
HLA Standard Library Reference
9 Coroutines Module (coroutines.hhf)

HLA provides a powerful coroutines class that lets you easily use coroutines in your programs. The
coroutine class provides three procedures and methods you can use to initialize a coroutine, transfer control
between coroutines, and free up the storage associated with a coroutine when it completes execution. The
coroutine class also has several data fields, but you should treat these as private fields and never disturb their
values.

In addition to these class procedures and methods, the coroutine package provides a coret procedure that is
useful for returning from a coroutine to whomever "cocalled" the coroutine. This makes it very easy to
implement Generators using coroutines.

Finally, the coroutine module provides a special coroutine variable, mainPgm, that you can use to cocall the
"coroutine" corresponding to the main HLA program.

9.1 The Coroutine Module
To use the coroutine functions in your application, you will need to include one of the following statements

at the beginning of your HLA application:
#include("coroutines.hhf")
or
#include("stdlib.hhf")

9.2 The Coroutine Class Definition
Here’s the definition of the coroutine class data type:

// Note: the original declaration was "coroutine"
// but this has been deprecated. The following text
// equate is for legacy code. Someday, this declaration
// will go away.

const
coroutine:text := "coroutine_t";

type
 coroutine_t:
 class

 var
 CurrentSP: dword;
 Stack: dword;
 ExceptionContext: dword;
 LastCaller: dword;

 procedure cocall;
 @external("COR_COCALL");

 procedure create(size:uns32; theProc:procedure);
 @external("COR_CREATE");

 method cofree;
 @external("COR_COFREE");

 endclass;
Released to the Public Domain Page 247

HLA Standard Library
The data fields are all private fields to this class, your applications should not modify these fields. In
addition to the two procedures and the method in this class, the coroutines.hhf header file also defines a single
external procedure and an external coroutine variable:

procedure coret; @external("COR_CORET");

static
mainPgm_coroutine:coroutine_t; @external("MainPgmCoroutine__hla_");

9.3 Coroutine Functions

procedure coroutine_t.create(size:uns32; theProc:procedure);

coroutine_t.create is the typical HLA class constructor for the coroutine class. Since this is a class
procedure, you can call create one of two different ways:

(1) You can call it via the statement "coroutine_t.create(size, proc);" This form assumes that you wish to
create a dynamic coroutine object on the heap. When called this way, the coroutine_t.create procedure allocates
storage for a coroutine object on the heap and returns a pointer to this new coroutine object in the ESI register.
Otherwise it behaves identically to the second form of the coroutine_t.create procedure.

(2) You can call coroutine_t.create using an invocation of the form "objectName.create(size, proc);" where
"objectName" is the name of a coroutine_t variable or a pointer to a coroutine_t object (that, presumably, has
been initialized with a valid pointer to a coroutine_t object). Do be aware that this form of the call loads ESI
with the address of the coroutine_t object. On return, ESI will contain this new value.

Either form of the call to create will initialize the coroutine_t object, allowing subsequent cocalls to the
coroutine_t object.

Coroutines execute using their own stack (independent of other coroutine stacks and independent of the
stack the main program uses). The size parameter specifies the number of bytes of stack space to reserve for the
coroutine. A good minimum value for a coroutine stack is between 256 and 1,024 bytes. If the coroutine
allocates lots of local/automatic variables, or calls other procedures that allocate lots of local/automatic storage,
you will need to allocate a larger stack as appropriate. Likewise, if your coroutine calls procedures that are
recursive, additional stack space may be necessary.

The theProc parameter is a pointer to a procedure. This procedure is the code that will execute when you
cocall this coroutine. The only thing special about the procedure is that it should never be possible to return to
the procedure’s caller by executing a RET instruction. You exit coroutine using the coroutine_t.cocall procedure
or the coroutine_t.coret procedure. If your code accidentally "falls off the end of the procedure" or otherwise
attempts to return to the caller via a RET instruction, the coroutine will go into a special state in which any
attempt to cocall it forces an immediate return by the coroutine to the cocaller.

