element(arrayName);

	3.6 Array Operations
	#macro array.cpy(srcArray, destArray);
	#macro array.reduce(srcArray, destArray);
	#keyword array.beforeRow;
	#keyword array.reduction;
	#keyword array.afterRow;
	#terminator array.endreduce;
	#macro array.transpose(srcArray, destArray, optionalDimension);

	3.7 Lookup Tables

	4 Bit Manipulation (bits.hhf)
	4.1 Bit Module
	4.2 Bit Counting Function
	bits.cnt(b:dword in eax); @returns("EAX");

	4.3 Bit Reversal Functions
	bits.reverse32(b:dword in eax); @returns("eax");
	bits.reverse16(b:word in ax); @returns("eax");
	bits.reverse8(b:byte in al); @returns("eax");

	4.4 Bit Merging Functions
	bits.merge32(even:dword in eax; odd:dword in edx); @returns("EDX:EAX");
	bits.merge16(even:word; odd:word); @returns("EAX");
	bits.merge8(even:byte in al; odd:byte in ah); @returns("AX");

	4.5 Bit Extraction Functions
	bits.nibbles32(d:dword in eax); @returns("EDX:EAX");
	bits.nibbles16(w:word in ax); @returns("EAX");
	bits.nibbles8(b:byte in al); @returns("AX");
	procedure bits.extract(var d:dword);
	@returns("EAX"); // Really a macro.
	@returns("EAX"); // Really a macro.

	4.6 Bit Distribution Functions
	bits.distribute(source:dword; mask:dword; dest:dword);
	@returns("EAX");
	bits.coalese(source:dword; mask:dword);
	@returns("EAX");

	5 The Blobs Module (blobs.hhf)
	5.1 Conversion Format Control
	5.2 Blob Synopsis
	5.3 Blob Internal Representation
	5.4 Declaring Blob Variables
	5.4.1 Initializing and Allocating Blob Variables
	blob.init(var b:var; numBytes:dword); @returns("eax");
	blob.init16(var b:var; numBytes:dword); @returns("eax");
	blob.alloc(size:dword); @returns("eax");
	blob.allocAligned(size:dword; alignment:dword); @returns("eax");
	blob.realloc(theBlob:blob.t; size:dword); @returns("eax");
	blob.free(theBlob:blob.t);
	blob.destroy(theBlob:blob.t);

	5.5 Blob Accessor Functions
	blob.length(b:blob.t); @returns("eax");
	blob.setLength(b:blob.t; newLen:dword);
	blob.maxlen(b:blob.t); @returns("eax");
	blob.setMaxlen(b:blob.t; newLen:dword);
	blob.rcursor(b:blob.t); @returns("eax");
	blob.setrCursor(b:blob.t; newCursor:dword);
	blob.wcursor(b:blob.t); @returns("eax");
	blob.setwCursor(b:blob.t; newCursor:dword);
	blob.reset;
	blob.eof(b:blob.t); @returns("@c");

	5.6 Blob Assignment Functions
	blob.a_cpy(b:blob.t); @returns("eax");
	blob.cpy(src:blob.t; dest:blob.t); @returns("eax");
	blob.fillb(theValue:byte; numBytes:dword; dest:blob);
	blob.fillw(theValue:word; numWords:dword; dest:blob);
	blob.filld(theValue:word; numDwords:dword; dest:blob);

	5.7 Blob Extraction Functions
	blob.a_subBlob(src:blob; start:dword; len:dword); @returns("eax");
	blob.subBlob(src:blob; start:dword; len:dword; dest:blob.t);

	5.8 Blob Comparison Functions
	blob.eq(left:blob; right:blob.t); @returns("@c");
	blob.ne(left:blob; right:blob.t); @returns("@c");

	5.9 Blob Scanning Functions
	blob.index(src1:blob; src2:blob.t); @returns("@c");
	blob.index(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.index2(src1:blob; src2:blob.t); @returns("@c");
	blob.index3(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.indexStr(src1:blob; src2:string); @returns("@c");
	blob.indexStr(src1:blob; offs:dword src2:string); @returns("@c");
	blob.indexStr2(src1:blob; src2:string); @returns("@c");
	blob.indexStr3(src1:blob; offs:dword src2:string); @returns("@c");
	blob.rindex(src1:blob; src2:blob.t); @returns("@c");
	blob.rindex(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.rindex2(src1:blob; src2:blob.t); @returns("@c");
	blob.rindex3(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.rindexStr(src1:blob; src2:string); @returns("@c");
	blob.rindexStr(src1:blob; offs:dword src2:string); @returns("@c");
	blob.rindexStr2(src1:blob; src2:string); @returns("@c");
	blob.rindexStr3(src1:blob; offs:dword src2:string); @returns("@c");
	blob.chpos(src1:blob; src2:char); @returns("@c");
	blob.chpos(src1:blob; offs:dword src2:char); @returns("@c");
	blob.chpos2(src1:blob; src2:char); @returns("@c");
	blob.chpos3(src1:blob; offs:dword src2:char); @returns("@c");
	blob.rchpos(src1:blob; src2:char); @returns("@c");
	blob.rchpos(src1:blob; offs:dword src2:char); @returns("@c");
	blob.rchpos2(src1:blob; src2:char); @returns("@c");
	blob.rchpos3(src1:blob; offs:dword src2:char); @returns("@c");

	5.10 Blob Concatenation Functions
	blob.a_cat(src1:blob; src2:char); @returns("@eax");
	blob.cat(src:blob; dest:blob);
	blob.cat2(src:blob; dest:blob);
	blob.cat(src1:blob; src2:blob; dest:blob);
	blob.cat3(src1:blob; src2:blob; dest:blob);
	blob.catsub(src:blob; start:dword; len:dword; dest:blob);
	blob.catsub4(src:string; start:dword; len:dword; dest:blob);
	blob.catsub(src2:blob; start:dword; len:dword; src1:string; dest:blob);
	blob.catsub5(src2:string; start:dword; len:dword; src1:string; dest:blob);
	blob.a_catsub(src:blob; start:dword; len:dword; dest:blob);
	blob.catbuf2(src:buf_t; dest:blob);
	blob.catbuf3a(startBuf:dword; endBuf:dword; dest:blob);
	blob.catbuf3b(src2:buf_t; src1:string; dest:blob);
	blob.catbuf4(startBuf:dword; endBuf:dword; strSrc:string; dest:blob);

	5.11 Blob Conversion Functions
	blob.bufToBlob2(buf:@global:buf_t; b:blob.t);
	blob.bufToBlob3(startBuf:dword; endBuf:dword; b:blob.t);
	blob.a_bufToBlob1(buf:@global:buf_t); @returns("@eax");
	blob.a_bufToBlob2(startBuf:dword; endBuf:dword); @returns("@eax");
	blob.strToBlob(src:string; dest:blob);
	blob.zstrToBlob(src:string; dest:blob);

	5.12 General Blob I/O Functions
	blob.a_load(FileName: string); @returns("eax");
	blob.a_loadExtended(FileName: string; extend:dword); @returns("eax");
	blob.load(filename:string; b:blob.t);
	blob.appendFile(filename:string; b:blob.t.blob);
	blob.a_appendFile(filename:string; b:blob.t.blob); @returns("eax");
	blob.a_appendFileExtended(filename:string; b:blob.t.blob; extend:dword) {@returns("eax")};
	blob.save(filename:string; b:blob.t);

	5.13 Blob Binary I/O Routines
	5.13 Blob Binary I/O Routines
	blob.write(b:blob.t; var src:var; len:dword); @returns("eax");
	blob.writeAt(b:blob.t; var src:var; index:dword; len:dword); @returns("eax");
	blob.putByte(b:blob.t; byteVal:byte);
	blob.putWord(b:blob.t; wordVal:word);
	blob.putDword(b:blob.t; dwordVal:dword);
	blob.putQword(b:blob.t; QwordVal:qword);
	blob.putTbyte(b:blob.t; tbyteVal:tbyte);
	blob.putLword(b:blob.t; LwordVal:lword);
	blob.read(b:blob.t; var buffer:byte; count:uns32); @returns("eax");
	blob.readAt(b:blob.t; var buffer:byte; index:dword; len:uns32)
	blob.getByte(b:blob.t); @returns("al");
	blob.getWord(b:blob.t); @returns("ax");
	blob.getDword(b:blob.t); @returns("eax");
	blob.getQword(b:blob.t); @returns("edx:eax");
	blob.getTbyte(b:blob.t; tbyteVal:tbyte);
	blob.getLword(b:blob.t; lwordVal:lword);

	5.14 Blob Output Routines
	5.15 Blob Input Routines

	6 Character Classification and Utilities Module (chars.hhf)
	6.1 Conversion Functions
	chars.toUpper(c:byte); @returns("AL");
	chars.toLower(c:byte); @returns("AL");

	6.2 Predicates (Tests)
	chars.isAlpha(c:byte); @returns("AL");
	chars.isUpper(c:byte); @returns("AL");
	chars.isLower(c:byte); @returns("AL");
	chars.isAlphaNum(c:byte); @returns("AL");
	chars.isDigit(c:byte); @returns("AL");
	chars.isXDigit(c:byte); @returns("AL");
	chars.isGraphic(c:byte); @returns("AL");
	chars.isSpace(c:byte); @returns("AL");
	chars.isASCII(c:byte); @returns("AL");
	chars.isCtrl(c:byte); @returns("AL");

	7 Console Display Control (console.hhf)
	7.1 The Console Module Module
	7.2 Cursor Positioning Functions
	procedure console.gotoxy(x:dword; y:dword); @pascal procedure console.gotorc(r:dword; c:dword); @stdcall
	procedure console.up();
	procedure console.nup(n:uns32);
	procedure console.down();
	procedure console.ndown(n:uns32);
	procedure console.left();
	procedure console.nleft(n:uns32);
	procedure console.right();
	procedure console.nright(n:uns32);
	procedure console.saveCursor();
	procedure console.restoreCursor();

	7.3 Console Clearing Functions
	procedure console.cls(); procedure console.home();
	procedure console.clrToEOLN();
	procedure console.clrToBOLN();
	procedure console.clrLn();
	procedure console.clrToEOScrn();
	procedure console.clrToBOScrn();

	7.4 Character Insertion/Removal Functions
	procedure console.insertChar();
	procedure console.insertChars(n:dword);
	procedure console.insertLine();
	procedure console.insertLines(n:dword);
	procedure console.deleteChar();
	procedure console.deleteChars(n:dword);
	procedure console.deleteLine();
	procedure console.deleteLines(n:dword);

	7.5 Console Scrolling
	procedure console.scrollUp();
	procedure console.scrollDown();

	7.6 Console Output Colors
	procedure console.setAttrs(foreground:uns32; background:uns32);

	8 Conversions (conv.hhf)
	8.1 Buffer vs. String Conversions
	8.2 Conversion Format Control
	8.2.1 Underscore Control
	conv.setUnderscores(onOff: boolean);
	conv.getUnderscores; @returns("eax");

	8.2.2 Delimiter Control
	conv.getDelimiters(var Delims: cset);
	conv.setDelimiters(Delims: cset)

	8.3 Hexadecimal Conversions
	8.3.1 Internal Routines
	8.3.2 Hexadecimal Numeric Size Functions
	8.3.2.1 Fixed Size Hexadecimal Size Functions
	procedure conv.bSize(b:byte in al); @returns("eax");
	procedure conv.wSize(w:word in ax); @returns("eax");
	procedure conv.dSize(d:dword in eax); @returns("eax");
	procedure conv.qSize(q:qword); @returns("eax");
	procedure conv.tbSize(tb:tbyte); @returns("eax");
	procedure conv.lSize(l:lword); @returns("eax");

	8.3.2.2 Standard Hexadecimal Size Functions
	procedure conv.h8Size(b:byte in al); @returns("eax");
	procedure conv.h16Size(w:word in ax); @returns("eax");
	procedure conv.h32Size(s:dword in eax); @returns("eax");
	procedure conv.h64Size(q:qword); @returns("eax");
	procedure conv.h80Size(tb:tbyte); @returns("eax");
	procedure conv.h128Size(l:lword); @returns("eax");

	8.3.3 Hexadecimal Numeric to Buffer Conversions
	8.3.3.1 Fixed Length Hexadecimal Numeric to Buffer Conversions
	procedure conv.bToBuf(b:byte in al; var buffer:var in edi);
	procedure conv.wToBuf(w:word in ax; var buffer:var in edi);
	procedure conv.dToBuf(d:dword in eax; var buffer:var in edi);
	procedure conv.qToBuf(q:qword; var buffer:var in edi);
	procedure conv.tbToBuf(tb:tbyte; var buffer:var in edi);
	procedure conv.lToBuf(l:lword; var buffer:var in edi);

	8.3.3.2 Variable Length Hexadecimal Numeric to Buffer Conversions
	procedure conv.h8ToBuf(b:byte in al; var buffer:var in edi);
	procedure conv.h16ToBuf(w:word in ax; var buffer:var in edi);
	procedure conv.h32ToBuf(d:dword in eax; var buffer:var in edi);
	procedure conv.h64ToBuf(q:qword; var buffer:var in edi);
	procedure conv.h80ToBuf(tb:tbyte; var buffer:var in edi);
	procedure conv.h128ToBuf(l:lword; var buffer:var in edi);

	8.3.4 Hexadecimal Numeric to String Conversions
	8.3.4.1 Fixed-Length Numeric to Hexadecimal String Conversions
	conv.bToStr(b:byte; dest:string);
	conv.a_bToStr(b:byte); @returns("eax");
	conv.wToStr(w:word; dest:string);
	conv.a_wToStr(w:word; dest:string); @returns("eax");
	conv.dToStr(d:dword; dest:string);
	conv.a_dToStr(d:dword; dest:string); @returns("eax");
	conv.qToStr(q:qword; dest:string);
	conv.a_qToStr(q:qword; dest:string); @returns("eax");
	conv.tbToStr(tb:tbyte; dest:string);
	conv.a_tbToStr(tb:tbyte; dest:string); @returns("eax");
	conv.lToStr(l:lword; dest:string);
	conv.a_lToStr(l:lword; dest:string); @returns("eax");

