
Randy Hyde’s Win32 Assembly Language Tutorials
(Featuring HOWL)

#1: Hello World

Prerequisites:

This tutorial set assumes that the reader is already familiar with assembly language program-
ming and HLA programming in particular. If you are unfamiliar with assembly language pro-
gramming or the High Level Assembler (HLA), you will want to grab a copy of my book “The
Art of Assembly Language, 2nd Edition” from No Starch Press (www.nostarch.com). The HOWL
(HLA Object Windows Library) also makes heavy use of HLA’s object-oriented programming
facilities. If you are unfamiliar with object-oriented programming in assembly language, you will
want to check out the appropriate chapters in “The Art of Assembly Language” and in the HLA
Reference Manual. Finally, HOWL is documented in the HLA Standard Library Reference Man-
ual; you’ll definitely want to have a copy of the chapter on HOWL available when working
through this tutorial.

Source Code:

The source code for the examples appearing in this tutorial are available as part of the HLA
Examples download. You’ll find the sample code in the Win32/HOWL subdirectories in the
unpacked examples download. This particular tutorial uses the files 001_helloworld.hla and
001x_helloworld.hla.

Hello World:

There is a long-standing tradition (since the days of K&R C) of providing a “Hello World”
program as the first programming example when presenting a new language or application frame-
work. Printing the string “Hello World” is often a trivial example that requires a minimal amount
of programming language knowledge to comprehend. The purpose of a “Hello World” example,
of course, is not to teach someone how to print the string “Hello World” to a display (or wherever
else the output might go) but, rather, to teach the reader all the steps needed to get a working pro-
gram to the point you can execute it. Because this is important knowledge that someone will need
in order to create Win32 applications using the HOWL application framework, “Hello World”
seems like a reasonable place to start our journey.

Many Win32 programming tutorials actually begin by teaching you how to print the string
“Hello World” in the middle of a form; however, I feel that such an example is needlessly over-
kill. Not that putting the string “Hello World” on a form is difficult when using HOWL, but the
truth is that if we can get a window to appear on the display at all, we’ve achieved everything the
“Hello World” program was intended to achieve. Don’t worry, though, you’ll get to see “Hello
World” on the screen -- we’ll sneak that string in as the window’s title.

Perhaps the best place to start is by describing the HOWL (HLA Object Windows Library)
philosophy. HOWL is an application framework. This means that HOWL is largely a pre-canned
application to which you add code to differentiate it from other applications. If you’re already
familiar with Win32 API programming, you’re probably aware of how much work it is to write a
trivial Windows program (message handling loops, decoding messages, stuff like that). The
HOWL library encapsulates all that functionality so you can concentrate on writing only the code
you need to implement the functionality of your application.

HOWL is based on two HLA facilities: object-oriented programming and macros. The exist-
ing HOWL library code is written using HLA class facilities. Win32 GUI programming lends
itself to an object implementation and this is exactly what the HOWL library provides -- an
object-oriented view of the Win32 API. The second big part of the HOWL system is the HOWL
Declarative Language. This is a very high-level programming language, implemented with HLA’s
macros, that lets you define the look and feel of a Win32 GUI app by simply declaring the objects
that will appear on a form (window).

A typical (small) HOWL application will consist of two parts: one section where you define
the form layout (using the HOWL Declarative Language) and a second part containing mostly
boilerplate code that you usually copy from application to application.

For our “Hello World” application, here’s what the first section looks like (we’ll discuss these
statements after the code:

program helloworld;
#linker("comdlg32.lib")
#linker("comctl32.lib")

?@NoDisplay := true;
?@NoStackAlign := true;

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

const
 applicationName := "Hello World";
 formX := w.CW_USEDEFAULT; // Let Windows position this guy
 formY := w.CW_USEDEFAULT;
 formW := 600;
 formH := 600;

// Form declaration.
// We've got an empty form with no widgets, so this is fairly trivial:

wForm(mainAppWindow);
endwForm

// Must include the following macro invocation to emit the code that the
// wForm macro generated:

mainAppWindow_implementation();

// The following gets called immediately after the main application
// window is created. It must be provided, even if it does nothing.

method mainAppWindow_t.onCreate;
begin onCreate;
end onCreate;

The first two statements of interest are the #linker statements:

#linker("comdlg32.lib")
#linker("comctl32.lib")

The HOWL library uses code in the Win32 common dialog (comdlg32.lib) and common con-
trol (comctl32.lib) libraries. Normally, an HLA compilation doesn’t automatically link these
libraries into your program code. You could manally specify these library names on the com-
mand-line when you compile a HOWL application, but it’s much easier to simply include these
two #linker commands at the beginning of your source file.

