
HLA Standard Library Reference
34 Threads Module (threads.hhf)

The HLA Threads module provides a set of routines that let you create, control, and synchronize multiple
threads in an application.

A Note About Thread Safety: While the routines in the thread library are (mostly) thread safe, keep in
mind that you must be linking in a thread-safe version of the HLA Standard Library if you expect calls to other
functions to operate in a thread-safe manner.

34.1 Threads Module
To use the thread functions in your application, you will need to include the following statement at the

beginning of your HLA application:
#include("threads.hhf")
Note that the "stdlib.hhf" header file does not automatically include the threads.hhf header file. This is

because simply including the "threads.hhf" header file may force the inclusion of considerable code, even if you
do not call any functions in the thread library. Therefore, you must explicitly include the threads.hhf header file
if you want to call thread functions in the HLA Standard Library.

If you are using thread functions in your application, you must use the "-thread" command-line parameter to
force HLA to link in the thread-safe version of the HLA Standard Library. Failure to do so will probably cause
the linker to fail; even if you manage to get the program to link properly, you’ll link in non-thread-safe versions
of the HLA Standard Library functions and this will probably cause your program to fail or otherwise misbehave.

The functions in the threads module are broken down into six types: thread creation, thread identification,
thread local storage, events, critical section maintenance, and semaphore maintenance. The following sections
will describe each of these categories.

34.2 Thread Creation

procedure thread.create(func:threadFunc_t; parm:dword; stackSize:dword);
@returns("eax");

This function creates a new thread. The func parameter is the address of an HLA procedure where the thread
will begin execution. This function has the following prototype:

type
threadFunc_t:procedure(parm:dword);

That is, the thread function must have a single double word parameter.
The parm argument (to thread.create) is passed along to the thread function specified by the func argument.

This can be any 32-bit value you want. Often, this argument is a pointer to some global data you’re supplying to
the thread. Keep in mind, however, that the thread may not begin executing before thread.create returns to its
caller. You must ensure that any data whose address you pass in the parm argument remains valid as long as the
new thread requires that data. In particular, do no pass the address of some local variables allocated on the stack
that might go away when the procedure that calls thread.create returns to its caller.

The stackSize parameter specifies the number of bytes of storage that will be allocated for the stack when the
thread is created by the operating system. This value should be a multiple of 4,096 bytes. If you specify zero, the
system will assign a default value (the default value is OS dependent). Unless your thread requires very little
thread storage, you should always supply a value for the stackSize parameter. Note that the HLA Standard
Library will allocate storage for its own thread local variables on the stack created for the thread. Therefore, you
should allocate an additional 4,096 bytes above and beyond your own needs to provide sufficient storage for the
stdlib thread local objects.

The thread creation function returns a thread identifier in the EAX register. This information is useful when
you have multiple threads executing the same code (that is, the same thread function) and you need to pass
information to a specific thread. The individual threads can determine their own thread ID and use that to
determine whether a packet of information is intended for them (see the discussion of the
thread.getCurrentThreadHandle function for details).
Released to the Public Domain Page 967

HLA Standard Library
A thread terminates execution by returning from the thread function. If you want to prematurely terminate a
thread, then that thread must jump to the end of the procedure and return from it (or clean up the stack and
execute a RET instruction). Note that the HLA Standard Library does not allow one thread of execution to
terminate another thread (including the parent thread that started the thread in the first place). If you want to
terminate one thread under the control of another thread, then you must pass some message to that thread and tell
it to terminate itself.

Each thread of execution has its own exception handling system. Exceptions that the system or program
raises in one thread must be handled by that thread. There is no way to pass exceptions on to a different thread
(including the parent thread). If an exception occurs in a thread and you do not provide an exception handler (via
a try..endtry statement), then the system will abort execution of the whole application.

