
HLA Standard Library Reference
3 Arrays Module (arrays.hhf)

The HLA Arrays module provides a set of datatypes, macros, and procedures that simplify array access in
assembly language (especially multidimensional array access). In addition to supporting standard HLA arrays
with static size declarations, the HLA arrays module also supports dynamic arrays that let you specify the array
size at run-time.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf)
before reading this chapter.

3.1 The Arrays Module
To use the array macros in your application, you will need to include one of the following statements at the

beginning of your HLA application:

#include("arrays.hhf")
or
#include("stdlib.hhf")

3.2 Array Data Types
The array namespace defines the following useful data types:

#macro array.dArray(type, dimensions);

The first feature in the array package to consider is the support for dynamic arrays. HLA provides a macro/
data type that lets you tell HLA that you want to specify the array size under program control. This macro/data
type is array.dArray (dArray stands for dynamic array). You use this macro invocation in place of a standard
data type identifier in an HLA variable declaration.

The first macro parameter is the desired data type; this would typically be an HLA primitive data type like
int32 or char, although any data type identifier is legal.

The second parameter is the number of dimensions for this array data type Generally this value is two or
greater (since creating dynamic single dimensional arrays using only malloc is trivial). Because of the way array
indicies are computed by HLA, it is not possible to specify the number of dimensions dynamically.

Note: since array.dArray is not a data type identifier (it’s a macro), you cannot directly create a dynamic
array of dynamic arrays. I.e., the following is not legal:

static
DAofDAs: array.dArray(array.dArray(uns32, 2), 2);

However, you can achieve exactly the same thing by using the following code:

type
DAs: array.dArray(uns32, 2);

static
DAofDAs: array.dArray(DAs, 2);

The TYPE declaration creates a type identifier that is a dynamic array. The STATIC variable declaration
uses this type identifier in the array.dArray invocation to create a dynamic array of dynamic arrays.
Released to the Public Domain Page 15

HLA Standard Library
3.3 Array Allocation and Deallocation
#macro array.daAlloc(dynamicArrayName, <<list of dimension bounds>>);

 The array.dArray macro allocates storage for a dynamic array variable. It does not, however, allocate
storage for the dynamic array itself; that happens at run-time. You must use the array.daAlloc macro to actually
allocate storage for your array while the program is running. The first parameter must be the name of the
dynamic array variable you’ve declared via the array.dArray macro. The remaining parameters are the number
of elements for each dimension of the array. This list of dimension bounds must contain the same number of
values as specified by the second parameter in the array.dArray declaration. The dimension list can be constants
or memory locations (note, specifically, that registers are not currently allowed here; this may be fixed in a
future version).

The following code demonstrates how to declare a dynamic array and allocate storage for it at run-time:

program main;
static

i:uns32;
j:uns32;
k:uns32;
MyArray: array.dArray(uns32, 3);

begin main;

stdout.put("Enter size of first dimension: ");
stdin.get(i);
stdout.put("Enter size of second dimension: ");
stdin.get(j);
stdout.put("Enter size of third dimension: ");
stdin.get(k);

// Allocate storage for the array:

array.daAlloc(MyArray, i, j, k);

<< Code that manipulates the 3-D dynamic array >>

end main;

#macro array.daFree(dynamicArrayName);

Use the array.daFree macro to free up storage you’ve allocated via the array.daAlloc call. This returns the
array data storage to the system so it can be reused later. Warning: do not continue to access the array’s data
after calling array.daFree. The system may be using the storage for other purposes after you release the storage
back to the system with array.daFree.

Note: You should only call array.daFree for arrays you’ve allocated via array.daAlloc.

Example:

// Allocate storage for the array:

array.daAlloc(MyArray, i, j, k);

<< Code that manipulates the 3-D dynamic array >>

array.daFree(MyArray);
Page 16 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
3.4 Array Predicates
#macro array.IsItVar(objectName)

This is a macro that evaluates to a compile-time expression yielding true if the object is a variable identifier.
Variable identifiers are those IDs you declare in a VAR, STATIC, READONLY, or STORAGE declaration
section, or IDs you declare as parameters to a procedure. This macro returns false for all other parameters.