?@NoDisplay := true;
?@NoStackAlign := true;

By default, HLA automatically emits some extra code at the beginning of most procedures to
build a display and to ensure that the stack is aligned to four bytes. This is done for beginning
assembly language students; more advanced assembly language programmers (and this would
include anyone working through these tutorials) won’t want this “coding behind your back” to
take place. Therefore, the two statements above appear in most HLA programs (unless you really
intend to use procedure displays in your code, in which case I presume you know why you
wouldn’t want to include the statement above). Windows requires all stacks to be dword aligned
before making any Win32 API calls, so it would seem to be a good thing to have HLA automati-
cally dword align the stack. However, you have to go out of your way to misalign the stack; I’m
assuming, because you’re reading this, that you realize that you should always keep the stack
dword-aligned in your code (by always pushing or popping objects that are a multiple of four
bytes long).

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

Almost every HLA application is going to include the HLA standard library header files.
HOWL applications also require that you include howl.hhf. Note that the howl.hhf header file
also includes the w.hhf (Windows) header file, so you don’t have to explicitly include w.hhf to
gain access to Windows constants and data structures. However, this may change in the future, so

if you want to “future-proof” your programs, you may want to consider adding a #include-
Once(“w.hhf”) statement to the above sequence.

const
 applicationName := "Hello World";
 formX := w.CW_USEDEFAULT; // Let Windows position this guy
 formY := w.CW_USEDEFAULT;
 formW := 600;
 formH := 600;

As noted earlier, the second part of a typical HOWL application is boiler-plate code that gen-
erally remains unchanged from application to application. These five constant declarations are
essentially parameters to that boilerplate code. The applicationName constant is the window title
that Windows will dislay in the title bar of the main form (window) that the application creates.
This particular string is where we’ll put “Hello World”, to justify calling the program a “Hello
World” program.

The formX, formY, formW, and formH constants define the position and size of the form on
the screen. The Windows’ constant w.CW_USEDEFAULT instructs Windows to use a value that it
feels is most appropriate. In the case of the (x,y) coordinate values, Windows will pick a spot on
the screen that varies each time you run an application so that the windows are staggered on the
display. Almost all of the applications in this series will use a 600x600 pixel size. Most will work
will with an even smaller form. You can play around with these numbers if you like; just keep in
mind that many examples (Hello World excluded) are going to place a single button in the lower-
right hand corner of the window, so take this into account if you decide to change the window
size. Of course, for the Hello World application, we’re not going to put anything into the window,
so as long as the window is wide enough to display “Hello World” in the title bar, you should be
fine.

// Form declaration.
// We've got an empty form with no widgets, so this is fairly trivial:

wForm(mainAppWindow);
endwForm

// Must include the following macro invocation to emit the code that the
// wForm macro generated:

mainAppWindow_implementation();

Now we get to the HOWL part of the program. Specifically, wForm..endwForm are statements
in the HOWL Declarative Langage (HDL) that let you define what your application’s main win-
dow is going to look like. The wForm statement contains a single argument -- a form name. This
must be a valid (and unique) HLA identifier. The wForm statement creates several identifiers from
this argument you pass to wForm:

• mainAppWindow_t: an HLA class type derived from the HOWL wForm_t class type. The
wForm macro automatically generates the class definition for this type based on the source
code appearing between the wForm and endwForm statements.

• mainAppWindow_p: an HLA type that is a pointer to an object of type mainAppWindow_t.
• mainAppWindow: a variable (object) of type mainAppWindow_t.
• pmainAppWindow: a variable of type mainAppWindow_p that will contain a pointer to the

object that the wForm..endwForm macro invocation creates. Specifically, the HOWL Declara-
tive Language will initialize this variable with the address of the mainAppWindow variable.

• mainAppWindow_implementation: a macro that you must explicitly invoke to create the con-
structor for the class.

The wForm..endwForm sequence actually creates two things: the variables and types just men-
tioned and a macro named mainAppWindow_implementation. The wForm..endwForm sequence
is actually equivalent to a class declaration in HLA (indeed, that’s what this macro directly
expands into). However, while generating the mainAppWindow_t class (or whatever class name
you specify as the wForm argument), the wForm macro is also busy writing a macro that will
expand into the constructor for the new class. For technical reasons (specifically: the
wForm..endwForm sequence might be in a header file), HOWL does not automatically expand
this macro. The last statement in the above code sequence does this expansion and generates the
constructor for the mainAppWindow_t class.

// The following gets called immediately after the main application
// window is created. It must be provided, even if it does nothing.

method mainAppWindow_t.onCreate;
begin onCreate;
end onCreate;

The last bit of code in the first part of our Hello World application is the definition of the
mainAppWindow_t class’ onCreate method. HOWL will call this method immediately after cre-
ating the main form’s window. Normally, you’d put initialization code in here that must execute
after the form is created but before the application framework takes over. For our simple Hello
World application, no such initialization is necessary, but because the onCreate method has been
defined for the class, we must still provide the method (even if it is empty and does nothing but
return to the caller).