The following examples assume the presence of the following thread function:

procedure myThreadFunc(theParm:dword);
var

myThreadID:dword;
begin myThreadFunc;

try

thread.getCurrentThreadHandle();
mov(eax, myThreadID);

// Code that does something for this thread

anyexception

stdout.put
(

"Thread $",
myThreadID,
" terminated with exception $",
eax,
nl

);

endtry;

end myThreadFunc;

HLA high-level calling sequence examples:

thread.create(&myThreadFunc, 0, 0); // Default stack size
mov(eax, childThreadID);

HLA low-level calling sequence examples:

pushd(&myThreadFunc);
pushd(0); // parm value = 0
pushd(0); // Default stack size
call thread.create;
mov(eax, childThreadID);

34.3 Thread Identification
Page 968 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
procedure thread.getCurrentThreadHandle; @returns("eax");

This function returns a unique thread identifier value in the EAX register for the current thread. This value
matches the value that thread.create returns (for the child thread, assuming that the child thread is the one calling
thread.getCurrentThreadHandle). You should not assume that the value that this function returns is the same as
the thread ID used by the underlying OS.

HLA high-level calling sequence examples:

thread.getCurrentThreadHandle();
mov(eax, myThreadID);

HLA low-level calling sequence examples:

call thread.getCurrentThreadHandle;
mov(eax, myThreadID);

34.4 Thread Local Storage
Sometimes various procedures in a thread need to communicate data amongst themselves using static

storage. Unfortunately, you must be very careful about using static objects in a threaded application. In general,
using static objects renders the application thread unsafe (that is, causes the program to fail when two or more
threads attempt to use the same static object).

A good example of this problem occurs in the HLA Standard Library. Consider the underscores variable
that determines if a hexadecimal numeric conversion routine should emit underscores between groups of four
hexadecimal digits. This is a global value that all of the hexadecimal conversion routines in the Standard Library
reference. Now suppose you have two threads that call these conversion routines. If one thread turns underscore
output on and the other thread turns it off in the middle of a conversion in the other thread, the conversion will be
incorrect. The solution is to give each thread its own copy of the underscores variable. When one thread turns
this feature one, it does not affect the conversions in any of the other threads. Unfortunately, giving each thread
its own copy of the underscores variable is a lot more difficult that it sounds. You cannot use static objects for
this purpose – the different threads will all access the same static objects. You cannot allocate the underscores
variable on the stack in your thread, the various procedures won’t be able to access that object without knowing
its exact address in memory.

The solution is thread local storage. With thread-local storage (TLS) you request (once) a TLS context
handle from the operating system. With this handle you can store a 32-bit thread-local value and retrieve that 32-
bit thread-local value. Normally, you don’t store the actual thread-local data via this handle, instead you store a
pointer to a data structure containing all the thread-local data. This structure can be allocated on the heap or you
can allocate it in the VAR section of your main thread. Because you can retrieve the address of this data structure
via TLS calls, various functions can figure out the address of the global objects they’re interested in via some
offset from the address of the structure.

Note that you only need to obtain a single TLS context handle – you do not obtain a separate handle for each
thread in your application. Your main thread should obtain this context handle before spawning any other child
threads. You should store the value of this context handle in a global, static, object that all threads can access.
You will never modify this object directly; instead, you will pass the address of the object to the
thread.createTLS function and then your threads will only read this value from that point forward (which is a
safe use of a global, static, object in a threaded application).

procedure thread.createTLS(var context:dword);

This function asks the operating system to create a thread-local storage context handle. You pass the address
of the context variable to this function as the single parameter and the thread.createTLS function will
automatically (and atomically) update that variable. Note that you should create (initialize) the context handle
before creating any threads that might use it. Otherwise you might create a race condition where the main thread
stops, a child thread runs, and the child thread attempts to use the context handle before the main thread
initializes it.

HLA high-level calling sequence examples:

thread.createTLS(contextHandle);
Released to the Public Domain Page 969

HLA Standard Library
HLA low-level calling sequence examples:

lea(eax, contextHandle);
push(eax);
call thread.createTLS;

procedure thread.setTLS(context:dword; valueToSet:dword);

The thread.setTLS function stores the value found in the valueToSet parameter into a thread-local double
word value specified by the context parameter. Generally, you will pass the address of some block of memory
(some data structure) as the valueToSet parameter. If you allocate that block of memory on the heap (e.g., via
mem.alloc) or on your local stack, any function in the current thread can access that data structure later by calling
the thread.getTLS function.

