

or
r
em-

 so
ited.

mber

ge”

sem-
 con-
s since

yde
ifica-

this

Tutorial 5: More About Text

This win32 tutorial was created and written by Iczelion for MASM32. It was translated f
use by HLA (High Level Assembly) users by Randall Hyde. All original copyrights and othe
issues still apply to this text. The following is the copyright notice from Iczelion’s Win32 Ass
bly Home Page:

The tutorials written by me are copyright freeware. That means they are available freely
long as they are not included in any commercial package. Commercial use is strictly prohib
"Knowledge, like sex, is better when it's free"

Note that I don't claim to be the win32asm wizard or a coding guru. I'm also learning my
ropes. Those tutorials were written as reminders of what I have learned. They will grow in nu
as I learn more about win32asm programming.

You can read more about Iczelion’s tutorials at the “Iczelion’s Win32 Assembly Home Pa
found at

http://win32asm.cjb.net

That site provides the original MASM examples as well as providing additional win32 as
bly language programming information. Note that the MASM tutorials provide an excellent
trast between MASM and HLA as you can see the differences between these two language
MASM code exists at Iczelion’s site and the HLA translation appears at this site.

Note that references to the first person (“I”) refer to Iczelion, not Randall Hyde. Randy H
has attempted to maintain the tutorial in as “pure” a state as possible, only making the mod
tions necessary to support HLA rather than MASM along with a few minor changes to the
English. All credit, glory, damnation, etc., is due Iczelion; Randall Hyde’s modifications to
tutorial were rather trivial in nature.

Tutorial 5: More about Text

We will experiment more with text attributes, ie. font and color.

Source Code for this Tutorial

// Iczelion's tutorial #5: More About Text

program aSimpleWindow;
#include("win32.hhf") // Standard windows stuff.
#include("strings.hhf") // Defines HLA string routines.
#include("memory.hhf") // Defines "NULL" among other things.
#include("args.hhf") // Command line parameter stuff.
#include("conv.hhf")

http://win32asm.cjb.net

static
 hInstance: dword;
 CommandLine: string;

readonly

 ClassName: string := "SimpleWinClass";
 AppName: string := "Our First Window";

static GetLastError:procedure; external("__imp__GetLastError@0");

macro RGB(red, green, blue);

 xor(eax, eax);
 mov(blue, ah);
 shl(8, eax);
 mov(green, ah);
 mov(red, al);

endmacro;

// The window procedure. Since this gets called directly from
// windows we need to explicitly reverse the parameters (compared
// to the standard STDCALL declaration) in order to make HLA's
// Pascal calling convention compatible with Windows.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(lParam:dword; wParam:dword; uMsg:uns32; hWnd:dword);
 nodisplay;

const
 TestString:= "Win32 assembly is great and easy!";

var
 hdc: dword;
 ps: win.PAINTSTRUCT;
 hfont: dword;

begin WndProc;

 // If the WM_DESTROY message comes along, then we've
 // got to post a message telling the event loop that
 // it's time to quit the program. The return value in
 // EAX must be false (zero). The GetMessage function
 // will return this value to the event loop which is
 // the indication that it's time to quit.

 if(uMsg = win.WM_DESTROY) then

 win.PostQuitMessage(0);

 elseif(uMsg = win.WM_PAINT) then

 // When Windows requests that we draw the window,
 // fill in the string in the center of the screen.

 win.BeginPaint(hWnd, ps);
 mov(eax, hdc);

 win.CreateFont
 (
 24,
 16,
 0,
 0,
 400,
 0,
 0,
 0,
 win.OEM_CHARSET,
 win.OUT_DEFAULT_PRECIS,
 win.CLIP_DEFAULT_PRECIS,
 win.DEFAULT_QUALITY,
 win.DEFAULT_PITCH | win.FF_SCRIPT,
 "script"
);
 win.SelectObject(hdc, eax);
 mov(eax, hfont);

 RGB(200,200,50);
 win.SetTextColor(hdc, eax);

 RGB(0,0,255);
 win.SetBkColor(hdc, eax);

 win.TextOut
 (
 hdc,
 0,
 0,
 TestString,
 @length(TestString)
);
 win.SelectObject(hdc, hfont);
 win.EndPaint(hWnd, ps);

 else

 // If a WM_DESTROY message doesn't come along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 win.DefWindowProc(hWnd, uMsg, wParam, lParam);
 exit WndProc;

 endif;
 sub(eax, eax);

end WndProc;

// WinMain-
//
// This is the "main" windows program. It sets up the
// window and then enters an "event loop" processing
// whatever messages are passed along to that window.
// Since our code is the only code that calls this function,
// we'll use the Pascal calling conventions for the parameters.

