

e

in-
eful
ctions

ent.
graph-
use,

t
nd

le file.
rar-

d in
LLs
and
func-

de
T

es, it
rs.

le to

te

rary

Tutorial 2: MessageBox

In this tutorial, we will create a fully functional Windows program that displays a messag
box saying "Win32 assembly is great!".

Download the example file here.

Theory:

Windows prepares a wealth of resources for Windows programs. Central to this is the W
dows API (Application Programming Interface). Windows API is a huge collection of very us
functions that reside in Windows itself, ready for use by any Windows programs. These fun
are stored in several dynamic-linked libraries (DLLs) such as kernel32.dll, user32.dll and
gdi32.dll. Kernel32.dll contains API functions that deal with memory and process managem
User32.dll controls the user interface aspects of your program. Gdi32.dll is responsible for
ics operations. Other than these "main three", there are other DLLs that your program can
provided you have enough information about the desired API functions.

Windows programs dynamically link to these DLLs, ie. the codes of API functions are no
included in the your program’s executable file. In order for your program to know where to fi
the desired API functions at runtime, you have to embed that information into the executab
The information is in import libraries. You must link your programs with the correct import lib
ies or they will not be able to locate API functions.

When a Windows program is loaded into memory, Windows reads the information store
the program. That information includes the names of functions the program uses and the D
those functions reside in. When Windows finds such info in the program, it'll load the DLLs
perform function address fixups in the program so the calls will transfer control to the right
tion.

There are two categoriesof API functions: One for ANSI and the other for Unicode. The
names of API functions for ANSI are postfixed with "A", eg. MessageBoxA. Those for Unico
are postfixed with "W" (for Wide Char). Windows 95 natively supports ANSI and Windows N
Unicode.

We are usually familiar with ANSI strings, which are arrays of characters terminated by
NULL. ANSI character is 1 byte in size. While ANSI code is sufficient for European languag
cannot handle several oriental languages which have several thousands of unique characte
That's why UNICODE comes in. A UNICODE character is 2 bytes in size, making it possib
have 65536 unique characters in the strings.

HLA and the HLA Standard Library use ANSI characters by default. It is possible to wri
HLA programs that utilize UNICODE (HLA, after all, is assembly language and you can doany-
thing with assembly language), but you will not be able to use many of the HLA Standard Lib
routines if you use UNICODE. Hence this tutorial will stick to ANSI characters.

Example:

I'll present the bare program skeleton below. We will flesh it out later.
program tut2;
begin tut2;
end tut2;

 The
 jmp,
uc-
 (this

ould
ottom
an

lways
f the
pro-

ally a
fines

 you

h that

rec-

 param-

e
f”
und

s def-

of the

The execution starts from the first instruction immediately below the “begin tut2” clause.
execution will proceed instruction by instruction until some flow-control instructions such as
jne, je, ret etc is found. Those instructions redirect the flow of execution to some other instr
tions. When the program encounters the “end tut2” clause, it automatically exits to Windows
is because HLA automatically emits code at the end of the program to do this for you). Sh
you wish to prematurely exit the program, you have three options: (1) you can JMP to the b
of the program; (2) you can execute the HLA high level “EXIT tut2;” statement; or (3) you c
directly call the Windows API routine ExitProcess. This last option is especially useful if you
wish to return a process “return code” to the operation system. By default, HLA programs a
return a zero return code (that signifies “no error”) when they return via EXIT or by running o
end of the main program. If you wish to return an error status (non-zero) value when your
gram quits, you will need to call ExitProcess directly. You can directly call ExitProcess in your
programs by defining the following prototype in your static section:
static
 ExitProcess: procedure(uExitCode:uns32);
 external(“__imp__ExitProcess@4”);

The above line is called a procedure pointer prototype (“__imp__ExitProcess@4” is actu
pointer to the function, not the name of the function itself). A procedure pointer prototype de
the attributes of a function to the assembler/linker so it can do type-checking for you.