Although you can use thread.setTLS to set a single variable value (rather than setting the address of some
data structure allocated for the current thread), you can only access 32 bits of data this way. As a result, most
programmers store an address to some data structure via thread.setTLS rather than directly storing data.

If you use thread.setTLS in the normal manner, by allocating some storage and storing an address away, you
should allocate the storage at the very beginning of your thread’s main function. If this is a fixed-size data
structure, you can allocate it as part of your local variables (in the VAR section) and simply take the address of
the structure (e.g., with the LEA instruction) and pass that as the valueToSet argument. If the data structure is
variable in size, then mem.alloc is probably a good choice for allocating the data structure.

HLA high-level calling sequence examples:

lea(eax, myLocalData);
thread.setTLS(contextHandle, eax);

HLA low-level calling sequence examples:

push(contextHandle);
lea(eax, myLocalData);
push(eax);
call thread.setTLS;

procedure thread.getTLS(context:dword); @returns("eax");

The thread.getTLS function returns the value associated with the thread context handle passed as the single
argument. This value is set via an earlier call to the thread.setTLS function. See the discussion of thread.setTLS
for more details.

HLA high-level calling sequence examples (assuming the thread local storage value
has been set to point at an object of type "someDataType" by a previous call to
thread.setTLS):

thread.getTLS(contextHandle);
mov((type someDataType [eax]).someField, ecx);// Retrieve data

HLA low-level calling sequence examples:

push(contextHandle);
call thread.getTLS;
mov((type someDataType [eax]).someField, ecx);// Retrieve data
Page 970 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
34.5 Events
The HLA Standard Library threads module provides a thread synchronization system known as events. An

event is something that a thread can wait upon until a different thread signals (or sets) the event. An HLA stdlib
event is an object that various threads can use to coordinate events in the program.

To use events, a program must first create an event object via a call to thread.createEvent. This initializes
the event and puts it in the non-signaled/non-set state. The thread.createEvent returns an OS event handle that
you will save to allow various threads to work with that event object. When you are done using a thread, you can
tell the OS to reclaim the resources used by the event object.

When you create an event, it is initialized in an unsignaled state. Whenever some thread waits on an event
(by calling thread.waitForEvent), that thread will block (suspend) until some other thread signals the event by
calling thread.setEvent. If two or more threads are waiting for an event, only one thread will be placed in the
executable state when an event is signaled. Additional calls to thread.setEvent will be necessary to resume any
other threads waiting for the event.

Whenever a thread waiting on an event resumes execution after that event has been signaled, the system
automatically sets the event to the unsignaled state. There is no explicit call you can make to "unsignal" or unset
an event.

procedure thread.createEvent; @returns("eax");

The thread.createEvent function creates an event object and returns a handle to that object in the EAX
register. All events you use must be initialized via a call to thread.createEvent. Note that event initialization
consumes resources internal to the OS’ thread library. You should call thread.deleteEvent to reclaim those
resources when you are done using the event object you’ve created via thread.createEvent.

HLA high-level calling sequence examples:

thread.createEvent();
mov(eax, eventHandle);

HLA low-level calling sequence examples:

call thread.createEvent;
mov(eax, eventHandle);

procedure thread.deleteEvent(event:dword);

The thread.deleteEvent function reclaims all OS/library resources in use by an event object. You should call
this function after you are done using an event object. You must not call this function on an event handle if any
threads are waiting on the event. Of course, you must not continue to use the event handle after deleting the
event.

HLA high-level calling sequence examples:

thread.deleteEvent(eventHandle);

HLA low-level calling sequence examples:

push(eventHandle);
call thread.deleteEvent;

procedure thread.setEvent(event:dword);

The thread.setEvent function signals the occurrence of an event. If some thread is waiting for this event to
occur, this call will resume the execution of that thread. If more than one thread is waiting on the event, then
only one thread will be unblocked and allowed to execute. In order to release all threads waiting on an event, you
must call thread.setEvent once for each blocked thread. It is the application’s responsibility to count the number
Released to the Public Domain Page 971

HLA Standard Library
of threads waiting on an event and call thread.setEvent an appropriate number of times. Calling thread.setEvent
multiple times without having any threads waiting on the event between signaling the event is undefined. Some
OS thread APIs might count the number of calls and release that many threads that (ultimately) wait for the
event. Other OS thread packages might ignore multiple requests and release only one thread that waits on the
event. Still other OSes may completely ignore the call to thread.setEvent if there are no threads waiting on that
particular event.