Object declarations for examples:

static
ptrToCoroutine:pointer to coroutine;
staticCoroutine:coroutine_t;

HLA high-level calling sequence examples:

coroutine_t.create(1024, &myCoroutineProc);
mov(esi, ptrToCoroutine);
staticCoroutine.create(1024, &anotherProc);

HLA low-level calling sequence examples:

pushd(1024);
pushd(&myCoroutineProc);
mov(NULL, esi);// Tells create to allocate storage
call coroutine_t.create;
Page 248 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(esi, ptrToCoroutine);

pushd(1024);
pushd(&anotherProc);
lea(esi, staticCoroutine);
call coroutine.create;

procedure coroutine_t.cocall();

coroutine_t.cocall is the mechanism you use to invoke a coroutine. Note that this is a procedure for
performance reasons. You should never invoke the static procedure coroutine_t.cocall as this will raise a run-
time exception. Instead, you should always invoke this procedure using an object invocation of the form
"objectName.cocall();" This will switch the thread of execution from the current coroutine (or the main
program) to the coroutine code associated with "objectName". Note that coroutines rarely begin execution at the
first statement of the procedure associated with the coroutine (in fact, this happens exactly once, when you
invoke the coroutine for the very first time).

The cocall mechanism provides the standard way of leaving a coroutine. Cocalling some other coroutine
switches the execution context from the current coroutine to that other coroutine. The next time some code
cocalls a coroutine that leaves via cocall, execution continues with the first statement following the cocall (it’s
almost as though you had called that other coroutine using a CALL instruction).

HLA high-level calling sequence examples:

ptrToCoroutine.cocall();
staticCoroutine.cocall();

HLA low-level calling sequence examples:

mov(ptrToCoroutine, esi);
call coroutine_t.cocall;

lea(esi, staticCoroutine);
call coroutine_t.cocall;

method coroutine_t.cofree();

When you are done with a coroutine, you should call the coroutine_t.cofree method to free up the stack
space associated with that coroutine. You must not call coroutine_t.cofree from inside the coroutine you’re
cleaning up since it still needs its stack to transfer control to some other coroutine.

HLA high-level calling sequence examples:

ptrToCoroutine.cofree();
staticCoroutine.cofree();

HLA low-level calling sequence examples:

mov(ptrToCoroutine, esi);
mov([esi], edi);
call([edi+@offset(coroutine_t.cofree)]);

lea(esi, staticCoroutine);
mov([esi], edi);
call([edi+@offset(coroutine_t.cofree)]);
Released to the Public Domain Page 249

HLA Standard Library
method coret();

coret is nearly identical to coroutine_t.cocall with two major exceptions. First, note that this procedure is
not a member of the coroutine_t class. Therefore, you do not specify an object name in front of the call to the
coret procedure. Second, coret returns control to whomever cocalled the current coroutine. The current
coroutine does not have to know who called it; coret figures this out and cocalls the appropriate coroutine.

Note that coret is not a "return" in the usual sense that the coroutine completes execution upon calling coret.
coret is identical to a coroutine_t.cocall to the coroutine that called the current coroutine. In particular, after a
coroutine returns to another, any future cocalls to this coroutine will continue execution with the first statement
following the coret call.

HLA high-level calling sequence examples:

coret();

HLA low-level calling sequence examples:

call coret;

static mainPgm:coroutine_t;

This is a special coroutine_t variable that contains the control information for the main program. If, inside a
coroutine, you wish to cocall the main program, just use a cocall of the form "MainPgm.cocall();" and control in
the main program will continue at the point of the last cocall executed in the main program. (Note: the term
"main program" here does not imply that the cocall has to be in the actual main program of an HLA program, it
simply refers to the thread of execution that starts in the main program. Your main program can call a procedure
that transfers control to some coroutine via cocall. MainPgm.cocall will transfer control back into that
procedure.)
Page 250 Version: 4/28/10 Written by Randall Hyde

	9 Coroutines Module (coroutines.hhf)
	9.1 The Coroutine Module
	9.2 The Coroutine Class Definition
	procedure coret; @external("COR_CORET");

	9.3 Coroutine Functions
	procedure coroutine_t.create(size:uns32; theProc:procedure);
	procedure coroutine_t.cocall();
	method coroutine_t.cofree();
	method coret();
	static mainPgm:coroutine_t;