	8.3.4.2 Variable-Length Numeric to Hexadecimal String Conversions
	8.3.4.2 Variable-Length Numeric to Hexadecimal String Conversions
	procedure conv.h8ToStr (b:byte; width:int32; fill:char; buffer:string);
	procedure conv.a_h8ToStr(b:byte; width:int32; fill:char); @returns("eax");
	procedure conv.h16ToStr (w:word; width:int32; fill:char; buffer:string);
	procedure conv.a_h16ToStr(w:word; width:int32; fill:char); @returns("eax");
	procedure conv.h32ToStr (d:dword; width:int32; fill:char; buffer:string);
	procedure conv.a_h32ToStr(d:dword; width:int32; fill:char); @returns("eax");
	procedure conv.h64ToStr (q:qword; width:int32; fill:char; buffer:string);
	procedure conv.a_h64ToStr(q:qword; width:int32; fill:char); @returns("eax");
	procedure conv.h80ToStr(tb:tbyte; width:int32; fill:char; buffer:string);
	procedure conv.a_h80ToStr(tb:tbyte; width:int32; fill:char); @returns("eax");
	procedure conv.h128ToStr (l:lword; width:int32; fill:char; buffer:string);
	conv.a_h128ToStr(l:lword; width:int32; fill:char); @returns("eax");

	8.3.5 Hexadecimal Buffer to Numeric Conversions
	procedure conv.atoh8(var buffer:var in esi); @returns("eax");
	procedure conv.atoh16(var buffer:var in esi); @returns("eax");
	procedure conv.atoh32(var buffer:var in esi); @returns("eax");
	procedure conv.atoh64(var buffer:var in esi); @returns("edx:eax");
	procedure conv.atoh128(var buffer:var in esi; var dest:lword);

	8.3.6 Hexadecimal String to Numeric Conversions
	procedure conv.strToh8(s:string; index:dword); @returns("eax");
	procedure conv.strToh16(s:string; index:dword); @returns("eax");
	procedure conv.strToh32(s:string; index:dword); @returns("eax");
	procedure conv.strToh64(s:string; index:dword); @returns("edx:eax");
	procedure conv.strToh128(s:string; index:dword; var dest:lword);

	8.4 Signed Integer Conversions
	8.4.1 Internal Functions
	8.4.2 Integer Size Calculations
	procedure conv.i8Size(b:byte in al); @returns("eax");
	procedure conv.i16Size(w:word in ax); @returns("eax");
	procedure conv.i32Size(d:dword in eax); @returns("eax");
	procedure conv.i64Size(q:qword); @returns("eax");
	procedure conv.i128Size(l:lword); @returns("eax");

	8.4.3 Signed Integer Numeric to Buffer Conversions
	procedure conv.i8ToBuf(i8 :int8 in al; var buf:var in edi);
	procedure conv.i16ToBuf(i16 :int16 in ax; var buf:var in edi)
	procedure conv.i32ToBuf(i32 :int32 in eax; var buf:var in edi)
	procedure conv.i64ToBuf(q :qword; var buf:var in edi)
	procedure conv.i128ToBuf(l :lword; var buf:var in edi)

	8.4.4 Integer Numeric to String Conversions
	procedure conv.i8ToStr (b:int8; width:int32; fill:char; dest:string);
	procedure conv.a_i8ToStr (b:int8; width:int32; fill:char); @returns("eax");
	procedure conv.i16ToStr(w:int16; width:int32; fill:char; dest:string);
	procedure conv.a_i16ToStr(w:int16; width:int32; fill:char); @returns("eax");
	procedure conv.i32ToStr(d:int32; width:int32; fill:char; buffer:string);
	procedure conv.a_i32ToStr(d:int32; width:int32; fill:char); @returns("eax");
	procedure conv.i64ToStr(q:qword; width:int32; fill:char; buffer:string);
	procedure conv.a_i64ToStr(q:qword; width:int32; fill:char); @returns("eax");
	procedure conv.i128ToStr(l:lword; width:int32; fill:char; buffer:string);
	procedure conv.a_i128ToStr(l:lword; width:int32; fill:char); @returns("eax");

	8.4.5 Signed Integer String to Numeric Conversions
	procedure conv.atoi8 (buffer:var in esi); @returns("al");
	procedure conv.atoi16 (buffer:var in esi); @returns("ax");
	procedure conv.atoi32 (buffer:var in esi); @returns("eax");
	procedure conv.atoi64 (buffer:var in esi); @returns("edx:eax");
	procedure conv.atoi128(buffer:var in esi; var l:lword);
	procedure conv.strToi8(s:string; index:dword)
	procedure conv.strToi16(s:string; index:dword)
	procedure conv.strToi32(s:string; index:dword)
	procedure conv.strToi64(s:string; index:dword)
	procedure conv.strToi128(s:string; index:dword; var dest:lword)

	8.5 Unsigned Integer Conversions
	8.5.1 Internal Routines
	The following routines are used internally by the standard library unsigned integer code and you should not directly call them: conv._u8Size, conv._u16Size, and conv._u32Size.

	8.5.2 Unsigned Integer Size Calculations
	procedure conv.u8Size(b:byte in al); @returns("eax");
	procedure conv.u16Size(w:word in ax)
	procedure conv.u32Size(d:dword in eax)
	procedure conv.u64Size(q:qword)
	procedure conv.u128Size(l:lword)

	8.5.3 Unsigned Integer Numeric to Buffer Conversions
	procedure conv.u8ToBuf(u8: uns8 in al)
	procedure conv.u16ToBuf(u16: uns16 in ax)
	procedure conv.u32ToBuf(u32: uns32 in eax)
	procedure conv.u64ToBuf(q:qword)
	procedure conv.u128ToBuf(l:lword)

	8.5.4 Unsigned Integer Numeric to String Conversions
	procedure conv.u8ToStr (b:uns8; width:int32; fill:char; buffer:string);
	procedure conv.a_u8ToStr (b:uns8; width:int32; fill:char); @returns("eax");
	procedure conv.u16ToStr(w:uns16; width:int32; fill:char; buffer:string);
	procedure conv.a_u16ToStr(w:uns16; width:int32; fill:char); @returns("eax");
	procedure conv.u32ToStr(d:uns32; width:int32; fill:char; buffer:string);
	procedure conv.a_u32ToStr(d:uns32; width:int32; fill:char); @returns("eax");
	procedure conv.u64ToStr(q:qword; width:int32; fill:char; buffer:string);
	procedure conv.a_u64ToStr(q:qword; width:int32; fill:char); @returns("eax");
	procedure conv.u128ToStr(l:lword; width:int32; fill:char; buffer:string);
	procedure conv.a_u128ToStr(l:lword; width:int32; fill:char); @returns("eax");

	8.5.5 Unsigned Integer String to Numeric Conversions
	procedure conv.atou8 (buffer: var in esi); @returns("ax");
	procedure conv.atou16 (buffer: var in esi); @returns("ax");
	procedure conv.atou32 (buffer: var in esi); @returns("eax");
	procedure conv.atou64 (buffer: var in esi); @returns("edx:eax");
	procedure conv.atou128(buffer: var in esi; var l:lword);
	procedure conv.strTou8(s:string; index:dword)
	procedure conv.strTou16(s:string; index:dword)
	procedure conv.strTou32(s:string; index:dword)
	procedure conv.strTou64(s:string; index:dword)
	procedure conv.strTou128(s:string; index:dword; var dest:lword)

	8.6 Floating Point Conversions
	8.6.1 Exponential Floating-Point Conversions
	8.6.2 Floating Point Numeric to Buffer Conversions, Exponential Form
	procedure conv.e80ToBuf (
	e80: real80; width: uns32; var buffer: var in EDI)
	procedure conv.e64ToBuf (
	e64: real64; width: uns32; var buffer: var in EDI)
	procedure conv.e32ToBuf (
	e32: real32; width: uns32; var buffer: var in EDI)

	8.6.3 Floating Point Numeric to String Conversions, Exponential Form
	procedure conv.e80ToStr (
	e80: real80; width: uns32; buffer: string)
	procedure conv.e64ToStr (e64: real64; width: uns32; buffer: string)
	procedure conv.e32ToStr (e32: real32; width: uns32; buffer: string)
	procedure conv.a_e80ToStr (
	e80: real80; width: uns32); @returns("eax");
	procedure conv.a_e64ToStr (e64: real64; width: uns32); @returns("eax");
	procedure conv.a_e32ToStr (e32: real32; width: uns32); @returns("eax");

	8.6.4 Floating Point Numeric to Character Conversions, Decimal Form
	procedure conv.r80ToBuf (
	r80: real80; width: uns32; decimalpts: uns32; fill: char; var buffer: var in edi)
	procedure conv.r64ToBuf (r64: real64; width: uns32; decimalpts: uns32; fill: char; var buffer: var in edi)
	procedure conv.r32ToBuf (
	r32: real32; width: uns32; decimalpts: uns32; fill: char; var buffer: var in edi)

	8.6.5 Floating-Point Numeric to String Conversions, Decimal Form
	procedure conv.r80ToStr (
	r80: real80; width: uns32; decimalpts: uns32; fill: char; buffer: string)
	procedure conv.r64ToStr (r64: real64; width: uns32; decimalpts: uns32; fill: char; buffer: string)
	procedure conv.r32ToStr (r32: real32; width: uns32; decimalpts: uns32; fill: char; buffer: string)
	procedure conv.a_r80ToStr (r80: real80; width: uns32; decimalpts: uns32; fill: char); @returns("eax");
	procedure conv.a_r64ToStr (r64: real64; width: uns32; decimalpts: uns32; fill: char); @returns("eax");
	procedure conv.a_r32ToStr (r32: real32; width: uns32; decimalpts: uns32; fill: char); @returns("eax");

	8.6.6 Floating Point String/Buffer to Numeric Conversions
	procedure conv.atof(bufptr: dword in esi); @returns("st0");
	procedure conv.strToFlt(s:string; index:dword); @returns("st0");

	8.6.7 Roman Numeral Conversion
	procedure conv.roman(Arabic:uns32; rmn:string)
	conv.a_roman(Arabic:uns32)

	9 Coroutines Module (coroutines.hhf)
	9.1 The Coroutine Module
	9.2 The Coroutine Class Definition
	procedure coret; @external("COR_CORET");

	9.3 Coroutine Functions
	procedure coroutine_t.create(size:uns32; theProc:procedure);
	procedure coroutine_t.cocall();
	method coroutine_t.cofree();
	method coret();
	static mainPgm:coroutine_t;

	10 Character Sets (cset.hhf)
	10.1 Predicates (tests)
	procedure cs.IsEmpty(src: cset); @returns("AL");
	procedure cs.member(c:char; theSet:cset); @returns("AL");
	procedure cs.subset(src1:cset; src2:cset); @returns("AL");
	procedure cs.superset(src1:cset; src2:cset); @returns("AL");
	procedure cs.psubset(src1:cset; src2:cset); @returns("AL");
	procedure cs.psuperset(src1:cset; src2:cset); @returns("AL");
	procedure cs.eq(src1:cset; src2:cset); @returns("AL");
	procedure cs.ne(src1:cset; src2:cset); @returns("AL");

	10.2 Character Set Construction and Manipulation
	procedure cs.empty(var dest:cset);
	procedure cs.cpy(src:cset; var dest:cset);
	procedure cs.charToCset(c:char; var dest:cset);
	procedure cs.rangeChar(first:char; last:char; var dest:cset);
	procedure cs.strToCset(s:string; var dest:cset);
	procedure cs.strToCset2(s:string; offs:uns32; var dest:cset);
	procedure cs.extract(var dest:cset); @returns("EAX");

	10.3 Set Operations
	procedure cs.setunion(src:cset; var dest:cset);
	procedure cs.intersection(src:cset; var dest:cset);
	procedure cs.difference(src:cset; var dest:cset);
	procedure cs.complement(src:cset; var dest:cset);
	procedure cs.unionChar(c:char; var dest:cset);
	procedure cs.removeChar(c:char; var dest:cset);
	procedure cs.unionStr(s:string; var dest:cset);
	procedure cs.unionStr2(s:string; offs:uns32; offs:uns32; var dest:cset);
	procedure cs.removeStr(s:string; var dest:cset);
	procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);
	procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);

	11 Date Functions (datetime.hhf)
	11.1 The Date Module
	11.2 Date Data Types
	date.daterec
	date.outputFormat

	11.3 Date Tables
	11.4 Date Predicates
	#macro date.isLeapYear(y:uns32); @returns("al"); #macro date.isLeapYear(dr:date.daterec); @returns("al"); procedure date._isLeapYear(Year:word); @returns("al");
	#macro date.validate(m:byte; day:byte; year:word); #macro date.validate(dr:date.daterec); date._validate(dr:daterec);
	#macro date.isValid(m:byte; day:byte; year:word); @returns("al"); #macro date.isValid(dr:date.daterec); @returns("al"); date._isValid(dr:daterec); @returns("al");

	11.5 Date Conversions
	#macro date.pack(m, d, y, dr);
	#macro date.unpack(dr, m, d, y);
	#macro date.toJulian(m:byte; d:byte; y:word); @returns("eax"); #macro date.toJulian(dr:date.daterec); @returns("eax"); date._toJulian(dr:daterec); @returns("eax");
	date.fromJulian(jd:uns32; var gd:date.daterec);
	#macro date.dayNumber(m:byte; d:byte; y:word); @returns("eax"); #macro date.dayNumber(dr:date.daterec); @returns("eax"); date._dayNumber(dr:daterec); @returns("eax");
	#macro date.daysLeft(m:byte; d:byte; y:word); @returns("eax"); #macro date.daysLeft(dr:date.daterec); @returns("eax"); date._daysLeft(dr:daterec); @returns("eax");
	#macro date.dayOfWeek(m:byte; d:byte; y:word); @returns("eax"); #macro date.dayOfWeek(dr:date.daterec); @returns("eax"); date._dayOfWeek(dr:daterec); @returns("eax");