HLA high-level calling sequence example:

thread.setEvent(eventHandle);

HLA low-level calling sequence examples:

push(eventHandle);
call thread.setEvent;

procedure thread.waitForEvent(event:dword);

The thread.waitForEvent function blocks (suspends the execution of) the current thread until some other
thread signals (sets) the event with a call to thread.setEvent. Note that the results are undefined if a call is made
to thread.setEvent prior to some other thread waiting on that event. The system may choose to ignore the earlier
call to thread.setEvent or it may immediately resume the thread and return from a call to thread.setEvent. The
exact semantics are OS-dependent.

HLA high-level calling sequence example:

thread.waitForEvent(contextHandle);

HLA low-level calling sequence examples:

push(contextHandle);
call thread.waitForEvent;

34.6 Critical Sections
Critical sections are synchronization objects that ensure that only one thread at a time executes a protected

section of code (or accesses some data structure). A thread enters and leaves a critical section. While one thread
is holding a critical section lock, an attempt by some other thread to enter that same critical section causes the
second thread to block until the first thread leaves the critical section.

As for all synchronization objects the HLA stdlib supports, an application must first create a critical section
object to obtain a handle to be used when entering and leaving critical sections. Because the creation of a critical
section allocates some system resources, the application should delete the critical section object when it is done
using it. The thread.createCriticalSection and thread.deleteCriticalSection functions handle these chores.

Once you’ve created a critical section object via thread.createCriticalSection, you can synchronize threads
using the thread.enterCriticalSection and thread.leaveCriticalSection functions. To protect a sequence of
instructions (that, perhaps, operate on a protected data structure) you would call the thread.enterCriticalSection
(passing it the handle of a critical section object you’ve created) to lock the use of that particular critical section
object. When you are done executing the protected code, you call the thread.leaveCriticalSection function to
release the lock. If any other thread attempts to enter the same critical section (by calling
thread.enterCriticalSection and passing in the same critical section handle), then that second thread will block
until the first thread calls thread.leaveCriticalSection and releases the lock.

If one thread is holding a critical section lock and two or more additional threads attempt to enter the same
critical section, all those new threads will block. When the thread holding the lock calls
thread.leaveCriticalSection, only one of the waiting threads will be activated to resume execution. Note that the
Page 972 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
order of thread activation is not defined and you should not assume that the first blocked thread will be the first to
be released. The only guarantee is that exactly one thread will be released.

procedure thread.createCriticalSection; @returns("eax");

The thread.createCriticalSection function creates a critical section object and returns a handle to that object
in the EAX register. All critical sections you use must be initialized via a call to thread.createCriticalSection.
Note that critical section initialization consumes resources internal to the OS’ thread library. You should call
thread.deleteCriticalSection to reclaim those resources when you are done using the critical section object
you’ve created via thread.createCriticalSection.

HLA high-level calling sequence examples:

thread.createCriticalSection();
mov(eax, csHandle);

HLA low-level calling sequence examples:

call thread.createCriticalSection;
mov(eax, eventHandle);

procedure thread.deleteCriticalSection(csHandle:dword);

The thread.deleteCriticalSection function reclaims all OS/library resources in use by a critical sectionobject.
You should call this function after you are done using a critical section object. You must not call this function on
a critical section handle if any threads are executing in the critical section. Of course, you must not continue to
use the critical section handle after deleting the critical section.

HLA high-level calling sequence examples:

thread.deleteCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.deleteCriticalSection;

procedure thread.enterCriticalSection(csHandle:dword);

The thread.enterCriticalSection function first checks to see if some other thread has already entered the
critical section specified by the csHandle parameter. If this is the case, then the current thread (that is calling
thread.enterCriticalSection) blocks until the first thread releases the critical section handle (that is, it leaves the
critical section) by calling thread.leaveCriticalSection. If no other thread currently holds the critical section
lock, or if the current thread resumes execution because some other thread releases the lock (by calling
thread.leaveCriticalSection), then the current thread obtains the lock and execution resumes with the first
instruction after the call to thread.enterCriticalSection.