In short, the name of the procedure followed by a colon and the keyword procedure and then
by the list of parameters and their data types separated by commas. In the ExitProcess example
above, it defines ExitProcess as a procedure which takes only one parameter of type uns32. Pro-
cedure prototypes are very useful when you use the high-level call syntax. For example, if
do:
call ExitProcess

without pushing an uns32 value onto the stack, the assembler/linker will not be able to catc
error for you. You'll notice it later when your program crashes. But if you use:
ExitProcess();

the linker will inform you that you forgot to push a dword on the stack thus avoiding error. I
ommend you use invoke instead of simple call. The high level calling syntax is as follows:
Procname(optional_arguments);

Procname can be the name of a procedure or it can be a procedure pointer. The procedure
eters are separated by commas.

Most of prototypes for API functions are kept in include files. This normally appear in th
“c:\hla\include” subdirectory (or wherever you’ve installed HLA). The include files have “.hh
(HLA Header File) extensions and the prototypes for the functions in a DLL are generally fo
in the “win32.hhf” header file. For example, ExitProcess’ prototype is is in the win32.hhf file.
There are a few differences between HLA’s win32 API definitions and the standard Window
initions. For efficiency reasons, HLA tends to place function prototypes in namespaces. This
saves memory and time during compilation. Most of the win32 API functions are members
:”win” namespace, so you would actually call the function using the following syntax:
win.ExitProcess(return_code);

This document will point out other differences between Windows and HLA as necessary.

m
uto-
’s no

 you
ses the
-

u need
rself

th,

 msg-
ing

finition
e. This
lling
You can also create procedure prototypes for your own procedures.

Now back to ExitProcess, the uExitCode parameter is the value you want the program to
return to Windows after the program terminates. You can call ExitProcess like this:
win.ExitProcess(0);

Put that line immediately below the “begin tut2;” clause and you will get a win32 progra
which immediately exits to Windows, but it's a valid program nonetheless (of course, HLA a
matically emits a call to win.ExitProcess when it encounters the “end tut2;” clause, so there
need to manually insert this call yourself, but the call is legal).

program tut2;
#include(“win32.hhf”)
begin tut2;

 win.ExitProcess(0);

end tut2;

Note the new statement, #include. This statement has an operand that is the name of a file
want to insert at the place the statement appears. In the above example, when HLA proces
line #include(“win32.hhf”), it will open win32.hhf which is in the “hla\include” folder and pro
cesses the content of win32.hhf as if you had pasted the contents of that file there. HLA's
win32.hhf file contains procedure prototypes and definitions of constants and structures yo
in win32 programming. The include files save you the work of typing out the prototypes you
so use them whenever you can.

Now save the example under the name msgbox.hla. Assuming that hla.exe is in your pa
compile msgbox.hla with:

hla msgbox.hla

After you successfully compile msgbox.hla, you will get msgbox.exe.Now that you have
box.exe. Go on, run it. You'll find that it does nothing. Well, we haven't put anything interest
into it yet. But it's a Windows program nonetheless. And look at its size! In my PC, it is 20K
bytes.

Next we're going to put in a message box. Its function prototype is:
static
 MessageBox:procedure
 (
 uType:uns32;
 lpCaption:string;
 lpText:string;
 hwnd:dword
) external(“__imp__MessageBoxA@16”);

As noted in tutorial #1, the parameters are reversed compared to the standard Windows de
because HLA uses the Pascal calling sequence rather than the STDCALL calling sequenc
is very easily corrected by defining a macro that reverses the parameters when actually ca
MessageBox.

ber
mem-
 refer
ply

A
e we
ng
ters that
ointer
 use
string.

 so we

 partic-

s

r to it
The hwnd parameter is the handle to parent window. You can think of a handle as a num
that represents the window you're referrring to. Its value is not important to you. You only re
ber that it represents the window. When you want to do anything with the window, you must
to it by its handle. For our simple example there will be no parent window, so we’ll just sup
NULL (0) as the value for this parameter.

lpText is a pointer to the text you want to display in the client area of the message box.
pointer is really an address of something. In HLA, string variables are also pointers. Henc
can simply give this parameter the type string and let HLA take care of the details concerni
address computation of the string. MessageBox requires a pointer to a sequence of charac
end with a zero byte. HLA’s strings are actually a bit more sophisticated that this, but the p
held in a string variable does point at a zero-terminated sequence of characters, so we can
HLA strings as-is whenever a Windows API function expects a pointer to a zero terminated

lpCaption is a pointer to the caption of the message box. This is also a string parameter
can use the HLA string type for this parameter.

uType specifies the icon and the number and type of buttons on the message box. This
ular value is specified via some combination of the win.MB_xxxx constants that appear in the
win32.hhf header file. For the time being, we’ll use the value win.MB_OK which displays a sin-
gle “Okay” button in the dialog box.