	11.6 Date Arithmetic
	#macro date.daysBetween (m1:byte; d1:byte; y1:word; m2:byte; d2:byte; y2:word); @returns("eax");
	#macro date.daysBetween (m1:byte; d1:byte; y1:word; dr:date.daterec); @returns("eax");
	#macro date.daysBetween (dr:date.daterec; m:byte; d:byte; y:word); @returns("eax");
	#macro date.daysBetween (dr1:date.daterec; dr2:date.daterec); @returns("eax");
	date._daysBetween(first:daterec; last:daterec); @returns("eax");
	date.addDays(days:uns32; var dr:date.daterec);
	date.addMonths(months:uns32; var dr:date.daterec);
	date.addYears(years:uns32; var dr:date.daterec);
	date.subDays(days:uns32; var dr:date.daterec);
	date.subMonths(months:uns32; var dr:date.daterec);
	date.subYears(years:uns32; var dr:date.daterec);

	11.7 Reading the Current System Date
	date.today(var dr:date.daterec);
	date.utc(var dr:date.daterec);

	11.8 Date Output and String Conversion
	date.setFormat(fmt : OutputFormat);
	date.setSeparator(chr:char);
	#macro date.toString(m:byte; d:byte; y:word; s:string); #macro date.toString(dr:date.daterec; s:string); date._toString(dr:daterec; s:string);
	#macro date.a_toString(m:byte; d:byte; y:word); @returns("eax"); #macro date.a_toString(dr:date.daterec); @returns("eax"); date._a_toString(dr:daterec); @returns("eax");

	11.9 Date Class Types
	11.9.1 Date Class Methods/Procedures
	11.9.2 Creating New Date Class Types
	dtClass.make_dateClass(className, "<list of methods>")

	11.9.3 Date Class Functions
	<object>.create();
	<object>.isLeapYear(); @returns("al");
	<object>.validate();
	<object>.isValid(); @returns("al");
	<object>.toJulian(); @returns("eax");
	<object>.fromJulian(jd:uns32);
	<object>.dayNumber(); @returns("eax");
	<object>.daysLeft(); @returns("eax");
	<object>.dayOfWeek(); @returns("eax");
	<object>.daysBetween(otherDate:daterec); @returns("eax");
	<object>.difference(var otherDate:<classType>); @returns("eax");
	<object>.addDays(days:uns32);
	<object>.addMonths(months:uns32; var dr:date.daterec);
	<object>.addYears(years:uns32; var dr:date.daterec);
	<object>.subDays(days:uns32; var dr:date.daterec);
	<object>.subMonths(months:uns32; var dr:date.daterec);
	<object>.subYears(years:uns32; var dr:date.daterec);
	<object>.today();
	<object>.utc(var dr:date.daterec);
	<object>.toString(s:string);
	<object>.a_toString(dr:daterec); @returns("eax");

	12 Environment Variables Module (env.hhf)
	12.1 The Env Module
	12.2 Retrieving Environment Strings
	procedure env.get(envVar:string; dest:string);
	procedure env.a_get(envVar:string);

	13 Exceptions Module (excepts.hhf)
	13.1 The Exceptions Module
	13.2 Exception Resource Reduction
	13.3 Exception Constants
	ex.UnknownException
	ex.StringOverflow
	ex.StringIndexError
	ex.ValueOutOfRange
	ex.IllegalChar
	ex.AttemptToDerefNULL
	ex.TooManyCmdLnParms
	ex.AssertionFailed
	ex.ExecutedAbstract
	ex.BadObjPtr
	ex.InvalidAlignment
	ex.ConversionError
	ex.WidthTooBig
	ex.BadFileHandle
	ex.FileNotFound
	ex.FileOpenFailure
	ex.FileCloseError
	ex.FileWriteError
	ex.FileReadError
	ex.FileSeekError
	ex.DiskFullError
	ex.AccessDenied
	ex.EndOfFile
	ex.CannotCreateDir
	ex.CannotRemoveDir
	ex.CannotRemoveFile
	ex.CDFailed
	ex.CannotRenameFile
	ex.MemoryAllocationFailure
	ex.MemoryFreeFailure
	ex.MemoryFreeFailure
	ex.AttemptToFreeNULL
	ex.BlockAlreadyFree
	ex.CannotFreeMemory
	ex.PointerNotInHeap
	ex.ArrayShapeViolation
	ex.ArrayBounds
	ex.InvalidDate
	ex.InvalidDateFormat
	ex.TimeOverflow
	ex.InvalidTime
	ex.InvalidTimeFormat
	ex.AccessViolation
	ex.InPageError
	ex.NoMemory
	ex.InvalidHandle
	ex.ControlC
	ex.StackOverflow
	ex.Breakpoint
	ex.SingleStep
	ex.PrivInstr
	ex.IllegalInstr
	ex.BoundInstr
	ex.IntoInstr
	ex.DivideError
	ex.fDivByZero
	ex.fInexactResult
	ex.fInvalidOperation
	ex.fOverflow
	ex.fUnderflow
	ex.fStackCheck
	ex.fDenormal

	13.4 Exception Messages
	procedure ex.exceptionMsg(exceptionCode:dword; msg:string);
	procedure ex.printExceptionError;

	14 File Class Module (fileclass.hhf)
	14.1 File Class Methods/Procedures
	14.2 A Quick Note
	14.3 General File Operations
	<object>.create; @returns("esi"); file_t.create; @returns("esi"); [to create dynamic objects] virtualFile_t.create; @returns("esi"); [to create dynamic objects]
	<object>.handle; @returns("eax");

	14.4 Opening and Closing Files
	<object>.open(filename:string; access:dword)
	<object>.openNew(filename:string)
	<object>.close;

	14.5 File Predicates
	<object>.eof(); @returns("al");
	<object>.eoln(); @returns("al");

	14.6 Miscellaneous Output
	<object>.write(var buffer:var; count:dword)
	<object>.putbool(b:boolean);
	<object>.newln();

	14.7 Character, Character Set, and String Output
	<object>.putc(c:char)
	<object>.putcSize(c:char; width:int32; fill:char)
	<object>.putcset(cst:cset);
	<object>.puts(s:string);
	<object>.putsSize(s:string; width:int32; fill:char)

	14.8 Hexadecimal Numeric Output
	<object>.putb(b:byte);
	<object>.puth8(b:byte);
	<object>.puth8Size(b:byte; width:dword; fill:char)
	<object>.putw(w:word);
	<object>.puth16(w:word);
	<object>.puth16Size(w:word; width:dword; fill:char)
	<object>.putd(dw:dword);
	<object>.puth32(dw:dword);
	<object>.puth32Size(d:dword; width:dword; fill:char)
	<object>.putq(q:qword);
	<object>.puth64(q:qword);
	<object>.puth64Size(q:qword; width:dword; fill:char)
	<object>.puttb(tb:tbyte)
	<object>.puth80(tb:tbyte)
	<object>.puth80Size(tb:tbyte; width:dword; fill:char)
	<object>.putl(l:lword)
	<object>.puth128(l:lword)
	<object>.puth128Size(l:lword; width:dword; fill:char)

	14.9 Signed Integer Numeric Output
	<object>.puti8 (b:byte);
	<object>.puti8Size (b:byte; width:int32; fill:char);
	<object>.puti16(w:word);
	<object>.puti16Size(w:word; width:int32; fill:char);
	<object>.puti32(d:dword);
	<object>.puti32Size(d:dword; width:int32; fill:char);
	<object>.puti64(q:qword);
	<object>.puti64Size(q:qword; width:int32; fill:char);
	<object>.puti128(l:lword);
	<object>.puti128Size(l:lword; width:int32; fill:char);

	14.10 Unsigned Integer Numeric Output
	<object>.putu8 (b:byte)
	<object>.putu8size(b:byte; width:int32; fill:char)
	<object>.putu16(w:word)
	<object>.putu16size(w:word; width:int32; fill:char)
	<object>.putu32(d:dword)
	<object>.putu32Size(d:dword; width:int32; fill:char)
	<object>.putu64(q:qword)
	<object>.putu64Size(q:qword; width:int32; fill:char);
	<object>.putu128(l:lword)
	<object>.putu128Size(l:lword; width:int32; fill:char);

	14.11 Floating-Point Numeric Output Using Scientific Notation
	<object>.pute32(r:real32; width:uns32)
	<object>.pute64(r:real64; width:uns32)
	<object>.pute80(r:real80; width:uns32)

	14.12 Floating-Point Numeric Output Using Decimal Notation
	<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)
	<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)
	<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

	14.13 Generic File Output
	<object>.put(parameter_list)

	14.14 Generic File Input
	<object>.read(var buffer:var; count:dword)

	14.15 Character and String Input
	<object>.getc; @returns("al");
	<object>.gets(s:string);
	<object>.a_gets; @returns("eax");

	14.16 Signed Integer Input
	<object>.geti8; @returns("al");
	<object>.geti16; @returns("ax");
	<object>.geti32; @returns("eax");
	<object>.geti64; @returns("edx:eax");
	<object>.geti128(var l:lword);

	14.17 Unsigned Integer Input
	<object>.getu8; @returns("al");
	<object>.getu16; @returns("ax");
	<object>.getu32; @returns("eax");
	<object>.getu64; @returns("edx:eax");
	<object>.getu128(var l:lword);

	14.18 Hexadecimal Input
	<object>.geth8; @returns("al");
	<object>.geth16; @returns("ax");
	<object>.geth32; @returns("eax");
	<object>.geth64; @returns("edx:eax");
	<object>.geth128(var l:lword);

	14.19 Floating-Point Input
	<object>.getf; @returns("st0");

	14.20 Generic File Input
	<object>.get(List_of_items_to_read);

	15 The File I/O Module (fileio.hhf)
	15.1 Conversion Format Control
	15.2 General File I/O Functions
	fileio.open(FileName: string; Access:dword); @returns("eax");
	fileio.openNew(FileName: string); @returns("eax");
	fileio.close(Handle:dword);
	fileio.flush(Handle:dword);
	fileio.eof(Handle:dword); @returns("al");
	fileio.rewind(Handle:dword); @returns("eax");
	fileio.append(handle:dword); @returns("eax");
	fileio.position(Handle:dword); @returns("eax");
	fileio.seek(Handle:dword; offset:qword); @returns("eax");
	fileio.rSeek(Handle:dword; offset:qword); @returns("eax");
	fileio.truncate(Handle:dword); @returns("eax");
	fileio.size(Handle:dword); @returns("eax");

	15.3 File Output Routines
	15.3.1 Miscellaneous Output Routines
	fileio.write(Handle:dword; var buffer:var; count:uns32);
	fileio.newln(Handle:dword)
	fileio.putbool(Handle:dword; b:boolean)

	15.3.2 Character, String, and Character Set Output Routines
	fileio.putc(Handle:dword; c:char)
	fileio.putcSize(Handle:dword; c:char; width:int32; fill:char)
	fileio.putcset(Handle:dword; cst:cset)
	fileio.puts(Handle:dword; s:string)
	fileio.putsSize(Handle:dword; s:string; width:int32; fill:char)

	15.3.3 Hexadecimal Output Routines
	fileio.putb(Handle:dword; b:byte)
	fileio.puth8(Handle:dword; b:byte)
	fileio.puth8Size(Handle:dword; b:byte; size:dword; fill:char)
	fileio.putw(Handle:dword; w:word)
	fileio.puth16(Handle:dword; w:word)
	fileio.puth16Size(Handle:dword; w:word; size:dword; fill:char)
	fileio.putd(Handle:dword; d:dword)
	fileio.puth32(Handle:dword; d:dword)
	fileio.puth32Size(Handle:dword; d:dword; size:dword; fill:char)
	fileio.putq(Handle:dword; q:qword)
	fileio.puth64(Handle:dword; q:qword)
	fileio.puth64Size(Handle:dword; q:qword; size:dword; fill:char)
	fileio.puttb(Handle:dword; tb:tbyte)
	fileio.puth80(Handle:dword; tb:tbyte)
	fileio.puth80Size(Handle:dword; tb:tbyte; size:dword; fill:char)
	fileio.putl(Handle:dword; l:lword)
	fileio.puth128(Handle:dword; l:lword)
	fileio.puth128Size(Handle:dword; l:lword; size:dword; fill:char)

	15.3.4 Signed Integer Output Routines
	fileio.puti8 (Handle:dword; b:byte)
	fileio.puti8Size (Handle:dword; b:byte; width:int32; fill:char)
	fileio.puti16(Handle:dword; w:word)
	fileio.puti16Size(Handle:dword; w:word; width:int32; fill:char)
	fileio.puti32(Handle:dword; d:dword)
	fileio.puti32Size(Handle:dword; d:dword; width:int32; fill:char)
	fileio.puti64(Handle:dword; q:qword)
	fileio.puti64Size(Handle:dword; q:qword; width:int32; fill:char)
	fileio.puti128(Handle:dword; l:lword)
	fileio.puti128Size(Handle:dword; l:lword; width:int32; fill:char)

	15.3.5 Unsigned Integer Output Routines
	fileio.putu8 (Handle:dword; b:byte)
	fileio.putu8Size(Handle:dword; b:byte; width:int32; fill:char)
	fileio.putu16(Handle:dword; w:word)
	fileio.putu16Size(Handle:dword; w:word; width:int32; fill:char)
	fileio.putu32(Handle:dword; d:dword)
	fileio.putu32Size(Handle:dword; d:dword; width:int32; fill:char)
	fileio.putu64(Handle:dword; q:qword)
	fileio.putu64Size(Handle:dword; q:qword; width:int32; fill:char)
	fileio.putu128(Handle:dword; l:lword)
	fileio.putu128Size(Handle:dword; l:lword; width:int32; fill:char)

	15.3.6 Floating Point Output Routines
	15.3.6.1 Real Output Using Scientific Notation
	fileio.pute32(Handle:dword; r:real32; width:uns32)
	fileio.pute64(Handle:dword; r:real64; width:uns32)
	fileio.pute80(Handle:dword; r:real80; width:uns32)

	15.3.6.2 Real Output Using Decimal Notation
	fileio.putr32(Handle:dword; r:real32; width:uns32; decpts:uns32; pad:char)
	fileio.putr64(Handle:dword; r:real64; width:uns32; decpts:uns32; pad:char)
	fileio.putr80(Handle:dword; r:real80; width:uns32; decpts:uns32; pad:char)

	15.3.7 Generic File Output Routine
	fileio.put(list_of_items)

	15.4 File Input Routines
	15.4.1 General File Input Routines
	fileio.read(Handle:dword; var buffer:byte; count:uns32)
	fileio.readLn(Handle:dword);
	fileio.eoln(Handle:dword); @returns("al");

	15.4.2 Character and String Input Routines
	fileio.getc(Handle:dword); @returns("al");
	fileio.gets(Handle:dword; s:string);
	fileio.a_gets(Handle:dword); @returns("eax");

	15.4.3 Signed Integer Input Routines
	fileio.geti8(Handle:dword); @returns("al");
	fileio.geti16(Handle:dword); @returns("ax");
	fileio.geti32(Handle:dword); @returns("eax");
	fileio.geti64(Handle:dword);
	fileio.geti128(Handle:dword; var dest:lword);

	15.4.4 Unsigned Integer Input Routines
	fileio.getu8(Handle:dword); @returns("al");
	fileio.getu16(Handle:dword); @returns("ax");
	fileio.getu32(Handle:dword); @returns("eax");
	fileio.getu64(Handle:dword);
	fileio.getu128(Handle:dword; var dest:lword);

	15.4.5 Hexadecimal Input Routines
	fileio.geth8(Handle:dword); @returns("al");
	fileio.geth16(Handle:dword); @returns("ax");
	fileio.geth32(Handle:dword); @returns("eax");
	fileio.geth64(Handle:dword);
	fileio.geth128(Handle:dword; var dest:lword);

	15.4.6 Floating Point Input
	fileio.getf(Handle:dword);

	15.4.7 Generic File Input
	fileio.get(List_of_items_to_read);

	16 The File System Module (filesys.hhf)
	16.1 Filename and Pathname String Functions
	procedure filesys.hasDriveLetter(pathname:string); @returns("@c");
	procedure filesys.hasExtension(pathname:string); @returns("@c");
	procedure filesys.hasUncName(pathname:string); @returns("@c");
	procedure filesys.hasPath(pathname:string); @returns("@c");
	procedure filesys.a_extractBase(pathname:string); @returns("c");
	procedure filesys.extractBase(pathname:string; base:string); @returns("c");
	procedure filesys.a_extractExt(pathname:string); @returns("c");
	procedure filesys.extractExt(pathname:string; ext:string); @returns("c");
	procedure filesys.a_extractFilename(pathname:string); @returns("c");
	procedure filesys.extractFilename(pathname:string; filename:string); @returns("c");
	procedure filesys.a_extractPath(pathname:string); @returns("c");
	procedure filesys.extractPath(pathname:string; path:string); @returns("c");
	procedure filesys.a_joinPaths(leftPath:string; rightPath:string); @returns("eax");
	Is empty
	Is empty
	Is empty.
	Ends with ‘/’
	Does not begin with ‘/’
	Is just the concatenation of the two strings.
	Does not end with ‘/’
	Begins with ‘/’
	Is just the concatenation of the two strings.
	Ends with ‘/’
	Begins with ‘/’
	Is the concatenation of the two strings with one of the ‘/’ characters removed.
	Does not end with ‘/’
	Does not begin with ‘/’
	Is the concatenation of the leftPath with ‘/’ and then the rightPath string.

	procedure filesys.joinPaths (leftPath:string; rightPath:string; joinedPath:string);
	procedure filesys.a_normalize(pathname:string); @returns("c");
	procedure filesys.normalize1(pathname:string); @returns("c");
	procedure filesys.normalize2(pathname:string; path:string); @returns("c");
	procedure filesys.a_toUnixPath(pathname:string); @returns("eax");
	procedure filesys.toUnixPath1(pathname:string);
	procedure filesys.toUnixPath2(pathname:string; unixPath:string);
	procedure filesys.a_toWin32Path(pathname:string); @returns("eax");
	procedure filesys.toWin32Path1(pathname:string);
	procedure filesys.toWin32Path2(pathname:string; windowsPath:string);
	procedure filesys.a_toNativePath(pathname:string); procedure filesys.toNativePath1(pathname:string); procedure filesys.toNativePath2(pathname:string; windowsPath:string);
	procedure filesys.a_getFullPathName(partialPath:string); @returns("eax");
	procedure filesys.getFullPath(partialPath:string; resultPath:string);

	16.2 Directory and File Predicates
	procedure filesys.exists(pathname:string); @returns("eax");
	procedure filesys.isFile(FileName:string); @returns("eax");
	procedure filesys.isDir(FileName:string); @returns("eax");

	16.3 File Information Functions
	procedure filesys.size(Handle:dword); @returns("edx:eax"); procedure filesys.size(filename:string); @returns("edx:eax");

	16.4 Directory and File Manipulation Functions
	procedure filesys.delete(filename:string); @returns("eax");
	procedure filesys.mkdir(dirname:string); @returns("eax");
	procedure filesys.cd(dirname:string);
	procedure filesys.gwd(dest:string);
	procedure filesys.rename(fromPath:string; toPath:string);
	procedure filesys.rmdir(directory:string);
	iterator filesys.fileWithSuffix(directory:string; suffix:string);
	iterator filesys.fileIn(directory:string);
	iterator filesys.fileInCwd;
	iterato
	iterator filesys.dirIn(directory:string);
	iterator filesys.dirInCwd;
	iterator filesys.itemWithSuffix(directory:string; suffix:string);
	iterator filesys.itemInCwd;
	iterator filesys.itemInCwd;

	17 HLA Related Macros and Constants (hla.hhf)
	17.1 The HLA Module
	17.2 Classification Macros
	#macro hla.IsUns(identifier);
	#macro hla.IsInt(identifier);
	#macro hla.IsHex(identifier);
	#macro hla.IsNumber(identifier);
	#macro hla.IsReal(identifier);
	#macro hla.IsNumeric(identifier);
	#macro hla.IsOrdinal(identifier);

	17.3 String to Integer Macros
	#macro hla.asWord("1 or 2 character string");
	#macro hla.asDword("1 to 4 character string");

	17.4 Label Generation Macro
	17.5 Procedure Overloading Macro
	17.6 Generic PUT Macro
	17.7 @class Constants
	@Class Return Values

	17.8 HLA pType Constants
	: @pType Return Values

	17.9 @pclass Return Values
	@pClass Return Values

	17.10 @section Return Values
	@section Constants

	18 The Linux Module (linux.hhf)
	18.1 The Linux Module
	18.2 The Linux Header File

	19 Lists Module (lists.hhf)
	19.1 The Lists Module
	19.1.0.1 List Data Types

	19.2 List_t Class Function Types
	19.3 Creating New List Class Types
	_hla.make_listClass(className, "<list of methods>")

	19.4 List Procedures, Methods, and Iterators
	19.5 List Constructor and Destructor
	procedure list_t.create; @returns("esi");
	method list_t.destroy;

	19.6 Accessor Functions
	method list_t.numNodes; @returns("eax");
	19.6.0.1 Adding Nodes to a List
	#macro list_t.append(node, posn); #macro list_t.append(node, node); #macro list_t.append(node);
	method list_t.append_index(var n:node_t; posn: dword); @returns("esi");
	method list_t.append_node(var n:node_t; var after: node_t); @returns("esi");
	method list_t.append_last(var n:node_t); @returns("esi");
	#macro list_t.insert(node, posn); #macro list_t.insert(node, node); #macro list_t.insert(node);
	method list_t.insert_index(var n:node_t; posn:dword); @returns("esi");
	method list_t.insert_node(var n:node_t; var before:node_t); @returns("esi");
	method list_t.insert_first(var n:node_t); @returns("esi");

	19.7 Removing Nodes From a List
	#macro list_t.delete(posn); #macro list_t.delete(node); #macro list_t.delete();
	method list_t.delete_index(posn:dword); @returns("esi");
	method list_t.delete_node(var n:node_t); @returns("esi");
	method list_t.delete_first; @returns("esi");
	method list_t.delete_last; @returns("esi");

	19.8 Accessing Nodes in a List
	method list_t.index(posn:dword); @returns("esi");
	iterator list_t.nodeInList;
	iterator list_t.nodeInListReversed;
	iterator list_t.filteredNodeInList(t:thunk);
	iterator list_t.filteredNodeInListReversed(t:thunk);
	iterator list_t.filteredNodeInListReversed(t:thunk);

	19.9 Miscellaneous List Functions
	method list_t.reverse;
	method list_t.xchgNodes(n1:nodePtr_t; n2:nodePtr_t);
	method list_t.sort;
	method list_t.search(cmpThunk:thunk); @returns("eax");

	20 Math Module (math.hhf)
	20.1 The Math Module
	20.2 Math Data Types
	20.3 64-Bit Arithmetic and Logical Operations
	math.addq(left:qword; right:qword; var dest:qword);
	math.subq(left:qword; right:qword; var dest:qword);
	math.divq(left:qword; right:qword; var dest:qword);
	math.idivq(left:qword; right:qword; var dest:qword);
	math.modq(left:qword; right:qword; var dest:qword);
	math.imodq(left:qword; right:qword; var dest:qword);
	math.mulq(left:qword; right:qword; var dest:qword);
	math.imulq(left:qword; right:qword; var dest:qword);
	math.negq(source:qword; var dest:qword);
	math.andq(left:qword; right:qword; var dest:qword);
	math.orq(left:qword; right:qword; var dest:qword);
	math.xorq(left:qword; right:qword; var dest:qword);
	math.notq(source:qword; var dest:qword);
	math.shlq(count:uns32; source:qword; var dest:qword);
	math.shrq(count:uns32; source:qword; var dest:qword);

	20.4 128-Bit Arithmetic and Logical Operations
	math.addl(left:lword; right:lword; var dest:lword);
	math.subl(left:lword; right:lword; var dest:lword);
	math.divl(left:lword; right:lword; var dest:lword);
	math.idivl(left:lword; right:lword; var dest:lword);
	math.modl(left:lword; right:lword; var dest:lword);
	math.imodl(left:lword; right:lword; var dest:lword);
	math.mull(left:lword; right:lword; var dest:lword);
	math.imull(left:lword; right:lword; var dest:lword);
	math.negl(source:lword; var dest:lword);
	math.andl(left:lword; right:lword; var dest:lword);
	math.orl(left:lword; right:lword; var dest:lword);
	math.xorl(left:lword; right:lword; var dest:lword);
	math.notl(source:lword; var dest:lword);
	math.shll(count:uns32; source:lword; var dest:lword);
	math.shrl(count:uns32; source:lword; var dest:lword);

	20.5 Transcendental, Logarithmic, and Other Floating-Point Operations
	#macro math.sin; @returns("st0"); // Overloads the following functions: procedure math._sin; @returns("st0"); procedure math.sin32(r32: real32); @returns("st0"); procedure math.sin64(r64: real64); @returns("st0"); procedure math.sin80(r8...
	#macro math.cos; @returns("st0"); // Overloads the following functions: procedure math._cos; @returns("st0"); procedure math.cos32(r32: real32); @returns("st0"); procedure math.cos64(r64: real64); @returns("st0"); procedure math.cos80(r8...
	#macro math.tan; @returns("st0"); // Overloads the following functions: procedure math._tan; @returns("st0"); procedure math.tan32(r32: real32); @returns("st0"); procedure math.tan64(r64: real64); @returns("st0"); procedure math.tan80(r8...
	#macro math.sincos; // Overloads the following functions: procedure math._sincos; procedure math.sincos32(r32: real32); procedure math.sincos64(r64: real64); procedure math.sincos80(r80: real80);
	#macro math.atan; @returns("st0"); // Overloads the following functions: procedure math._atan; @returns("st0");
	procedure math.atan32(r32: real32); @returns("st0"); procedure math.atan64(r64: real64); @returns("st0"); procedure math.atan80(r80: real80); @returns("st0");
	#macro math.cot; @returns("st0"); // Overloads the following functions: procedure math._cot; @returns("st0"); procedure math.cot32(r32: real32); @returns("st0"); procedure math.cot64(r64: real64); @returns("st0"); procedure math.cot80(r8...
	#macro math.csc // Macro that overloads the following four functions: procedure math._csc; @returns("st0"); procedure math.csc32(r32:real32); @returns("st0"); procedure math.csc64(r64: real64); @returns("st0"); procedure math.csc80(r80: re...
	#macro math.sec; // Macro that overloads the following four functions: procedure math._sec; @returns("st0"); procedure math.sec32(r32:real32); @returns("st0"); procedure math.sec64(r64: real64); @returns("st0"); procedure math.sec80(r80: ...
	#macro math.asin // Macro that overloads the following four functions: procedure math._asin; @returns("st0"); procedure math.asin32(r32:real32); @returns("st0"); procedure math.asin64(r64: real64); @returns("st0"); procedure math.asin80(r...
	#macro math.acos // Macro to overload the following four functions: procedure math._acos; @returns("st0"); procedure math.acos32(r32:real32); @returns("st0"); procedure math.acos64(r64: real64); @returns("st0"); procedure math.acos80(r80: ...
	#macro math.acos // Macro to overload the following four functions: procedure math._acos; @returns("st0"); procedure math.acos32(r32:real32); @returns("st0"); procedure math.acos64(r64: real64); @returns("st0"); procedure math.acos80(r80: ...
	#macro math.acot // Macro that overloads the following four functions: procedure math._acot; @returns("st0"); procedure math.acot32(r32:real32); @returns("st0"); procedure math.acot64(r64: real64); @returns("st0"); procedure math.acot80(r8...
	#macro math.acsc // Overload macro that expands to one of the following: procedure math._acsc; @returns("st0"); procedure math.acsc32(r32:real32); @returns("st0"); procedure math.acsc64(r64: real64); @returns("st0"); procedure math.acsc80(...
	#macro math.asec // Overloading macro that expands to one of: procedure math._asec; @returns("st0"); procedure math.asec32(r32:real32); @returns("st0"); procedure math.asec64(r64: real64); @returns("st0"); procedure math.asec80(r80: real80...
	#macro math.twoToX // Macro that overloads the following functions: procedure math._twoToX; @returns("st0"); procedure math.twoToX32(r32: real32); @returns("st0"); procedure math.twoToX64(r64: real64); @returns("st0"); procedure math.twoToX...
	#macro math.TenToX // Overloads the following functions: procedure math._tenToX; @returns("st0"); procedure math.tenToX32(r32:real32); @returns("st0"); procedure math.tenToX64(r64: real64); @returns("st0"); procedure math.tenToX80(r80: rea...
	#macro math.exp // Overloads the following functions: procedure math._exp; @returns("st0"); procedure math.exp32(r32:real32); @returns("st0"); procedure math.exp64(r64: real64); @returns("st0"); procedure math.exp80(r80: real80); @returns...
	#macro math.ytoX // Macro that overloads the following functions: procedure math._yToX; // Y is at ST1, X is at ST0. procedure math.yToX32(y32Var, x32Var); @returns("st0"); procedure math.yToX64(y64Var, x64Var); @returns("st0"); procedure mat...
	#macro math.log // Overloads the following functions: procedure math._log; @returns("st0"); procedure math.log32(r32: real32); @returns("st0"); procedure math.log64(r64: real64); @returns("st0"); procedure math.log80(r80: real80); @return...
	#macro math.ln // Overloads the following functions: procedure math._ln; @returns("st0"); procedure math.ln32(r32: real32); @returns("st0"); procedure math.ln64(r64: real64); @returns("st0"); procedure math.ln80(r80: real80); @returns("s...

	21 Memory-Mapped I/O (mmap.hhf)
	21.1 MMAP Module
	21.2 Class Fields
	filePtr:dword;
	fileSize:dword;
	endFilePtr:string;

	21.3 Class Procedures and Methods
	procedure mmap_t.create(); @returns("ESI");
	method mmap_t.destroy();
	method mmap_t.openNew(filename:string; maxSize:dword);
	method mmap_t.open(filename:string; Access:dword);
	method mmap_t.close();
	method mmap_t.getFileName();
	method mmap_t.getOpen();
	method mmap_t.getMalloc();
	method mmap_t.getMalloc();

	22 Memory (memory.hhf)
	22.1 Memory Module
	22.2 Deprecated Names
	22.3 Generic Memory Allocation
	mem.alloc overloads mem.alloc1 and mem.alloc2
	procedure mem.alloc1(size:dword); @returns("eax");
	procedure mem.alloc2(size:dword; callback:thunk); @returns("eax");
	procedure mem.zalloc(size:dword); @returns("eax");
	procedure mem.free(memptr:dword);
	procedure mem.free(memptr:dword);
	mem.realloc overloads mem.realloc1 and mem.realloc2
	procedure mem.realloc1(memptr:dword; newsize:dword); @returns("eax");
	procedure mem.realloc2(memptr:dword; newsize:dword; copycallback:thunk); @returns("eax");
	#macro mem.talloc(size); (returns "eax" as macro result)
	procedure mem.isInHeap(memptr:dword);
	procedure mem.size(memptr:dword);
	procedure mem.stat;
	mem.newref(memblk:dword);
	mem.getref(memblk:dword);
	iterator mem.blockInHeap;
	iterator mem.allocBlockInHeap;
	iterator mem.freeBlockInHeap;

	22.4 String Memory Allocation
	procedure str.alloc(size:dword); @returns("eax"); procedure str.realloc(strPtr:dword; size:dword); @returns("eax"); procedure str.free(strPtr:dword); procedure str.isInHeap(strPtr:dword); @returns("eax");
	#macro str.talloc(size); (returns pointer to new string in EAX).
	procedure str.newref(strPtr:dword);
	str.getref(strPtr:dword);

	23 OS Module (os.hhf)
	23.1 The OS Module
	23.2 Executing Shell Commands
	procedure os.system(cmdStr:string);

	23.3 Delaying Program Execution
	procedure os.sleep(secs:dword);
	procedure os.mSleep(msecs:dword);

	24 Patterns Module (patterns.hhf)
	24.1 The Patterns Module
	24.2 An Introduction to Pattern Matching (a tutorial)
	24.3 Pattern Matching Functions Versus User Code
	24.4 Register and Stack Usage in Pattern Matching Statements
	24.5 Nesting Pattern Matching Statements
	24.6 Cleanly Nesting Patterns
	24.7 Backtracking
	24.8 Pattern Components
	24.9 Lazy / Eager Evaluation and Pattern Matching Performance
	24.10 Regular Expressions
	24.11 Pattern Matching Statements
	pat.match and pat.endmatch Syntax

	24.12 Alternation
	24.13 Pattern Matching Macros
	pat.EOS
	pat.position(n)
	pat.atPos(n)
	pat.skip(n)
	pat.getPos(var dest:dword)
	pat.fail
	pat.fence
	pat.onePat;
	pat.zeroOrOnePat;
	pat.zeroOrMorePat;
	pat.oneOrMorePat

	24.14 Character Set Matching Functions
	procedure pat.peekCset(cst:cset);
	procedure pat.oneCset(cst:cset);
	procedure pat.upToCset(cst:cset);
	procedure pat.zeroOrOneCset(cst:cset)
	procedure pat.l_ZeroOrOneCset(cst:cset)
	procedure pat.zeroOrMoreCset(cst:cset);
	procedure pat.l_ZeroOrMoreCset(cst:cset);
	procedure pat.oneOrMoreCset(cst:cset);
	procedure pat.l_OneOrMoreCset(cst:cset);
	procedure pat.exactlyNCset(cst:cset; n:uns32);
	procedure pat.firstNCset(cst:cset; n:uns32);
	procedure pat.norLessCset(cst:cset; n:uns32);
	procedure pat.l_NorLessCset(cst:cset; n:uns32);
	procedure pat.norMoreCset(cst:cset; n:uns32);
	procedure pat.l_NorMoreCset(cst:cset; n:uns32);
	procedure pat.ntoMCset(cst:cset; n:uns32; m:uns32);
	procedure pat.l_NtoMCset(cst:cset; n:uns32; m:uns32);
	procedure pat.exactlyNtoMCset(cst:cset; n:uns32; m:uns32);
	procedure pat.l_ExactlyNtoMCset(cst:cset; n:uns32; m:uns32);

	24.15 Character Matching Functions
	procedure pat.peekChar(c:char);
	procedure pat.oneChar(c:char);
	procedure pat.upToChar(c:char);
	procedure pat.zeroOrOneChar(c:char);
	procedure pat.l_ZeroOrOneChar(c:char);
	procedure pat.zeroOrMoreChar(c:char);
	procedure pat.l_ZeroOrMoreChar(c:char);
	procedure pat.oneOrMoreChar(c:char);
	procedure pat.l_OneOrMoreChar(c:char);
	procedure pat.exactlyNChar(c:char; n:uns32);
	procedure pat.firstNChar(c:char; n:uns32);
	procedure pat.norLessChar(c:char; n:uns32);
	procedure pat.l_NorLessChar(c:char; n:uns32);
	procedure pat.norMoreChar(c:char; n:uns32);
	procedure pat.l_NorMoreChar(c:char; n:uns32);
	procedure pat.ntoMChar(c:char; n:uns32; m:uns32);
	procedure pat.l_NtoMChar(c:char; n:uns32; m:uns32);
	procedure pat.exactlyNtoMChar(c:char; n:uns32; m:uns32);
	procedure pat.l_ExactlyNtoMChar(c:char; n:uns32; m:uns32);

	24.16 Case Insensitive Character Matching Routines
	procedure pat.peekiChar(c:char);
	procedure pat.oneiChar(c:char);
	procedure pat.upToiChar(c:char);
	procedure pat.zeroOrOneiChar(c:char);
	procedure pat.l_ZeroOrOneiChar(c:char);
	procedure pat.zeroOrMoreiChar(c:char);
	procedure pat.l_ZeroOrMoreiChar(c:char);
	procedure pat.oneOrMoreiChar(c:char);
	procedure pat.l_OneOrMoreiChar(c:char);
	procedure pat.exactlyNiChar(c:char; n:uns32);
	procedure pat.firstNiChar(c:char; n:uns32);
	procedure pat.norLessiChar(c:char; n:uns32);
	procedure pat.l_NorLessiChar(c:char; n:uns32);
	procedure pat.norMoreiChar(c:char; n:uns32);
	procedure pat.l_NorMoreiChar(c:char; n:uns32);
	procedure pat.ntoMiChar(c:char; n:uns32; m:uns32);
	procedure pat.l_NtoMiChar(c:char; n:uns32; m:uns32);
	procedure pat.exactlyNtoMiChar(c:char; n:uns32; m:uns32);
	procedure pat.l_ExactlyNtoMiChar(c:char; n:uns32; m:uns32);
	procedure pat.matchStr(s:string);
	procedure pat.matchiStr(s:string);
	procedure pat.matchToStr(s:string);
	procedure pat.upToStr(s:string);
	procedure pat.matchToiStr(s:string);
	procedure pat.upToiStr(s:string);
	procedure pat.matchWord(s:string);
	procedure pat.matchiWord(s:string);
	procedure pat.getWordDelims(var cst:cset);
	procedure pat.setWordDelims(cst:cset);

	24.17 String Extraction Functions
	procedure pat.extract(s:string);
	procedure pat.a_extract(var s:string);

	24.18 Whitespace and End of String Matching Functions
	procedure pat.getWhiteSpace(var cst:cset);
	procedure pat.setWhiteSpace(cst:cset);
	procedure pat.zeroOrMoreWS;
	procedure pat.oneOrMoreWS;
	procedure pat.WSorEOS;
	procedure pat.WSthenEOS;
	procedure pat.peekWS;
	procedure pat.peekWSorEOS;

	24.19 Matching an Arbitrary Sequence of Characters
	procedure pat.arb;
	procedure pat.l_arb; external;

	24.20 Writing Your Own Pattern Matching Routines

	25 Random Number Generator Module (rand.hhf)
	25.1 The Random Module
	25.2 The Random Number Generators
	procedure rand.randomize;
	procedure rand.uniform; @returns("eax");
	procedure rand.urange(startRange:int32; endRange:int32); @returns("eax");
	procedure rand.random; @returns("eax");
	procedure rand.range(startRange:int32; endRange:int32); @returns("eax");
	iterator rand.deal(count:uns32);

	26 Sockets Module (sockets.hhf)
	26.1 The SOCK Module
	26.2 Socket Initialization and Cleanup
	sock.socketInit;
	sock.socketCleanup;

	26.3 Generic Socket Functions
	sock.a_adrsToStr(a:bigEndianDW); @returns("eax"); sock.adrsToStr(a:bigEndianDW; s:string);
	sock.strToAdrs(s:string); @returns("eax");

	26.4 Low-Level BSD-Style Socket Functions
	sock.accept (s :dword; var addr :sock.sockaddr; var addrlen :sock.socklen_t);
	sock.bind (sockfd :dword; var addr :sockaddr; addrlen :socklen_t);
	sock.connect (s :dword; var serv_addr :sockaddr; addrlen :socklen_t);
	sock.close(s:dowrd);
	sock.listen (
	s :dword; backlog :dword);
	sock.recv (s :dword; var buf :var; len :dword; flags :dword); @returns("eax");
	sock.recv (s :dword; var buf :var; len :dword; flags :dword); @returns("eax");
	sock.recvfrom (s :dword; var buf :var; len :dword; flags :dword; var from :sockaddr; var fromlen :socklen_t); @returns("eax");
	sock.select (nfds :dword; var readSet :sock.fd_set_t; var writeSet :sock.fd_set_t; var exceptSet :sock.fd_set_t; var timeout :sock.timeval); @returns("eax");
	sock.send (s :dword; var buf :var; len :dword; flags :dword // MSG_* constants); @returns("eax");
	sock.sendto (s :dword; var buf :var; len :dword; flags :dword // MSG_* constants var _to :sock.sockaddr; tolen :sock.socklen_t); @returns("eax");
	sock.socket(int domain, int type, int protocol); @returns("eax");
	sock.setsockopt (s :dword; level :dword; optname :dword; var optval :var; optlen :socklen_t); @returns("eax");
	sock.getsockopt (s :dword; level :dword; optname :dword; var optval :var; optlen :socklen_t); @returns("eax");
	sock.setTimeout(s:dword; timeout: sock.timeval);
	sock.gethostname(s:string);
	sock.gethostbyname(s:string; var hstent:sock.hostent);
	sock.gethostbyaddr (var addr :var; len :dword; _type :dword; var hstent :hostent);
	sock.getpeername (s :dword; var _name :sock.sockaddr; var namelen :sock.socklen_t); @returns("eax");
	sock.getsockname (s :dword; var _name :sock.sockaddr; var namelen :sock.socklen_t); @returns("eax");
	sock.fd_zero(var fdset:sock.fd_set_t); sock.fd_set(fd:dword; var fdset:sock.fd_set_t); sock.fd_clr(fd:dword; var fdset:sock.fd_set_t); sock.fd_isset(fd:dword; var fdset:sock.fd_set_t); @returns("al");

	26.5 Socket Classes
	26.6 A Quick Note
	26.7 Client/Server Applications Using the Socket Classes
	26.8 A Simple Server Application
	26.9 A Simple Client Application
	26.10 Client/Server Communication
	26.11 General Socket Class Operations
	<object>.create; @returns("esi"); server_t.create; @returns("esi"); [to create dynamic objects] client_t.create; @returns("esi"); [to create dynamic objects]
	<object>.destroy; @returns("esi"); server_t.destroy; @returns("esi"); [to create dynamic objects] client_t.destroy; @returns("esi"); [to create dynamic objects]
	<object>.close; server_t.close; client_t.close;
	<serverObject>.start (adrs :dword; port :word; timeoutCallback :thunk; connectionCallback :procedure);
	<clientObject>.connect(IPadrs:dword; port :word);
	<baseSocketClass_t>.assign(var src:baseSocketClass_t); <vBaseSocketClass_t>.assign(var src:vBaseSocketClass_t);
	<object>.setTimeout(timeout:sock.timeval); <object>.setTimeout2(tv_sec:dword; tv_usec:dword); <object>.getTimeout(var timeout:sock.timeval);
	<object>.getAdrs; @returns("eax");
	<object>.setAdrs(adrs:dword);
	<object>.getPort; @returns("ax");
	<object>.setPort(port:word);
	<object>.adrsToStr(s:string); <object>.a_adrsToStr; @returns("eax");

	26.12 Miscellaneous Output
	<object>.write(var buffer:var; count:dword)
	<object>.putbool(b:boolean);
	<object>.newln();

	26.13 Character, Character Set, and String Output
	<object>.putc(c:char)
	<object>.putcSize(c:char; width:int32; fill:char)
	<object>.putcset(cst:cset);
	<object>.puts(s:string);
	<object>.putsSize(s:string; width:int32; fill:char)
	<object>.putz(z:zstring);
	<object>.putzSize(z:zstring; width:int32; fill:char)