HLA high-level calling sequence examples:

thread.enterCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.enterCriticalSection;
Released to the Public Domain Page 973

HLA Standard Library
procedure thread.leaveCriticalSection(csHandle:dword);

The thread.leaveCriticalSection function releases the critical section lock specified by the csHandle
parameter. This allows any other thread that is waiting on the critical section to resume execution (and obtain the
critical section lock).

HLA high-level calling sequence examples:

thread.leaveCriticalSection(csHandle);

HLA low-level calling sequence examples:

push(csHandle);
call thread.leaveCriticalSection;

34.7 Semaphores
Semaphores are the generic process/thread synchronization mechanism. Semaphores provide two main

extensions over other sychronization objects provide by the HLA stdlib:
• HLA stdlib semaphores allow synchronization of processes (e.g., different applications) as

well as threads.
• HLA stdlib semaphores are counting semaphores, allowing
• n processes access to some protected resource (where n is some value you specify when

creating the semaphore).
Like the other HLA stdlib synchronization objects, you must create a semaphore object before using it and

you must delete a semaphore object when you are done using it. The thread.createSemaphore and
thread.deleteSemaphore functions handle these chores. When creating the semaphore, you specify the number
of resources the semaphore will protect (that is, the number of threads that can concurrently hold the semaphore
and run without blocking). You also specify a (system-wide) semaphore name when creating the semaphore; the
operating system uses this name to connect semaphore objects in different processes to the same system-wide
semaphore object (that is, if two processes specify the same name for the semaphore object, then those two
processes will access the exact same semaphore).

To obtain a resource held be a semaphore, you will call the thread.waitSemaphore function. This function
blocks if there are no resources available, it will decrement the resource count and return if resources are
available. To release a semaphore resource that a thread is holding, the thread executes the
thread.releaseSemaphore function.

procedure thread.createSemaphore(maxCnt:dword; semName:string);
@returns("eax");

The thread.createSemaphore function creates a semaphore object and returns a handle to that object in the
EAX register. All future access to that semaphore will be via the handle value that thread.createSemaphore
returns in the EAX register.

The maxCnt parameter specifies the number of threads (or processes) that may concurrently hold the
semaphore before the operating system blocks any further semaphore requests. If maxCnt is one, then the
semaphore behaves in a manner similar to a critical section insofar as it only allows access to the lock by one
thread (or process) at a time. This is known as a binary semaphore.

The semName string parameter provides a system-wide name for the semaphore. This string should
correspond to an existing filename in the system for best results (create an empty file that has the semaphore’s
name if you want to create a semaphore using a name other than that of some existing file). If two different calls
to the thread.createCriticalSection function specify the same semaphore name, then the handle value that this
function returns will refer to the same semaphore object.

If multiple calls to thread.createCriticalSection specify the same string for semName but specify different
values for maxCnt, then the result is undefined. The system may use the last value specified, the first value
specified, or any other value it pleases.

All semaphore objects you use must be initialized via a call to thread.createSemaphore. Note that
semaphore initialization consumes resources internal to the OS’ thread library. You must call
thread.deleteSemaphore to reclaim those resources when you are done using the critical section object you’ve
created via thread.createSemaphore.
Page 974 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
Warning: because of a known issue in the UNIX SYSV semaphore interface (that the HLA stdlib used
under Linux, Mac OSX, and FreeBSD), there is a brief time period during semaphore creation between the
creation of a semaphore object and the setting of the resource count where the system could be interrupted. If
another process executes between these two points and specifies a different semaphore count, the results could be
unexpected. This is yet another reason why you want to specify the same count value when requesting multiple
semaphore handles using the same semaphore name. For this same reason, you should try to allocate all
semaphore handles in your main program, before spawning any additional threads (though this won’t help much
if multiple processes or applications are creating the same semaphore).

