
HLA Standard Library Reference
23 OS Module (os.hhf)

The OS module contains a couple functions that do OS-related tasks.

23.1 The OS Module
To use the OS functions in your application, you will need to include one of the following statements at the

beginning of your HLA application:
#include("os.hhf")
or
#include("stdlib.hhf")

23.2 Executing Shell Commands

procedure os.system(cmdStr:string);

The os.system function executes a single program and waits for the execution of that command before
returning. Here is the syntax for the os.system call:
os.system("system command");

The string you pass as the single parameter roughly corresponds to a command shell command (e.g., the
Windows command line prompt or the Linux/FreeBSD/MacOS Shell prompt). This consists of the program
name followed by any command line parameters, separated by spaces.

The first thing to note about this function is that the results are system-specific. Although this function is
available in all operating systems that the HLA Standard Library supports, the semantics of the commands you
pass to this function vary by operating system. Therefore, programs that call this function will not usually be
portable between operating systems.

Special notes for Windows users: the os.system function does not directly allow the execution of intrinsic
(built-in) cmd.exe commands. If you want to execute a command like DIR, CD, MD, etc., that aren’t actual
programs, but simply commands that cmd.exe executes directly, you have to run an instance of the command
interpreter to pull this off, e.g.,

os.system("cmd /C dir"); // Executes ’DOS’ directory command

Please see the description of the Windows "cmd.exe" program for more details (type "help cmd" at the command
line prompt). Also note that Windows will use the current PATH environment variable to locate the executable
program, if it is not in the current subdirectory.

Special notes for Linux/FreeBSD users: If the program name appearing at the beginning of the string does
not specify the path to a file that Linux/FreeBSD can find, Linux/FreeBSD will prefix the name with "/bin/" and
then "/usr/bin/" in an attempt to locate the file.

The function fails silently if it cannot find or execute the specified program.

HLA high-level calling sequence examples:

os.system("ls"); // Under Linux or FreeBSD
os.system("HLA t.hla");// Runs HLA compiler on the "t.hla" file.

HLA low-level calling sequence examples:

static
cmd :string := "HLA t.hla";

.

.

.
push(cmd);
call os.system;
Released to the Public Domain Page 561

HLA Standard Library
23.3 Delaying Program Execution
The OS module provides two functions that will suspend (put to sleep) a process for a short period of time.

The first function (sleep) lets you specify the suspension time in seconds, the other (mSleep) lets you specify the
time in milliseconds. It is important for you to realize that the underlying operating systems do not guarantee that
the delay will be exactly equivalent to the duration you specify. Most operating systems only guarantee that they
will suspend the program for at least as long as you specify – they might actually delay the program even longer.

procedure os.sleep(secs:dword);

This function suspends the program for at least secs seconds. After at least secs seconds have transpired, the
OS will place the program back into the run queue and the process will begin execution after the call to os.sleep
on the next regularly-scheduled time quantum.

Specifying an argument value of zero may have no effect (that is, the os.sleep call may immediately return),
but many operating systems will cause the current process to give up the remainder of it’s time slice when you
call os.sleep in this fashion. You should, however, not count on such semantics in your program.

procedure os.mSleep(msecs:dword);

This function suspends the program for at least msecs milliseconds. After at least msecs milliseconds have
transpired, the OS will place the program back into the run queue and the process will begin execution after the
call to os.sleep on the next regularly-scheduled time quantum.

Specifying an argument value of zero may have no effect (that is, the os.sleep call may immediately return),
but many operating systems will cause the current process to give up the remainder of it’s time slice when you
call os.sleep in this fashion. You should, however, not count on such semantics in your program.
Page 562 Version: 4/28/10 Written by Randall Hyde

	23 OS Module (os.hhf)
	23.1 The OS Module
	23.2 Executing Shell Commands
	procedure os.system(cmdStr:string);

	23.3 Delaying Program Execution
	procedure os.sleep(secs:dword);
	procedure os.mSleep(msecs:dword);