procedure WinMain
(
 hInst:dword;
 hPrevInst: dword;
 CmdLine: string;
 CmdShow: dword
); nodisplay;

var
 wc: win.WNDCLASSEX;
 msg: win.MSG;
 hwnd: dword;

begin WinMain;

 // Set up the window class (wc) object:

 mov(@size(win.WNDCLASSEX), wc.cbSize);
 mov(win.CS_HREDRAW | win.CS_VREDRAW, wc.style);
 mov(&WndProc, wc.lpfnWndProc);
 mov(NULL, wc.cbClsExtra);
 mov(NULL, wc.cbWndExtra);

 mov(hInstance, wc.hInstance);
 mov(win.COLOR_WINDOW+1, wc.hbrBackground);
 mov(NULL, wc.lpszMenuName);
 mov(ClassName, wc.lpszClassName);

 // Get the icons and cursor for this application:

 win.LoadIcon(NULL, win.IDI_APPLICATION);
 mov(eax, wc.hIcon);
 mov(eax, wc.hIconSm);

 win.LoadCursor(NULL, win.IDC_ARROW);
 mov(eax, wc.hCursor);

 // Okay, register this window with Windows so it
 // will start passing messages our way. Once this
 // is accomplished, create the window and display it.

 win.RegisterClassEx(wc);

 win.CreateWindowEx
 (
 NULL,
 ClassName,
 AppName,
 win.WS_OVERLAPPEDWINDOW,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 NULL,
 NULL,
 hInst,
 NULL
);
 mov(eax, hwnd);

 win.ShowWindow(hwnd, win.SW_SHOWNORMAL);
 win.UpdateWindow(hwnd);

 // Here's the event loop that processes messages
 // sent to our window. On return from GetMessage,
 // break if EAX contains false and quit the
 // program.

 forever

 win.GetMessage(msg, NULL, 0, 0);
 breakif(!eax);
 win.TranslateMessage(msg);
 win.DispatchMessage(msg);

 endfor;
 mov(msg.wParam, eax);

to
olors.
 color,
n see
 have

hem
e is

 bytes
e to

: red,
acro is
end WinMain;

begin aSimpleWindow;

 // Get this process' handle:

 win.GetModuleHandle(NULL);
 mov(eax, hInstance);

 // Get a copy of the command line string passed to this code:

 mov(arg.CmdLn(), CommandLine);

 WinMain(hInstance, NULL, CommandLine, win.SW_SHOWDEFAULT);

 // WinMain returns a return code in EAX, exit the program
 // and pass along that return code.

 win.ExitProcess(eax);

end aSimpleWindow;

Theory:

Windows color system is based on RGB values, R=red, G=Green, B=Blue. If you want
specify a color in Windows, you must state your desired color in terms of these three major c
Each color value has a range from 0 to 255 (a byte value). For example, if you want pure red
you should use 255,0,0. Or if you want pure white color, you must use 255,255,255. You ca
from the examples that getting the color you need is very difficult with this system since you
to have a good grasp of how to mix and match colors.

For text color and background, you use win.SetTextColor and win.SetBkColor, both of t
require a handle to device context and a 32-bit RGB value. The 32-bit RGB value's structur
defined as:
RGB_value:record
 unused:byte;
 blue :byte;
 green :byte;
 red :byte;
endrecord;

Note that the first byte is not used and should be zero. The order of the remaining three
is reversed,ie. blue, green, red. However, we will not use this structure since it's cumbersom
initialize and use. We will create a macro instead. The macro will receive three parameters
green and blue values. It'll produce the desired 32-bit RGB value and store it in eax. The m
as follows:

nce
nter to
o
ill
ll to

xt.
.

nd the
. It

macro RGB(red, green, blue);
 xor(eax, eax);
 mov(blue, ah);
 shl(8, eax);
 mov(green, ah);
 mov(red, al);
endmacro;

You can put this macro in the include file for future use.