HLA high-level calling sequence examples:

thread.createCriticalSection();
mov(eax, csHandle);

HLA low-level calling sequence examples:

call thread.createCriticalSection;
mov(eax, eventHandle);

procedure thread.deleteSemaphore(semHandle:dword);

The thread.deleteSemaphore function will (possibly) delete system resources in use by a semaphore. The
exact operation of this command is system dependent. Under Windows, it will decrement a reference counter and
if the current process is the last process using the semaphore, this call will free up all system resources used by
the semaphore.

As this document was being written, this function is a no-operation under *NIX operating systems. For those
operating systems you will need to manually delete the semaphore object using the ipcrm command (use ipcs to
list the semaphores currently in use by the system). Even if you are using a *NIX operating system, you should
call thread.deleteSemaphore because the semantics of this function might change in future versions of the HLA
stdlib.

HLA high-level calling sequence examples:

thread.deleteSemaphore(semHandle:dword);

HLA low-level calling sequence examples:

push(semHandle);
call thread.deleteSemaphore;

procedure thread.waitSemaphore(semHandle:dword);

The thread.waitSemaphore function decrements the semaphore resource count (initialized to the value of the
maxCnt parameter by the thread.createSemaphore function). If the result is less than or equal to zero, then this
function returns and execution continues. If the result it negative, then this function blocks the current thread
until some process releases the semaphore. When the process is done using the resource protected by the
semaphore, it should release that resource via a call to the thread.releaseSemaphore function.

If a thread wishes to grab multiple resources protected by a semaphore, it can make multiple calls to
thread.waitSemaphore. It must make the corresponding number of calls to thread.releaseSemaphore to release it
of those locks it allocates. Obviously, a thread should not call thread.waitSemaphore more than maxCnt times
(maxCnt being the parameter value passed to thread.createSemaphore) otherwise deadlock will occur.

HLA high-level calling sequence examples:

thread.waitSemaphore(semHandle:dword);

HLA low-level calling sequence examples:
Released to the Public Domain Page 975

HLA Standard Library
push(semHandle);
call thread.waitSemaphore;

procedure thread.releaseSemaphore(semHandle:dword);

The thread.releaseSemaphore function increments the internal resource count associated with the
semaphore specified by semHandle. If there are any threads or processes blocked and waiting on that semaphore,
then exactly one of those threads will be placed in an active (runnable) state and allowed to continue execution.
Each process/thread should have a corresponding thread.releaseSemaphore call for each thread.waitSemaphore
call it makes.

HLA high-level calling sequence examples:

thread.releaseSemaphore(semHandle:dword);

HLA low-level calling sequence examples:

push(semHandle);
call thread.releaseSemaphore;
Page 976 Version: 4/28/10 Written by Randall Hyde

	34 Threads Module (threads.hhf)
	34.1 Threads Module
	34.2 Thread Creation
	procedure thread.create(func:threadFunc_t; parm:dword; stackSize:dword); @returns("eax");

	34.3 Thread Identification
	procedure thread.getCurrentThreadHandle; @returns("eax");

	34.4 Thread Local Storage
	procedure thread.createTLS(var context:dword);
	procedure thread.setTLS(context:dword; valueToSet:dword);
	procedure thread.getTLS(context:dword); @returns("eax");

	34.5 Events
	procedure thread.createEvent; @returns("eax");
	procedure thread.deleteEvent(event:dword);
	procedure thread.deleteEvent(event:dword);
	procedure thread.setEvent(event:dword);
	procedure thread.waitForEvent(event:dword);

	34.6 Critical Sections
	procedure thread.createCriticalSection; @returns("eax");
	procedure thread.deleteCriticalSection(csHandle:dword);
	procedure thread.enterCriticalSection(csHandle:dword);
	procedure thread.leaveCriticalSection(csHandle:dword);

	34.7 Semaphores
	procedure thread.createSemaphore(maxCnt:dword; semName:string); @returns("eax");
	procedure thread.deleteSemaphore(semHandle:dword);
	procedure thread.waitSemaphore(semHandle:dword);
	procedure thread.releaseSemaphore(semHandle:dword);