	26.14 Hexadecimal Numeric Output
	<object>.putb(b:byte);
	<object>.puth8(b:byte);
	<object>.puth8Size(b:byte; width:dword; fill:char)
	<object>.putw(w:word);
	<object>.puth16(w:word);
	<object>.puth16Size(w:word; width:dword; fill:char)
	<object>.putd(dw:dword);
	<object>.puth32(dw:dword);
	<object>.puth32Size(d:dword; width:dword; fill:char)
	<object>.putq(q:qword);
	<object>.puth64(q:qword);
	<object>.puth64Size(q:qword; width:dword; fill:char)
	<object>.puttb(tb:tbyte)
	<object>.puth80(tb:tbyte)
	<object>.puth80Size(tb:tbyte; width:dword; fill:char)
	<object>.putl(l:lword)
	<object>.puth128(l:lword)
	<object>.puth128Size(l:lword; width:dword; fill:char)

	26.15 Signed Integer Numeric Output
	<object>.puti8 (b:byte);
	<object>.puti8Size (b:byte; width:int32; fill:char);
	<object>.puti16(w:word);
	<object>.puti16Size(w:word; width:int32; fill:char);
	<object>.puti32(d:dword);
	<object>.puti32Size(d:dword; width:int32; fill:char);
	<object>.puti64(q:qword);
	<object>.puti64Size(q:qword; width:int32; fill:char);
	<object>.puti128(l:lword);
	<object>.puti128Size(l:lword; width:int32; fill:char);

	26.16 Unsigned Integer Numeric Output
	<object>.putu8 (b:byte)
	<object>.putu8size(b:byte; width:int32; fill:char)
	<object>.putu16(w:word)
	<object>.putu16size(w:word; width:int32; fill:char)
	<object>.putu32(d:dword)
	<object>.putu32Size(d:dword; width:int32; fill:char)
	<object>.putu64(q:qword)
	<object>.putu64Size(q:qword; width:int32; fill:char);
	<object>.putu128(l:lword)
	<object>.putu128Size(l:lword; width:int32; fill:char);

	26.17 Floating-Point Numeric Output Using Scientific Notation
	<object>.pute32(r:real32; width:uns32)
	<object>.pute64(r:real64; width:uns32)
	<object>.pute80(r:real80; width:uns32)

	26.18 Floating-Point Numeric Output Using Decimal Notation
	<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)
	<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)
	<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

	26.19 Generic File Output
	<object>.put(parameter_list)

	26.20 Generic File Input
	<object>.read(var buffer:var; count:dword)
	<object>.readLn;

	26.21 Character and String Input
	<object>.getc; @returns("al");
	<object>.gets(s:string);
	<object>.a_gets; @returns("eax");

	26.22 Signed Integer Input
	<object>.geti8; @returns("al");
	<object>.geti16; @returns("ax");
	<object>.geti32; @returns("eax");
	<object>.geti64; @returns("edx:eax");
	<object>.geti128(var l:lword);

	26.23 Unsigned Integer Input
	<object>.getu8; @returns("al");
	<object>.getu16; @returns("ax");
	<object>.getu32; @returns("eax");
	<object>.getu64; @returns("edx:eax");
	<object>.getu128(var l:lword);

	26.24 Hexadecimal Input
	<object>.geth8; @returns("al");
	<object>.geth16; @returns("ax");
	<object>.geth32; @returns("eax");
	<object>.geth64; @returns("edx:eax");
	<object>.geth128(var l:lword);

	26.25 Floating-Point Input
	<object>.getf; @returns("st0");

	26.26 Generic File Input
	<object>.get(List_of_items_to_read);

	27 The Standard Error Module (stderr.hhf)
	27.1 Conversion Format Control
	27.2 File I/O Routines and the Standard Error Handle
	stderr.handle; @returns(“eax”);

	27.3 Standard Error Routines
	27.4 Miscellaneous Output Routines
	stderr.write(var buffer:var; count:uns32);
	stderr.newln()

	27.5 Boolean Output
	stderr.putbool(b:boolean);

	27.6 Character, String, and Character Set Output Routines
	stderr.putc(c:char);
	stderr.putcSize(c:char; width:int32; fill:char)
	stderr.putcset(cst:cset);
	stderr.puts(s:string);
	stderr.putsSize(s:string; width:int32; fill:char);

	27.7 Hexadecimal Output Routines
	stderr.putb(b:byte)
	stderr.puth8(b:byte);
	stderr.puth8Size(b:byte; size:dword; fill:char)
	stderr.putw(w:word)
	stderr.puth16Size(w:word; size:dword; fill:char)
	stderr.putd(d:dword)
	stderr.puth32(d:dword);
	stderr.puth32Size(d:dword; size:dword; fill:char)
	stderr.putq(q:qword);
	stderr.puth64(q:qword);
	stderr.puth64Size(q:qword; size:dword; fill:char);
	stderr.puttb(tb:tbyte);
	stderr.puth80(tb:tbyte);
	stderr.puth80Size(tb:tbyte; size:dword; fill:char);
	stderr.putl(l:lword);
	stderr.puth128(l:lword);
	stderr.puth128Size(l:lword; size:dword; fill:char);

	27.8 Signed Integer Output Routines
	stderr.puti8 (b:byte);
	stderr.puti8Size (b:byte; width:int32; fill:char)
	stderr.puti16(w:word);
	stderr.puti16Size(w:word; width:int32; fill:char);
	stderr.puti32(d:dword);
	stderr.puti32Size(d:dword; width:int32; fill:char);
	stderr.puti64(q:qword);
	stderr.puti64Size(q:qword; width:int32; fill:char);
	stderr.puti128(l:lword);
	stderr.puti128Size(l:lword; width:int32; fill:char);

	27.9 Unsigned Integer Output Routines
	stderr.putu8 (b:byte);
	stderr.putu8Size(b:byte; width:int32; fill:char);
	stderr.putu16(w:word);
	stderr.putu16Size(w:word; width:int32; fill:char);
	stderr.putu32(d:dword);
	stderr.putu32Size(d:dword; width:int32; fill:char);
	stderr.putu64(q:qword);
	stderr.putu64Size(q:qword; width:int32; fill:char);
	stderr.putu128(l:lword);
	stderr.putu128Size(l:lword; width:int32; fill:char)

	27.10 Floating Point Output Routines
	27.10.1 Real Output Using Scientific Notation
	stderr.pute32(r:real32; width:uns32);
	stderr.pute64(r:real64; width:uns32);
	stderr.pute80(r:real80; width:uns32);

	27.10.2 Real Output Using Decimal Notation
	stderr.putr64(r:real64; width:uns32; decpts:uns32; pad:char);
	stderr.putr80(r:real80; width:uns32; decpts:uns32; pad:char);

	27.11 Generic Error Output Routine
	stderr.put(list_of_items);

	28 The Standard Input Module (stdin.hhf)
	28.1 Conversion Format Control
	28.2 File I/O Routines and the Standard Output Handle
	stdin.handle; @returns("eax");

	28.3 Standard Input Routines
	28.4 General Standard Input Routines
	stdin.read(var buffer:byte; count:uns32)
	stdin.readLn;
	stdin.eoln; @returns("al"); stdin.eoln2; @returns("al");
	stdin.flushInput;

	28.5 Character and String Input Routines
	stdin.peekc; @returns("al");
	stdin.getc(); @returns("al");
	stdin.gets(s:string);
	stdin.a_gets(); @returns("eax");

	28.6 Hexadecimal Input Routines
	stdin.geth8(); @returns("al");
	stdin.geth16(); @returns("ax");
	stdin.geth32(); @returns("eax");
	stdin.geth64();
	stdin.geth128(var dest:lword);

	28.7 Signed Integer Input Routines
	stdin.geti8(); @returns("al");
	stdin.geti16(); @returns("ax");
	stdin.geti32(); @returns("eax");
	stdin.geti64(); @returns("edx:eax");
	stdin.geti128(var dest:lword);

	28.8 Unsigned Integer Input Routines
	stdin.getu8(); @returns("al");
	stdin.getu16(); @returns("ax");
	stdin.getu32(); @returns("eax");
	stdin.getu64(); @returns("edx:eax");
	stdin.getu128(var dest:lword);

	28.9 Floating Point Input
	stdin.getf();

	28.10 Generic File Input
	stdin.get(List_of_items_to_read);

	29 The Standard Output Module (stdout.hhf)
	29.1 Conversion Format Control
	29.2 File I/O Routines and the Standard Output Handle
	stdout.handle; @returns("eax");

	29.3 Standard Output Routines
	29.4 Miscellaneous Output Routines
	stdout.write(var buffer:var; count:uns32);
	stdout.newln()

	29.5 Boolean Output
	stdout.putbool(b:boolean);

	29.6 Character, String, and Character Set Output Routines
	stdout.putc(c:char);
	stdout.putcSize(c:char; width:int32; fill:char)
	stdout.putcset(cst:cset);
	stdout.puts(s:string);
	stdout.putsSize(s:string; width:int32; fill:char);

	29.7 Hexadecimal Output Routines
	stdout.putb(b:byte)
	stdout.puth8(b:byte);
	stdout.puth8Size(b:byte; size:dword; fill:char)
	stdout.putw(w:word)
	stdout.puth16(w:word)
	stdout.puth16Size(w:word; size:dword; fill:char)
	stdout.putd(d:dword)
	stdout.puth32(d:dword);
	stdout.puth32Size(d:dword; size:dword; fill:char)
	stdout.putq(q:qword);
	stdout.puth64(q:qword);
	stdout.puth64Size(q:qword; size:dword; fill:char);
	stdout.puttb(tb:tbyte);
	stdout.puth80(tb:tbyte);
	stdout.puth80Size(tb:tbyte; size:dword; fill:char);
	stdout.putl(l:lword);
	stdout.puth128(l:lword);
	stdout.puth128Size(l:lword; size:dword; fill:char);

	29.8 Signed Integer Output Routines
	stdout.puti8 (b:byte);
	stdout.puti8Size (b:byte; width:int32; fill:char)
	stdout.puti16(w:word);
	stdout.puti16Size(w:word; width:int32; fill:char);
	stdout.puti32(d:dword);
	stdout.puti32Size(d:dword; width:int32; fill:char);
	stdout.puti64(q:qword);
	stdout.puti64Size(q:qword; width:int32; fill:char);
	stdout.puti128(l:lword);
	stdout.puti128Size(l:lword; width:int32; fill:char);

	29.9 Unsigned Integer Output Routines
	stdout.putu8 (b:byte);
	stdout.putu8Size(b:byte; width:int32; fill:char);
	stdout.putu16(w:word);
	stdout.putu16Size(w:word; width:int32; fill:char);
	stdout.putu32(d:dword);
	stdout.putu32Size(d:dword; width:int32; fill:char);
	stdout.putu64(q:qword);
	stdout.putu64Size(q:qword; width:int32; fill:char);
	stdout.putu128(l:lword);
	stdout.putu128Size(l:lword; width:int32; fill:char)

	29.10 Floating Point Output Routines
	29.10.1 Real Output Using Scientific Notation
	stdout.pute32(r:real32; width:uns32);
	stdout.pute64(r:real64; width:uns32);
	stdout.pute80(r:real80; width:uns32);

	29.10.2 Real Output Using Decimal Notation
	stdout.putr32(r:real32; width:uns32; decpts:uns32; pad:char);
	stdout.putr64(r:real64; width:uns32; decpts:uns32; pad:char);
	stdout.putr80(r:real80; width:uns32; decpts:uns32; pad:char);

	29.11 Generic Standard Output Routine
	stdout.put(list_of_items);

	30 The HLA Standard Template Library
	30.1 Introduction to the HLA STL
	30.2 Type Declarations Created by a Template
	30.3 Template Objects are Classes
	30.4 Class Traits
	30.4.1 isSTL_c Trait
	30.4.2 Compile-Time Traits
	30.4.3 Run-Time Traits
	30.4.4 Trait Constants
	30.4.4.1 stl.isContainer_c Trait
	30.4.4.2 stl.isRandomAccess_c Trait
	30.4.4.3 stl.isArray_c Trait
	30.4.4.4 stl.isVector_c Trait
	30.4.4.5 stl.isDeque_c Trait
	30.4.4.6 stl.isList_c Trait
	30.4.4.7 stl.isTable_c Trait
	30.4.4.8 stl.supportsOutput_c Trait
	30.4.4.9 stl.supportsCompare_c Trait
	30.4.4.10 stl.supportsInsert_c Trait
	30.4.4.11 stl.supportsRemove_c Trait
	30.4.4.12 stl.supportsAppend_c Trait
	30.4.4.13 stl.supportsPrepend_c Trait
	30.4.4.14 stl.supportsForEach_c and supportsrForeach_c Traits
	30.4.4.15 stl.supportsCursor_c Trait
	30.4.4.16 stl.supportsSearch_c Trait
	30.4.4.17 stl.supportsElementSwap_c Trait
	30.4.4.18 stl.supportsObjSwap_c Trait
	30.4.4.19 stl.elementsAreObjects_c Trait
	30.4.4.20 stl.fastInsert_c Trait
	30.4.4.21 stl.fastRemove_c Trait
	30.4.4.22 stl.fastAppend_c Trait
	30.4.4.23 stl.fastPrepend_c Trait
	30.4.4.24 stl.fastSwap_c Trait
	30.4.4.25 stl.fastSearch_c Trait
	30.4.4.26 stl.fastElementSwap_c Trait

	30.4.5 Other Run-Time Traits

	30.5 The Vector Template
	30.6 The Deque Template
	30.7 The List Template
	30.8 The Table Template

	31 The Strings Module (strings.hhf)
	31.1 The HLA String Data Type
	31.2 String Allocation Macros and Functions
	#macro str.strvar(size)
	procedure str.init(var b:var; numBytes:dword); @returns("eax");

	31.3 String Length Calculations
	procedure str.length(src:string); @returns("eax");

	31.4 String Assignment
	procedure str.a_cpy(src:string); @returns("(type string eax)");
	procedure str.cpy(src:string; dest:string);
	procedure str.a_cpyz(zstr:zstring); @returns("(type string eax)");
	procedure str.cpyz(zstr:zstring; dest:string);