The second part of a HOWL application, the boilerplate code, is generally the following:

///
//
//
// The following is mostly boilerplate code for all apps (about the only thing
// you would change is the size of the main app's form)
//
//
///
//
// When the main application window closes, we need to terminate the
// application. This overridden method handles that situation.

method mainAppWindow_t.onClose;
begin onClose;

 // Tell the winmain main program that it's time to terminate.
 // Note that this message will (ultimately) cause the appTerminate
 // procedure to be called.

 w.PostQuitMessage(0);

end onClose;

// When the application begins execution, the following procedure
// is called. This procedure must create the main
// application window in order to kick off the execution of the
// GUI application:

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 mainAppWindow.create_mainAppWindow
 (
 applicationName, // Window title
 w.WS_EX_CONTROLPARENT, // Need this to support TAB control selection
 w.WS_OVERLAPPEDWINDOW, // Style
 NULL, // No parent window
 formX, // x-coordinate for window.
 formY, // y-coordinate for window.
 formW, // Width
 formH, // Height
 howl.bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmainAppWindow); // Save pointer to main window object.
 pop(esi);

end appStart;

// appTerminate-
//
// Called when the application is quitting, giving the app a chance
// to clean up after itself.
//
// Note that this is called *after* the mainAppWindow_t.onClose method
// executes (indeed, mainAppWindow_t.onClose, by posting the quit message,
// is what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 mainAppWindow.destroy();

end appTerminate;

// appException-
//
// Gives the application the opportunity to clean up before
// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

 raise(eax);

end appException;

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin helloworld;

 // Set up the background and transparent colors that the
 // form will use when registering the window_t class:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, howl.bkgColor_g);
 or($FF00_0000, eax);
 mov(eax, howl.transparent_g);
 w.CreateSolidBrush(howl.bkgColor_g);
 mov(eax, howl.bkgBrush_g);

 HowlMainApp();

 // Delete the brush we created earlier:

 w.DeleteObject(howl.bkgBrush_g);

end helloworld;

Again, we’ll discuss all this code on a piece-by-piece basis:

method mainAppWindow_t.onClose;
begin onClose;

 // Tell the winmain main program that it's time to terminate.
 // Note that this message will (ultimately) cause the appTerminate
 // procedure to be called.

 w.PostQuitMessage(0);

end onClose;

The onClose method terminates the application. The call to w.PostQuitMessage is a magic
Windows API call that tells the application to terminate itself. You can tell your application to
terminate at anytime by directly invoking this method. You can do this with the following state-
ment:

mainAppWindow.onClose();

Note that this function will return to the caller. Specifically, your program does not immedi-
ately quit when you execute this statement. Instead, it will quit at some point in the near future
when Windows gets around to processing the quit message. Therefore, your code should be ready
to continue execution upon return from the method call above.

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 mainAppWindow.create_mainAppWindow
 (
 applicationName, // Window title
 w.WS_EX_CONTROLPARENT, // Need this to support TAB control selection
 w.WS_OVERLAPPEDWINDOW, // Style
 NULL, // No parent window
 formX, // x-coordinate for window.
 formY, // y-coordinate for window.
 formW, // Width
 formH, // Height
 howl.bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmainAppWindow); // Save pointer to main window object.
 pop(esi);

end appStart;

The HOWL framework calls appStart after it has completed various Windows’ initialization
operations. The main purpose of the appStart procedure is to call the constructor for the applica-
tion’s main form (window). Assuming you stick with the name “mainAppWindow” in your
wForm statement, the code above is very typical for the appStart procedure. Let’s consider the
statements in this procedure on a section-by-section basis:

 mainAppWindow.create_mainAppWindow
 (
 applicationName, // Window title
 w.WS_EX_CONTROLPARENT, // Need this to support TAB control selection
 w.WS_OVERLAPPEDWINDOW, // Style
 NULL, // No parent window
 formX, // x-coordinate for window.
 formY, // y-coordinate for window.

 formW, // Width
 formH, // Height
 howl.bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmainAppWindow); // Save pointer to main window object.

The remaining (interesting) code in the appStart procedure is a call to the mainAppWindow
constructor that initializes the mainAppWindow variable that the wForm..endwForm sequence cre-
ates. Before describing the arguments to the constructor’s call, it’s important to point out that if
you use a name other than “mainAppWindow” in the wForm statement, then you will need to
adjust the object name in this procedure invocation accordingly. This is why the appStart code
isn’t hidden away in a library module somewhere. If you want to use a name other than
mainAppWindow for your form’s name (or if you want to use more than one form in an applica-
tion), you will need to modify appStart accordingly.

The first argument tothe constructor, applicationName, is the string that HOWL will display
in the title bar for the window. Using the applicationName string constant here lets you specify the
actual string constant at the beginning of the source file (“Hello World” in this example).