Let's modify msgbox.hla to include the message box.
 // Iczelion's tutorial #2: MessageBox

program msgBoxDemo;
#include("win32.hhf")

begin msgBoxDemo;

 win.MessageBox
 (
 0, // NULL hWnd if no owner.
 "Iczelion's tutorial no.2", // Window title.
 "Win32/HLA Assembly is Great!", // Text to display in window.
 win.MB_OK // Display an "OK" button.
);

end msgBoxDemo;

Assemble and run it. You will see a message box displaying the text "Win32 Assembly i
Great!".

Let's look again at the source code.

We use the constant win.MB_OK. This constant is defined in win32.hhf. So you can refe
by name instead of its numeric value. This improves readability of your source code.

	Tutorial 2: MessageBox
	In this tutorial, we will create a fully functional Windows program that displays a message box s...
	Download the example file here.
	Theory:

	Windows prepares a wealth of resources for Windows programs. Central to this is the Windows API (...
	Windows programs dynamically link to these DLLs, ie. the codes of API functions are not included ...
	When a Windows program is loaded into memory, Windows reads the information stored in the program...
	There are two categoriesof API functions: One for ANSI and the other for Unicode. The names of AP...
	We are usually familiar with ANSI strings, which are arrays of characters terminated by NULL. ANS...
	HLA and the HLA Standard Library use ANSI characters by default. It is possible to write HLA prog...
	Example:
	I'll present the bare program skeleton below. We will flesh it out later.
	program tut2; begin tut2; end tut2;
	The execution starts from the first instruction immediately below the “begin tut2” clause. The ex...
	static
	ExitProcess: procedure(uExitCode:uns32); external(“__imp__ExitProcess@4”);
	The above line is called a procedure pointer prototype (“__imp__ExitProcess@4” is actually a poin...
	In short, the name of the procedure followed by a colon and the keyword procedure and then by the...
	call ExitProcess
	without pushing an uns32 value onto the stack, the assembler/linker will not be able to catch tha...
	ExitProcess();
	the linker will inform you that you forgot to push a dword on the stack thus avoiding error. I re...
	Procname(optional_arguments);
	Procname can be the name of a procedure or it can be a procedure pointer. The procedure parameter...
	Most of prototypes for API functions are kept in include files. This normally appear in the “c:\h...
	win.ExitProcess(return_code);
	This document will point out other differences between Windows and HLA as necessary.
	You can also create procedure prototypes for your own procedures.
	Now back to ExitProcess, the uExitCode parameter is the value you want the program to return to W...
	win.ExitProcess(0);
	Put that line immediately below the “begin tut2;” clause and you will get a win32 program which i...
	program tut2; #include(“win32.hhf”) begin tut2; win.ExitProcess(0); end tut2;
	Note the new statement, #include. This statement has an operand that is the name of a file you wa...
	Now save the example under the name msgbox.hla. Assuming that hla.exe is in your path, compile ms...
	hla msgbox.hla
	After you successfully compile msgbox.hla, you will get msgbox.exe.Now that you have msgbox.exe. ...
	Next we're going to put in a message box. Its function prototype is:
	static MessageBox:procedure (uType:uns32; lpCaption:string; lpText:string; hwnd:dword) external...
	As noted in tutorial #1, the parameters are reversed compared to the standard Windows definition ...
	The hwnd parameter is the handle to parent window. You can think of a handle as a number that rep...
	lpText is a pointer to the text you want to display in the client area of the message box. A poin...
	lpCaption is a pointer to the caption of the message box. This is also a string parameter so we c...
	uType specifies the icon and the number and type of buttons on the message box. This particular v...
	Let's modify msgbox.hla to include the message box.
	 // Iczelion's tutorial #2: MessageBox program msgBoxDemo; #include("win32.hhf") begin msgBoxDe...
	Assemble and run it. You will see a message box displaying the text "Win32 Assembly is Great!".
	Let's look again at the source code.
	We use the constant win.MB_OK. This constant is defined in win32.hhf. So you can refer to it by n...