	31.5 Substring Functions
	procedure str.a_substr(src:string; index:dword; len:dword); @returns("@c");
	procedure str.substr(src:string; index:dword; len:dword; dest:string); @returns("@c");
	procedure str.a_first(src:string; len:dword); @returns("@c");
	#macro str.first(string, dword); #macro str.first(string, dword, dword);
	procedure str.first2(src:string; len:dword); @returns("@c");
	procedure str.first3(src:string; len:dword; dest:string); @returns("@c");
	procedure str.a_last(src:string; len:dword); @returns("@c");
	#macro str.last(string, dword); #macro str.last(string, dword, dword);
	procedure str.last2(src:string; len:dword); @returns("@c");
	procedure str.last3(src:string; len:dword; dest:string); @returns("@c");
	procedure str.a_truncate(src:string; cnt:dword); @returns("@c");
	#macro str.truncate(string, dword); #macro str.truncate(string, dword, dword);
	procedure str.truncate2(src:string; cnt:dword); @returns("@c");
	procedure str.truncate3(src:string; len:dword; dest:string); @returns("@c");

	31.6 String Insertion and Deletion Functions
	procedure str.a_insert(ins:string; start:dword; src:string); @returns("(type string eax)");
	#macro str.insert(string, dword, string); #macro str.insert(string, dword, string, string);
	procedure str.insert3(ins:string; start:dword; dest:string);
	procedure str.insert4 (str2Insert :string; start :dword; insertInto :string; dest :string);
	procedure str.a_delete(src:string; start:dword; len:dword); @returns("@c");
	#macro str.delete(string, dword, dword); #macro str.delete(string, dword, dword, string);
	procedure str.delete3(dest:string; index:dword; len:dword); @returns("@c");
	procedure str.delete4(src:string; index:dword; len:dword; dest:string); @returns("@c");
	procedure str.a_delLeadingSpaces(src:string); @returns("(type string eax)");
	#macro str.delLeadingSpaces(string, dword, dword); #macro str.delLeadingSpaces(string, dword, dword, string);
	procedure str.delLeadingSpaces1(dest:string);
	procedure str.delLeadingSpaces2(src:string; dest:string);
	procedure str.a_delTrailingSpaces(src:string); @returns("(type string eax)");
	#macro str.delTrailingSpaces(string); #macro str.delTrailingSpaces(string, string);
	procedure str.delTrailingSpaces1(dest:string);
	procedure str.delTrailingSpaces2(src:string; dest:string);
	procedure str.a_trim(src:string); @returns("(type string eax)");
	#macro str.trim(string); #macro str.trim(string, string);
	procedure str.trim1(dest:string);
	procedure str.trim2(src:string; dest:string);
	procedure str.a_rmvTrailingSpaces(src:string); @returns("(type string eax)");
	procedure str.rmvTrailingSpaces1(dest:string);
	procedure str.rmvTrailingSpaces2(src:string; dest:string);

	31.7 String Comparison Functions
	procedure str.eq(src1:string; src2:string); @returns("@c");
	procedure str.ne(src1:string; src2:string); @returns("@c");
	procedure str.lt(src1:string; src2:string); @returns("@c");
	procedure str.le(src1:string; src2:string); @returns("@c");
	procedure str.gt(src1:string; src2:string); @returns("@c");
	procedure str.ge(src1:string; src2:string); @returns("@c");
	procedure str.ieq(src1:string; src2:string); @returns("@c");
	procedure str.ine(src1:string; src2:string); @returns("@c");
	procedure str.ilt(src1:string; src2:string); @returns("@c");
	procedure str.ile(src1:string; src2:string); @returns("@c");
	procedure str.igt(src1:string; src2:string); @returns("@c");
	procedure str.ige(src1:string; src2:string); @returns("@c");

	31.8 String Searching Functions
	#macro str.prefix(string, string); #macro str.prefix(string, dword, string);
	procedure str.prefix2(baseStr:string; subst:string); @returns("@c");
	procedure str.prefix3(baseStr:string; offset:dword; substr:string); @returns("@c");
	#macro str.index(string, string); #macro str.index(string, dword, string);
	procedure str.index2(baseStr:string; subst:string); @returns("@c");
	procedure str.index3(baseStr:string; offset:dword; subst:string); @returns("@c");
	#macro str.iindex(string, string); #macro str.iindex(string, dword, string);
	procedure str.iindex2(baseStr:string; subst:string); @returns("@c");
	procedure str.iindex3(baseStr:string; offset:dword; subst:string); @returns("@c");
	#macro str.rindex(string, string); #macro str.rindex(string, dword, string);
	procedure str.rindex2(baseStr:string; substr:string); @returns("@c");
	procedure str.rindex3(baseStr:string; offset:dword; subst:string); @returns("@c");
	#macro str.irindex(string, string); #macro str.irindex(string, dword, string);
	procedure str.irindex2(baseStr:string; subst:string); @returns("@c");
	procedure str.irindex3(baseStr:string; offset:dword; subst:string); @returns("@c");
	#macro str.chpos(string, string); #macro str.chpos(string, dword, string);
	procedure str.chpos2(baseStr:string; src:char); @returns("@c");
	procedure str.chpos3(baseStr:string; offset:dword; src:char); @returns("@c");
	#macro str.ichpos(string, string); #macro str.ichpos(string, dword, string);
	procedure str.ichpos2(baseStr:string; src:char); @returns("@c");
	procedure str.ichpos3(baseStr:string; offset:dword; src:char); @returns("@c");
	#macro str.rchpos(string, string); #macro str.rchpos(string, dword, string);
	procedure str.rchpos2(baseStr:string; src:char); @returns("@c");
	procedure str.rchpos3(baseStr:string; offset:dword; src:char); @returns("@c");
	#macro str.irchpos(string, string); #macro str.irchpos(string, dword, string);
	procedure str.irchpos2(baseStr:string; src:char); @returns("@c");
	procedure str.irchpos3(baseStr:string; offset:dword; src:char); @returns("@c");

	31.9 Character Set Searching Functions
	#macro str.span(string, cset); #macro str.span(string, dword, cset);
	procedure str.span2(baseStr:string; src:cset); @returns("eax");
	procedure str.span3(baseStr:string; offset:dword; src:cset); @returns("eax");
	#macro str.rspan(string, cset); #macro str.rspan(string, dword, cset);
	procedure str.rspan2(baseStr:string; src:cset); @returns("eax");
	procedure str.rspan3(baseStr:string; offset:dword; src:cset); @returns("eax");
	#macro str.brk(string, cset); #macro str.brk(string, dword, cset);
	procedure str.brk2(baseStr:string; src:cset); @returns("eax");
	procedure str.brk3(baseStr:string; offset:dword; src:cset); @returns("eax");
	#macro str.rbrk(string, cset); #macro str.rbrk(string, dword, cset);
	procedure str.rbrk2(baseStr:string; src:cset); @returns("eax");
	procedure str.rbrk3(baseStr:string; offset:dword; src:cset); @returns("eax");
	#macro str.skipInCset(string, cset); #macro str.skipInCset(string, dword, cset);
	procedure str.skipInCset2(baseStr:string; src:cset); @returns("@c");
	procedure str.skipInCset3(baseStr:string; offset:dword; src:cset); @returns("@c");
	#macro str.rskipInCset(string, cset); #macro str.rskipInCset(string, dword, cset);
	procedure str.rskipInCset2(baseStr:string; src:cset); @returns("@c");
	procedure str.rskipInCset3(baseStr:string; offset:dword; src:cset); @returns("@c");
	#macro str.findInCset(string, cset); #macro str.findInCset(string, dword, cset);
	procedure str.findInCset2(baseStr:string; src:cset); @returns("@c");
	procedure str.findInCset3(baseStr:string; offset:dword; src:cset); @returns("@c");
	#macro str.rfindInCset(string, cset); #macro str.rfindInCset(string, dword, cset);
	procedure str.rfindInCset2(baseStr:string; src:cset); @returns("@c");
	procedure str.rfindInCset3(baseStr:string; offset:dword; src:cset); @returns("@c");

	31.10 String Parsing Functions
	procedure str.tokenCnt1(src:string); @returns("eax");
	procedure str.tokenCnt2(src:string; delimiters:cset); @returns("eax");
	procedure str.tokenize(src:string; delimiters:cset); @returns("eax");
	procedure str.tokenize3(src:string; var dest:var; maxStrs:dword); @returns("eax");
	procedure str.tokenize4 (src :string; delimiters :cset; var dest :var; maxStrs :dword); @returns("eax");
	iterator str.tokenInStr(src:string);
	iterator str.tokenInStr2(src:string; delimiters:cset);
	iterator str.charInStr(src:string);
	iterator str.wordInStr(src:string);
	procedure str.a_getField2(src:string; field:dword); @returns("@c");
	procedure str.a_getField3(src:string; field:dword; delimiters:cset); @returns("@c");
	procedure str.getField3(src:string; field:dword; dest:string); @returns("@c");
	procedure str.getField4 (src :string; field :dword; delimiters :cset; dest :string); @returns("@c");
	procedure str.rmv1stChar1(s:string); @returns("al");
	procedure str.rmv1stChar2(src:string; remainder:string); @returns("al");
	procedure str.rmvLastChar1(s:string); @returns("al");
	procedure str.rmvLastChar2(src:string; remainder:string); @returns("al");
	procedure str.a_rmv1stWord1(s:string); @returns("@c");
	procedure str.a_rmv1stWord2(src:string; remainder:string); @returns("@c");
	procedure str.a_rmvLastWord1(s:string); @returns("@c");
	procedure str.a_rmvLastWord2(src:string; remainder:string); @returns("@c");
	procedure str.rmv1stWord2(s:string; wordStr:string); @returns("@c");
	procedure str.rmv1stWord3(src:string; wordStr:string; remainder:string); @returns("@c");
	procedure str.rmvLastWord2(s:string; wordStr:string); @returns("@c");
	procedure str.rmvLastWord3(src:string; wordStr:string; remainder:string); @returns("@c");

	31.11 String Formatting Functions
	procedure str.a_columnize2(var s:var; numStrs:dword); @returns("eax");
	procedure str.a_columnize3(var s:var; numStrs:dword; tabCols:dword); @returns("eax");
	procedure str.columnize3(var s:var; numStrs:dword; dest:string);
	procedure str.columnize4 (var s :var; numStrs :dword; tabCols :dword; dest :string);
	procedure str.a_spread2(src:string; toWidth:dword); @returns("@c");
	procedure str.spread2(s:string; toWidth:dword); @returns("@c");
	procedure str.spread3(src:string; toWidth:dword; dest:string); @returns("@c");
	procedure str.a_deTab2(src:string; tabCols:dword); @returns("(type string eax)");
	procedure str.a_deTab3(src:string; var tabCols:var; numTabs:dword); @returns("(type string eax)");
	procedure str.deTab2(s:string; tabCols:dword);
	procedure str.deTab3a(src:string; tabCols:dword; dest:string);
	procedure str.deTab3b(s:string; var tabCols:var; numTabs:dword);
	procedure str.deTab4 (src :string; var tabCols :var; numTabs :dword; dest :string);
	procedure str.a_enTab2(src:string; tabCols:dword); @returns("(type string eax)");
	procedure str.a_enTab3(src:string; var tabCols:var; numTabs:dword); @returns("(type string eax)");
	procedure str.enTab2(s:string; tabCols:dword);
	procedure str.enTab3a(src:string; tabCols:dword; dest:string);
	procedure str.enTab3b(s:string; var tabCols:var; numTabs:dword);
	procedure str.enTab4 (src :string; var tabCols :var; numTabs :dword; dest :string);

	31.12 String Conversion Functions
	procedure str.a_upper(src:string; dest:string);
	#macro upper(string); #macro upper(string, string);
	procedure str.upper1(s:string);
	procedure str.upper2(src:string; dest:string);
	procedure str.a_lower(src:string; dest:string);
	#macro lower(string); #macro lower(string, string);
	procedure str.lower1(s:string);
	procedure str.lower2(src:string; dest:string);
	procedure str.a_reverse(src:string);
	#macro reverse(string); #macro reverse(string, string);
	procedure str.reverse1(s:string);
	procedure str.reverse2(src:string; dest:string);
	procedure str.a_translate(src:string; from:string; toStr:string);
	#macro translate(string, string, string); #macro translate(string, string, string, string);
	procedure str.translate3(s:string; from:string; toStr:string);
	procedure str.translate4 (src :string; from :string; toStr :string; dest :string);

	31.13 String Concatentation Functions
	procedure str.a_cat(src1:string; src2:string); @returns("(type string eax)");
	#macro cat(string, string); #macro cat(string, string, string);
	procedure str.cat2(src:string; dest:string);
	procedure str.cat3(src1:string; src2:string; dest:string);
	procedure str.a_catz(src1:zstring; src2:string); @returns("(type string eax)");
	procedure str.catz(src:zstring; dest:string);
	procedure str.a_catsub(src1:string; index:dword; len:dword; src2:string); @returns("(type string eax)");
	#macro catsub(string, dword, dword, string); #macro catsub(string, dword, dword, string, string);
	procedure str.catsub4(src:string; index:dword; len:dword; dest:string);
	procedure str.catsub5 (src1 :string; index :dword; len :dword; src2 :string; dest :string);
	procedure str.a_catbuf(startBuf:dword; endBuf:dword; src2:string); @returns("(type string eax)");
	procedure str.a_catbuf2(buf:buf_t; src2:string); @returns("(type string eax)");
	procedure str.a_catbuf3(startBuf:dword; endBuf:dword; src2:string); @returns("(type string eax)");
	procedure str.catbuf(startBuf:dword; endBuf:dword; src2:string);
	procedure str.catbuf2(buf:buf_t; src2:string);
	procedure str.catbuf3a(startBuf:dword; endBuf:dword; dest:string);
	procedure str.catbuf3b(buf:buf_t; src:string; dest:string);
	procedure str.catbuf4 (startBuf :dword; endBuf :dword; src :string; dest :string);