The next two arguments are Windows’ CreateWindowEx extended style and style values. the
w.WS_EX_CONTROLPARENT extended-style argument tells HOWL that the user should be allowed
to select different widgets on the form using the tab key. If you don’t want to allow this, just put
the value zero here. The w.WS_OVERLAPPEDWINDOW CreateWindow style is the typical Windows
style you’ll want for a HOWL form. For more details on the available style and extended-style
constants you can use here, please consult the documentation for the Windows’ CreateWindow
and CreateWindowEx API calls (a search on-line will provide this documentation if you don’t
have it handy).

The fourth parameter is the handle of the form’s parent window. The main form has no parent
window, so this value is always NULL. If you create multiple forms, some of those forms could
reference the handle of the main form (e.g., mainAppWindow.handle) in this argument.

The next four arguments specify the position on the screen and the size of the form. These are
the constants declared earlier in the source file.

The ninth argument is the RGB value of the background color to use when painting the client
area of the form (in our case, the client area is everything below that title bar, not including the
window’s border). This example uses the howl.bkgColor_g value that is created in the main pro-
gram (a little later).

The last argument is a boolean value that determines whether HOWL will create the form in a
visible (true) or hidden (false) state. For the main form, this is always true. If you are creating
multiple forms, you’ll want to specify false here if you want to manually display those forms at
some later point in your program.

The next piece of code in the HOWL application is the appTerminate procedure. HOWL
calls appTerminate whenever the application is shutting down. This call is made after all the
windows are closed and HOWL is done using the data objects you’ve created with a
wForm..endwForm sequence. It is appTerminate’s responsibility to clean up any system resources
in use by the application.

procedure appTerminate;
begin appTerminate;

 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 mainAppWindow.destroy();

end appTerminate;

The appTerminate program in the boilerplate code does two things: first, it calls the destruc-
tor for the mainAppWindow object. This cleans up all objects placed on the form (deallocating
memory and other system resources they use). It’s always a good idea to free up system resources
you use; anything you create in appStart should be destroyed or freed in the appTerminate pro-
cedure.

The HOWL system will call the appException procedure if an exception occurs. The default
appException procedure in the boilerplate code simply re-raises this exception. You might want
to modify this code to do any “last chance” exception handling (perhaps freeing up
howl.bkgBrush_g might not be a bad idea, for example). As a general rule, you should attempt
to catch exceptions closer to their source rather than placing a lot of exception handling code in
the appException procedure. However, appException can be usefor as a catch-all for excep-
tions that would otherwise be missed.

The last bit of code in the HOWL boilerplate section is the main program. The main program
is very simple, it just calls the HowlMainApp procedure:

begin helloworld;

 // Set up the background and transparent colors that the
 // form will use when registering the window_t class:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, howl.bkgColor_g);
 or($FF00_0000, eax);
 mov(eax, howl.transparent_g);
 w.CreateSolidBrush(howl.bkgColor_g);
 mov(eax, howl.bkgBrush_g);

 HowlMainApp();

 // Delete the brush we created earlier:

 w.DeleteObject(howl.bkgBrush_g);

end helloworld;

The first set of statements set up the background color for use by the form and various con-
trols. The howl.bkgColor_g and howl.transparent_g are RGB color values available for use
by various components in the application. We’ll take a look at the purpose of the howl.trans-
parent_g value when we discuss transparency in the tutorial on graphic objects. The howl.bkg-
Brush_g is also available to the application if it wants to use it. Note that this code deletes the

brush before the application quits (it’s always a good idea to free resources that your program
uses). Technically, initializing these HOWL objects isn’t strictly necessary; the HOWL library
doesn’t actually use them. However, their values are quite useful when creating HOWL applica-
tions, so the boilerplate HOWL main program always initializes them with a gray color. If you’d
prefer a different background color, change the w.GetSysColor to load EAX with some appro-
priate RGB value. Though we’ll discuss this farther in the tutorial on graphic objects, a back-
ground color whose H.O. byte contains $FF is a special “transparent” background color and for
certain objects HOWL will not fill the background area of an object if the color is transparent.
Normal RGB color values have a $00 value in the H.O. byte.

HowlMainApp is the real main program. But it appears in the HLA standard library, so it had to
be made into a callable procedure to avoid linking errors. Therefore, in order to activate the
HOWL application framework, the application’s main program must call HowlMainApp.

Okay, we’ve described the code on a line-by-line basis. Now how do we compile and run it?
Actually, there’s not much special about compiling and running this app. From a command-line
window, just type the following command (this assumes you’re using the source file present in the
HLA examples download from the win32\howl directory, which contains all the source code for
this set of tutorials in an electronic form):

hla 001_HelloWorld

You can run the program by typing “001_HelloWorld” on the command line or by double-
clicking on the executable’s icon from the Windows Explorer.

If you double-click on the icon, you’ll notice that the program opens up a console window in
addition to the main form. Although the Hello World example doesn’t use this window, most of
the following tutorials will print debug and status information to this window. So generally, it’s a
good idea to leave this window up during the execution of these tutorial programs. However, for
final releases of a GUI app, it’s probably a good idea to banish this console window. You can do
this by using the following command line to compile the program:

hla -w 001_HelloWorld

The HOWL Classes

Throughout this set of tutorials, I plan to discuss several of the HOWL classes (at least, as
they exist at the time this tutorial was written; they are in constant flux so the details may have
changed by the time you read this, but the main ideas should still apply). This will help familiar-
ize you with the various HOWL classes at a reasonable pace.

The Hello World application indirectly1 uses only one class: wForm_t. Here’s the HLA defini-
tion for that class:

1. “Indirectly” is used here because the Hello World application actually creates a new class that is derived
from wForm_t and uses that new class.

 wForm_t:
 class inherits(window_t);
 var
 align(4);
 wForm_private:
 record

 menuList :wMenuItem_p;

 endrecord;

 procedure create_wForm
 (
 wwName :string;
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword;
 visible :boolean
); external;

 method appendMenuItem(mi:wMenuItem_p); external;

 override method insertWidget; external;
 override method processMessage; external;

 endclass;

There really isn’t much to this class. All of the magic occurs in the inherits(window_t);
clause (this means that the class actually includes many other data fields, procedures, methods,
and iterators that wForm_t inherits from window_t and all the ancestor classes it inherits from).

The first thing of importance to note here is the wForm_private record variable. HLA does
not provide “private” or “protected” data fields like some other object-oriented languages like
C++ or Java. Because HLA is assemly language, any attempt to make a field private could be eas-
ily circumvented, so HLA doesn’t even bother to try to hide private data fields. However, the fact
that HLA doesn’t bother with private data fields doesn’t mean that the concept (information hid-
ing) isnt’ a good one. In HOWL, private data fields are “protected” by placing them in a record
structure that has the name className_private (for example, wForm_private). Application pro-
grams should never access data in one of HOWL’s private records. For those private data fields
whose data is interesting to an application program, HOWL generally provides accessor functions
(that return the value of a private data field) and mutator functions (that store a value into a pri-
vate data field). Although using accessor and mutator functions is decidedly less convenient than
reading and writing the data field directly, by channeling all private data access through these
functions it is possible to automatically handle other chores (such a redrawing an object when you
change its size or computing a Windows brush value when you change a color) that you would
have to (remember to) take care of yourself. HOWL’s mutator and accessor functions also help

maintain consistency between Windows’ internal data structures and HOWL’s data structures;
something that wouldn’t happen if you were to directly access the private data fields.

If some HOWL class’ data field does not appear within a className_private record, then
this is generally a public data field and (unless otherwise documented) you are free to read its
value and, in most cases, write its value as well. A few fields are “read-only public.” That means
you can directly read their values but you should never write to them. Such fields do not appear
within a className_private record structure, so you have to check the documentation on a pub-
lic data field to ensure that it’s okay to directly write to that data object. Fortunately, it’s generally
obvious from the use of a public data field whether you should be writing a value to it.

The wForm_t class has a single (private) data field: menuList. HOWL uses this field to create
a linked list of menu items if your main form has a menu on it (Hello World does not). In general,
you should ignore this field; if your form has menus, HOWL will automatically use this field; if
your form does not have menus, HOWL doesn’t use this field (and neither should you).

The appendMenuItem method attaches a single menu item (wMenuItem_t) to a form’s menu-
List linked list. If you’re using the HOWL Declarative Language (HDL) to create your forms,
then you’ll probably never directly call this method (the code that the HDL generates will call it
for you). If you’re masochistic enough to want to manually create a form with a menu attached to
it (an example will appear in a later tutorial), then you can all this method after initializing the
menu item to attach that menu item to the form.

A wForm_t object (or descendant object) is an example of a HOWL container. A container has
the ability to hold (contain) other HOWL objects. For example, a form may contain buttons, edit
boxes, labels, and other HOWL objects. The insertWidget method lets you place an object such
as a button onto a form. If you dynamically create objects at run time, you’ll attach them to a
form by calling the insertWidget method.

The processMessage method is a private method that the HOWL system uses to process
Windows’ messages. Application programs must never call this method directly.

Another HOWL class worth discussing here is the wBase_t class. This is the base class for the
HOWL system and, as such, all HOWL classes (including wForm_t) inherit all the fields and
methods associated with wBase_t. Here is the wBase_t definition:

 wBase_t:
 class

 var
 handle :dword;
 _name :string;
 wType :lword;

 wBase_private:
 record

 visible :boolean;
 enabled :boolean;
 onHeap :boolean;
 align(4);

 objectID :dword;
 nextWidget :wBase_p;

 // Pointer the wForm object that this
 // object belongs to.

 parentForm :wForm_p;

 // Handle of the Windows parent window associated
 // with this control. Note that parentForm.handle
 // may not be the same as parentHandle because this
 // object could belong to some other window that
 // is a child window of the main form. (Okay, parentForm
 // was probably a bad name to use).

 parentHandle :dword;

 endrecord;

 static
 objectID_g :dword; external("objectID_object_t");

 // Constructors/Destructors:

 procedure create_wBase
 (
 wbName :string
); external;

 method destroy; external;
 method show; external;
 method hide; external;
 method enable; external;
 method disable; external;

 // Accessor/mutator functions:

 method get_handle; @returns("eax"); external;
 method get_objectID; @returns("eax"); external;
 method get_visible; @returns("al"); external;
 method get_enabled; @returns("al"); external;
 method get_onHeap; @returns("al"); external;
 method get_parentHandle; @returns("eax"); external;
 method get_parentForm; @returns("eax"); external;

 method set_onHeap(onHeap:boolean); external;
 method set_parentHandle(parentHandle:dword); external;
 method set_parentForm(parentForm:wForm_p); external;

 // Default message processor:

 method processMessage
 (
 hwnd :dword;
 uMsg :dword;
 wParam :dword;
 lParam :dword
); external;

 endclass;

This class has three public fields: handle, _name, and wType. The first public field, handle,
is a read-only public field (you should never store a value into this field). Technically, handle
should be a private field (there is even an accessor function for it) but applications will often need
to reference an object’s handle value whenever making Win32 API calls (which is common) so I
decided to make this field public.

For those who are unfamiliar with the Win32 API, a handle is an index into an internal Win-
dows data structure that Windows uses to identify various objects. You will treat the handle as an
opaque object (that is, the particular value of the handle is meaningless to you; Windows supplies
it when you create a Windows’ object and you pass it back to Windows when referencing that
object). Unless you are creating your own HOWL classes to implement some new object, you’ll
never have to worry about obtaining a value for this field; HOWL functions automatically fill in
the handle value when you create a HOWL object.

The _name field is simply a string that holds the name of a particular object. HOWL doesn’t
actually use this field for much; this field is mainly intended for use by the application program.
With most HOWL object constructor functions, you supply this string as an argument and HOWL
stores a pointer to the string in the _name field. After that point, you can use _name however you
like. In general, however, it should contain the name of the particular object (which, logically,
should be a string containing the HLA identifier for the object).

The wType field is another read-only private field. This is a 128-bit (lword) array of bits that
HOWL uses to determine the type of an object at run time. In the howl.hhf header file, there are
several constants of the form typename_c for all of the HOWL classes except wBase_t. For
example, there is a constant named wForm_c associated with the wForm_t class. These constants
are small integer values in the range 0..127, with a unique integer value for each specific class.
When you create an object, the corresponding HOWL constructor procedure will set the corre-
sponding bit position in the wType field to a one for that object’s class type and all inherited class
types. For example, the main form is of type wForm_t, so bit position wForm_t in wType will con-
tain a ‘1’; however, wForm_t is a subclass of window_t, which is a subclass of wContainer_t,
which is a subclass of wVisual_t, so the wType bit array will also contain ‘1’ bits in positions
window_c, wContainer_c, and wVisual_c. At run time, an application can test an object to see
if it is a particular class (or derived from a particular class) by using an instruction like:

bt(wContainer_c, object.wType);

After executing this instruction, the carry flag will be set if the object is a wContainer_t object
(or an object whose class is derived from wContainer_t).

Note that HOWL makes considerable use of the wType field; therefore you should never
change the value of this field in your application program after an object has been created and this
field is initialized (of course, it doesn’t make sense, logically, to change this field’s value as the
type is fixed at compile time).

The visible and enabled fields, accessible via their associated accessor functions (read-
only, so no mutator functions are available), tell you whether an object is visible (true) or hidden

(false) and whether they are enabled (true) or disabled (false). Note that although there are no
mutator functions that directly set these fields, calling the show and hide methods will set the
visible field to true or false and calling the enable and disable methods will similarly affect
the enabled field. For those objects that are not visual (e.g., wFont_t), the system ignores the val-
ues in these fields.

The visible and enabled fields arguably belong in the wVisual_t class, not in wBase_t
because they only apply to visual objects. However, they were placed in wBase_t because they
apply to wMenuItem_t objects (that are derived from wBase_t but not wVisual_t.

The onHeap field is true if the current object’s storage appears on the heap. Applications
should normally ignore this field. An object’s destructor will look at this field to determine if it
has to free the object’s storage when destroying the object. Unless you’re writing the destructor
function, this field is probably of little interest to you.

The objectID field contains a unique integer number for each object that HOWL creates.
Internally, HOWL passes this number along to Windows whenever Windows needs a numeric
identifier for objects. Normally, Windows passes this numeric value along with a message to iden-
tify controls and other items; HOWL, however, doesn’t use this value except for menu items
(HOWL tells Windows pass a pointer to the actual HLA object and that’s how HOWL identifies
things). If you intend to manually process some Windows’ messages, this field’s value may be of
interest to you. However, as this is advanced HOWL programming, we won’t consider that use
here.

The nextWidget field holds a link between HOWL objects held by a wContainer_t object.
This is a private data field and applications must not mess with its value.

The parentForm field points at the wForm_t object on which the current object is attached.
This field may contain NULL if the current object isn’t attached to a particular form (i.e., you’ve
created the object dynamically and you haven’t attached it to a form) or if the current object is a
wForm_t object that is not attached to another form.

The parentHandle field contains the handle of the Windows’ object of which the current
object is a child window. Note that this is not necessarily the same object as the parentForm
object as you can have multiple containers containing other containers containing the object in
question.

The objectID_g is a global (hence the “_g”) integer used by HOWL to generate a sequence
of unique objectID values. As a general rule, applications shouldn’t mess with this value. In
practice, you can increment its value without causing too much harm, but if you ever set its value
to something lower than its current value you could create problems.

The wBase_t constructor (create_wBase) and destructor (destroy) functions aren’t directly
called by application programs.

Applications normally call the show, hide, enable, and disable methods when processing
generic objects. If the underlying object is a visual object, the hide and show methods will make
the object visible on the form or hide it (respectively). If the underlying object is visible and sup-
ports enable/disable, then the enable and disable methods will affect that object accordingly. If
the underlying object is not a visual object, then calling these methods will have no effect.

The accessor methods provide access to the private data fields (and handle). The mutator
functions (set_*) allow you to store a value into some of the private fields; application programs,
however, should not be changing the values of the private data fields. Therefore, applications
shouldn’t call these mutator functions.

The wBase_t processMessage method is the message handler of last resort in the HOWL
system. It basically calls the default Windows message handler whenever it is called. Application
programs should never call processMessage. The HOWL main application invokes process-
Message in response to a message arriving from Windows.

The Manual Solution

Because this is assembly language, you might be interested to know what kind of magic lies
behind the wForm..endwForm sequence. HOWL is just a library; the HOWL Declarative Lan-
guage (HDL) generates a class, an object, and a constructor for that class. However, there is noth-
ing stopping you from writing that same code yourself and bypassing the HDL. Most of the
tutorials in this series include two versions: one that uses the HDL and one that provides the
explicit code that the wForm..endwForm statement would generate. These manual versions usu-
ally have an ‘x’ in the name. For example, 001_HelloWorld.hla is the HDL version,
001x_HelloWorld.hla is the manual version.

There are a couple of reasons for manually writing the HOWL code rather than using the HDL
to create your forms:

• Assembly language programmers are macho and would never consider using an automatic
code generator. Okay, this isn’t true, but some people prefer to see exactly what machine
instructions are being used. These same people probably don’t use the HLA high-level control
structures, either (good luck with that one when using HOWL; object-oriented code is very
messy when using only low-level machine instructions).

• Programs created manually are slightly smaller than those created with HDL. Arguably they
are slightly faster, too. But the code that HDL emits is only executed once, so all you’re sav-
ing is a few microseconds across the execution of your entire program (and a few bytes across
the entire application), so this argument is hardly valid.

• Because HDL is implemented with macros, deciphering error messages due to syntax errors in
the HDL source can be very messy. So much so, in fact, that it’s actually easier to write the
code manually in some cases. HDL works great as long as you don’t make any mistakes. Syn-
tax errors in HDL can sometimes be a problem to track down (we’ll discuss how to do this in
a later tutorial when we actually have a complex HDL declaration).

The first step in writing a manual version of a HOWL application is to realize that the
wForm..endwForm sequence is really a specialized class declaration. When you have a statement
sequence like:

wForm(mainAppWindow)
endwForm

This translates (roughly) into:

type
mainAppWindow_t:

class inherits(wForm_t);

create_mainAppWindow
(
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgClr :dword;
 visible :boolean
);

endclass;
mainAppWindow_p :pointer to mainAppWindow_t;

static
 vmt(mainAppWindow_t);
 mainAppWindow :mainAppWindow_t;
 pmainAppWindow :mainAppWindow_p := &mainAppWindow;

Note that the create_mainAppWindow procedure is the constructor for the class. This is the
procedure that appStart calls during program initialization.

The wForm..endwForm sequence also constructs the code for the constructor. This is collected
into a string that the mainAppWindow_implementation macro emits. Here’s what that constructor
looks like for the Hello World application:

procedure mainAppWindow_t.create_mainAppWindow
(
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgClr :dword;
 visible :boolean
);
begin create_mainAppWindow;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

// Standad main form initialization:
//
// If a class procedure call (not typical), then allocate storage
// for this object:

 if(esi = NULL) then

 mem.alloc(@size(mainAppWindow_t));
 mov(eax, esi);
 mov(true, cl);
 else
 mov(this.wBase_private.onHeap, cl);
 endif;

// Call the wForm_t constructor to do all the default initialization:

 (type wForm_t [esi]).create_wForm
 (
 "mainAppWindow",
 caption,
 exStyle,
 style,
 parent,
 x,
 y,
 width,
 height,
 bkgClr,
 visible
);

// Initialize the VMT pointer:

 mov(&mainAppWindow_t._VMT_, this._pVMT_);

// Retrieve the onHeap value from above and store it into
// the onHeap data field:

 mov(cl, this.wBase_private.onHeap);

 this.onCreate(); // Be nice, call this guy (even if empty).
 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

end create_mainAppWindow;

We’ll look at these statements group by group. The first section is the standard HLA con-
structor initialization code:

 if(esi = NULL) then
 mem.alloc(@size(mainAppWindow_t));
 mov(eax, esi);
 mov(true, cl);
 else
 mov(this.wBase_private.onHeap, cl);
 endif;

If ESI is NULL, then this code sequence allocates storage for a new instance of the object on
the heap and sets CL to true (this value will be used to initialize the “onHeap” field later in the
constructor). ESI will be NULL when you call this constructor as a class constructor, that is, using
a calling sequence like this:

mainAppWindow_t.create_mainAppWindow(...);

Note that this is a class constructor call (mainAppWindow_t), not an object invocation. Normally
when you call the constructor, you call it with an object variable like this:

mainAppWindow.create_mainAppWindow(...);

(Note the lack of the “_t” at the end of mainAppWindow.). This loads ESI with the address of the
mainAppWindow variable before calling the constructor. Therefore, the code inside the construc-
tor will load the CL register with the current value of the this.wBase_private.onHeap variable
(which is initialize to zero/false when HOWL loads the program into memory). This is actually
the most common use case; the wForm..endwForm automatically creates the mainAppWindow
variable for you, so it makes sense to always use that variable for the main form.

Generally, you’ll only create one instance of the mainAppWindow_t class (this is the singleton
design pattern). Therefore, the inclusion of the object allocation code in the constructor might
seem like a waste of time. However, it is quite possible to create multiple instance of a form in
your program. This would not typically be done for the main application form, but if you create an
application with multiple forms, it’s not unreasonable to create multiple instances of those sec-
ondary forms. Hence, wForm..endwForm will create a generalized constructor to handle all cases.
If you’re creating the form manually, this is one area where you can optimize things, you can sim-
ply delete this code (or better yet, replace it with an assertion that checks to ensure ESI is not
NULL).

The next step is to call the wForm_t constructor to do most of the real initialization work.
Because the mainAppWindow_t class is derived from wForm_t, the parameter lists are identical.
Note that you must call the constructor using the syntax (type wForm_t [esi]).create_wForm
rather than as wForm_t.create_wForm. The latter form creates a new object (on the heap) rather
than initializing the existing mainAppWindow_t object.

 (type wForm_t [esi]).create_wForm
 (
 "mainAppWindow",
 caption,
 exStyle,
 style,
 parent,
 x,
 y,
 width,
 height,
 bkgClr,
 visible
);

The only additional argument in this example is the first argument. This is a string with the win-
dow’s name (not the same as the title string, which is the second parameter). The value of this
string is irrelevant for our purposes. I just copied the mainAppWindow name here. Other than this
first parameter, I’ve just copied the arguments passed into the
mainAppWindow_t.create_mainAppWindow constructor directly to the wForm_t constructor call.

As with any HLA class constructor, you’ve got to initialize the object’s VMT pointer before
leaving the constructor. This is accomplished with the following statement:

 mov(&mainAppWindow_t._VMT_, this._pVMT_);

This stores the address of the mainAppWindow_t VMT (named mainAppWindow_t._VMT_,
unsurprisingly enough) into the current object’s VMT pointer (this._pVMT_). Failure to do this
will cause the system to crash whenever you call any of the object’s methods (which is about to
happen).

On last bit of initialization is to set the object’s onHeap data field. This is accomplished with
the following statement:

 mov(cl, this.wBase_private.onHeap);

Note that the code is accessing a private wBase_t field here. That’s okay. We’re writing the
constructor for a class derived from wForm_t (which is ultimately derived from wBase_t). Child
classes can legitimately access the private data fields of ancestor classes.

The last thing the constructor does before cleaning up the stack and returning is to call the
onCreate method. As you saw in the earlier example, this is where various bits of initialization in
the main application take place.

Once you get past the constructor for the mainAppWindow_t object, the rest of the code looks
exactly like the stuff appearing in the HDL version of the Hello World program. You can take a
look at the earlier discussion for more details on that code.

	Randy Hyde’s Win32 Assembly Language Tutorials (Featuring HOWL)
	#1: Hello World
	Prerequisites:
	Source Code:
	Hello World:
	The HOWL Classes
	The Manual Solution