#macro array.IsItDynamic(arrayName)

This is a macro that expands to a compile-time expression yielding true or false depending upon whether the
parameter was declared with the array.dArray data type. If so, this function returns true; else it returns false.
Note that a return value of false does not necessarily indicate that the specified parameter is a static array.
Anything except a dynamic array object returns false. For example, if you pass the name of a scalar variable, an
undefined variable, or something that is not a variable, this macro evaluates false. Note that you can use the
HLA @type function to test to see if an object is a static array; however, @type will not return hla.ptArray for
dynamic array objects since array.dArray objects are actually records. Hence the array.IsItDynamic function to
handle this chore.

3.5 Array Element Access
#macro array.index(reg32, arrayName, <<list of indicies>>);

This macro computes a row-major order index into a multidimensional array. The array can be a static or
dynamic array. The list of indicies is a comma separate list of constants, 32-bit memory locations, or 32-bit
registers. You should not, however, specify the register appearing as the first parameter in the list of indicies.

If the VAL constant array.BoundsChk is true, this macro will emit code that checks the bounds of the array
indicies to ensure that they are valid. The code will raise an ex.ArrayBounds exception if any index is out of
bounds. You may disable the code generation for the bounds checking by setting the array.BoundsChk VAL
object to false using a statement like the following:

?array.BoundsChk := false;

 You can turn the bounds checking on and off in segments of your code by using statements like the above
that set array.BoundsChk to true or false.

This macro leaves pointer into the array sitting in the specified 32-bit register.
Example:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.
// copy arrayS[i, j, k] to arrayD[m,n,p]:

array.index(ebx, arrayS, i, j, k);
mov([ebx], eax);// EAX := arrayS[I,j,k];
array.index(ebx, arrayD, m, n, p);
mov(eax, [ebx]);// EAX := arrayD[m,n,p];

iterator array.element(arrayName);

This iterator returns each successive element of the specified array. It returns the elements in row major
order (that is, the last dimension increments the fastest and the first dimension increments the slowest when
returning elements of a multidimensional array). This iterator returns byte objects in the AL register; it returns
word objects in the AX register; it returns dword objects in the EAX register; it returns 64-bit (non-real) objects
in the EDX:EAX register pair. This routine returns all floating point (real) objects on the top of the FPU stack.
Released to the Public Domain Page 17

HLA Standard Library
Note that array.element is actually a macro, not an iterator. The macro, however, simply provides
overloading to call one of seven different iterators depending on the size and type of the operand. However, this
macro implementation is transparent to you. You would use this macro exactly like any other iterator.

Note that array.element works with both statically declared arrays and dynamic arrays you’ve declared with
array.dArray and you’ve allocated via array.daAlloc.

Examples:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.

foreach array.element(arrayS) do

stdout.put("Current arrayS element = ", eax, nl);

endfor;
.
.
.

foreach array.element(arrayD) do

stdout.put("Current arrayD element = ", eax, nl);

endfor;
.
.
.

3.6 Array Operations
#macro array.cpy(srcArray, destArray);

 This macro copies a source array to a destination array. Both arrays must be the same size and shape (shape
means that they have the same number of dimensions and the bounds on all the dimensions correspond between
the source and destination arrays). Both static and dynamic array variables are acceptable for either parameter.

Example:

static
arrayS: uns32[2,3,4];
arrayD: array.dArray(uns32, 3);

.

.

.

// note: for the following to be legal at run-time,
// the arrayD dynamic array must have storage allocated
// for it with a statement like
// "array.daAlloc(arrayD, 2, 3, 4);"

array.cpy(arrayS, arrayD);
Page 18 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
#macro array.reduce(srcArray, destArray);

#keyword array.beforeRow;

#keyword array.reduction;

#keyword array.afterRow;

#terminator array.endreduce;

The array.reduce macro emits code to do a "row-reduction" on an array. A row reduction is a function that
compresses all the rows (that is, the elements selected by running through all the legal values of the last
dimension) to a single element. Effectively, this macro reduces an array of arity n to an array of arity n-1 by
eliminating the last dimension.

Reduction is not accomplished by simply throwing away the data in the last dimension (although it’s
possible to do this). Instead, you’ve got to supply some code that the array.reduce macro will use to compress
each row in the array.

A very common reduction function, for example, is addition. Reduction by addition produces a new array
that contains the sums of the rows in the previous array. For example, consider the following matrix:

1 2 3 4
6 5 4 1
5 9 8 0

This is a 3x4 array. Reducing it produces a one dimensional array with three elements containing the value
10, 16, 22 (the sums of each of the above rows).

The best way to understand how the array.reduce macro works is to manual implement addition reduction
manually. To reduce the 3x4 array above to a single array with three elements, you could use the following code:

// (a) Any initialization required before loops
// (this example requires no such initialization.)

for(mov(0, i); i < 3; inc(i)) do

mov(0, eax);// (b) Initialize sum for each row.

for(mov(0, j); j < 4; inc(j)) do

// (c) Sum up each element in this row into EAX:

index(ebx, array3x4, i, j);
add([ebx], eax);

endfor;

// (d) At the end of each row, store the sum away
// into the destination array.

mov(i, ebx);
mov(eax, array3[ebx*4]);

endfor;

The array.reduce macro is an example of an HLA context-free macro construct. This means that the call to
array.reduce consists of multiple parts, just like the REPEAT..UNTIL and SWITCH..CASE..ENDSWITCH
control structures. Specifically, an array.reduce invocation consists of the following sequence of macro
invocations:

array.reduce(srcArray, destArray);

<< Initialization statements needed before
Released to the Public Domain Page 19

HLA Standard Library
loops,(a) in the code above >>

array.beforeRow;

<< Initialization before each row, (b) in the
 code above. Note that edi contains the row

number times the size of an element and esi contains
an index into the array to the current element. >>

array.reduction;

<< Code that compresses the data for each
 row, to be executed for each element
 in the row. Corresponds to (c) in the
 the code above. Note that ecx contains

the index into the current row. >>

array.afterRow;

<< Code to process the compressed data at
 the end of each row. Corresponds to (d)
 in the code above. >>

array.endreduce;

A conversion of the previous code to use the array.reduce macro set looks like the following:

array.reduce(array3x4, array3)

// No pre-reduction initialization...

array.beforeRow

mov(0, eax);// Initialize the sum for each row.

array.reduction

add(array3x4[esi], eax);

array.afterRow

mov(i, edx);
mov(eax, array3[edx*4]);

array.endreduce;

Note that the array.reduce macro set makes extensive use of the 80x86 register set. The EAX and EDX
registers are the only free registers you can use (without restoring) within the macro. Of course, array.reduce
will preserve all the regsiters is uses, but within the macro itself it assumes it can use all registers except EAX
and EDX for its own purposes.

#macro array.transpose(srcArray, destArray, optionalDimension);

 The array.transpose macro copies the source array to the destination array transposing the elements of the
last dimension with the dimension specified as the last parameter. For the purposes of this macro, the array
dimensions of an n-dimensional array are numbered as follows:

SomeArray[n-1, n-2, ..., 3, 2, 1, 0];
Page 20 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Therefore, array.transpose will transpose dimension zero with some other dimension (1..n-1) in the source
array when copying the data to the destination array. By default (if you don’t supply the optional, third
parameter), array.transpose will transpose dimensions zero and one when copying the source array to the
destination array.

The source and destination arrays must have at least two dimensions. They can be static or dynamic arrays.
Note that array.transpose emits special, efficient, code when transposing dimensions zero and one.

The source and destination arrays must have compatible shapes. The shapes are compatible if the arrays
have the same number of dimensions and all the dimensions have the same bounds except dimension zero and
the transpose dimension (which must be swapped). For example, the following two arrays are transpose-
compatible when transposing dimensions zero and two:

static
s: uns32[2, 2, 3];
d: uns32[3, 2, 2];

Generally, one uses array.transpose to transpose a two-dimensional matrix. However, the transposition
operation is defined for any number of dimensions. To understand how array.transpose works, it is instructive
to look at the code you’d write to manually transpose the data in an array. Consider the transposition of the data
in the s and d arrays above:

for(mov(0, i); i<2; inc(i)) do

for(mov(0,j); j<2; inc(j)) do

for(mov(0,k); k<3; inc(k)) do

index(edx, s, i, j, k);
mov([edx], eax);
index(edx, d, k, j, i);
mov(eax, [edx]);

endfor;

endfor;

endfor;

Note that when storing away the value into the destination array, the i and k indicies were swapped. The
following example demonstrates the use of array.transpose:

static
s: uns32[2,3] := [1,2,3,4,5,6];
d: uns32[3,2];

.

.

.
array.transpose(s, d);

.

.

.

note: The code above copies s, as

1 2 3
4 5 6

to d, as

1 4
2 5
Released to the Public Domain Page 21

HLA Standard Library
3 6

3.7 Lookup Tables
The array.lookupTable macro lets you easily construct a standard lookup table. This macro invocation must

appear within a STATIC or a READONLY declaration section in your program. A lookup table declaration takes
the following form:

readonly
tableName:

array.lookupTable
(

element_data_type,
default_table_value,
value: list_of_indexes,
value: list_of_indexes,

.

.

.
value: list_of_indexes,
value: list_of_indexes

);

where:

element_data_type is the data type for each element of the array, for example, byte.

default_table_value is a value to use for "holes" in the table for which you do not supply an explicit index/value.

value is some value that you want to use to initialize a sequence of one or more table entries with.

list_of_indexes is a list of values that specify indexes into the lookup table. Each entry in a specific list is
separated from the other entries with a space (not commas!). Note that each index value you specify must be
unique across all lists of indexes in this table (that is, you cannot put two values into the array element specified
by a single index). The array.lookupTable macro will report an error if you specify a non-unique index value in
one of the lists.

Here is a concrete example:

static
tableName:

array.lookupTable
(

int32,
-1,
0: 1 2 3 4,
1: 5 6 7 8,
2: 9 10 11 12,
3: 13 14 15,
4: 20 22 24,
5: 16 21 25,
6: 23 19 18

);

This declaration creates a table with 25 dword entries, that will hold the values 1..25. The table will be
initialized as follows:

tableName:int32[25] :=
[

0, 0, 0, 0, // Elements 0..3
Page 22 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
1, 1, 1, 1, // Elements 4..7
2, 2, 2, 2, // Elements 8..11
3, 3, 3, // Elements 12..14
5, // Element 15
-1, // Element 16 (no index 17 specified above)
6, 6, // Elements 17 & 18
4, // Element 19
5, // Element 20
4, // Element 21
6, // Element 22
4, // Element 23
5 // Element 24

];

The number of elements appearing in the lookup table will be the difference between the largest index value
you supply in all the lists (25 in this example) and the smallest value (1 in this example) plus one. This particular
lookup table has 25 entries because (25-1+1) = 25.

Note that each line in the example above specifies the value to store into each of the table entries in the list
that immediately follows. This is probably backwards to what your intution would suggest. But the nice thing
about this arrangement is that it lets you specify a single value to be placed into several different array indices. If
there are any gaps in the array indexes you specify (as the value 17 is missing above), then the array.lookupTable
macro will fill in those entries with the default value specified as the second parameter.

In order to access this lookup table at run-time, you must know the minimum index into the array so you can
subtract this from the calculated index you use to access the table. The array.lookupTable macro generates four
constants for you to help you do this (and other things):

tableName_maxValue
tableName_minValue
tableName_maxIndex
tablename_maxIndex

The tableName_minValue and tableName_maxValue constants specify the minimum and maximum index
values for the table. In the current example, these constants would be 1 and 25, respectively. The
tableName_minIndex and tableName_maxIndex values are the product of the array element’s size with the
_minValue and _maxValue constants. In the table above, the element size is four, so tableName_minIndex will
be four and tableName_maxIndex will be 100. Whenever you access an element of the tableName array (in this
example), you’ll want to subtract the tableName_minIndex value from your computed index in order to adjust
for non-zero starting indexes, e.g.,

mov(someIndex, ebx);
mov(tableName[ebx*4 - tableName_minIndex], eax);
Released to the Public Domain Page 23

HLA Standard Library
Page 24 Version: 4/28/10 Written by Randall Hyde

	3 Arrays Module (arrays.hhf)
	3.1 The Arrays Module
	3.2 Array Data Types
	#macro array.dArray(type, dimensions);

	3.3 Array Allocation and Deallocation
	#macro array.daAlloc(dynamicArrayName, <<list of dimension bounds>>);
	#macro array.daFree(dynamicArrayName);

	3.4 Array Predicates
	#macro array.IsItVar(objectName)
	#macro array.IsItVar(objectName)
	#macro array.IsItDynamic(arrayName)

	3.5 Array Element Access
	#macro array.index(reg32, arrayName, <<list of indicies>>);
	iterator array.element(arrayName);

	3.6 Array Operations
	#macro array.cpy(srcArray, destArray);
	#macro array.reduce(srcArray, destArray);
	#keyword array.beforeRow;
	#keyword array.reduction;
	#keyword array.afterRow;
	#terminator array.endreduce;
	#macro array.transpose(srcArray, destArray, optionalDimension);

	3.7 Lookup Tables