	31.14 String Value Concatentation Functions
	31.14.1 Boolean Output
	procedure str.catbool(dest:string; b:boolean);

	31.14.2 Character, String, and Character Set Concatenation Routines
	procedure str.catc(dest:string; c:char);
	procedure str.catcSize(dest:string; c:char; width:int32; fill:char)
	procedure str.catcset(dest:string; cst:cset);
	procedure str.cats(dest:string; s:string);
	procedure str.catsSize(dest:string; s:string; width:int32; fill:char);

	31.14.3 Hexadecimal Concatenation Routines
	procedure str.catb(dest:string; b:byte)
	procedure str.cath8(dest:string; b:byte);
	procedure str.cath8Size(dest:string; b:byte; size:dword; fill:char)
	procedure str.catw(dest:string; w:word)
	procedure str.cath16(dest:string; w:word)
	procedure str.cath16Size(dest:string; w:word; size:dword; fill:char)
	procedure str.catd(dest:string; d:dword)
	procedure str.cath32(dest:string; d:dword);
	procedure str.cath32Size(dest:string; d:dword; size:dword; fill:char)
	procedure str.catq(dest:string; q:qword);
	procedure str.cath64(dest:string; q:qword);
	procedure str.cath64Size(dest:string; q:qword; size:dword; fill:char);
	procedure str.cattb(dest:string; tb:tbyte);
	procedure str.cath80(dest:string; tb:tbyte);
	procedure str.cath80Size(dest:string; tb:tbyte; width:dword; fill:char);
	procedure str.catl(dest:string; l:lword);
	procedure str.cath128(dest:string; l:lword);
	procedure str.cath128Size(dest:string; l:lword; width:dword; fill:char);

	31.14.4 Signed Integer Concatenation Routines
	procedure str.cati8 (dest:string; b:byte);
	procedure str.cati8Size (dest:string; b:byte; width:int32; fill:char)
	procedure str.cati16(dest:string; w:word);
	procedure str.cati16Size(dest:string; w:word; width:int32; fill:char);
	procedure str.cati32(dest:string; d:dword);
	procedure str.cati32Size(dest:string; d:dword; width:int32; fill:char);
	procedure str.cati64(dest:string; q:qword);
	procedure str.cati64Size(dest:string; q:qword; width:int32; fill:char);
	procedure str.cati128(dest:string; l:lword);
	procedure str.cati128Size(dest:string; l:lword; width:int32; fill:char);

	31.14.5 Unsigned Integer Concatenation Routines
	procedure str.catu8 (dest:string; b:byte);
	procedure str.catu8Size(dest:string; b:byte; width:int32; fill:char);
	procedure str.catu16(dest:string; w:word);
	procedure str.catu16Size(dest:string; w:word; width:int32; fill:char);
	procedure str.catu32(dest:string; d:dword);
	procedure str.catu32Size(dest:string; d:dword; width:int32; fill:char);
	procedure str.catu64(dest:string; q:qword);
	procedure str.catu64Size(dest:string; q:qword; width:int32; fill:char);
	procedure str.catu128(dest:string; l:lword);
	procedure str.catu128Size(dest:string; l:lword; width:int32; fill:char)

	31.15 Floating-Point Concatenation Routines
	31.15.1 Real to String Output Using Scientific Notation
	procedure str.cate32(dest:string; r:real32; width:uns32);
	procedure str.cate64(dest:string; r:real64; width:uns32);
	procedure str.cate80(dest:string; r:real80; width:uns32);

	31.15.2 Real To String Output Using Decimal Notation
	procedure str.catr32 (dest :string; r :real32; width :uns32; decpts :uns32; pad :char);
	procedure str.catr64 (dest :string; r :real64; width :uns32; decpts :uns32; pad :char);
	procedure str.catr80 (dest :string; r :real80; width :uns32; decpts :uns32; pad :char);

	31.16 Generic String Format Output Routine
	#macro str.put(list_of_items);

	32 High-Level Language Module (hll.hhf)
	32.1 The HLL Module
	32.2 The switch/case/default/endswitch Macro
	#macro switch(reg32); #keyword case(const_list); #keyword default #terminator endswitch

	33 Tables Module (tables.hhf)
	33.1 The Tables Module
	33.2 The Table Class
	procedure table_t.create(HashSize:uns32);
	method table_t.destroy(FreeValue:procedure);
	method table_t.lookup(id:string); @returns("eax");
	method table_t.getNode(id:string); @returns("eax");
	method table_t.getNode(id:string); @returns("eax");

	34 Threads Module (threads.hhf)
	34.1 Threads Module
	34.2 Thread Creation
	procedure thread.create(func:threadFunc_t; parm:dword; stackSize:dword); @returns("eax");

	34.3 Thread Identification
	procedure thread.getCurrentThreadHandle; @returns("eax");

	34.4 Thread Local Storage
	procedure thread.createTLS(var context:dword);
	procedure thread.setTLS(context:dword; valueToSet:dword);
	procedure thread.getTLS(context:dword); @returns("eax");

	34.5 Events
	procedure thread.createEvent; @returns("eax");
	procedure thread.deleteEvent(event:dword);
	procedure thread.deleteEvent(event:dword);
	procedure thread.setEvent(event:dword);
	procedure thread.waitForEvent(event:dword);

	34.6 Critical Sections
	procedure thread.createCriticalSection; @returns("eax");
	procedure thread.deleteCriticalSection(csHandle:dword);
	procedure thread.enterCriticalSection(csHandle:dword);
	procedure thread.leaveCriticalSection(csHandle:dword);

	34.7 Semaphores
	procedure thread.createSemaphore(maxCnt:dword; semName:string); @returns("eax");
	procedure thread.deleteSemaphore(semHandle:dword);
	procedure thread.waitSemaphore(semHandle:dword);
	procedure thread.releaseSemaphore(semHandle:dword);

	35 Time Functions (datetime.hhf)
	35.1 Time Module
	35.2 Time Data Types
	time.timerec

	35.3 Time Predicates
	time.validate(h:word; m:byte; s:byte); time.validate(hms:time.timerec); time._validate(tm:timerec);
	time.isValid(h:word; m:byte; s:byte); time.isValid(hms:time.timerec); time._isValid(tm:timerec);

	35.4 Time Conversions
	#macro unpack(tm, h, m, s)
	#macro pack(h, m, s, _tm_)
	time.durationToSecs(hours:word; mins:byte; secs:byte); @returns("eax");
	time.secsToDuration (seconds :uns32; var hours :word; var mins :byte; var secs :byte);
	#macro time.toSecs(theTime: time.timerec); @returns("eax"); #macro time.toSecs(h:uns16; m:byte; s:byte); @returns("eax"); time._toSecs(HMS:timerec); @returns("eax");
	time.fromSecs(seconds:uns32; var HMS:time.timerec);
	time.toUnixTime(DMY:date.daterec; HMS:timerec); @returns("edx:eax");
	time.fromUnixTime (unixTime :qword; var HMS :timerec; var DMY :date.daterec);
	time.toWinFileTime(DMY:date.daterec; HMS:timerec); @returns("edx:eax");
	time.fromWinFileTime (winTime :qword; var HMS :timerec; var DMY :date.daterec);

	35.5 Time Arithmetic
	time.secsBetweenTimes(time1:timerec; time2:timerec); @returns("eax");
	time.subHours(hours:uns32; var HMS:timerec); @returns("eax");
	time.subMins(minutes:uns32; var HMS:timerec); @returns("eax");
	time.subSecs(seconds:uns32; var HMS:timerec); @returns("eax");
	time.addHours(hours:uns32; var HMS:timerec); @returns("eax");
	time.addMins(minutes:uns32; var HMS:timerec); @returns("eax");
	time.addSecs(seconds:uns32; var HMS:timerec); @returns("eax");

	35.6 Reading the Current System Time
	time.curTime(var theTime: time.timerec);
	time.utcTime(var theTime: time.timerec);

	35.7 Time String Conversions and Output
	time.setFormat(f:OutputFormat);
	time.toString(HMS:timerec; dest:string);
	time.a_toString(HMS:timerec); @returns("eax");

	35.8 Time Class Types
	35.9 Time Class Methods/Procedures
	35.10 Creating New Time Class Types
	dtClass.make_timeClass(className, "<list of methods>")

	35.11 Time Class Functions
	<object>.create();
	<object>.validate();
	<object>.isValid(); @returns("al");
	<object>.toSecs(); @returns("eax");
	<object>.fromSecs(seconds:uns32);
	<object>.secsBetweenTimes(otherTime:timerec); @returns("eax");
	<object>.difference(var otherTime:<object’s class>); @returns("eax");
	<object>.subHours(hours:uns32);
	<object>.subMins(hours:uns32);
	<object>.subSecs(hours:uns32);
	<object>.addHours(hours:uns32);
	<object>.addMins(minutes:uns32);
	<object>.addSecs(seconds:uns32);
	<object>.curTime();
	<object>.utcTime();
	<object>.toString(dest:string);
	<object>.a_toString(HMS:timerec); @returns("eax");

	36 Timer Class and Module (timer.hhf)
	36.1 Timer Module
	36.2 Timer Class/Data Structure
	36.3 Timer Operation
	36.4 Timer Class Fields
	timer_t.Accumulated
	timer_t.DateStarted timer_t.TimeStarted timer_t.msStarted timer_t.DateStopped timer_t.TimeStopped timer_t.msStopped
	timer_t.Running

	36.5 Timer Procedures and Methods
	procedure timer_t.create; @returns("esi");
	method timer_t.start;
	method timer_t.stop; @returns("edx:eax");
	method timer_t.restart;
	method timer_t.checkPoint;

	37 Zero-terminated String Functions (zstring.hhf)
	37.1 ZStrings Module
	37.2 Zstring Functions
	procedure zstr.len(zstr:zstring); @returns("eax");
	procedure zstr.zcmp(zsrc1:zstring; zsrc2:zstring); @returns("eax");
	procedure zstr.cpy(src:zstring; dest:zstring);
	procedure zstr.cat(src:zstring; dest:zstring);

	38 HOWL: The HLA Object Windows Library
	38.1 The HOWL Application Framework
	38.2 The HOWL Declarative Language
	38.2.1 wForm
	38.2.2 wMainMenu..endwMainMenu
	38.2.2.1 wMenuItem
	38.2.2.2 wMenuSeparator
	38.2.2.3 wSubMenu..endwSubMenu
	38.2.2.4 Menu Example

	38.2.3 wTab
	38.2.4 Check Boxes
	38.2.4.1 wCheckBox
	38.2.4.2 wCheckBox3
	38.2.4.3 wCheckBox3LT
	38.2.4.4 wCheckBoxLT

	38.2.5 wComboBox
	38.2.6 wDragListBox
	38.2.7 wEditBox
	38.2.8 wEllipse
	38.2.9 wIcon
	38.2.10 wGroupBox..endwGroupBox
	38.2.11 wLabel
	38.2.12 wListBox
	38.2.13 wPasswdBox
	38.2.14 wPie
	38.2.15 wPolygon
	38.2.16 wBitmap
	38.2.17 wProgressBar
	38.2.18 wPushButton
	38.2.19 Radio Button Objects
	38.2.19.1 wRadioButton
	38.2.19.2 wRadioButtonLT
	38.2.19.3 wRadioSet..endwRadioSet
	38.2.19.3.1 wRadioSetButton
	38.2.19.3.2 wRadioSetButtonLT

	38.2.20 wRectangle
	38.2.21 wRoundRect
	38.2.22 wScrollBar
	38.2.23 wTextEdit
	38.2.24 wTrackBar
	38.2.25 wUpDown
	38.2.26 wUpDownEditBox
	38.2.27 wTimer
	38.2.28 wWindow..endwWindow

	38.3 The HOWL Run-time Library
	38.3.1 Private Data Fields
	38.3.2 Abstract Classes
	38.3.2.1 wBase_t
	38.3.2.2 wVisual_t
	38.3.2.3 wClickable_t
	38.3.2.4 wButton_t
	38.3.2.5 wCheckable_t
	38.3.2.6 wSurface_t
	38.3.2.7 wFilledFrame_t
	38.3.2.8 wabsEditBox_t
	38.3.2.9 wContainer_t

	38.3.3 Containers
	38.3.3.1 Forms and Menus
	38.3.3.1.1 wForm_t
	38.3.3.1.2 wMenu_t
	38.3.3.1.3 wMenuItem_t

	38.3.3.2 Tabbed Forms
	38.3.3.2.1 wTabs_t

	38.3.3.3 wGroupBox_t

	38.3.4 Graphic Objects
	38.3.4.1 wBitmap_t
	38.3.4.2 wEllipse_t
	38.3.4.3 wPie_t
	38.3.4.4 wPolygon_t
	38.3.4.5 wRectangle_t
	38.3.4.6 wRoundRect_t

	38.3.5 Buttons
	38.3.6 wCheckBox_t
	38.3.7 wCheckBox3_t
	38.3.8 wCheckBox3LT_t
	38.3.9 wCheckBoxLT_t
	38.3.10 wPushButton_t
	38.3.11 wRadioButton_t
	38.3.12 wRadioButtonLT_t
	38.3.13 wRadioSet_t
	38.3.13.1 wRadioSetButton_t
	38.3.13.2 wRadioSetButtonLT_t

	38.3.14 Editors and Edit Boxes
	38.3.14.1 wEditBox_t
	38.3.14.2 wPasswdBox_t
	38.3.14.3 wTextEdit_t

	38.3.15 List, Drag, and Combo Boxes
	38.3.15.1 wListBox_t
	38.3.15.2 wDragListBox_t
	38.3.15.3 wComboBox_t

	38.3.16 Progress Bars
	38.3.16.1 wProgressBar_t

	38.3.17 Scroll Bars and Track Bars
	38.3.17.1 wScrollBar_t
	38.3.17.2 wTrackBar_t

	38.3.18 Up/Down Arrows
	38.3.18.1 wUpDown_t
	38.3.18.2 wUpDownEditBox_t

	38.3.19 Icons
	38.3.19.1 wIcon_t

	38.3.20 Text
	38.3.20.1 wFont_t
	38.3.20.2 wLabel_t

	38.3.21 Views, Windows, and Tab Pages
	38.3.21.1 wTabPage_t
	38.3.21.2 wView_t
	38.3.21.3 window_t

	38.3.22 Timers
	38.3.22.1 wTimer_t
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