You can "create" a font by calling win.CreateFont or win.CreateFontIndirect. The differe
between the two functions is that win.CreateFontIndirect receives only one parameter: a poi
a logical font structure, win.LOGFONT. win.CreateFontIndirect is the more flexible of the tw
especially if your programs need to change fonts frequently. However, in our example, we w
"create" only one font for demonstration, we can get away with win.CreateFont. After the ca
win.CreateFont, it will return a handle to a font which you must select into the device conte
After that, every text API function will use the font we have selected into the device context

Analysis:

 win.CreateFont
 (
 24,
 16,
 0,
 0,
 400,
 0,
 0,
 0,
 win.OEM_CHARSET,
 win.OUT_DEFAULT_PRECIS,
 win.CLIP_DEFAULT_PRECIS,
 win.DEFAULT_QUALITY,
 win.DEFAULT_PITCH | win.FF_SCRIPT,
 "script"
);

win.CreateFont creates a logical font that is the closest match to the given parameters a
font data available. This function has more parameters than any other function in Windows
returns a handle to logical font to be used by win.SelectObject function. We will examine its
parameters in detail.
 nHeight:dword
 nWidth:dword
 nEscapement:dword
 nOrientation:dword
 nWeight:dword
 cItalic:dword
 cUnderline:dword
 cStrikeOut:dword
 cCharSet:dword
 cOutputPrecision:dword

ws
s the

ious
rd from
own.

s of a
iting,

:

h
 cClipPrecision:dword
 cQuality:dword
 cPitchAndFamily:dword
 lpFacename:dword

nHeight The desired height of the characters . 0 means use default size.

nWidth The desired width of the characters. Normally this value should be 0 which allo
Windows to match the width to the height. However, in our example, the default width make
characters hard to read, so I use the width of 16 instead.

nEscapement Specifies the orientation of the next character output relative to the prev
one in tenths of a degree. Normally, set to 0. Set to 900 to have all the characters go upwa
the first character, 1800 to write backwards, or 2700 to write each character from the top d

nOrientation Specifies how much the character should be rotated when output in tenth
degree. Set to 900 to have all the characters lying on their backs, 1800 for upside-down wr
etc.

nWeight Sets the line thickness of each character. Windows defines the following sizes

FW_DONTCARE 0

FW_THIN $100

FW_EXTRALIGHT $200

FW_ULTRALIGHT $200

FW_LIGHT $300

FW_NORMAL $400

FW_REGULAR $400

FW_MEDIUM $500

FW_SEMIBOLD $600

FW_DEMIBOLD $600

FW_BOLD $700

FW_EXTRABOLD $800

FW_ULTRABOLD $800

FW_HEAVY $900

FW_BLACK $900

cItalic 0 for normal, any other value for italic characters.

cUnderline 0 for normal, any other value for underlined characters.

cStrikeOut 0 for normal, any other value for characters with a line through the center.

cCharSet The character set of the font. Normally should be win.OEM_CHARSET whic
allows Windows to select font which is operating system-dependent.

 char-
lt

lip

t
ee

e

PI

e con-
rushs,
placed
ny

nd
cOutputPrecision Specifies how much the selected font must be closely matched to the
acteristics we want. Normally should be win.OUT_DEFAULT_PRECIS which defines defau
font mapping behavior.

cClipPrecision Specifies the clipping precision. The clipping precision defines how to c
characters that are partially outside the clipping region. You should be able to get by with
win.CLIP_DEFAULT_PRECIS which defines the default clipping behavior.

cQuality Specifies the output quality. The output quality defines how carefully GDI mus
attempt to match the logical-font attributes to those of an actual physical font. There are thr
choices: win.DEFAULT_QUALITY, win.PROOF_QUALITY and win.DRAFT_QUALITY.

cPitchAndFamily Specifies pitch and family of the font. You must combine the pitch valu
and the family value with the "|" operator.

lpFacename A pointer to a null-terminated string that specifies the typeface of the font.

The description above is by no means comprehensive. You should refer to your Win32 A
reference for more details.

 win.SelectObject(hdc, eax);
 mov(eax, hfont);

After we get the handle to the logical font, we must use it to select the font into the devic
text by calling win.SelectObject. win.SelectObject puts the new GDI objects such as pens, b
and fonts into the device context to be used by GDI functions. It returns the handle to the re
object which we should save for future win.SelectObject calls. After win.SelectObject call, a
text output function will use the font we just selected into the device context.
 RGB(200,200,50);
 win.SetTextColor(hdc, eax);

 RGB(0,0,255);
 win.SetBkColor(hdc, eax);

Use RGB macro to create a 32-bit RGB value to be used by SetColorText and Set-
BkColor.

 win.TextOut
 (
 hdc,
 0,
 0,
 TestString,
 @length(TestString)
);

Call win.TextOut function to draw the text on the client area. The text will be in the font a
color we specified previously.

con-
 win.SelectObject(hdc, hfont);

When we are through with the font, we should restore the old font back into the device
text. You should always restore the object that you replaced in the device context.

	Tutorial 5: More About Text
	Tutorial 5: More about Text
	Source Code for this Tutorial
	Theory:
	Analysis:

